1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <linux/msg.h> 32 #include <net/flow.h> 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 /* 38 * How many LSMs are built into the kernel as determined at 39 * build time. Used to determine fixed array sizes. 40 * The capability module is accounted for by CONFIG_SECURITY 41 */ 42 #define LSM_CONFIG_COUNT ( \ 43 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 44 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 54 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0)) 55 56 /* 57 * These are descriptions of the reasons that can be passed to the 58 * security_locked_down() LSM hook. Placing this array here allows 59 * all security modules to use the same descriptions for auditing 60 * purposes. 61 */ 62 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 63 [LOCKDOWN_NONE] = "none", 64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 67 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 68 [LOCKDOWN_HIBERNATION] = "hibernation", 69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 70 [LOCKDOWN_IOPORT] = "raw io port access", 71 [LOCKDOWN_MSR] = "raw MSR access", 72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 78 [LOCKDOWN_DEBUGFS] = "debugfs access", 79 [LOCKDOWN_XMON_WR] = "xmon write access", 80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 83 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 84 [LOCKDOWN_KCORE] = "/proc/kcore access", 85 [LOCKDOWN_KPROBES] = "use of kprobes", 86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 88 [LOCKDOWN_PERF] = "unsafe use of perf", 89 [LOCKDOWN_TRACEFS] = "use of tracefs", 90 [LOCKDOWN_XMON_RW] = "xmon read and write access", 91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 93 }; 94 95 struct security_hook_heads security_hook_heads __ro_after_init; 96 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 97 98 static struct kmem_cache *lsm_file_cache; 99 static struct kmem_cache *lsm_inode_cache; 100 101 char *lsm_names; 102 static struct lsm_blob_sizes blob_sizes __ro_after_init; 103 104 /* Boot-time LSM user choice */ 105 static __initdata const char *chosen_lsm_order; 106 static __initdata const char *chosen_major_lsm; 107 108 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 109 110 /* Ordered list of LSMs to initialize. */ 111 static __initdata struct lsm_info **ordered_lsms; 112 static __initdata struct lsm_info *exclusive; 113 114 static __initdata bool debug; 115 #define init_debug(...) \ 116 do { \ 117 if (debug) \ 118 pr_info(__VA_ARGS__); \ 119 } while (0) 120 121 static bool __init is_enabled(struct lsm_info *lsm) 122 { 123 if (!lsm->enabled) 124 return false; 125 126 return *lsm->enabled; 127 } 128 129 /* Mark an LSM's enabled flag. */ 130 static int lsm_enabled_true __initdata = 1; 131 static int lsm_enabled_false __initdata = 0; 132 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 133 { 134 /* 135 * When an LSM hasn't configured an enable variable, we can use 136 * a hard-coded location for storing the default enabled state. 137 */ 138 if (!lsm->enabled) { 139 if (enabled) 140 lsm->enabled = &lsm_enabled_true; 141 else 142 lsm->enabled = &lsm_enabled_false; 143 } else if (lsm->enabled == &lsm_enabled_true) { 144 if (!enabled) 145 lsm->enabled = &lsm_enabled_false; 146 } else if (lsm->enabled == &lsm_enabled_false) { 147 if (enabled) 148 lsm->enabled = &lsm_enabled_true; 149 } else { 150 *lsm->enabled = enabled; 151 } 152 } 153 154 /* Is an LSM already listed in the ordered LSMs list? */ 155 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 156 { 157 struct lsm_info **check; 158 159 for (check = ordered_lsms; *check; check++) 160 if (*check == lsm) 161 return true; 162 163 return false; 164 } 165 166 /* Append an LSM to the list of ordered LSMs to initialize. */ 167 static int last_lsm __initdata; 168 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 169 { 170 /* Ignore duplicate selections. */ 171 if (exists_ordered_lsm(lsm)) 172 return; 173 174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 175 return; 176 177 /* Enable this LSM, if it is not already set. */ 178 if (!lsm->enabled) 179 lsm->enabled = &lsm_enabled_true; 180 ordered_lsms[last_lsm++] = lsm; 181 182 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 183 is_enabled(lsm) ? "enabled" : "disabled"); 184 } 185 186 /* Is an LSM allowed to be initialized? */ 187 static bool __init lsm_allowed(struct lsm_info *lsm) 188 { 189 /* Skip if the LSM is disabled. */ 190 if (!is_enabled(lsm)) 191 return false; 192 193 /* Not allowed if another exclusive LSM already initialized. */ 194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 195 init_debug("exclusive disabled: %s\n", lsm->name); 196 return false; 197 } 198 199 return true; 200 } 201 202 static void __init lsm_set_blob_size(int *need, int *lbs) 203 { 204 int offset; 205 206 if (*need <= 0) 207 return; 208 209 offset = ALIGN(*lbs, sizeof(void *)); 210 *lbs = offset + *need; 211 *need = offset; 212 } 213 214 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 215 { 216 if (!needed) 217 return; 218 219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 221 /* 222 * The inode blob gets an rcu_head in addition to 223 * what the modules might need. 224 */ 225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 226 blob_sizes.lbs_inode = sizeof(struct rcu_head); 227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 232 lsm_set_blob_size(&needed->lbs_xattr_count, 233 &blob_sizes.lbs_xattr_count); 234 } 235 236 /* Prepare LSM for initialization. */ 237 static void __init prepare_lsm(struct lsm_info *lsm) 238 { 239 int enabled = lsm_allowed(lsm); 240 241 /* Record enablement (to handle any following exclusive LSMs). */ 242 set_enabled(lsm, enabled); 243 244 /* If enabled, do pre-initialization work. */ 245 if (enabled) { 246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 247 exclusive = lsm; 248 init_debug("exclusive chosen: %s\n", lsm->name); 249 } 250 251 lsm_set_blob_sizes(lsm->blobs); 252 } 253 } 254 255 /* Initialize a given LSM, if it is enabled. */ 256 static void __init initialize_lsm(struct lsm_info *lsm) 257 { 258 if (is_enabled(lsm)) { 259 int ret; 260 261 init_debug("initializing %s\n", lsm->name); 262 ret = lsm->init(); 263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 264 } 265 } 266 267 /* 268 * Current index to use while initializing the lsm id list. 269 */ 270 u32 lsm_active_cnt __ro_after_init; 271 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 272 273 /* Populate ordered LSMs list from comma-separated LSM name list. */ 274 static void __init ordered_lsm_parse(const char *order, const char *origin) 275 { 276 struct lsm_info *lsm; 277 char *sep, *name, *next; 278 279 /* LSM_ORDER_FIRST is always first. */ 280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 281 if (lsm->order == LSM_ORDER_FIRST) 282 append_ordered_lsm(lsm, " first"); 283 } 284 285 /* Process "security=", if given. */ 286 if (chosen_major_lsm) { 287 struct lsm_info *major; 288 289 /* 290 * To match the original "security=" behavior, this 291 * explicitly does NOT fallback to another Legacy Major 292 * if the selected one was separately disabled: disable 293 * all non-matching Legacy Major LSMs. 294 */ 295 for (major = __start_lsm_info; major < __end_lsm_info; 296 major++) { 297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 298 strcmp(major->name, chosen_major_lsm) != 0) { 299 set_enabled(major, false); 300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 301 chosen_major_lsm, major->name); 302 } 303 } 304 } 305 306 sep = kstrdup(order, GFP_KERNEL); 307 next = sep; 308 /* Walk the list, looking for matching LSMs. */ 309 while ((name = strsep(&next, ",")) != NULL) { 310 bool found = false; 311 312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 313 if (strcmp(lsm->name, name) == 0) { 314 if (lsm->order == LSM_ORDER_MUTABLE) 315 append_ordered_lsm(lsm, origin); 316 found = true; 317 } 318 } 319 320 if (!found) 321 init_debug("%s ignored: %s (not built into kernel)\n", 322 origin, name); 323 } 324 325 /* Process "security=", if given. */ 326 if (chosen_major_lsm) { 327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 328 if (exists_ordered_lsm(lsm)) 329 continue; 330 if (strcmp(lsm->name, chosen_major_lsm) == 0) 331 append_ordered_lsm(lsm, "security="); 332 } 333 } 334 335 /* LSM_ORDER_LAST is always last. */ 336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 337 if (lsm->order == LSM_ORDER_LAST) 338 append_ordered_lsm(lsm, " last"); 339 } 340 341 /* Disable all LSMs not in the ordered list. */ 342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 343 if (exists_ordered_lsm(lsm)) 344 continue; 345 set_enabled(lsm, false); 346 init_debug("%s skipped: %s (not in requested order)\n", 347 origin, lsm->name); 348 } 349 350 kfree(sep); 351 } 352 353 static void __init lsm_early_cred(struct cred *cred); 354 static void __init lsm_early_task(struct task_struct *task); 355 356 static int lsm_append(const char *new, char **result); 357 358 static void __init report_lsm_order(void) 359 { 360 struct lsm_info **lsm, *early; 361 int first = 0; 362 363 pr_info("initializing lsm="); 364 365 /* Report each enabled LSM name, comma separated. */ 366 for (early = __start_early_lsm_info; 367 early < __end_early_lsm_info; early++) 368 if (is_enabled(early)) 369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 370 for (lsm = ordered_lsms; *lsm; lsm++) 371 if (is_enabled(*lsm)) 372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 373 374 pr_cont("\n"); 375 } 376 377 static void __init ordered_lsm_init(void) 378 { 379 struct lsm_info **lsm; 380 381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 382 GFP_KERNEL); 383 384 if (chosen_lsm_order) { 385 if (chosen_major_lsm) { 386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 387 chosen_major_lsm, chosen_lsm_order); 388 chosen_major_lsm = NULL; 389 } 390 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 391 } else 392 ordered_lsm_parse(builtin_lsm_order, "builtin"); 393 394 for (lsm = ordered_lsms; *lsm; lsm++) 395 prepare_lsm(*lsm); 396 397 report_lsm_order(); 398 399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 400 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 405 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 407 408 /* 409 * Create any kmem_caches needed for blobs 410 */ 411 if (blob_sizes.lbs_file) 412 lsm_file_cache = kmem_cache_create("lsm_file_cache", 413 blob_sizes.lbs_file, 0, 414 SLAB_PANIC, NULL); 415 if (blob_sizes.lbs_inode) 416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 417 blob_sizes.lbs_inode, 0, 418 SLAB_PANIC, NULL); 419 420 lsm_early_cred((struct cred *) current->cred); 421 lsm_early_task(current); 422 for (lsm = ordered_lsms; *lsm; lsm++) 423 initialize_lsm(*lsm); 424 425 kfree(ordered_lsms); 426 } 427 428 int __init early_security_init(void) 429 { 430 struct lsm_info *lsm; 431 432 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 433 INIT_HLIST_HEAD(&security_hook_heads.NAME); 434 #include "linux/lsm_hook_defs.h" 435 #undef LSM_HOOK 436 437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 438 if (!lsm->enabled) 439 lsm->enabled = &lsm_enabled_true; 440 prepare_lsm(lsm); 441 initialize_lsm(lsm); 442 } 443 444 return 0; 445 } 446 447 /** 448 * security_init - initializes the security framework 449 * 450 * This should be called early in the kernel initialization sequence. 451 */ 452 int __init security_init(void) 453 { 454 struct lsm_info *lsm; 455 456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 459 460 /* 461 * Append the names of the early LSM modules now that kmalloc() is 462 * available 463 */ 464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 465 init_debug(" early started: %s (%s)\n", lsm->name, 466 is_enabled(lsm) ? "enabled" : "disabled"); 467 if (lsm->enabled) 468 lsm_append(lsm->name, &lsm_names); 469 } 470 471 /* Load LSMs in specified order. */ 472 ordered_lsm_init(); 473 474 return 0; 475 } 476 477 /* Save user chosen LSM */ 478 static int __init choose_major_lsm(char *str) 479 { 480 chosen_major_lsm = str; 481 return 1; 482 } 483 __setup("security=", choose_major_lsm); 484 485 /* Explicitly choose LSM initialization order. */ 486 static int __init choose_lsm_order(char *str) 487 { 488 chosen_lsm_order = str; 489 return 1; 490 } 491 __setup("lsm=", choose_lsm_order); 492 493 /* Enable LSM order debugging. */ 494 static int __init enable_debug(char *str) 495 { 496 debug = true; 497 return 1; 498 } 499 __setup("lsm.debug", enable_debug); 500 501 static bool match_last_lsm(const char *list, const char *lsm) 502 { 503 const char *last; 504 505 if (WARN_ON(!list || !lsm)) 506 return false; 507 last = strrchr(list, ','); 508 if (last) 509 /* Pass the comma, strcmp() will check for '\0' */ 510 last++; 511 else 512 last = list; 513 return !strcmp(last, lsm); 514 } 515 516 static int lsm_append(const char *new, char **result) 517 { 518 char *cp; 519 520 if (*result == NULL) { 521 *result = kstrdup(new, GFP_KERNEL); 522 if (*result == NULL) 523 return -ENOMEM; 524 } else { 525 /* Check if it is the last registered name */ 526 if (match_last_lsm(*result, new)) 527 return 0; 528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 529 if (cp == NULL) 530 return -ENOMEM; 531 kfree(*result); 532 *result = cp; 533 } 534 return 0; 535 } 536 537 /** 538 * security_add_hooks - Add a modules hooks to the hook lists. 539 * @hooks: the hooks to add 540 * @count: the number of hooks to add 541 * @lsmid: the identification information for the security module 542 * 543 * Each LSM has to register its hooks with the infrastructure. 544 */ 545 void __init security_add_hooks(struct security_hook_list *hooks, int count, 546 const struct lsm_id *lsmid) 547 { 548 int i; 549 550 /* 551 * A security module may call security_add_hooks() more 552 * than once during initialization, and LSM initialization 553 * is serialized. Landlock is one such case. 554 * Look at the previous entry, if there is one, for duplication. 555 */ 556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 557 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 558 panic("%s Too many LSMs registered.\n", __func__); 559 lsm_idlist[lsm_active_cnt++] = lsmid; 560 } 561 562 for (i = 0; i < count; i++) { 563 hooks[i].lsmid = lsmid; 564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 565 } 566 567 /* 568 * Don't try to append during early_security_init(), we'll come back 569 * and fix this up afterwards. 570 */ 571 if (slab_is_available()) { 572 if (lsm_append(lsmid->name, &lsm_names) < 0) 573 panic("%s - Cannot get early memory.\n", __func__); 574 } 575 } 576 577 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 578 { 579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 580 event, data); 581 } 582 EXPORT_SYMBOL(call_blocking_lsm_notifier); 583 584 int register_blocking_lsm_notifier(struct notifier_block *nb) 585 { 586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 587 nb); 588 } 589 EXPORT_SYMBOL(register_blocking_lsm_notifier); 590 591 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 592 { 593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 594 nb); 595 } 596 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 597 598 /** 599 * lsm_cred_alloc - allocate a composite cred blob 600 * @cred: the cred that needs a blob 601 * @gfp: allocation type 602 * 603 * Allocate the cred blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 608 { 609 if (blob_sizes.lbs_cred == 0) { 610 cred->security = NULL; 611 return 0; 612 } 613 614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 615 if (cred->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_early_cred - during initialization allocate a composite cred blob 622 * @cred: the cred that needs a blob 623 * 624 * Allocate the cred blob for all the modules 625 */ 626 static void __init lsm_early_cred(struct cred *cred) 627 { 628 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 629 630 if (rc) 631 panic("%s: Early cred alloc failed.\n", __func__); 632 } 633 634 /** 635 * lsm_file_alloc - allocate a composite file blob 636 * @file: the file that needs a blob 637 * 638 * Allocate the file blob for all the modules 639 * 640 * Returns 0, or -ENOMEM if memory can't be allocated. 641 */ 642 static int lsm_file_alloc(struct file *file) 643 { 644 if (!lsm_file_cache) { 645 file->f_security = NULL; 646 return 0; 647 } 648 649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 650 if (file->f_security == NULL) 651 return -ENOMEM; 652 return 0; 653 } 654 655 /** 656 * lsm_inode_alloc - allocate a composite inode blob 657 * @inode: the inode that needs a blob 658 * 659 * Allocate the inode blob for all the modules 660 * 661 * Returns 0, or -ENOMEM if memory can't be allocated. 662 */ 663 int lsm_inode_alloc(struct inode *inode) 664 { 665 if (!lsm_inode_cache) { 666 inode->i_security = NULL; 667 return 0; 668 } 669 670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 671 if (inode->i_security == NULL) 672 return -ENOMEM; 673 return 0; 674 } 675 676 /** 677 * lsm_task_alloc - allocate a composite task blob 678 * @task: the task that needs a blob 679 * 680 * Allocate the task blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_task_alloc(struct task_struct *task) 685 { 686 if (blob_sizes.lbs_task == 0) { 687 task->security = NULL; 688 return 0; 689 } 690 691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 692 if (task->security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /** 698 * lsm_ipc_alloc - allocate a composite ipc blob 699 * @kip: the ipc that needs a blob 700 * 701 * Allocate the ipc blob for all the modules 702 * 703 * Returns 0, or -ENOMEM if memory can't be allocated. 704 */ 705 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 706 { 707 if (blob_sizes.lbs_ipc == 0) { 708 kip->security = NULL; 709 return 0; 710 } 711 712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 713 if (kip->security == NULL) 714 return -ENOMEM; 715 return 0; 716 } 717 718 /** 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 720 * @mp: the msg_msg that needs a blob 721 * 722 * Allocate the ipc blob for all the modules 723 * 724 * Returns 0, or -ENOMEM if memory can't be allocated. 725 */ 726 static int lsm_msg_msg_alloc(struct msg_msg *mp) 727 { 728 if (blob_sizes.lbs_msg_msg == 0) { 729 mp->security = NULL; 730 return 0; 731 } 732 733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 734 if (mp->security == NULL) 735 return -ENOMEM; 736 return 0; 737 } 738 739 /** 740 * lsm_early_task - during initialization allocate a composite task blob 741 * @task: the task that needs a blob 742 * 743 * Allocate the task blob for all the modules 744 */ 745 static void __init lsm_early_task(struct task_struct *task) 746 { 747 int rc = lsm_task_alloc(task); 748 749 if (rc) 750 panic("%s: Early task alloc failed.\n", __func__); 751 } 752 753 /** 754 * lsm_superblock_alloc - allocate a composite superblock blob 755 * @sb: the superblock that needs a blob 756 * 757 * Allocate the superblock blob for all the modules 758 * 759 * Returns 0, or -ENOMEM if memory can't be allocated. 760 */ 761 static int lsm_superblock_alloc(struct super_block *sb) 762 { 763 if (blob_sizes.lbs_superblock == 0) { 764 sb->s_security = NULL; 765 return 0; 766 } 767 768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 769 if (sb->s_security == NULL) 770 return -ENOMEM; 771 return 0; 772 } 773 774 /** 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 776 * @ctx: an LSM context to be filled 777 * @context: the new context value 778 * @context_size: the size of the new context value 779 * @id: LSM id 780 * @flags: LSM defined flags 781 * 782 * Fill all of the fields in a user space lsm_ctx structure. 783 * Caller is assumed to have verified that @ctx has enough space 784 * for @context. 785 * 786 * Returns 0 on success, -EFAULT on a copyout error, -ENOMEM 787 * if memory can't be allocated. 788 */ 789 int lsm_fill_user_ctx(struct lsm_ctx __user *ctx, void *context, 790 size_t context_size, u64 id, u64 flags) 791 { 792 struct lsm_ctx *lctx; 793 size_t locallen = struct_size(lctx, ctx, context_size); 794 int rc = 0; 795 796 lctx = kzalloc(locallen, GFP_KERNEL); 797 if (lctx == NULL) 798 return -ENOMEM; 799 800 lctx->id = id; 801 lctx->flags = flags; 802 lctx->ctx_len = context_size; 803 lctx->len = locallen; 804 805 memcpy(lctx->ctx, context, context_size); 806 807 if (copy_to_user(ctx, lctx, locallen)) 808 rc = -EFAULT; 809 810 kfree(lctx); 811 812 return rc; 813 } 814 815 /* 816 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 817 * can be accessed with: 818 * 819 * LSM_RET_DEFAULT(<hook_name>) 820 * 821 * The macros below define static constants for the default value of each 822 * LSM hook. 823 */ 824 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 825 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 826 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 827 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 828 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 829 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 830 831 #include <linux/lsm_hook_defs.h> 832 #undef LSM_HOOK 833 834 /* 835 * Hook list operation macros. 836 * 837 * call_void_hook: 838 * This is a hook that does not return a value. 839 * 840 * call_int_hook: 841 * This is a hook that returns a value. 842 */ 843 844 #define call_void_hook(FUNC, ...) \ 845 do { \ 846 struct security_hook_list *P; \ 847 \ 848 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 849 P->hook.FUNC(__VA_ARGS__); \ 850 } while (0) 851 852 #define call_int_hook(FUNC, IRC, ...) ({ \ 853 int RC = IRC; \ 854 do { \ 855 struct security_hook_list *P; \ 856 \ 857 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 858 RC = P->hook.FUNC(__VA_ARGS__); \ 859 if (RC != 0) \ 860 break; \ 861 } \ 862 } while (0); \ 863 RC; \ 864 }) 865 866 /* Security operations */ 867 868 /** 869 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 870 * @mgr: task credentials of current binder process 871 * 872 * Check whether @mgr is allowed to be the binder context manager. 873 * 874 * Return: Return 0 if permission is granted. 875 */ 876 int security_binder_set_context_mgr(const struct cred *mgr) 877 { 878 return call_int_hook(binder_set_context_mgr, 0, mgr); 879 } 880 881 /** 882 * security_binder_transaction() - Check if a binder transaction is allowed 883 * @from: sending process 884 * @to: receiving process 885 * 886 * Check whether @from is allowed to invoke a binder transaction call to @to. 887 * 888 * Return: Returns 0 if permission is granted. 889 */ 890 int security_binder_transaction(const struct cred *from, 891 const struct cred *to) 892 { 893 return call_int_hook(binder_transaction, 0, from, to); 894 } 895 896 /** 897 * security_binder_transfer_binder() - Check if a binder transfer is allowed 898 * @from: sending process 899 * @to: receiving process 900 * 901 * Check whether @from is allowed to transfer a binder reference to @to. 902 * 903 * Return: Returns 0 if permission is granted. 904 */ 905 int security_binder_transfer_binder(const struct cred *from, 906 const struct cred *to) 907 { 908 return call_int_hook(binder_transfer_binder, 0, from, to); 909 } 910 911 /** 912 * security_binder_transfer_file() - Check if a binder file xfer is allowed 913 * @from: sending process 914 * @to: receiving process 915 * @file: file being transferred 916 * 917 * Check whether @from is allowed to transfer @file to @to. 918 * 919 * Return: Returns 0 if permission is granted. 920 */ 921 int security_binder_transfer_file(const struct cred *from, 922 const struct cred *to, const struct file *file) 923 { 924 return call_int_hook(binder_transfer_file, 0, from, to, file); 925 } 926 927 /** 928 * security_ptrace_access_check() - Check if tracing is allowed 929 * @child: target process 930 * @mode: PTRACE_MODE flags 931 * 932 * Check permission before allowing the current process to trace the @child 933 * process. Security modules may also want to perform a process tracing check 934 * during an execve in the set_security or apply_creds hooks of tracing check 935 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 936 * process is being traced and its security attributes would be changed by the 937 * execve. 938 * 939 * Return: Returns 0 if permission is granted. 940 */ 941 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 942 { 943 return call_int_hook(ptrace_access_check, 0, child, mode); 944 } 945 946 /** 947 * security_ptrace_traceme() - Check if tracing is allowed 948 * @parent: tracing process 949 * 950 * Check that the @parent process has sufficient permission to trace the 951 * current process before allowing the current process to present itself to the 952 * @parent process for tracing. 953 * 954 * Return: Returns 0 if permission is granted. 955 */ 956 int security_ptrace_traceme(struct task_struct *parent) 957 { 958 return call_int_hook(ptrace_traceme, 0, parent); 959 } 960 961 /** 962 * security_capget() - Get the capability sets for a process 963 * @target: target process 964 * @effective: effective capability set 965 * @inheritable: inheritable capability set 966 * @permitted: permitted capability set 967 * 968 * Get the @effective, @inheritable, and @permitted capability sets for the 969 * @target process. The hook may also perform permission checking to determine 970 * if the current process is allowed to see the capability sets of the @target 971 * process. 972 * 973 * Return: Returns 0 if the capability sets were successfully obtained. 974 */ 975 int security_capget(const struct task_struct *target, 976 kernel_cap_t *effective, 977 kernel_cap_t *inheritable, 978 kernel_cap_t *permitted) 979 { 980 return call_int_hook(capget, 0, target, 981 effective, inheritable, permitted); 982 } 983 984 /** 985 * security_capset() - Set the capability sets for a process 986 * @new: new credentials for the target process 987 * @old: current credentials of the target process 988 * @effective: effective capability set 989 * @inheritable: inheritable capability set 990 * @permitted: permitted capability set 991 * 992 * Set the @effective, @inheritable, and @permitted capability sets for the 993 * current process. 994 * 995 * Return: Returns 0 and update @new if permission is granted. 996 */ 997 int security_capset(struct cred *new, const struct cred *old, 998 const kernel_cap_t *effective, 999 const kernel_cap_t *inheritable, 1000 const kernel_cap_t *permitted) 1001 { 1002 return call_int_hook(capset, 0, new, old, 1003 effective, inheritable, permitted); 1004 } 1005 1006 /** 1007 * security_capable() - Check if a process has the necessary capability 1008 * @cred: credentials to examine 1009 * @ns: user namespace 1010 * @cap: capability requested 1011 * @opts: capability check options 1012 * 1013 * Check whether the @tsk process has the @cap capability in the indicated 1014 * credentials. @cap contains the capability <include/linux/capability.h>. 1015 * @opts contains options for the capable check <include/linux/security.h>. 1016 * 1017 * Return: Returns 0 if the capability is granted. 1018 */ 1019 int security_capable(const struct cred *cred, 1020 struct user_namespace *ns, 1021 int cap, 1022 unsigned int opts) 1023 { 1024 return call_int_hook(capable, 0, cred, ns, cap, opts); 1025 } 1026 1027 /** 1028 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1029 * @cmds: commands 1030 * @type: type 1031 * @id: id 1032 * @sb: filesystem 1033 * 1034 * Check whether the quotactl syscall is allowed for this @sb. 1035 * 1036 * Return: Returns 0 if permission is granted. 1037 */ 1038 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1039 { 1040 return call_int_hook(quotactl, 0, cmds, type, id, sb); 1041 } 1042 1043 /** 1044 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1045 * @dentry: dentry 1046 * 1047 * Check whether QUOTAON is allowed for @dentry. 1048 * 1049 * Return: Returns 0 if permission is granted. 1050 */ 1051 int security_quota_on(struct dentry *dentry) 1052 { 1053 return call_int_hook(quota_on, 0, dentry); 1054 } 1055 1056 /** 1057 * security_syslog() - Check if accessing the kernel message ring is allowed 1058 * @type: SYSLOG_ACTION_* type 1059 * 1060 * Check permission before accessing the kernel message ring or changing 1061 * logging to the console. See the syslog(2) manual page for an explanation of 1062 * the @type values. 1063 * 1064 * Return: Return 0 if permission is granted. 1065 */ 1066 int security_syslog(int type) 1067 { 1068 return call_int_hook(syslog, 0, type); 1069 } 1070 1071 /** 1072 * security_settime64() - Check if changing the system time is allowed 1073 * @ts: new time 1074 * @tz: timezone 1075 * 1076 * Check permission to change the system time, struct timespec64 is defined in 1077 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1078 * 1079 * Return: Returns 0 if permission is granted. 1080 */ 1081 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1082 { 1083 return call_int_hook(settime, 0, ts, tz); 1084 } 1085 1086 /** 1087 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1088 * @mm: mm struct 1089 * @pages: number of pages 1090 * 1091 * Check permissions for allocating a new virtual mapping. If all LSMs return 1092 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1093 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1094 * called with cap_sys_admin cleared. 1095 * 1096 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1097 * caller. 1098 */ 1099 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1100 { 1101 struct security_hook_list *hp; 1102 int cap_sys_admin = 1; 1103 int rc; 1104 1105 /* 1106 * The module will respond with a positive value if 1107 * it thinks the __vm_enough_memory() call should be 1108 * made with the cap_sys_admin set. If all of the modules 1109 * agree that it should be set it will. If any module 1110 * thinks it should not be set it won't. 1111 */ 1112 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1113 rc = hp->hook.vm_enough_memory(mm, pages); 1114 if (rc <= 0) { 1115 cap_sys_admin = 0; 1116 break; 1117 } 1118 } 1119 return __vm_enough_memory(mm, pages, cap_sys_admin); 1120 } 1121 1122 /** 1123 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1124 * @bprm: binary program information 1125 * 1126 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1127 * properly for executing @bprm->file, update the LSM's portion of 1128 * @bprm->cred->security to be what commit_creds needs to install for the new 1129 * program. This hook may also optionally check permissions (e.g. for 1130 * transitions between security domains). The hook must set @bprm->secureexec 1131 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1132 * contains the linux_binprm structure. 1133 * 1134 * Return: Returns 0 if the hook is successful and permission is granted. 1135 */ 1136 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1137 { 1138 return call_int_hook(bprm_creds_for_exec, 0, bprm); 1139 } 1140 1141 /** 1142 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1143 * @bprm: binary program information 1144 * @file: associated file 1145 * 1146 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1147 * exec, update @bprm->cred to reflect that change. This is called after 1148 * finding the binary that will be executed without an interpreter. This 1149 * ensures that the credentials will not be derived from a script that the 1150 * binary will need to reopen, which when reopend may end up being a completely 1151 * different file. This hook may also optionally check permissions (e.g. for 1152 * transitions between security domains). The hook must set @bprm->secureexec 1153 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1154 * hook must add to @bprm->per_clear any personality flags that should be 1155 * cleared from current->personality. @bprm contains the linux_binprm 1156 * structure. 1157 * 1158 * Return: Returns 0 if the hook is successful and permission is granted. 1159 */ 1160 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1161 { 1162 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 1163 } 1164 1165 /** 1166 * security_bprm_check() - Mediate binary handler search 1167 * @bprm: binary program information 1168 * 1169 * This hook mediates the point when a search for a binary handler will begin. 1170 * It allows a check against the @bprm->cred->security value which was set in 1171 * the preceding creds_for_exec call. The argv list and envp list are reliably 1172 * available in @bprm. This hook may be called multiple times during a single 1173 * execve. @bprm contains the linux_binprm structure. 1174 * 1175 * Return: Returns 0 if the hook is successful and permission is granted. 1176 */ 1177 int security_bprm_check(struct linux_binprm *bprm) 1178 { 1179 int ret; 1180 1181 ret = call_int_hook(bprm_check_security, 0, bprm); 1182 if (ret) 1183 return ret; 1184 return ima_bprm_check(bprm); 1185 } 1186 1187 /** 1188 * security_bprm_committing_creds() - Install creds for a process during exec() 1189 * @bprm: binary program information 1190 * 1191 * Prepare to install the new security attributes of a process being 1192 * transformed by an execve operation, based on the old credentials pointed to 1193 * by @current->cred and the information set in @bprm->cred by the 1194 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1195 * hook is a good place to perform state changes on the process such as closing 1196 * open file descriptors to which access will no longer be granted when the 1197 * attributes are changed. This is called immediately before commit_creds(). 1198 */ 1199 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1200 { 1201 call_void_hook(bprm_committing_creds, bprm); 1202 } 1203 1204 /** 1205 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1206 * @bprm: binary program information 1207 * 1208 * Tidy up after the installation of the new security attributes of a process 1209 * being transformed by an execve operation. The new credentials have, by this 1210 * point, been set to @current->cred. @bprm points to the linux_binprm 1211 * structure. This hook is a good place to perform state changes on the 1212 * process such as clearing out non-inheritable signal state. This is called 1213 * immediately after commit_creds(). 1214 */ 1215 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1216 { 1217 call_void_hook(bprm_committed_creds, bprm); 1218 } 1219 1220 /** 1221 * security_fs_context_submount() - Initialise fc->security 1222 * @fc: new filesystem context 1223 * @reference: dentry reference for submount/remount 1224 * 1225 * Fill out the ->security field for a new fs_context. 1226 * 1227 * Return: Returns 0 on success or negative error code on failure. 1228 */ 1229 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1230 { 1231 return call_int_hook(fs_context_submount, 0, fc, reference); 1232 } 1233 1234 /** 1235 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1236 * @fc: destination filesystem context 1237 * @src_fc: source filesystem context 1238 * 1239 * Allocate and attach a security structure to sc->security. This pointer is 1240 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1241 * @src_fc indicates the original filesystem context. 1242 * 1243 * Return: Returns 0 on success or a negative error code on failure. 1244 */ 1245 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1246 { 1247 return call_int_hook(fs_context_dup, 0, fc, src_fc); 1248 } 1249 1250 /** 1251 * security_fs_context_parse_param() - Configure a filesystem context 1252 * @fc: filesystem context 1253 * @param: filesystem parameter 1254 * 1255 * Userspace provided a parameter to configure a superblock. The LSM can 1256 * consume the parameter or return it to the caller for use elsewhere. 1257 * 1258 * Return: If the parameter is used by the LSM it should return 0, if it is 1259 * returned to the caller -ENOPARAM is returned, otherwise a negative 1260 * error code is returned. 1261 */ 1262 int security_fs_context_parse_param(struct fs_context *fc, 1263 struct fs_parameter *param) 1264 { 1265 struct security_hook_list *hp; 1266 int trc; 1267 int rc = -ENOPARAM; 1268 1269 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1270 list) { 1271 trc = hp->hook.fs_context_parse_param(fc, param); 1272 if (trc == 0) 1273 rc = 0; 1274 else if (trc != -ENOPARAM) 1275 return trc; 1276 } 1277 return rc; 1278 } 1279 1280 /** 1281 * security_sb_alloc() - Allocate a super_block LSM blob 1282 * @sb: filesystem superblock 1283 * 1284 * Allocate and attach a security structure to the sb->s_security field. The 1285 * s_security field is initialized to NULL when the structure is allocated. 1286 * @sb contains the super_block structure to be modified. 1287 * 1288 * Return: Returns 0 if operation was successful. 1289 */ 1290 int security_sb_alloc(struct super_block *sb) 1291 { 1292 int rc = lsm_superblock_alloc(sb); 1293 1294 if (unlikely(rc)) 1295 return rc; 1296 rc = call_int_hook(sb_alloc_security, 0, sb); 1297 if (unlikely(rc)) 1298 security_sb_free(sb); 1299 return rc; 1300 } 1301 1302 /** 1303 * security_sb_delete() - Release super_block LSM associated objects 1304 * @sb: filesystem superblock 1305 * 1306 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1307 * super_block structure being released. 1308 */ 1309 void security_sb_delete(struct super_block *sb) 1310 { 1311 call_void_hook(sb_delete, sb); 1312 } 1313 1314 /** 1315 * security_sb_free() - Free a super_block LSM blob 1316 * @sb: filesystem superblock 1317 * 1318 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1319 * structure to be modified. 1320 */ 1321 void security_sb_free(struct super_block *sb) 1322 { 1323 call_void_hook(sb_free_security, sb); 1324 kfree(sb->s_security); 1325 sb->s_security = NULL; 1326 } 1327 1328 /** 1329 * security_free_mnt_opts() - Free memory associated with mount options 1330 * @mnt_opts: LSM processed mount options 1331 * 1332 * Free memory associated with @mnt_ops. 1333 */ 1334 void security_free_mnt_opts(void **mnt_opts) 1335 { 1336 if (!*mnt_opts) 1337 return; 1338 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1339 *mnt_opts = NULL; 1340 } 1341 EXPORT_SYMBOL(security_free_mnt_opts); 1342 1343 /** 1344 * security_sb_eat_lsm_opts() - Consume LSM mount options 1345 * @options: mount options 1346 * @mnt_opts: LSM processed mount options 1347 * 1348 * Eat (scan @options) and save them in @mnt_opts. 1349 * 1350 * Return: Returns 0 on success, negative values on failure. 1351 */ 1352 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1353 { 1354 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 1355 } 1356 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1357 1358 /** 1359 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1360 * @sb: filesystem superblock 1361 * @mnt_opts: new mount options 1362 * 1363 * Determine if the new mount options in @mnt_opts are allowed given the 1364 * existing mounted filesystem at @sb. @sb superblock being compared. 1365 * 1366 * Return: Returns 0 if options are compatible. 1367 */ 1368 int security_sb_mnt_opts_compat(struct super_block *sb, 1369 void *mnt_opts) 1370 { 1371 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 1372 } 1373 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1374 1375 /** 1376 * security_sb_remount() - Verify no incompatible mount changes during remount 1377 * @sb: filesystem superblock 1378 * @mnt_opts: (re)mount options 1379 * 1380 * Extracts security system specific mount options and verifies no changes are 1381 * being made to those options. 1382 * 1383 * Return: Returns 0 if permission is granted. 1384 */ 1385 int security_sb_remount(struct super_block *sb, 1386 void *mnt_opts) 1387 { 1388 return call_int_hook(sb_remount, 0, sb, mnt_opts); 1389 } 1390 EXPORT_SYMBOL(security_sb_remount); 1391 1392 /** 1393 * security_sb_kern_mount() - Check if a kernel mount is allowed 1394 * @sb: filesystem superblock 1395 * 1396 * Mount this @sb if allowed by permissions. 1397 * 1398 * Return: Returns 0 if permission is granted. 1399 */ 1400 int security_sb_kern_mount(const struct super_block *sb) 1401 { 1402 return call_int_hook(sb_kern_mount, 0, sb); 1403 } 1404 1405 /** 1406 * security_sb_show_options() - Output the mount options for a superblock 1407 * @m: output file 1408 * @sb: filesystem superblock 1409 * 1410 * Show (print on @m) mount options for this @sb. 1411 * 1412 * Return: Returns 0 on success, negative values on failure. 1413 */ 1414 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1415 { 1416 return call_int_hook(sb_show_options, 0, m, sb); 1417 } 1418 1419 /** 1420 * security_sb_statfs() - Check if accessing fs stats is allowed 1421 * @dentry: superblock handle 1422 * 1423 * Check permission before obtaining filesystem statistics for the @mnt 1424 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1425 * 1426 * Return: Returns 0 if permission is granted. 1427 */ 1428 int security_sb_statfs(struct dentry *dentry) 1429 { 1430 return call_int_hook(sb_statfs, 0, dentry); 1431 } 1432 1433 /** 1434 * security_sb_mount() - Check permission for mounting a filesystem 1435 * @dev_name: filesystem backing device 1436 * @path: mount point 1437 * @type: filesystem type 1438 * @flags: mount flags 1439 * @data: filesystem specific data 1440 * 1441 * Check permission before an object specified by @dev_name is mounted on the 1442 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1443 * device if the file system type requires a device. For a remount 1444 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1445 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1446 * mounted. 1447 * 1448 * Return: Returns 0 if permission is granted. 1449 */ 1450 int security_sb_mount(const char *dev_name, const struct path *path, 1451 const char *type, unsigned long flags, void *data) 1452 { 1453 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1454 } 1455 1456 /** 1457 * security_sb_umount() - Check permission for unmounting a filesystem 1458 * @mnt: mounted filesystem 1459 * @flags: unmount flags 1460 * 1461 * Check permission before the @mnt file system is unmounted. 1462 * 1463 * Return: Returns 0 if permission is granted. 1464 */ 1465 int security_sb_umount(struct vfsmount *mnt, int flags) 1466 { 1467 return call_int_hook(sb_umount, 0, mnt, flags); 1468 } 1469 1470 /** 1471 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1472 * @old_path: new location for current rootfs 1473 * @new_path: location of the new rootfs 1474 * 1475 * Check permission before pivoting the root filesystem. 1476 * 1477 * Return: Returns 0 if permission is granted. 1478 */ 1479 int security_sb_pivotroot(const struct path *old_path, 1480 const struct path *new_path) 1481 { 1482 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1483 } 1484 1485 /** 1486 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1487 * @sb: filesystem superblock 1488 * @mnt_opts: binary mount options 1489 * @kern_flags: kernel flags (in) 1490 * @set_kern_flags: kernel flags (out) 1491 * 1492 * Set the security relevant mount options used for a superblock. 1493 * 1494 * Return: Returns 0 on success, error on failure. 1495 */ 1496 int security_sb_set_mnt_opts(struct super_block *sb, 1497 void *mnt_opts, 1498 unsigned long kern_flags, 1499 unsigned long *set_kern_flags) 1500 { 1501 return call_int_hook(sb_set_mnt_opts, 1502 mnt_opts ? -EOPNOTSUPP : 0, sb, 1503 mnt_opts, kern_flags, set_kern_flags); 1504 } 1505 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1506 1507 /** 1508 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1509 * @oldsb: source superblock 1510 * @newsb: destination superblock 1511 * @kern_flags: kernel flags (in) 1512 * @set_kern_flags: kernel flags (out) 1513 * 1514 * Copy all security options from a given superblock to another. 1515 * 1516 * Return: Returns 0 on success, error on failure. 1517 */ 1518 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1519 struct super_block *newsb, 1520 unsigned long kern_flags, 1521 unsigned long *set_kern_flags) 1522 { 1523 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1524 kern_flags, set_kern_flags); 1525 } 1526 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1527 1528 /** 1529 * security_move_mount() - Check permissions for moving a mount 1530 * @from_path: source mount point 1531 * @to_path: destination mount point 1532 * 1533 * Check permission before a mount is moved. 1534 * 1535 * Return: Returns 0 if permission is granted. 1536 */ 1537 int security_move_mount(const struct path *from_path, 1538 const struct path *to_path) 1539 { 1540 return call_int_hook(move_mount, 0, from_path, to_path); 1541 } 1542 1543 /** 1544 * security_path_notify() - Check if setting a watch is allowed 1545 * @path: file path 1546 * @mask: event mask 1547 * @obj_type: file path type 1548 * 1549 * Check permissions before setting a watch on events as defined by @mask, on 1550 * an object at @path, whose type is defined by @obj_type. 1551 * 1552 * Return: Returns 0 if permission is granted. 1553 */ 1554 int security_path_notify(const struct path *path, u64 mask, 1555 unsigned int obj_type) 1556 { 1557 return call_int_hook(path_notify, 0, path, mask, obj_type); 1558 } 1559 1560 /** 1561 * security_inode_alloc() - Allocate an inode LSM blob 1562 * @inode: the inode 1563 * 1564 * Allocate and attach a security structure to @inode->i_security. The 1565 * i_security field is initialized to NULL when the inode structure is 1566 * allocated. 1567 * 1568 * Return: Return 0 if operation was successful. 1569 */ 1570 int security_inode_alloc(struct inode *inode) 1571 { 1572 int rc = lsm_inode_alloc(inode); 1573 1574 if (unlikely(rc)) 1575 return rc; 1576 rc = call_int_hook(inode_alloc_security, 0, inode); 1577 if (unlikely(rc)) 1578 security_inode_free(inode); 1579 return rc; 1580 } 1581 1582 static void inode_free_by_rcu(struct rcu_head *head) 1583 { 1584 /* 1585 * The rcu head is at the start of the inode blob 1586 */ 1587 kmem_cache_free(lsm_inode_cache, head); 1588 } 1589 1590 /** 1591 * security_inode_free() - Free an inode's LSM blob 1592 * @inode: the inode 1593 * 1594 * Deallocate the inode security structure and set @inode->i_security to NULL. 1595 */ 1596 void security_inode_free(struct inode *inode) 1597 { 1598 integrity_inode_free(inode); 1599 call_void_hook(inode_free_security, inode); 1600 /* 1601 * The inode may still be referenced in a path walk and 1602 * a call to security_inode_permission() can be made 1603 * after inode_free_security() is called. Ideally, the VFS 1604 * wouldn't do this, but fixing that is a much harder 1605 * job. For now, simply free the i_security via RCU, and 1606 * leave the current inode->i_security pointer intact. 1607 * The inode will be freed after the RCU grace period too. 1608 */ 1609 if (inode->i_security) 1610 call_rcu((struct rcu_head *)inode->i_security, 1611 inode_free_by_rcu); 1612 } 1613 1614 /** 1615 * security_dentry_init_security() - Perform dentry initialization 1616 * @dentry: the dentry to initialize 1617 * @mode: mode used to determine resource type 1618 * @name: name of the last path component 1619 * @xattr_name: name of the security/LSM xattr 1620 * @ctx: pointer to the resulting LSM context 1621 * @ctxlen: length of @ctx 1622 * 1623 * Compute a context for a dentry as the inode is not yet available since NFSv4 1624 * has no label backed by an EA anyway. It is important to note that 1625 * @xattr_name does not need to be free'd by the caller, it is a static string. 1626 * 1627 * Return: Returns 0 on success, negative values on failure. 1628 */ 1629 int security_dentry_init_security(struct dentry *dentry, int mode, 1630 const struct qstr *name, 1631 const char **xattr_name, void **ctx, 1632 u32 *ctxlen) 1633 { 1634 struct security_hook_list *hp; 1635 int rc; 1636 1637 /* 1638 * Only one module will provide a security context. 1639 */ 1640 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, 1641 list) { 1642 rc = hp->hook.dentry_init_security(dentry, mode, name, 1643 xattr_name, ctx, ctxlen); 1644 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1645 return rc; 1646 } 1647 return LSM_RET_DEFAULT(dentry_init_security); 1648 } 1649 EXPORT_SYMBOL(security_dentry_init_security); 1650 1651 /** 1652 * security_dentry_create_files_as() - Perform dentry initialization 1653 * @dentry: the dentry to initialize 1654 * @mode: mode used to determine resource type 1655 * @name: name of the last path component 1656 * @old: creds to use for LSM context calculations 1657 * @new: creds to modify 1658 * 1659 * Compute a context for a dentry as the inode is not yet available and set 1660 * that context in passed in creds so that new files are created using that 1661 * context. Context is calculated using the passed in creds and not the creds 1662 * of the caller. 1663 * 1664 * Return: Returns 0 on success, error on failure. 1665 */ 1666 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1667 struct qstr *name, 1668 const struct cred *old, struct cred *new) 1669 { 1670 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1671 name, old, new); 1672 } 1673 EXPORT_SYMBOL(security_dentry_create_files_as); 1674 1675 /** 1676 * security_inode_init_security() - Initialize an inode's LSM context 1677 * @inode: the inode 1678 * @dir: parent directory 1679 * @qstr: last component of the pathname 1680 * @initxattrs: callback function to write xattrs 1681 * @fs_data: filesystem specific data 1682 * 1683 * Obtain the security attribute name suffix and value to set on a newly 1684 * created inode and set up the incore security field for the new inode. This 1685 * hook is called by the fs code as part of the inode creation transaction and 1686 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1687 * hooks called by the VFS. 1688 * 1689 * The hook function is expected to populate the xattrs array, by calling 1690 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1691 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1692 * slot, the hook function should set ->name to the attribute name suffix 1693 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1694 * to the attribute value, to set ->value_len to the length of the value. If 1695 * the security module does not use security attributes or does not wish to put 1696 * a security attribute on this particular inode, then it should return 1697 * -EOPNOTSUPP to skip this processing. 1698 * 1699 * Return: Returns 0 if the LSM successfully initialized all of the inode 1700 * security attributes that are required, negative values otherwise. 1701 */ 1702 int security_inode_init_security(struct inode *inode, struct inode *dir, 1703 const struct qstr *qstr, 1704 const initxattrs initxattrs, void *fs_data) 1705 { 1706 struct security_hook_list *hp; 1707 struct xattr *new_xattrs = NULL; 1708 int ret = -EOPNOTSUPP, xattr_count = 0; 1709 1710 if (unlikely(IS_PRIVATE(inode))) 1711 return 0; 1712 1713 if (!blob_sizes.lbs_xattr_count) 1714 return 0; 1715 1716 if (initxattrs) { 1717 /* Allocate +1 for EVM and +1 as terminator. */ 1718 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2, 1719 sizeof(*new_xattrs), GFP_NOFS); 1720 if (!new_xattrs) 1721 return -ENOMEM; 1722 } 1723 1724 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1725 list) { 1726 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1727 &xattr_count); 1728 if (ret && ret != -EOPNOTSUPP) 1729 goto out; 1730 /* 1731 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1732 * means that the LSM is not willing to provide an xattr, not 1733 * that it wants to signal an error. Thus, continue to invoke 1734 * the remaining LSMs. 1735 */ 1736 } 1737 1738 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1739 if (!xattr_count) 1740 goto out; 1741 1742 ret = evm_inode_init_security(inode, dir, qstr, new_xattrs, 1743 &xattr_count); 1744 if (ret) 1745 goto out; 1746 ret = initxattrs(inode, new_xattrs, fs_data); 1747 out: 1748 for (; xattr_count > 0; xattr_count--) 1749 kfree(new_xattrs[xattr_count - 1].value); 1750 kfree(new_xattrs); 1751 return (ret == -EOPNOTSUPP) ? 0 : ret; 1752 } 1753 EXPORT_SYMBOL(security_inode_init_security); 1754 1755 /** 1756 * security_inode_init_security_anon() - Initialize an anonymous inode 1757 * @inode: the inode 1758 * @name: the anonymous inode class 1759 * @context_inode: an optional related inode 1760 * 1761 * Set up the incore security field for the new anonymous inode and return 1762 * whether the inode creation is permitted by the security module or not. 1763 * 1764 * Return: Returns 0 on success, -EACCES if the security module denies the 1765 * creation of this inode, or another -errno upon other errors. 1766 */ 1767 int security_inode_init_security_anon(struct inode *inode, 1768 const struct qstr *name, 1769 const struct inode *context_inode) 1770 { 1771 return call_int_hook(inode_init_security_anon, 0, inode, name, 1772 context_inode); 1773 } 1774 1775 #ifdef CONFIG_SECURITY_PATH 1776 /** 1777 * security_path_mknod() - Check if creating a special file is allowed 1778 * @dir: parent directory 1779 * @dentry: new file 1780 * @mode: new file mode 1781 * @dev: device number 1782 * 1783 * Check permissions when creating a file. Note that this hook is called even 1784 * if mknod operation is being done for a regular file. 1785 * 1786 * Return: Returns 0 if permission is granted. 1787 */ 1788 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1789 umode_t mode, unsigned int dev) 1790 { 1791 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1792 return 0; 1793 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1794 } 1795 EXPORT_SYMBOL(security_path_mknod); 1796 1797 /** 1798 * security_path_mkdir() - Check if creating a new directory is allowed 1799 * @dir: parent directory 1800 * @dentry: new directory 1801 * @mode: new directory mode 1802 * 1803 * Check permissions to create a new directory in the existing directory. 1804 * 1805 * Return: Returns 0 if permission is granted. 1806 */ 1807 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1808 umode_t mode) 1809 { 1810 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1811 return 0; 1812 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1813 } 1814 EXPORT_SYMBOL(security_path_mkdir); 1815 1816 /** 1817 * security_path_rmdir() - Check if removing a directory is allowed 1818 * @dir: parent directory 1819 * @dentry: directory to remove 1820 * 1821 * Check the permission to remove a directory. 1822 * 1823 * Return: Returns 0 if permission is granted. 1824 */ 1825 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1826 { 1827 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1828 return 0; 1829 return call_int_hook(path_rmdir, 0, dir, dentry); 1830 } 1831 1832 /** 1833 * security_path_unlink() - Check if removing a hard link is allowed 1834 * @dir: parent directory 1835 * @dentry: file 1836 * 1837 * Check the permission to remove a hard link to a file. 1838 * 1839 * Return: Returns 0 if permission is granted. 1840 */ 1841 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1842 { 1843 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1844 return 0; 1845 return call_int_hook(path_unlink, 0, dir, dentry); 1846 } 1847 EXPORT_SYMBOL(security_path_unlink); 1848 1849 /** 1850 * security_path_symlink() - Check if creating a symbolic link is allowed 1851 * @dir: parent directory 1852 * @dentry: symbolic link 1853 * @old_name: file pathname 1854 * 1855 * Check the permission to create a symbolic link to a file. 1856 * 1857 * Return: Returns 0 if permission is granted. 1858 */ 1859 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1860 const char *old_name) 1861 { 1862 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1863 return 0; 1864 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1865 } 1866 1867 /** 1868 * security_path_link - Check if creating a hard link is allowed 1869 * @old_dentry: existing file 1870 * @new_dir: new parent directory 1871 * @new_dentry: new link 1872 * 1873 * Check permission before creating a new hard link to a file. 1874 * 1875 * Return: Returns 0 if permission is granted. 1876 */ 1877 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1878 struct dentry *new_dentry) 1879 { 1880 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1881 return 0; 1882 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1883 } 1884 1885 /** 1886 * security_path_rename() - Check if renaming a file is allowed 1887 * @old_dir: parent directory of the old file 1888 * @old_dentry: the old file 1889 * @new_dir: parent directory of the new file 1890 * @new_dentry: the new file 1891 * @flags: flags 1892 * 1893 * Check for permission to rename a file or directory. 1894 * 1895 * Return: Returns 0 if permission is granted. 1896 */ 1897 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1898 const struct path *new_dir, struct dentry *new_dentry, 1899 unsigned int flags) 1900 { 1901 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1902 (d_is_positive(new_dentry) && 1903 IS_PRIVATE(d_backing_inode(new_dentry))))) 1904 return 0; 1905 1906 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1907 new_dentry, flags); 1908 } 1909 EXPORT_SYMBOL(security_path_rename); 1910 1911 /** 1912 * security_path_truncate() - Check if truncating a file is allowed 1913 * @path: file 1914 * 1915 * Check permission before truncating the file indicated by path. Note that 1916 * truncation permissions may also be checked based on already opened files, 1917 * using the security_file_truncate() hook. 1918 * 1919 * Return: Returns 0 if permission is granted. 1920 */ 1921 int security_path_truncate(const struct path *path) 1922 { 1923 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1924 return 0; 1925 return call_int_hook(path_truncate, 0, path); 1926 } 1927 1928 /** 1929 * security_path_chmod() - Check if changing the file's mode is allowed 1930 * @path: file 1931 * @mode: new mode 1932 * 1933 * Check for permission to change a mode of the file @path. The new mode is 1934 * specified in @mode which is a bitmask of constants from 1935 * <include/uapi/linux/stat.h>. 1936 * 1937 * Return: Returns 0 if permission is granted. 1938 */ 1939 int security_path_chmod(const struct path *path, umode_t mode) 1940 { 1941 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1942 return 0; 1943 return call_int_hook(path_chmod, 0, path, mode); 1944 } 1945 1946 /** 1947 * security_path_chown() - Check if changing the file's owner/group is allowed 1948 * @path: file 1949 * @uid: file owner 1950 * @gid: file group 1951 * 1952 * Check for permission to change owner/group of a file or directory. 1953 * 1954 * Return: Returns 0 if permission is granted. 1955 */ 1956 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1957 { 1958 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1959 return 0; 1960 return call_int_hook(path_chown, 0, path, uid, gid); 1961 } 1962 1963 /** 1964 * security_path_chroot() - Check if changing the root directory is allowed 1965 * @path: directory 1966 * 1967 * Check for permission to change root directory. 1968 * 1969 * Return: Returns 0 if permission is granted. 1970 */ 1971 int security_path_chroot(const struct path *path) 1972 { 1973 return call_int_hook(path_chroot, 0, path); 1974 } 1975 #endif /* CONFIG_SECURITY_PATH */ 1976 1977 /** 1978 * security_inode_create() - Check if creating a file is allowed 1979 * @dir: the parent directory 1980 * @dentry: the file being created 1981 * @mode: requested file mode 1982 * 1983 * Check permission to create a regular file. 1984 * 1985 * Return: Returns 0 if permission is granted. 1986 */ 1987 int security_inode_create(struct inode *dir, struct dentry *dentry, 1988 umode_t mode) 1989 { 1990 if (unlikely(IS_PRIVATE(dir))) 1991 return 0; 1992 return call_int_hook(inode_create, 0, dir, dentry, mode); 1993 } 1994 EXPORT_SYMBOL_GPL(security_inode_create); 1995 1996 /** 1997 * security_inode_link() - Check if creating a hard link is allowed 1998 * @old_dentry: existing file 1999 * @dir: new parent directory 2000 * @new_dentry: new link 2001 * 2002 * Check permission before creating a new hard link to a file. 2003 * 2004 * Return: Returns 0 if permission is granted. 2005 */ 2006 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2007 struct dentry *new_dentry) 2008 { 2009 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2010 return 0; 2011 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 2012 } 2013 2014 /** 2015 * security_inode_unlink() - Check if removing a hard link is allowed 2016 * @dir: parent directory 2017 * @dentry: file 2018 * 2019 * Check the permission to remove a hard link to a file. 2020 * 2021 * Return: Returns 0 if permission is granted. 2022 */ 2023 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2024 { 2025 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2026 return 0; 2027 return call_int_hook(inode_unlink, 0, dir, dentry); 2028 } 2029 2030 /** 2031 * security_inode_symlink() - Check if creating a symbolic link is allowed 2032 * @dir: parent directory 2033 * @dentry: symbolic link 2034 * @old_name: existing filename 2035 * 2036 * Check the permission to create a symbolic link to a file. 2037 * 2038 * Return: Returns 0 if permission is granted. 2039 */ 2040 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2041 const char *old_name) 2042 { 2043 if (unlikely(IS_PRIVATE(dir))) 2044 return 0; 2045 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 2046 } 2047 2048 /** 2049 * security_inode_mkdir() - Check if creation a new director is allowed 2050 * @dir: parent directory 2051 * @dentry: new directory 2052 * @mode: new directory mode 2053 * 2054 * Check permissions to create a new directory in the existing directory 2055 * associated with inode structure @dir. 2056 * 2057 * Return: Returns 0 if permission is granted. 2058 */ 2059 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2060 { 2061 if (unlikely(IS_PRIVATE(dir))) 2062 return 0; 2063 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 2064 } 2065 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2066 2067 /** 2068 * security_inode_rmdir() - Check if removing a directory is allowed 2069 * @dir: parent directory 2070 * @dentry: directory to be removed 2071 * 2072 * Check the permission to remove a directory. 2073 * 2074 * Return: Returns 0 if permission is granted. 2075 */ 2076 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2077 { 2078 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2079 return 0; 2080 return call_int_hook(inode_rmdir, 0, dir, dentry); 2081 } 2082 2083 /** 2084 * security_inode_mknod() - Check if creating a special file is allowed 2085 * @dir: parent directory 2086 * @dentry: new file 2087 * @mode: new file mode 2088 * @dev: device number 2089 * 2090 * Check permissions when creating a special file (or a socket or a fifo file 2091 * created via the mknod system call). Note that if mknod operation is being 2092 * done for a regular file, then the create hook will be called and not this 2093 * hook. 2094 * 2095 * Return: Returns 0 if permission is granted. 2096 */ 2097 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2098 umode_t mode, dev_t dev) 2099 { 2100 if (unlikely(IS_PRIVATE(dir))) 2101 return 0; 2102 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 2103 } 2104 2105 /** 2106 * security_inode_rename() - Check if renaming a file is allowed 2107 * @old_dir: parent directory of the old file 2108 * @old_dentry: the old file 2109 * @new_dir: parent directory of the new file 2110 * @new_dentry: the new file 2111 * @flags: flags 2112 * 2113 * Check for permission to rename a file or directory. 2114 * 2115 * Return: Returns 0 if permission is granted. 2116 */ 2117 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2118 struct inode *new_dir, struct dentry *new_dentry, 2119 unsigned int flags) 2120 { 2121 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2122 (d_is_positive(new_dentry) && 2123 IS_PRIVATE(d_backing_inode(new_dentry))))) 2124 return 0; 2125 2126 if (flags & RENAME_EXCHANGE) { 2127 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 2128 old_dir, old_dentry); 2129 if (err) 2130 return err; 2131 } 2132 2133 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 2134 new_dir, new_dentry); 2135 } 2136 2137 /** 2138 * security_inode_readlink() - Check if reading a symbolic link is allowed 2139 * @dentry: link 2140 * 2141 * Check the permission to read the symbolic link. 2142 * 2143 * Return: Returns 0 if permission is granted. 2144 */ 2145 int security_inode_readlink(struct dentry *dentry) 2146 { 2147 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2148 return 0; 2149 return call_int_hook(inode_readlink, 0, dentry); 2150 } 2151 2152 /** 2153 * security_inode_follow_link() - Check if following a symbolic link is allowed 2154 * @dentry: link dentry 2155 * @inode: link inode 2156 * @rcu: true if in RCU-walk mode 2157 * 2158 * Check permission to follow a symbolic link when looking up a pathname. If 2159 * @rcu is true, @inode is not stable. 2160 * 2161 * Return: Returns 0 if permission is granted. 2162 */ 2163 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2164 bool rcu) 2165 { 2166 if (unlikely(IS_PRIVATE(inode))) 2167 return 0; 2168 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 2169 } 2170 2171 /** 2172 * security_inode_permission() - Check if accessing an inode is allowed 2173 * @inode: inode 2174 * @mask: access mask 2175 * 2176 * Check permission before accessing an inode. This hook is called by the 2177 * existing Linux permission function, so a security module can use it to 2178 * provide additional checking for existing Linux permission checks. Notice 2179 * that this hook is called when a file is opened (as well as many other 2180 * operations), whereas the file_security_ops permission hook is called when 2181 * the actual read/write operations are performed. 2182 * 2183 * Return: Returns 0 if permission is granted. 2184 */ 2185 int security_inode_permission(struct inode *inode, int mask) 2186 { 2187 if (unlikely(IS_PRIVATE(inode))) 2188 return 0; 2189 return call_int_hook(inode_permission, 0, inode, mask); 2190 } 2191 2192 /** 2193 * security_inode_setattr() - Check if setting file attributes is allowed 2194 * @idmap: idmap of the mount 2195 * @dentry: file 2196 * @attr: new attributes 2197 * 2198 * Check permission before setting file attributes. Note that the kernel call 2199 * to notify_change is performed from several locations, whenever file 2200 * attributes change (such as when a file is truncated, chown/chmod operations, 2201 * transferring disk quotas, etc). 2202 * 2203 * Return: Returns 0 if permission is granted. 2204 */ 2205 int security_inode_setattr(struct mnt_idmap *idmap, 2206 struct dentry *dentry, struct iattr *attr) 2207 { 2208 int ret; 2209 2210 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2211 return 0; 2212 ret = call_int_hook(inode_setattr, 0, dentry, attr); 2213 if (ret) 2214 return ret; 2215 return evm_inode_setattr(idmap, dentry, attr); 2216 } 2217 EXPORT_SYMBOL_GPL(security_inode_setattr); 2218 2219 /** 2220 * security_inode_getattr() - Check if getting file attributes is allowed 2221 * @path: file 2222 * 2223 * Check permission before obtaining file attributes. 2224 * 2225 * Return: Returns 0 if permission is granted. 2226 */ 2227 int security_inode_getattr(const struct path *path) 2228 { 2229 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2230 return 0; 2231 return call_int_hook(inode_getattr, 0, path); 2232 } 2233 2234 /** 2235 * security_inode_setxattr() - Check if setting file xattrs is allowed 2236 * @idmap: idmap of the mount 2237 * @dentry: file 2238 * @name: xattr name 2239 * @value: xattr value 2240 * @size: size of xattr value 2241 * @flags: flags 2242 * 2243 * Check permission before setting the extended attributes. 2244 * 2245 * Return: Returns 0 if permission is granted. 2246 */ 2247 int security_inode_setxattr(struct mnt_idmap *idmap, 2248 struct dentry *dentry, const char *name, 2249 const void *value, size_t size, int flags) 2250 { 2251 int ret; 2252 2253 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2254 return 0; 2255 /* 2256 * SELinux and Smack integrate the cap call, 2257 * so assume that all LSMs supplying this call do so. 2258 */ 2259 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value, 2260 size, flags); 2261 2262 if (ret == 1) 2263 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2264 if (ret) 2265 return ret; 2266 ret = ima_inode_setxattr(dentry, name, value, size); 2267 if (ret) 2268 return ret; 2269 return evm_inode_setxattr(idmap, dentry, name, value, size); 2270 } 2271 2272 /** 2273 * security_inode_set_acl() - Check if setting posix acls is allowed 2274 * @idmap: idmap of the mount 2275 * @dentry: file 2276 * @acl_name: acl name 2277 * @kacl: acl struct 2278 * 2279 * Check permission before setting posix acls, the posix acls in @kacl are 2280 * identified by @acl_name. 2281 * 2282 * Return: Returns 0 if permission is granted. 2283 */ 2284 int security_inode_set_acl(struct mnt_idmap *idmap, 2285 struct dentry *dentry, const char *acl_name, 2286 struct posix_acl *kacl) 2287 { 2288 int ret; 2289 2290 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2291 return 0; 2292 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name, 2293 kacl); 2294 if (ret) 2295 return ret; 2296 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl); 2297 if (ret) 2298 return ret; 2299 return evm_inode_set_acl(idmap, dentry, acl_name, kacl); 2300 } 2301 2302 /** 2303 * security_inode_get_acl() - Check if reading posix acls is allowed 2304 * @idmap: idmap of the mount 2305 * @dentry: file 2306 * @acl_name: acl name 2307 * 2308 * Check permission before getting osix acls, the posix acls are identified by 2309 * @acl_name. 2310 * 2311 * Return: Returns 0 if permission is granted. 2312 */ 2313 int security_inode_get_acl(struct mnt_idmap *idmap, 2314 struct dentry *dentry, const char *acl_name) 2315 { 2316 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2317 return 0; 2318 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name); 2319 } 2320 2321 /** 2322 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2323 * @idmap: idmap of the mount 2324 * @dentry: file 2325 * @acl_name: acl name 2326 * 2327 * Check permission before removing posix acls, the posix acls are identified 2328 * by @acl_name. 2329 * 2330 * Return: Returns 0 if permission is granted. 2331 */ 2332 int security_inode_remove_acl(struct mnt_idmap *idmap, 2333 struct dentry *dentry, const char *acl_name) 2334 { 2335 int ret; 2336 2337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2338 return 0; 2339 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name); 2340 if (ret) 2341 return ret; 2342 ret = ima_inode_remove_acl(idmap, dentry, acl_name); 2343 if (ret) 2344 return ret; 2345 return evm_inode_remove_acl(idmap, dentry, acl_name); 2346 } 2347 2348 /** 2349 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2350 * @dentry: file 2351 * @name: xattr name 2352 * @value: xattr value 2353 * @size: xattr value size 2354 * @flags: flags 2355 * 2356 * Update inode security field after successful setxattr operation. 2357 */ 2358 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2359 const void *value, size_t size, int flags) 2360 { 2361 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2362 return; 2363 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2364 evm_inode_post_setxattr(dentry, name, value, size); 2365 } 2366 2367 /** 2368 * security_inode_getxattr() - Check if xattr access is allowed 2369 * @dentry: file 2370 * @name: xattr name 2371 * 2372 * Check permission before obtaining the extended attributes identified by 2373 * @name for @dentry. 2374 * 2375 * Return: Returns 0 if permission is granted. 2376 */ 2377 int security_inode_getxattr(struct dentry *dentry, const char *name) 2378 { 2379 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2380 return 0; 2381 return call_int_hook(inode_getxattr, 0, dentry, name); 2382 } 2383 2384 /** 2385 * security_inode_listxattr() - Check if listing xattrs is allowed 2386 * @dentry: file 2387 * 2388 * Check permission before obtaining the list of extended attribute names for 2389 * @dentry. 2390 * 2391 * Return: Returns 0 if permission is granted. 2392 */ 2393 int security_inode_listxattr(struct dentry *dentry) 2394 { 2395 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2396 return 0; 2397 return call_int_hook(inode_listxattr, 0, dentry); 2398 } 2399 2400 /** 2401 * security_inode_removexattr() - Check if removing an xattr is allowed 2402 * @idmap: idmap of the mount 2403 * @dentry: file 2404 * @name: xattr name 2405 * 2406 * Check permission before removing the extended attribute identified by @name 2407 * for @dentry. 2408 * 2409 * Return: Returns 0 if permission is granted. 2410 */ 2411 int security_inode_removexattr(struct mnt_idmap *idmap, 2412 struct dentry *dentry, const char *name) 2413 { 2414 int ret; 2415 2416 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2417 return 0; 2418 /* 2419 * SELinux and Smack integrate the cap call, 2420 * so assume that all LSMs supplying this call do so. 2421 */ 2422 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name); 2423 if (ret == 1) 2424 ret = cap_inode_removexattr(idmap, dentry, name); 2425 if (ret) 2426 return ret; 2427 ret = ima_inode_removexattr(dentry, name); 2428 if (ret) 2429 return ret; 2430 return evm_inode_removexattr(idmap, dentry, name); 2431 } 2432 2433 /** 2434 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2435 * @dentry: associated dentry 2436 * 2437 * Called when an inode has been changed to determine if 2438 * security_inode_killpriv() should be called. 2439 * 2440 * Return: Return <0 on error to abort the inode change operation, return 0 if 2441 * security_inode_killpriv() does not need to be called, return >0 if 2442 * security_inode_killpriv() does need to be called. 2443 */ 2444 int security_inode_need_killpriv(struct dentry *dentry) 2445 { 2446 return call_int_hook(inode_need_killpriv, 0, dentry); 2447 } 2448 2449 /** 2450 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2451 * @idmap: idmap of the mount 2452 * @dentry: associated dentry 2453 * 2454 * The @dentry's setuid bit is being removed. Remove similar security labels. 2455 * Called with the dentry->d_inode->i_mutex held. 2456 * 2457 * Return: Return 0 on success. If error is returned, then the operation 2458 * causing setuid bit removal is failed. 2459 */ 2460 int security_inode_killpriv(struct mnt_idmap *idmap, 2461 struct dentry *dentry) 2462 { 2463 return call_int_hook(inode_killpriv, 0, idmap, dentry); 2464 } 2465 2466 /** 2467 * security_inode_getsecurity() - Get the xattr security label of an inode 2468 * @idmap: idmap of the mount 2469 * @inode: inode 2470 * @name: xattr name 2471 * @buffer: security label buffer 2472 * @alloc: allocation flag 2473 * 2474 * Retrieve a copy of the extended attribute representation of the security 2475 * label associated with @name for @inode via @buffer. Note that @name is the 2476 * remainder of the attribute name after the security prefix has been removed. 2477 * @alloc is used to specify if the call should return a value via the buffer 2478 * or just the value length. 2479 * 2480 * Return: Returns size of buffer on success. 2481 */ 2482 int security_inode_getsecurity(struct mnt_idmap *idmap, 2483 struct inode *inode, const char *name, 2484 void **buffer, bool alloc) 2485 { 2486 struct security_hook_list *hp; 2487 int rc; 2488 2489 if (unlikely(IS_PRIVATE(inode))) 2490 return LSM_RET_DEFAULT(inode_getsecurity); 2491 /* 2492 * Only one module will provide an attribute with a given name. 2493 */ 2494 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 2495 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, 2496 alloc); 2497 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 2498 return rc; 2499 } 2500 return LSM_RET_DEFAULT(inode_getsecurity); 2501 } 2502 2503 /** 2504 * security_inode_setsecurity() - Set the xattr security label of an inode 2505 * @inode: inode 2506 * @name: xattr name 2507 * @value: security label 2508 * @size: length of security label 2509 * @flags: flags 2510 * 2511 * Set the security label associated with @name for @inode from the extended 2512 * attribute value @value. @size indicates the size of the @value in bytes. 2513 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2514 * remainder of the attribute name after the security. prefix has been removed. 2515 * 2516 * Return: Returns 0 on success. 2517 */ 2518 int security_inode_setsecurity(struct inode *inode, const char *name, 2519 const void *value, size_t size, int flags) 2520 { 2521 struct security_hook_list *hp; 2522 int rc; 2523 2524 if (unlikely(IS_PRIVATE(inode))) 2525 return LSM_RET_DEFAULT(inode_setsecurity); 2526 /* 2527 * Only one module will provide an attribute with a given name. 2528 */ 2529 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 2530 rc = hp->hook.inode_setsecurity(inode, name, value, size, 2531 flags); 2532 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 2533 return rc; 2534 } 2535 return LSM_RET_DEFAULT(inode_setsecurity); 2536 } 2537 2538 /** 2539 * security_inode_listsecurity() - List the xattr security label names 2540 * @inode: inode 2541 * @buffer: buffer 2542 * @buffer_size: size of buffer 2543 * 2544 * Copy the extended attribute names for the security labels associated with 2545 * @inode into @buffer. The maximum size of @buffer is specified by 2546 * @buffer_size. @buffer may be NULL to request the size of the buffer 2547 * required. 2548 * 2549 * Return: Returns number of bytes used/required on success. 2550 */ 2551 int security_inode_listsecurity(struct inode *inode, 2552 char *buffer, size_t buffer_size) 2553 { 2554 if (unlikely(IS_PRIVATE(inode))) 2555 return 0; 2556 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 2557 } 2558 EXPORT_SYMBOL(security_inode_listsecurity); 2559 2560 /** 2561 * security_inode_getsecid() - Get an inode's secid 2562 * @inode: inode 2563 * @secid: secid to return 2564 * 2565 * Get the secid associated with the node. In case of failure, @secid will be 2566 * set to zero. 2567 */ 2568 void security_inode_getsecid(struct inode *inode, u32 *secid) 2569 { 2570 call_void_hook(inode_getsecid, inode, secid); 2571 } 2572 2573 /** 2574 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2575 * @src: union dentry of copy-up file 2576 * @new: newly created creds 2577 * 2578 * A file is about to be copied up from lower layer to upper layer of overlay 2579 * filesystem. Security module can prepare a set of new creds and modify as 2580 * need be and return new creds. Caller will switch to new creds temporarily to 2581 * create new file and release newly allocated creds. 2582 * 2583 * Return: Returns 0 on success or a negative error code on error. 2584 */ 2585 int security_inode_copy_up(struct dentry *src, struct cred **new) 2586 { 2587 return call_int_hook(inode_copy_up, 0, src, new); 2588 } 2589 EXPORT_SYMBOL(security_inode_copy_up); 2590 2591 /** 2592 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2593 * @name: xattr name 2594 * 2595 * Filter the xattrs being copied up when a unioned file is copied up from a 2596 * lower layer to the union/overlay layer. The caller is responsible for 2597 * reading and writing the xattrs, this hook is merely a filter. 2598 * 2599 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2600 * if the security module does not know about attribute, or a negative 2601 * error code to abort the copy up. 2602 */ 2603 int security_inode_copy_up_xattr(const char *name) 2604 { 2605 struct security_hook_list *hp; 2606 int rc; 2607 2608 /* 2609 * The implementation can return 0 (accept the xattr), 1 (discard the 2610 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2611 * any other error code in case of an error. 2612 */ 2613 hlist_for_each_entry(hp, 2614 &security_hook_heads.inode_copy_up_xattr, list) { 2615 rc = hp->hook.inode_copy_up_xattr(name); 2616 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2617 return rc; 2618 } 2619 2620 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2621 } 2622 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2623 2624 /** 2625 * security_kernfs_init_security() - Init LSM context for a kernfs node 2626 * @kn_dir: parent kernfs node 2627 * @kn: the kernfs node to initialize 2628 * 2629 * Initialize the security context of a newly created kernfs node based on its 2630 * own and its parent's attributes. 2631 * 2632 * Return: Returns 0 if permission is granted. 2633 */ 2634 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2635 struct kernfs_node *kn) 2636 { 2637 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 2638 } 2639 2640 /** 2641 * security_file_permission() - Check file permissions 2642 * @file: file 2643 * @mask: requested permissions 2644 * 2645 * Check file permissions before accessing an open file. This hook is called 2646 * by various operations that read or write files. A security module can use 2647 * this hook to perform additional checking on these operations, e.g. to 2648 * revalidate permissions on use to support privilege bracketing or policy 2649 * changes. Notice that this hook is used when the actual read/write 2650 * operations are performed, whereas the inode_security_ops hook is called when 2651 * a file is opened (as well as many other operations). Although this hook can 2652 * be used to revalidate permissions for various system call operations that 2653 * read or write files, it does not address the revalidation of permissions for 2654 * memory-mapped files. Security modules must handle this separately if they 2655 * need such revalidation. 2656 * 2657 * Return: Returns 0 if permission is granted. 2658 */ 2659 int security_file_permission(struct file *file, int mask) 2660 { 2661 int ret; 2662 2663 ret = call_int_hook(file_permission, 0, file, mask); 2664 if (ret) 2665 return ret; 2666 2667 return fsnotify_perm(file, mask); 2668 } 2669 2670 /** 2671 * security_file_alloc() - Allocate and init a file's LSM blob 2672 * @file: the file 2673 * 2674 * Allocate and attach a security structure to the file->f_security field. The 2675 * security field is initialized to NULL when the structure is first created. 2676 * 2677 * Return: Return 0 if the hook is successful and permission is granted. 2678 */ 2679 int security_file_alloc(struct file *file) 2680 { 2681 int rc = lsm_file_alloc(file); 2682 2683 if (rc) 2684 return rc; 2685 rc = call_int_hook(file_alloc_security, 0, file); 2686 if (unlikely(rc)) 2687 security_file_free(file); 2688 return rc; 2689 } 2690 2691 /** 2692 * security_file_free() - Free a file's LSM blob 2693 * @file: the file 2694 * 2695 * Deallocate and free any security structures stored in file->f_security. 2696 */ 2697 void security_file_free(struct file *file) 2698 { 2699 void *blob; 2700 2701 call_void_hook(file_free_security, file); 2702 2703 blob = file->f_security; 2704 if (blob) { 2705 file->f_security = NULL; 2706 kmem_cache_free(lsm_file_cache, blob); 2707 } 2708 } 2709 2710 /** 2711 * security_file_ioctl() - Check if an ioctl is allowed 2712 * @file: associated file 2713 * @cmd: ioctl cmd 2714 * @arg: ioctl arguments 2715 * 2716 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2717 * represents a user space pointer; in other cases, it may be a simple integer 2718 * value. When @arg represents a user space pointer, it should never be used 2719 * by the security module. 2720 * 2721 * Return: Returns 0 if permission is granted. 2722 */ 2723 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2724 { 2725 return call_int_hook(file_ioctl, 0, file, cmd, arg); 2726 } 2727 EXPORT_SYMBOL_GPL(security_file_ioctl); 2728 2729 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2730 { 2731 /* 2732 * Does we have PROT_READ and does the application expect 2733 * it to imply PROT_EXEC? If not, nothing to talk about... 2734 */ 2735 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2736 return prot; 2737 if (!(current->personality & READ_IMPLIES_EXEC)) 2738 return prot; 2739 /* 2740 * if that's an anonymous mapping, let it. 2741 */ 2742 if (!file) 2743 return prot | PROT_EXEC; 2744 /* 2745 * ditto if it's not on noexec mount, except that on !MMU we need 2746 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2747 */ 2748 if (!path_noexec(&file->f_path)) { 2749 #ifndef CONFIG_MMU 2750 if (file->f_op->mmap_capabilities) { 2751 unsigned caps = file->f_op->mmap_capabilities(file); 2752 if (!(caps & NOMMU_MAP_EXEC)) 2753 return prot; 2754 } 2755 #endif 2756 return prot | PROT_EXEC; 2757 } 2758 /* anything on noexec mount won't get PROT_EXEC */ 2759 return prot; 2760 } 2761 2762 /** 2763 * security_mmap_file() - Check if mmap'ing a file is allowed 2764 * @file: file 2765 * @prot: protection applied by the kernel 2766 * @flags: flags 2767 * 2768 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2769 * mapping anonymous memory. 2770 * 2771 * Return: Returns 0 if permission is granted. 2772 */ 2773 int security_mmap_file(struct file *file, unsigned long prot, 2774 unsigned long flags) 2775 { 2776 unsigned long prot_adj = mmap_prot(file, prot); 2777 int ret; 2778 2779 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags); 2780 if (ret) 2781 return ret; 2782 return ima_file_mmap(file, prot, prot_adj, flags); 2783 } 2784 2785 /** 2786 * security_mmap_addr() - Check if mmap'ing an address is allowed 2787 * @addr: address 2788 * 2789 * Check permissions for a mmap operation at @addr. 2790 * 2791 * Return: Returns 0 if permission is granted. 2792 */ 2793 int security_mmap_addr(unsigned long addr) 2794 { 2795 return call_int_hook(mmap_addr, 0, addr); 2796 } 2797 2798 /** 2799 * security_file_mprotect() - Check if changing memory protections is allowed 2800 * @vma: memory region 2801 * @reqprot: application requested protection 2802 * @prot: protection applied by the kernel 2803 * 2804 * Check permissions before changing memory access permissions. 2805 * 2806 * Return: Returns 0 if permission is granted. 2807 */ 2808 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2809 unsigned long prot) 2810 { 2811 int ret; 2812 2813 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 2814 if (ret) 2815 return ret; 2816 return ima_file_mprotect(vma, prot); 2817 } 2818 2819 /** 2820 * security_file_lock() - Check if a file lock is allowed 2821 * @file: file 2822 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2823 * 2824 * Check permission before performing file locking operations. Note the hook 2825 * mediates both flock and fcntl style locks. 2826 * 2827 * Return: Returns 0 if permission is granted. 2828 */ 2829 int security_file_lock(struct file *file, unsigned int cmd) 2830 { 2831 return call_int_hook(file_lock, 0, file, cmd); 2832 } 2833 2834 /** 2835 * security_file_fcntl() - Check if fcntl() op is allowed 2836 * @file: file 2837 * @cmd: fcntl command 2838 * @arg: command argument 2839 * 2840 * Check permission before allowing the file operation specified by @cmd from 2841 * being performed on the file @file. Note that @arg sometimes represents a 2842 * user space pointer; in other cases, it may be a simple integer value. When 2843 * @arg represents a user space pointer, it should never be used by the 2844 * security module. 2845 * 2846 * Return: Returns 0 if permission is granted. 2847 */ 2848 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2849 { 2850 return call_int_hook(file_fcntl, 0, file, cmd, arg); 2851 } 2852 2853 /** 2854 * security_file_set_fowner() - Set the file owner info in the LSM blob 2855 * @file: the file 2856 * 2857 * Save owner security information (typically from current->security) in 2858 * file->f_security for later use by the send_sigiotask hook. 2859 * 2860 * Return: Returns 0 on success. 2861 */ 2862 void security_file_set_fowner(struct file *file) 2863 { 2864 call_void_hook(file_set_fowner, file); 2865 } 2866 2867 /** 2868 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2869 * @tsk: target task 2870 * @fown: signal sender 2871 * @sig: signal to be sent, SIGIO is sent if 0 2872 * 2873 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2874 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2875 * that the fown_struct, @fown, is never outside the context of a struct file, 2876 * so the file structure (and associated security information) can always be 2877 * obtained: container_of(fown, struct file, f_owner). 2878 * 2879 * Return: Returns 0 if permission is granted. 2880 */ 2881 int security_file_send_sigiotask(struct task_struct *tsk, 2882 struct fown_struct *fown, int sig) 2883 { 2884 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 2885 } 2886 2887 /** 2888 * security_file_receive() - Check is receiving a file via IPC is allowed 2889 * @file: file being received 2890 * 2891 * This hook allows security modules to control the ability of a process to 2892 * receive an open file descriptor via socket IPC. 2893 * 2894 * Return: Returns 0 if permission is granted. 2895 */ 2896 int security_file_receive(struct file *file) 2897 { 2898 return call_int_hook(file_receive, 0, file); 2899 } 2900 2901 /** 2902 * security_file_open() - Save open() time state for late use by the LSM 2903 * @file: 2904 * 2905 * Save open-time permission checking state for later use upon file_permission, 2906 * and recheck access if anything has changed since inode_permission. 2907 * 2908 * Return: Returns 0 if permission is granted. 2909 */ 2910 int security_file_open(struct file *file) 2911 { 2912 int ret; 2913 2914 ret = call_int_hook(file_open, 0, file); 2915 if (ret) 2916 return ret; 2917 2918 return fsnotify_perm(file, MAY_OPEN); 2919 } 2920 2921 /** 2922 * security_file_truncate() - Check if truncating a file is allowed 2923 * @file: file 2924 * 2925 * Check permission before truncating a file, i.e. using ftruncate. Note that 2926 * truncation permission may also be checked based on the path, using the 2927 * @path_truncate hook. 2928 * 2929 * Return: Returns 0 if permission is granted. 2930 */ 2931 int security_file_truncate(struct file *file) 2932 { 2933 return call_int_hook(file_truncate, 0, file); 2934 } 2935 2936 /** 2937 * security_task_alloc() - Allocate a task's LSM blob 2938 * @task: the task 2939 * @clone_flags: flags indicating what is being shared 2940 * 2941 * Handle allocation of task-related resources. 2942 * 2943 * Return: Returns a zero on success, negative values on failure. 2944 */ 2945 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 2946 { 2947 int rc = lsm_task_alloc(task); 2948 2949 if (rc) 2950 return rc; 2951 rc = call_int_hook(task_alloc, 0, task, clone_flags); 2952 if (unlikely(rc)) 2953 security_task_free(task); 2954 return rc; 2955 } 2956 2957 /** 2958 * security_task_free() - Free a task's LSM blob and related resources 2959 * @task: task 2960 * 2961 * Handle release of task-related resources. Note that this can be called from 2962 * interrupt context. 2963 */ 2964 void security_task_free(struct task_struct *task) 2965 { 2966 call_void_hook(task_free, task); 2967 2968 kfree(task->security); 2969 task->security = NULL; 2970 } 2971 2972 /** 2973 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 2974 * @cred: credentials 2975 * @gfp: gfp flags 2976 * 2977 * Only allocate sufficient memory and attach to @cred such that 2978 * cred_transfer() will not get ENOMEM. 2979 * 2980 * Return: Returns 0 on success, negative values on failure. 2981 */ 2982 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 2983 { 2984 int rc = lsm_cred_alloc(cred, gfp); 2985 2986 if (rc) 2987 return rc; 2988 2989 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 2990 if (unlikely(rc)) 2991 security_cred_free(cred); 2992 return rc; 2993 } 2994 2995 /** 2996 * security_cred_free() - Free the cred's LSM blob and associated resources 2997 * @cred: credentials 2998 * 2999 * Deallocate and clear the cred->security field in a set of credentials. 3000 */ 3001 void security_cred_free(struct cred *cred) 3002 { 3003 /* 3004 * There is a failure case in prepare_creds() that 3005 * may result in a call here with ->security being NULL. 3006 */ 3007 if (unlikely(cred->security == NULL)) 3008 return; 3009 3010 call_void_hook(cred_free, cred); 3011 3012 kfree(cred->security); 3013 cred->security = NULL; 3014 } 3015 3016 /** 3017 * security_prepare_creds() - Prepare a new set of credentials 3018 * @new: new credentials 3019 * @old: original credentials 3020 * @gfp: gfp flags 3021 * 3022 * Prepare a new set of credentials by copying the data from the old set. 3023 * 3024 * Return: Returns 0 on success, negative values on failure. 3025 */ 3026 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3027 { 3028 int rc = lsm_cred_alloc(new, gfp); 3029 3030 if (rc) 3031 return rc; 3032 3033 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 3034 if (unlikely(rc)) 3035 security_cred_free(new); 3036 return rc; 3037 } 3038 3039 /** 3040 * security_transfer_creds() - Transfer creds 3041 * @new: target credentials 3042 * @old: original credentials 3043 * 3044 * Transfer data from original creds to new creds. 3045 */ 3046 void security_transfer_creds(struct cred *new, const struct cred *old) 3047 { 3048 call_void_hook(cred_transfer, new, old); 3049 } 3050 3051 /** 3052 * security_cred_getsecid() - Get the secid from a set of credentials 3053 * @c: credentials 3054 * @secid: secid value 3055 * 3056 * Retrieve the security identifier of the cred structure @c. In case of 3057 * failure, @secid will be set to zero. 3058 */ 3059 void security_cred_getsecid(const struct cred *c, u32 *secid) 3060 { 3061 *secid = 0; 3062 call_void_hook(cred_getsecid, c, secid); 3063 } 3064 EXPORT_SYMBOL(security_cred_getsecid); 3065 3066 /** 3067 * security_kernel_act_as() - Set the kernel credentials to act as secid 3068 * @new: credentials 3069 * @secid: secid 3070 * 3071 * Set the credentials for a kernel service to act as (subjective context). 3072 * The current task must be the one that nominated @secid. 3073 * 3074 * Return: Returns 0 if successful. 3075 */ 3076 int security_kernel_act_as(struct cred *new, u32 secid) 3077 { 3078 return call_int_hook(kernel_act_as, 0, new, secid); 3079 } 3080 3081 /** 3082 * security_kernel_create_files_as() - Set file creation context using an inode 3083 * @new: target credentials 3084 * @inode: reference inode 3085 * 3086 * Set the file creation context in a set of credentials to be the same as the 3087 * objective context of the specified inode. The current task must be the one 3088 * that nominated @inode. 3089 * 3090 * Return: Returns 0 if successful. 3091 */ 3092 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3093 { 3094 return call_int_hook(kernel_create_files_as, 0, new, inode); 3095 } 3096 3097 /** 3098 * security_kernel_module_request() - Check is loading a module is allowed 3099 * @kmod_name: module name 3100 * 3101 * Ability to trigger the kernel to automatically upcall to userspace for 3102 * userspace to load a kernel module with the given name. 3103 * 3104 * Return: Returns 0 if successful. 3105 */ 3106 int security_kernel_module_request(char *kmod_name) 3107 { 3108 int ret; 3109 3110 ret = call_int_hook(kernel_module_request, 0, kmod_name); 3111 if (ret) 3112 return ret; 3113 return integrity_kernel_module_request(kmod_name); 3114 } 3115 3116 /** 3117 * security_kernel_read_file() - Read a file specified by userspace 3118 * @file: file 3119 * @id: file identifier 3120 * @contents: trust if security_kernel_post_read_file() will be called 3121 * 3122 * Read a file specified by userspace. 3123 * 3124 * Return: Returns 0 if permission is granted. 3125 */ 3126 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3127 bool contents) 3128 { 3129 int ret; 3130 3131 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 3132 if (ret) 3133 return ret; 3134 return ima_read_file(file, id, contents); 3135 } 3136 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3137 3138 /** 3139 * security_kernel_post_read_file() - Read a file specified by userspace 3140 * @file: file 3141 * @buf: file contents 3142 * @size: size of file contents 3143 * @id: file identifier 3144 * 3145 * Read a file specified by userspace. This must be paired with a prior call 3146 * to security_kernel_read_file() call that indicated this hook would also be 3147 * called, see security_kernel_read_file() for more information. 3148 * 3149 * Return: Returns 0 if permission is granted. 3150 */ 3151 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3152 enum kernel_read_file_id id) 3153 { 3154 int ret; 3155 3156 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 3157 if (ret) 3158 return ret; 3159 return ima_post_read_file(file, buf, size, id); 3160 } 3161 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3162 3163 /** 3164 * security_kernel_load_data() - Load data provided by userspace 3165 * @id: data identifier 3166 * @contents: true if security_kernel_post_load_data() will be called 3167 * 3168 * Load data provided by userspace. 3169 * 3170 * Return: Returns 0 if permission is granted. 3171 */ 3172 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3173 { 3174 int ret; 3175 3176 ret = call_int_hook(kernel_load_data, 0, id, contents); 3177 if (ret) 3178 return ret; 3179 return ima_load_data(id, contents); 3180 } 3181 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3182 3183 /** 3184 * security_kernel_post_load_data() - Load userspace data from a non-file source 3185 * @buf: data 3186 * @size: size of data 3187 * @id: data identifier 3188 * @description: text description of data, specific to the id value 3189 * 3190 * Load data provided by a non-file source (usually userspace buffer). This 3191 * must be paired with a prior security_kernel_load_data() call that indicated 3192 * this hook would also be called, see security_kernel_load_data() for more 3193 * information. 3194 * 3195 * Return: Returns 0 if permission is granted. 3196 */ 3197 int security_kernel_post_load_data(char *buf, loff_t size, 3198 enum kernel_load_data_id id, 3199 char *description) 3200 { 3201 int ret; 3202 3203 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 3204 description); 3205 if (ret) 3206 return ret; 3207 return ima_post_load_data(buf, size, id, description); 3208 } 3209 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3210 3211 /** 3212 * security_task_fix_setuid() - Update LSM with new user id attributes 3213 * @new: updated credentials 3214 * @old: credentials being replaced 3215 * @flags: LSM_SETID_* flag values 3216 * 3217 * Update the module's state after setting one or more of the user identity 3218 * attributes of the current process. The @flags parameter indicates which of 3219 * the set*uid system calls invoked this hook. If @new is the set of 3220 * credentials that will be installed. Modifications should be made to this 3221 * rather than to @current->cred. 3222 * 3223 * Return: Returns 0 on success. 3224 */ 3225 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3226 int flags) 3227 { 3228 return call_int_hook(task_fix_setuid, 0, new, old, flags); 3229 } 3230 3231 /** 3232 * security_task_fix_setgid() - Update LSM with new group id attributes 3233 * @new: updated credentials 3234 * @old: credentials being replaced 3235 * @flags: LSM_SETID_* flag value 3236 * 3237 * Update the module's state after setting one or more of the group identity 3238 * attributes of the current process. The @flags parameter indicates which of 3239 * the set*gid system calls invoked this hook. @new is the set of credentials 3240 * that will be installed. Modifications should be made to this rather than to 3241 * @current->cred. 3242 * 3243 * Return: Returns 0 on success. 3244 */ 3245 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3246 int flags) 3247 { 3248 return call_int_hook(task_fix_setgid, 0, new, old, flags); 3249 } 3250 3251 /** 3252 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3253 * @new: updated credentials 3254 * @old: credentials being replaced 3255 * 3256 * Update the module's state after setting the supplementary group identity 3257 * attributes of the current process. @new is the set of credentials that will 3258 * be installed. Modifications should be made to this rather than to 3259 * @current->cred. 3260 * 3261 * Return: Returns 0 on success. 3262 */ 3263 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3264 { 3265 return call_int_hook(task_fix_setgroups, 0, new, old); 3266 } 3267 3268 /** 3269 * security_task_setpgid() - Check if setting the pgid is allowed 3270 * @p: task being modified 3271 * @pgid: new pgid 3272 * 3273 * Check permission before setting the process group identifier of the process 3274 * @p to @pgid. 3275 * 3276 * Return: Returns 0 if permission is granted. 3277 */ 3278 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3279 { 3280 return call_int_hook(task_setpgid, 0, p, pgid); 3281 } 3282 3283 /** 3284 * security_task_getpgid() - Check if getting the pgid is allowed 3285 * @p: task 3286 * 3287 * Check permission before getting the process group identifier of the process 3288 * @p. 3289 * 3290 * Return: Returns 0 if permission is granted. 3291 */ 3292 int security_task_getpgid(struct task_struct *p) 3293 { 3294 return call_int_hook(task_getpgid, 0, p); 3295 } 3296 3297 /** 3298 * security_task_getsid() - Check if getting the session id is allowed 3299 * @p: task 3300 * 3301 * Check permission before getting the session identifier of the process @p. 3302 * 3303 * Return: Returns 0 if permission is granted. 3304 */ 3305 int security_task_getsid(struct task_struct *p) 3306 { 3307 return call_int_hook(task_getsid, 0, p); 3308 } 3309 3310 /** 3311 * security_current_getsecid_subj() - Get the current task's subjective secid 3312 * @secid: secid value 3313 * 3314 * Retrieve the subjective security identifier of the current task and return 3315 * it in @secid. In case of failure, @secid will be set to zero. 3316 */ 3317 void security_current_getsecid_subj(u32 *secid) 3318 { 3319 *secid = 0; 3320 call_void_hook(current_getsecid_subj, secid); 3321 } 3322 EXPORT_SYMBOL(security_current_getsecid_subj); 3323 3324 /** 3325 * security_task_getsecid_obj() - Get a task's objective secid 3326 * @p: target task 3327 * @secid: secid value 3328 * 3329 * Retrieve the objective security identifier of the task_struct in @p and 3330 * return it in @secid. In case of failure, @secid will be set to zero. 3331 */ 3332 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3333 { 3334 *secid = 0; 3335 call_void_hook(task_getsecid_obj, p, secid); 3336 } 3337 EXPORT_SYMBOL(security_task_getsecid_obj); 3338 3339 /** 3340 * security_task_setnice() - Check if setting a task's nice value is allowed 3341 * @p: target task 3342 * @nice: nice value 3343 * 3344 * Check permission before setting the nice value of @p to @nice. 3345 * 3346 * Return: Returns 0 if permission is granted. 3347 */ 3348 int security_task_setnice(struct task_struct *p, int nice) 3349 { 3350 return call_int_hook(task_setnice, 0, p, nice); 3351 } 3352 3353 /** 3354 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3355 * @p: target task 3356 * @ioprio: ioprio value 3357 * 3358 * Check permission before setting the ioprio value of @p to @ioprio. 3359 * 3360 * Return: Returns 0 if permission is granted. 3361 */ 3362 int security_task_setioprio(struct task_struct *p, int ioprio) 3363 { 3364 return call_int_hook(task_setioprio, 0, p, ioprio); 3365 } 3366 3367 /** 3368 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3369 * @p: task 3370 * 3371 * Check permission before getting the ioprio value of @p. 3372 * 3373 * Return: Returns 0 if permission is granted. 3374 */ 3375 int security_task_getioprio(struct task_struct *p) 3376 { 3377 return call_int_hook(task_getioprio, 0, p); 3378 } 3379 3380 /** 3381 * security_task_prlimit() - Check if get/setting resources limits is allowed 3382 * @cred: current task credentials 3383 * @tcred: target task credentials 3384 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3385 * 3386 * Check permission before getting and/or setting the resource limits of 3387 * another task. 3388 * 3389 * Return: Returns 0 if permission is granted. 3390 */ 3391 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3392 unsigned int flags) 3393 { 3394 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 3395 } 3396 3397 /** 3398 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3399 * @p: target task's group leader 3400 * @resource: resource whose limit is being set 3401 * @new_rlim: new resource limit 3402 * 3403 * Check permission before setting the resource limits of process @p for 3404 * @resource to @new_rlim. The old resource limit values can be examined by 3405 * dereferencing (p->signal->rlim + resource). 3406 * 3407 * Return: Returns 0 if permission is granted. 3408 */ 3409 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3410 struct rlimit *new_rlim) 3411 { 3412 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 3413 } 3414 3415 /** 3416 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3417 * @p: target task 3418 * 3419 * Check permission before setting scheduling policy and/or parameters of 3420 * process @p. 3421 * 3422 * Return: Returns 0 if permission is granted. 3423 */ 3424 int security_task_setscheduler(struct task_struct *p) 3425 { 3426 return call_int_hook(task_setscheduler, 0, p); 3427 } 3428 3429 /** 3430 * security_task_getscheduler() - Check if getting scheduling info is allowed 3431 * @p: target task 3432 * 3433 * Check permission before obtaining scheduling information for process @p. 3434 * 3435 * Return: Returns 0 if permission is granted. 3436 */ 3437 int security_task_getscheduler(struct task_struct *p) 3438 { 3439 return call_int_hook(task_getscheduler, 0, p); 3440 } 3441 3442 /** 3443 * security_task_movememory() - Check if moving memory is allowed 3444 * @p: task 3445 * 3446 * Check permission before moving memory owned by process @p. 3447 * 3448 * Return: Returns 0 if permission is granted. 3449 */ 3450 int security_task_movememory(struct task_struct *p) 3451 { 3452 return call_int_hook(task_movememory, 0, p); 3453 } 3454 3455 /** 3456 * security_task_kill() - Check if sending a signal is allowed 3457 * @p: target process 3458 * @info: signal information 3459 * @sig: signal value 3460 * @cred: credentials of the signal sender, NULL if @current 3461 * 3462 * Check permission before sending signal @sig to @p. @info can be NULL, the 3463 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3464 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3465 * the kernel and should typically be permitted. SIGIO signals are handled 3466 * separately by the send_sigiotask hook in file_security_ops. 3467 * 3468 * Return: Returns 0 if permission is granted. 3469 */ 3470 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3471 int sig, const struct cred *cred) 3472 { 3473 return call_int_hook(task_kill, 0, p, info, sig, cred); 3474 } 3475 3476 /** 3477 * security_task_prctl() - Check if a prctl op is allowed 3478 * @option: operation 3479 * @arg2: argument 3480 * @arg3: argument 3481 * @arg4: argument 3482 * @arg5: argument 3483 * 3484 * Check permission before performing a process control operation on the 3485 * current process. 3486 * 3487 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3488 * to cause prctl() to return immediately with that value. 3489 */ 3490 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3491 unsigned long arg4, unsigned long arg5) 3492 { 3493 int thisrc; 3494 int rc = LSM_RET_DEFAULT(task_prctl); 3495 struct security_hook_list *hp; 3496 3497 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3498 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3499 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3500 rc = thisrc; 3501 if (thisrc != 0) 3502 break; 3503 } 3504 } 3505 return rc; 3506 } 3507 3508 /** 3509 * security_task_to_inode() - Set the security attributes of a task's inode 3510 * @p: task 3511 * @inode: inode 3512 * 3513 * Set the security attributes for an inode based on an associated task's 3514 * security attributes, e.g. for /proc/pid inodes. 3515 */ 3516 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3517 { 3518 call_void_hook(task_to_inode, p, inode); 3519 } 3520 3521 /** 3522 * security_create_user_ns() - Check if creating a new userns is allowed 3523 * @cred: prepared creds 3524 * 3525 * Check permission prior to creating a new user namespace. 3526 * 3527 * Return: Returns 0 if successful, otherwise < 0 error code. 3528 */ 3529 int security_create_user_ns(const struct cred *cred) 3530 { 3531 return call_int_hook(userns_create, 0, cred); 3532 } 3533 3534 /** 3535 * security_ipc_permission() - Check if sysv ipc access is allowed 3536 * @ipcp: ipc permission structure 3537 * @flag: requested permissions 3538 * 3539 * Check permissions for access to IPC. 3540 * 3541 * Return: Returns 0 if permission is granted. 3542 */ 3543 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3544 { 3545 return call_int_hook(ipc_permission, 0, ipcp, flag); 3546 } 3547 3548 /** 3549 * security_ipc_getsecid() - Get the sysv ipc object's secid 3550 * @ipcp: ipc permission structure 3551 * @secid: secid pointer 3552 * 3553 * Get the secid associated with the ipc object. In case of failure, @secid 3554 * will be set to zero. 3555 */ 3556 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3557 { 3558 *secid = 0; 3559 call_void_hook(ipc_getsecid, ipcp, secid); 3560 } 3561 3562 /** 3563 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3564 * @msg: message structure 3565 * 3566 * Allocate and attach a security structure to the msg->security field. The 3567 * security field is initialized to NULL when the structure is first created. 3568 * 3569 * Return: Return 0 if operation was successful and permission is granted. 3570 */ 3571 int security_msg_msg_alloc(struct msg_msg *msg) 3572 { 3573 int rc = lsm_msg_msg_alloc(msg); 3574 3575 if (unlikely(rc)) 3576 return rc; 3577 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 3578 if (unlikely(rc)) 3579 security_msg_msg_free(msg); 3580 return rc; 3581 } 3582 3583 /** 3584 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3585 * @msg: message structure 3586 * 3587 * Deallocate the security structure for this message. 3588 */ 3589 void security_msg_msg_free(struct msg_msg *msg) 3590 { 3591 call_void_hook(msg_msg_free_security, msg); 3592 kfree(msg->security); 3593 msg->security = NULL; 3594 } 3595 3596 /** 3597 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3598 * @msq: sysv ipc permission structure 3599 * 3600 * Allocate and attach a security structure to @msg. The security field is 3601 * initialized to NULL when the structure is first created. 3602 * 3603 * Return: Returns 0 if operation was successful and permission is granted. 3604 */ 3605 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3606 { 3607 int rc = lsm_ipc_alloc(msq); 3608 3609 if (unlikely(rc)) 3610 return rc; 3611 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 3612 if (unlikely(rc)) 3613 security_msg_queue_free(msq); 3614 return rc; 3615 } 3616 3617 /** 3618 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3619 * @msq: sysv ipc permission structure 3620 * 3621 * Deallocate security field @perm->security for the message queue. 3622 */ 3623 void security_msg_queue_free(struct kern_ipc_perm *msq) 3624 { 3625 call_void_hook(msg_queue_free_security, msq); 3626 kfree(msq->security); 3627 msq->security = NULL; 3628 } 3629 3630 /** 3631 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3632 * @msq: sysv ipc permission structure 3633 * @msqflg: operation flags 3634 * 3635 * Check permission when a message queue is requested through the msgget system 3636 * call. This hook is only called when returning the message queue identifier 3637 * for an existing message queue, not when a new message queue is created. 3638 * 3639 * Return: Return 0 if permission is granted. 3640 */ 3641 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3642 { 3643 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 3644 } 3645 3646 /** 3647 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3648 * @msq: sysv ipc permission structure 3649 * @cmd: operation 3650 * 3651 * Check permission when a message control operation specified by @cmd is to be 3652 * performed on the message queue with permissions. 3653 * 3654 * Return: Returns 0 if permission is granted. 3655 */ 3656 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3657 { 3658 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 3659 } 3660 3661 /** 3662 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3663 * @msq: sysv ipc permission structure 3664 * @msg: message 3665 * @msqflg: operation flags 3666 * 3667 * Check permission before a message, @msg, is enqueued on the message queue 3668 * with permissions specified in @msq. 3669 * 3670 * Return: Returns 0 if permission is granted. 3671 */ 3672 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3673 struct msg_msg *msg, int msqflg) 3674 { 3675 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 3676 } 3677 3678 /** 3679 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3680 * @msq: sysv ipc permission structure 3681 * @msg: message 3682 * @target: target task 3683 * @type: type of message requested 3684 * @mode: operation flags 3685 * 3686 * Check permission before a message, @msg, is removed from the message queue. 3687 * The @target task structure contains a pointer to the process that will be 3688 * receiving the message (not equal to the current process when inline receives 3689 * are being performed). 3690 * 3691 * Return: Returns 0 if permission is granted. 3692 */ 3693 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3694 struct task_struct *target, long type, int mode) 3695 { 3696 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 3697 } 3698 3699 /** 3700 * security_shm_alloc() - Allocate a sysv shm LSM blob 3701 * @shp: sysv ipc permission structure 3702 * 3703 * Allocate and attach a security structure to the @shp security field. The 3704 * security field is initialized to NULL when the structure is first created. 3705 * 3706 * Return: Returns 0 if operation was successful and permission is granted. 3707 */ 3708 int security_shm_alloc(struct kern_ipc_perm *shp) 3709 { 3710 int rc = lsm_ipc_alloc(shp); 3711 3712 if (unlikely(rc)) 3713 return rc; 3714 rc = call_int_hook(shm_alloc_security, 0, shp); 3715 if (unlikely(rc)) 3716 security_shm_free(shp); 3717 return rc; 3718 } 3719 3720 /** 3721 * security_shm_free() - Free a sysv shm LSM blob 3722 * @shp: sysv ipc permission structure 3723 * 3724 * Deallocate the security structure @perm->security for the memory segment. 3725 */ 3726 void security_shm_free(struct kern_ipc_perm *shp) 3727 { 3728 call_void_hook(shm_free_security, shp); 3729 kfree(shp->security); 3730 shp->security = NULL; 3731 } 3732 3733 /** 3734 * security_shm_associate() - Check if a sysv shm operation is allowed 3735 * @shp: sysv ipc permission structure 3736 * @shmflg: operation flags 3737 * 3738 * Check permission when a shared memory region is requested through the shmget 3739 * system call. This hook is only called when returning the shared memory 3740 * region identifier for an existing region, not when a new shared memory 3741 * region is created. 3742 * 3743 * Return: Returns 0 if permission is granted. 3744 */ 3745 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3746 { 3747 return call_int_hook(shm_associate, 0, shp, shmflg); 3748 } 3749 3750 /** 3751 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3752 * @shp: sysv ipc permission structure 3753 * @cmd: operation 3754 * 3755 * Check permission when a shared memory control operation specified by @cmd is 3756 * to be performed on the shared memory region with permissions in @shp. 3757 * 3758 * Return: Return 0 if permission is granted. 3759 */ 3760 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3761 { 3762 return call_int_hook(shm_shmctl, 0, shp, cmd); 3763 } 3764 3765 /** 3766 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3767 * @shp: sysv ipc permission structure 3768 * @shmaddr: address of memory region to attach 3769 * @shmflg: operation flags 3770 * 3771 * Check permissions prior to allowing the shmat system call to attach the 3772 * shared memory segment with permissions @shp to the data segment of the 3773 * calling process. The attaching address is specified by @shmaddr. 3774 * 3775 * Return: Returns 0 if permission is granted. 3776 */ 3777 int security_shm_shmat(struct kern_ipc_perm *shp, 3778 char __user *shmaddr, int shmflg) 3779 { 3780 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 3781 } 3782 3783 /** 3784 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3785 * @sma: sysv ipc permission structure 3786 * 3787 * Allocate and attach a security structure to the @sma security field. The 3788 * security field is initialized to NULL when the structure is first created. 3789 * 3790 * Return: Returns 0 if operation was successful and permission is granted. 3791 */ 3792 int security_sem_alloc(struct kern_ipc_perm *sma) 3793 { 3794 int rc = lsm_ipc_alloc(sma); 3795 3796 if (unlikely(rc)) 3797 return rc; 3798 rc = call_int_hook(sem_alloc_security, 0, sma); 3799 if (unlikely(rc)) 3800 security_sem_free(sma); 3801 return rc; 3802 } 3803 3804 /** 3805 * security_sem_free() - Free a sysv semaphore LSM blob 3806 * @sma: sysv ipc permission structure 3807 * 3808 * Deallocate security structure @sma->security for the semaphore. 3809 */ 3810 void security_sem_free(struct kern_ipc_perm *sma) 3811 { 3812 call_void_hook(sem_free_security, sma); 3813 kfree(sma->security); 3814 sma->security = NULL; 3815 } 3816 3817 /** 3818 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3819 * @sma: sysv ipc permission structure 3820 * @semflg: operation flags 3821 * 3822 * Check permission when a semaphore is requested through the semget system 3823 * call. This hook is only called when returning the semaphore identifier for 3824 * an existing semaphore, not when a new one must be created. 3825 * 3826 * Return: Returns 0 if permission is granted. 3827 */ 3828 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3829 { 3830 return call_int_hook(sem_associate, 0, sma, semflg); 3831 } 3832 3833 /** 3834 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3835 * @sma: sysv ipc permission structure 3836 * @cmd: operation 3837 * 3838 * Check permission when a semaphore operation specified by @cmd is to be 3839 * performed on the semaphore. 3840 * 3841 * Return: Returns 0 if permission is granted. 3842 */ 3843 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3844 { 3845 return call_int_hook(sem_semctl, 0, sma, cmd); 3846 } 3847 3848 /** 3849 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3850 * @sma: sysv ipc permission structure 3851 * @sops: operations to perform 3852 * @nsops: number of operations 3853 * @alter: flag indicating changes will be made 3854 * 3855 * Check permissions before performing operations on members of the semaphore 3856 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3857 * 3858 * Return: Returns 0 if permission is granted. 3859 */ 3860 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3861 unsigned nsops, int alter) 3862 { 3863 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 3864 } 3865 3866 /** 3867 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3868 * @dentry: dentry 3869 * @inode: inode 3870 * 3871 * Fill in @inode security information for a @dentry if allowed. 3872 */ 3873 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3874 { 3875 if (unlikely(inode && IS_PRIVATE(inode))) 3876 return; 3877 call_void_hook(d_instantiate, dentry, inode); 3878 } 3879 EXPORT_SYMBOL(security_d_instantiate); 3880 3881 /* 3882 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3883 */ 3884 3885 /** 3886 * security_getselfattr - Read an LSM attribute of the current process. 3887 * @attr: which attribute to return 3888 * @uctx: the user-space destination for the information, or NULL 3889 * @size: pointer to the size of space available to receive the data 3890 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3891 * attributes associated with the LSM identified in the passed @ctx be 3892 * reported. 3893 * 3894 * A NULL value for @uctx can be used to get both the number of attributes 3895 * and the size of the data. 3896 * 3897 * Returns the number of attributes found on success, negative value 3898 * on error. @size is reset to the total size of the data. 3899 * If @size is insufficient to contain the data -E2BIG is returned. 3900 */ 3901 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3902 size_t __user *size, u32 flags) 3903 { 3904 struct security_hook_list *hp; 3905 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3906 u8 __user *base = (u8 __user *)uctx; 3907 size_t total = 0; 3908 size_t entrysize; 3909 size_t left; 3910 bool toobig = false; 3911 bool single = false; 3912 int count = 0; 3913 int rc; 3914 3915 if (attr == LSM_ATTR_UNDEF) 3916 return -EINVAL; 3917 if (size == NULL) 3918 return -EINVAL; 3919 if (get_user(left, size)) 3920 return -EFAULT; 3921 3922 if (flags) { 3923 /* 3924 * Only flag supported is LSM_FLAG_SINGLE 3925 */ 3926 if (flags != LSM_FLAG_SINGLE) 3927 return -EINVAL; 3928 if (uctx && copy_from_user(&lctx, uctx, sizeof(lctx))) 3929 return -EFAULT; 3930 /* 3931 * If the LSM ID isn't specified it is an error. 3932 */ 3933 if (lctx.id == LSM_ID_UNDEF) 3934 return -EINVAL; 3935 single = true; 3936 } 3937 3938 /* 3939 * In the usual case gather all the data from the LSMs. 3940 * In the single case only get the data from the LSM specified. 3941 */ 3942 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 3943 if (single && lctx.id != hp->lsmid->id) 3944 continue; 3945 entrysize = left; 3946 if (base) 3947 uctx = (struct lsm_ctx __user *)(base + total); 3948 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 3949 if (rc == -EOPNOTSUPP) { 3950 rc = 0; 3951 continue; 3952 } 3953 if (rc == -E2BIG) { 3954 toobig = true; 3955 left = 0; 3956 } else if (rc < 0) 3957 return rc; 3958 else 3959 left -= entrysize; 3960 3961 total += entrysize; 3962 count += rc; 3963 if (single) 3964 break; 3965 } 3966 if (put_user(total, size)) 3967 return -EFAULT; 3968 if (toobig) 3969 return -E2BIG; 3970 if (count == 0) 3971 return LSM_RET_DEFAULT(getselfattr); 3972 return count; 3973 } 3974 3975 /* 3976 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3977 */ 3978 3979 /** 3980 * security_setselfattr - Set an LSM attribute on the current process. 3981 * @attr: which attribute to set 3982 * @uctx: the user-space source for the information 3983 * @size: the size of the data 3984 * @flags: reserved for future use, must be 0 3985 * 3986 * Set an LSM attribute for the current process. The LSM, attribute 3987 * and new value are included in @uctx. 3988 * 3989 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 3990 * if the user buffer is inaccessible, E2BIG if size is too big, or an 3991 * LSM specific failure. 3992 */ 3993 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3994 size_t size, u32 flags) 3995 { 3996 struct security_hook_list *hp; 3997 struct lsm_ctx *lctx; 3998 int rc = LSM_RET_DEFAULT(setselfattr); 3999 4000 if (flags) 4001 return -EINVAL; 4002 if (size < sizeof(*lctx)) 4003 return -EINVAL; 4004 if (size > PAGE_SIZE) 4005 return -E2BIG; 4006 4007 lctx = kmalloc(size, GFP_KERNEL); 4008 if (lctx == NULL) 4009 return -ENOMEM; 4010 4011 if (copy_from_user(lctx, uctx, size)) { 4012 rc = -EFAULT; 4013 goto free_out; 4014 } 4015 4016 if (size < lctx->len || size < lctx->ctx_len + sizeof(*lctx) || 4017 lctx->len < lctx->ctx_len + sizeof(*lctx)) { 4018 rc = -EINVAL; 4019 goto free_out; 4020 } 4021 4022 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4023 if ((hp->lsmid->id) == lctx->id) { 4024 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4025 break; 4026 } 4027 4028 free_out: 4029 kfree(lctx); 4030 return rc; 4031 } 4032 4033 /** 4034 * security_getprocattr() - Read an attribute for a task 4035 * @p: the task 4036 * @lsmid: LSM identification 4037 * @name: attribute name 4038 * @value: attribute value 4039 * 4040 * Read attribute @name for task @p and store it into @value if allowed. 4041 * 4042 * Return: Returns the length of @value on success, a negative value otherwise. 4043 */ 4044 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4045 char **value) 4046 { 4047 struct security_hook_list *hp; 4048 4049 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4050 if (lsmid != 0 && lsmid != hp->lsmid->id) 4051 continue; 4052 return hp->hook.getprocattr(p, name, value); 4053 } 4054 return LSM_RET_DEFAULT(getprocattr); 4055 } 4056 4057 /** 4058 * security_setprocattr() - Set an attribute for a task 4059 * @lsmid: LSM identification 4060 * @name: attribute name 4061 * @value: attribute value 4062 * @size: attribute value size 4063 * 4064 * Write (set) the current task's attribute @name to @value, size @size if 4065 * allowed. 4066 * 4067 * Return: Returns bytes written on success, a negative value otherwise. 4068 */ 4069 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4070 { 4071 struct security_hook_list *hp; 4072 4073 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4074 if (lsmid != 0 && lsmid != hp->lsmid->id) 4075 continue; 4076 return hp->hook.setprocattr(name, value, size); 4077 } 4078 return LSM_RET_DEFAULT(setprocattr); 4079 } 4080 4081 /** 4082 * security_netlink_send() - Save info and check if netlink sending is allowed 4083 * @sk: sending socket 4084 * @skb: netlink message 4085 * 4086 * Save security information for a netlink message so that permission checking 4087 * can be performed when the message is processed. The security information 4088 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4089 * Also may be used to provide fine grained control over message transmission. 4090 * 4091 * Return: Returns 0 if the information was successfully saved and message is 4092 * allowed to be transmitted. 4093 */ 4094 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4095 { 4096 return call_int_hook(netlink_send, 0, sk, skb); 4097 } 4098 4099 /** 4100 * security_ismaclabel() - Check is the named attribute is a MAC label 4101 * @name: full extended attribute name 4102 * 4103 * Check if the extended attribute specified by @name represents a MAC label. 4104 * 4105 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4106 */ 4107 int security_ismaclabel(const char *name) 4108 { 4109 return call_int_hook(ismaclabel, 0, name); 4110 } 4111 EXPORT_SYMBOL(security_ismaclabel); 4112 4113 /** 4114 * security_secid_to_secctx() - Convert a secid to a secctx 4115 * @secid: secid 4116 * @secdata: secctx 4117 * @seclen: secctx length 4118 * 4119 * Convert secid to security context. If @secdata is NULL the length of the 4120 * result will be returned in @seclen, but no @secdata will be returned. This 4121 * does mean that the length could change between calls to check the length and 4122 * the next call which actually allocates and returns the @secdata. 4123 * 4124 * Return: Return 0 on success, error on failure. 4125 */ 4126 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4127 { 4128 struct security_hook_list *hp; 4129 int rc; 4130 4131 /* 4132 * Currently, only one LSM can implement secid_to_secctx (i.e this 4133 * LSM hook is not "stackable"). 4134 */ 4135 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 4136 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 4137 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 4138 return rc; 4139 } 4140 4141 return LSM_RET_DEFAULT(secid_to_secctx); 4142 } 4143 EXPORT_SYMBOL(security_secid_to_secctx); 4144 4145 /** 4146 * security_secctx_to_secid() - Convert a secctx to a secid 4147 * @secdata: secctx 4148 * @seclen: length of secctx 4149 * @secid: secid 4150 * 4151 * Convert security context to secid. 4152 * 4153 * Return: Returns 0 on success, error on failure. 4154 */ 4155 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4156 { 4157 *secid = 0; 4158 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 4159 } 4160 EXPORT_SYMBOL(security_secctx_to_secid); 4161 4162 /** 4163 * security_release_secctx() - Free a secctx buffer 4164 * @secdata: secctx 4165 * @seclen: length of secctx 4166 * 4167 * Release the security context. 4168 */ 4169 void security_release_secctx(char *secdata, u32 seclen) 4170 { 4171 call_void_hook(release_secctx, secdata, seclen); 4172 } 4173 EXPORT_SYMBOL(security_release_secctx); 4174 4175 /** 4176 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4177 * @inode: inode 4178 * 4179 * Notify the security module that it must revalidate the security context of 4180 * an inode. 4181 */ 4182 void security_inode_invalidate_secctx(struct inode *inode) 4183 { 4184 call_void_hook(inode_invalidate_secctx, inode); 4185 } 4186 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4187 4188 /** 4189 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4190 * @inode: inode 4191 * @ctx: secctx 4192 * @ctxlen: length of secctx 4193 * 4194 * Notify the security module of what the security context of an inode should 4195 * be. Initializes the incore security context managed by the security module 4196 * for this inode. Example usage: NFS client invokes this hook to initialize 4197 * the security context in its incore inode to the value provided by the server 4198 * for the file when the server returned the file's attributes to the client. 4199 * Must be called with inode->i_mutex locked. 4200 * 4201 * Return: Returns 0 on success, error on failure. 4202 */ 4203 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4204 { 4205 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 4206 } 4207 EXPORT_SYMBOL(security_inode_notifysecctx); 4208 4209 /** 4210 * security_inode_setsecctx() - Change the security label of an inode 4211 * @dentry: inode 4212 * @ctx: secctx 4213 * @ctxlen: length of secctx 4214 * 4215 * Change the security context of an inode. Updates the incore security 4216 * context managed by the security module and invokes the fs code as needed 4217 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4218 * context. Example usage: NFS server invokes this hook to change the security 4219 * context in its incore inode and on the backing filesystem to a value 4220 * provided by the client on a SETATTR operation. Must be called with 4221 * inode->i_mutex locked. 4222 * 4223 * Return: Returns 0 on success, error on failure. 4224 */ 4225 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4226 { 4227 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 4228 } 4229 EXPORT_SYMBOL(security_inode_setsecctx); 4230 4231 /** 4232 * security_inode_getsecctx() - Get the security label of an inode 4233 * @inode: inode 4234 * @ctx: secctx 4235 * @ctxlen: length of secctx 4236 * 4237 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4238 * context for the given @inode. 4239 * 4240 * Return: Returns 0 on success, error on failure. 4241 */ 4242 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4243 { 4244 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 4245 } 4246 EXPORT_SYMBOL(security_inode_getsecctx); 4247 4248 #ifdef CONFIG_WATCH_QUEUE 4249 /** 4250 * security_post_notification() - Check if a watch notification can be posted 4251 * @w_cred: credentials of the task that set the watch 4252 * @cred: credentials of the task which triggered the watch 4253 * @n: the notification 4254 * 4255 * Check to see if a watch notification can be posted to a particular queue. 4256 * 4257 * Return: Returns 0 if permission is granted. 4258 */ 4259 int security_post_notification(const struct cred *w_cred, 4260 const struct cred *cred, 4261 struct watch_notification *n) 4262 { 4263 return call_int_hook(post_notification, 0, w_cred, cred, n); 4264 } 4265 #endif /* CONFIG_WATCH_QUEUE */ 4266 4267 #ifdef CONFIG_KEY_NOTIFICATIONS 4268 /** 4269 * security_watch_key() - Check if a task is allowed to watch for key events 4270 * @key: the key to watch 4271 * 4272 * Check to see if a process is allowed to watch for event notifications from 4273 * a key or keyring. 4274 * 4275 * Return: Returns 0 if permission is granted. 4276 */ 4277 int security_watch_key(struct key *key) 4278 { 4279 return call_int_hook(watch_key, 0, key); 4280 } 4281 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4282 4283 #ifdef CONFIG_SECURITY_NETWORK 4284 /** 4285 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4286 * @sock: originating sock 4287 * @other: peer sock 4288 * @newsk: new sock 4289 * 4290 * Check permissions before establishing a Unix domain stream connection 4291 * between @sock and @other. 4292 * 4293 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4294 * Linux provides an alternative to the conventional file name space for Unix 4295 * domain sockets. Whereas binding and connecting to sockets in the file name 4296 * space is mediated by the typical file permissions (and caught by the mknod 4297 * and permission hooks in inode_security_ops), binding and connecting to 4298 * sockets in the abstract name space is completely unmediated. Sufficient 4299 * control of Unix domain sockets in the abstract name space isn't possible 4300 * using only the socket layer hooks, since we need to know the actual target 4301 * socket, which is not looked up until we are inside the af_unix code. 4302 * 4303 * Return: Returns 0 if permission is granted. 4304 */ 4305 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4306 struct sock *newsk) 4307 { 4308 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 4309 } 4310 EXPORT_SYMBOL(security_unix_stream_connect); 4311 4312 /** 4313 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4314 * @sock: originating sock 4315 * @other: peer sock 4316 * 4317 * Check permissions before connecting or sending datagrams from @sock to 4318 * @other. 4319 * 4320 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4321 * Linux provides an alternative to the conventional file name space for Unix 4322 * domain sockets. Whereas binding and connecting to sockets in the file name 4323 * space is mediated by the typical file permissions (and caught by the mknod 4324 * and permission hooks in inode_security_ops), binding and connecting to 4325 * sockets in the abstract name space is completely unmediated. Sufficient 4326 * control of Unix domain sockets in the abstract name space isn't possible 4327 * using only the socket layer hooks, since we need to know the actual target 4328 * socket, which is not looked up until we are inside the af_unix code. 4329 * 4330 * Return: Returns 0 if permission is granted. 4331 */ 4332 int security_unix_may_send(struct socket *sock, struct socket *other) 4333 { 4334 return call_int_hook(unix_may_send, 0, sock, other); 4335 } 4336 EXPORT_SYMBOL(security_unix_may_send); 4337 4338 /** 4339 * security_socket_create() - Check if creating a new socket is allowed 4340 * @family: protocol family 4341 * @type: communications type 4342 * @protocol: requested protocol 4343 * @kern: set to 1 if a kernel socket is requested 4344 * 4345 * Check permissions prior to creating a new socket. 4346 * 4347 * Return: Returns 0 if permission is granted. 4348 */ 4349 int security_socket_create(int family, int type, int protocol, int kern) 4350 { 4351 return call_int_hook(socket_create, 0, family, type, protocol, kern); 4352 } 4353 4354 /** 4355 * security_socket_post_create() - Initialize a newly created socket 4356 * @sock: socket 4357 * @family: protocol family 4358 * @type: communications type 4359 * @protocol: requested protocol 4360 * @kern: set to 1 if a kernel socket is requested 4361 * 4362 * This hook allows a module to update or allocate a per-socket security 4363 * structure. Note that the security field was not added directly to the socket 4364 * structure, but rather, the socket security information is stored in the 4365 * associated inode. Typically, the inode alloc_security hook will allocate 4366 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4367 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4368 * information that wasn't available when the inode was allocated. 4369 * 4370 * Return: Returns 0 if permission is granted. 4371 */ 4372 int security_socket_post_create(struct socket *sock, int family, 4373 int type, int protocol, int kern) 4374 { 4375 return call_int_hook(socket_post_create, 0, sock, family, type, 4376 protocol, kern); 4377 } 4378 4379 /** 4380 * security_socket_socketpair() - Check if creating a socketpair is allowed 4381 * @socka: first socket 4382 * @sockb: second socket 4383 * 4384 * Check permissions before creating a fresh pair of sockets. 4385 * 4386 * Return: Returns 0 if permission is granted and the connection was 4387 * established. 4388 */ 4389 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4390 { 4391 return call_int_hook(socket_socketpair, 0, socka, sockb); 4392 } 4393 EXPORT_SYMBOL(security_socket_socketpair); 4394 4395 /** 4396 * security_socket_bind() - Check if a socket bind operation is allowed 4397 * @sock: socket 4398 * @address: requested bind address 4399 * @addrlen: length of address 4400 * 4401 * Check permission before socket protocol layer bind operation is performed 4402 * and the socket @sock is bound to the address specified in the @address 4403 * parameter. 4404 * 4405 * Return: Returns 0 if permission is granted. 4406 */ 4407 int security_socket_bind(struct socket *sock, 4408 struct sockaddr *address, int addrlen) 4409 { 4410 return call_int_hook(socket_bind, 0, sock, address, addrlen); 4411 } 4412 4413 /** 4414 * security_socket_connect() - Check if a socket connect operation is allowed 4415 * @sock: socket 4416 * @address: address of remote connection point 4417 * @addrlen: length of address 4418 * 4419 * Check permission before socket protocol layer connect operation attempts to 4420 * connect socket @sock to a remote address, @address. 4421 * 4422 * Return: Returns 0 if permission is granted. 4423 */ 4424 int security_socket_connect(struct socket *sock, 4425 struct sockaddr *address, int addrlen) 4426 { 4427 return call_int_hook(socket_connect, 0, sock, address, addrlen); 4428 } 4429 4430 /** 4431 * security_socket_listen() - Check if a socket is allowed to listen 4432 * @sock: socket 4433 * @backlog: connection queue size 4434 * 4435 * Check permission before socket protocol layer listen operation. 4436 * 4437 * Return: Returns 0 if permission is granted. 4438 */ 4439 int security_socket_listen(struct socket *sock, int backlog) 4440 { 4441 return call_int_hook(socket_listen, 0, sock, backlog); 4442 } 4443 4444 /** 4445 * security_socket_accept() - Check if a socket is allowed to accept connections 4446 * @sock: listening socket 4447 * @newsock: newly creation connection socket 4448 * 4449 * Check permission before accepting a new connection. Note that the new 4450 * socket, @newsock, has been created and some information copied to it, but 4451 * the accept operation has not actually been performed. 4452 * 4453 * Return: Returns 0 if permission is granted. 4454 */ 4455 int security_socket_accept(struct socket *sock, struct socket *newsock) 4456 { 4457 return call_int_hook(socket_accept, 0, sock, newsock); 4458 } 4459 4460 /** 4461 * security_socket_sendmsg() - Check is sending a message is allowed 4462 * @sock: sending socket 4463 * @msg: message to send 4464 * @size: size of message 4465 * 4466 * Check permission before transmitting a message to another socket. 4467 * 4468 * Return: Returns 0 if permission is granted. 4469 */ 4470 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4471 { 4472 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 4473 } 4474 4475 /** 4476 * security_socket_recvmsg() - Check if receiving a message is allowed 4477 * @sock: receiving socket 4478 * @msg: message to receive 4479 * @size: size of message 4480 * @flags: operational flags 4481 * 4482 * Check permission before receiving a message from a socket. 4483 * 4484 * Return: Returns 0 if permission is granted. 4485 */ 4486 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4487 int size, int flags) 4488 { 4489 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 4490 } 4491 4492 /** 4493 * security_socket_getsockname() - Check if reading the socket addr is allowed 4494 * @sock: socket 4495 * 4496 * Check permission before reading the local address (name) of the socket 4497 * object. 4498 * 4499 * Return: Returns 0 if permission is granted. 4500 */ 4501 int security_socket_getsockname(struct socket *sock) 4502 { 4503 return call_int_hook(socket_getsockname, 0, sock); 4504 } 4505 4506 /** 4507 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4508 * @sock: socket 4509 * 4510 * Check permission before the remote address (name) of a socket object. 4511 * 4512 * Return: Returns 0 if permission is granted. 4513 */ 4514 int security_socket_getpeername(struct socket *sock) 4515 { 4516 return call_int_hook(socket_getpeername, 0, sock); 4517 } 4518 4519 /** 4520 * security_socket_getsockopt() - Check if reading a socket option is allowed 4521 * @sock: socket 4522 * @level: option's protocol level 4523 * @optname: option name 4524 * 4525 * Check permissions before retrieving the options associated with socket 4526 * @sock. 4527 * 4528 * Return: Returns 0 if permission is granted. 4529 */ 4530 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4531 { 4532 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 4533 } 4534 4535 /** 4536 * security_socket_setsockopt() - Check if setting a socket option is allowed 4537 * @sock: socket 4538 * @level: option's protocol level 4539 * @optname: option name 4540 * 4541 * Check permissions before setting the options associated with socket @sock. 4542 * 4543 * Return: Returns 0 if permission is granted. 4544 */ 4545 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4546 { 4547 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 4548 } 4549 4550 /** 4551 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4552 * @sock: socket 4553 * @how: flag indicating how sends and receives are handled 4554 * 4555 * Checks permission before all or part of a connection on the socket @sock is 4556 * shut down. 4557 * 4558 * Return: Returns 0 if permission is granted. 4559 */ 4560 int security_socket_shutdown(struct socket *sock, int how) 4561 { 4562 return call_int_hook(socket_shutdown, 0, sock, how); 4563 } 4564 4565 /** 4566 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4567 * @sk: destination sock 4568 * @skb: incoming packet 4569 * 4570 * Check permissions on incoming network packets. This hook is distinct from 4571 * Netfilter's IP input hooks since it is the first time that the incoming 4572 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4573 * sleep inside this hook because some callers hold spinlocks. 4574 * 4575 * Return: Returns 0 if permission is granted. 4576 */ 4577 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4578 { 4579 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 4580 } 4581 EXPORT_SYMBOL(security_sock_rcv_skb); 4582 4583 /** 4584 * security_socket_getpeersec_stream() - Get the remote peer label 4585 * @sock: socket 4586 * @optval: destination buffer 4587 * @optlen: size of peer label copied into the buffer 4588 * @len: maximum size of the destination buffer 4589 * 4590 * This hook allows the security module to provide peer socket security state 4591 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4592 * For tcp sockets this can be meaningful if the socket is associated with an 4593 * ipsec SA. 4594 * 4595 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4596 * values. 4597 */ 4598 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4599 sockptr_t optlen, unsigned int len) 4600 { 4601 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 4602 optval, optlen, len); 4603 } 4604 4605 /** 4606 * security_socket_getpeersec_dgram() - Get the remote peer label 4607 * @sock: socket 4608 * @skb: datagram packet 4609 * @secid: remote peer label secid 4610 * 4611 * This hook allows the security module to provide peer socket security state 4612 * for udp sockets on a per-packet basis to userspace via getsockopt 4613 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4614 * option via getsockopt. It can then retrieve the security state returned by 4615 * this hook for a packet via the SCM_SECURITY ancillary message type. 4616 * 4617 * Return: Returns 0 on success, error on failure. 4618 */ 4619 int security_socket_getpeersec_dgram(struct socket *sock, 4620 struct sk_buff *skb, u32 *secid) 4621 { 4622 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 4623 skb, secid); 4624 } 4625 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4626 4627 /** 4628 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4629 * @sk: sock 4630 * @family: protocol family 4631 * @priority: gfp flags 4632 * 4633 * Allocate and attach a security structure to the sk->sk_security field, which 4634 * is used to copy security attributes between local stream sockets. 4635 * 4636 * Return: Returns 0 on success, error on failure. 4637 */ 4638 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4639 { 4640 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 4641 } 4642 4643 /** 4644 * security_sk_free() - Free the sock's LSM blob 4645 * @sk: sock 4646 * 4647 * Deallocate security structure. 4648 */ 4649 void security_sk_free(struct sock *sk) 4650 { 4651 call_void_hook(sk_free_security, sk); 4652 } 4653 4654 /** 4655 * security_sk_clone() - Clone a sock's LSM state 4656 * @sk: original sock 4657 * @newsk: target sock 4658 * 4659 * Clone/copy security structure. 4660 */ 4661 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4662 { 4663 call_void_hook(sk_clone_security, sk, newsk); 4664 } 4665 EXPORT_SYMBOL(security_sk_clone); 4666 4667 /** 4668 * security_sk_classify_flow() - Set a flow's secid based on socket 4669 * @sk: original socket 4670 * @flic: target flow 4671 * 4672 * Set the target flow's secid to socket's secid. 4673 */ 4674 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4675 { 4676 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4677 } 4678 EXPORT_SYMBOL(security_sk_classify_flow); 4679 4680 /** 4681 * security_req_classify_flow() - Set a flow's secid based on request_sock 4682 * @req: request_sock 4683 * @flic: target flow 4684 * 4685 * Sets @flic's secid to @req's secid. 4686 */ 4687 void security_req_classify_flow(const struct request_sock *req, 4688 struct flowi_common *flic) 4689 { 4690 call_void_hook(req_classify_flow, req, flic); 4691 } 4692 EXPORT_SYMBOL(security_req_classify_flow); 4693 4694 /** 4695 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4696 * @sk: sock being grafted 4697 * @parent: target parent socket 4698 * 4699 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4700 * LSM state from @parent. 4701 */ 4702 void security_sock_graft(struct sock *sk, struct socket *parent) 4703 { 4704 call_void_hook(sock_graft, sk, parent); 4705 } 4706 EXPORT_SYMBOL(security_sock_graft); 4707 4708 /** 4709 * security_inet_conn_request() - Set request_sock state using incoming connect 4710 * @sk: parent listening sock 4711 * @skb: incoming connection 4712 * @req: new request_sock 4713 * 4714 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4715 * 4716 * Return: Returns 0 if permission is granted. 4717 */ 4718 int security_inet_conn_request(const struct sock *sk, 4719 struct sk_buff *skb, struct request_sock *req) 4720 { 4721 return call_int_hook(inet_conn_request, 0, sk, skb, req); 4722 } 4723 EXPORT_SYMBOL(security_inet_conn_request); 4724 4725 /** 4726 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4727 * @newsk: new sock 4728 * @req: connection request_sock 4729 * 4730 * Set that LSM state of @sock using the LSM state from @req. 4731 */ 4732 void security_inet_csk_clone(struct sock *newsk, 4733 const struct request_sock *req) 4734 { 4735 call_void_hook(inet_csk_clone, newsk, req); 4736 } 4737 4738 /** 4739 * security_inet_conn_established() - Update sock's LSM state with connection 4740 * @sk: sock 4741 * @skb: connection packet 4742 * 4743 * Update @sock's LSM state to represent a new connection from @skb. 4744 */ 4745 void security_inet_conn_established(struct sock *sk, 4746 struct sk_buff *skb) 4747 { 4748 call_void_hook(inet_conn_established, sk, skb); 4749 } 4750 EXPORT_SYMBOL(security_inet_conn_established); 4751 4752 /** 4753 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4754 * @secid: new secmark value 4755 * 4756 * Check if the process should be allowed to relabel packets to @secid. 4757 * 4758 * Return: Returns 0 if permission is granted. 4759 */ 4760 int security_secmark_relabel_packet(u32 secid) 4761 { 4762 return call_int_hook(secmark_relabel_packet, 0, secid); 4763 } 4764 EXPORT_SYMBOL(security_secmark_relabel_packet); 4765 4766 /** 4767 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4768 * 4769 * Tells the LSM to increment the number of secmark labeling rules loaded. 4770 */ 4771 void security_secmark_refcount_inc(void) 4772 { 4773 call_void_hook(secmark_refcount_inc); 4774 } 4775 EXPORT_SYMBOL(security_secmark_refcount_inc); 4776 4777 /** 4778 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4779 * 4780 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4781 */ 4782 void security_secmark_refcount_dec(void) 4783 { 4784 call_void_hook(secmark_refcount_dec); 4785 } 4786 EXPORT_SYMBOL(security_secmark_refcount_dec); 4787 4788 /** 4789 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4790 * @security: pointer to the LSM blob 4791 * 4792 * This hook allows a module to allocate a security structure for a TUN device, 4793 * returning the pointer in @security. 4794 * 4795 * Return: Returns a zero on success, negative values on failure. 4796 */ 4797 int security_tun_dev_alloc_security(void **security) 4798 { 4799 return call_int_hook(tun_dev_alloc_security, 0, security); 4800 } 4801 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4802 4803 /** 4804 * security_tun_dev_free_security() - Free a TUN device LSM blob 4805 * @security: LSM blob 4806 * 4807 * This hook allows a module to free the security structure for a TUN device. 4808 */ 4809 void security_tun_dev_free_security(void *security) 4810 { 4811 call_void_hook(tun_dev_free_security, security); 4812 } 4813 EXPORT_SYMBOL(security_tun_dev_free_security); 4814 4815 /** 4816 * security_tun_dev_create() - Check if creating a TUN device is allowed 4817 * 4818 * Check permissions prior to creating a new TUN device. 4819 * 4820 * Return: Returns 0 if permission is granted. 4821 */ 4822 int security_tun_dev_create(void) 4823 { 4824 return call_int_hook(tun_dev_create, 0); 4825 } 4826 EXPORT_SYMBOL(security_tun_dev_create); 4827 4828 /** 4829 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4830 * @security: TUN device LSM blob 4831 * 4832 * Check permissions prior to attaching to a TUN device queue. 4833 * 4834 * Return: Returns 0 if permission is granted. 4835 */ 4836 int security_tun_dev_attach_queue(void *security) 4837 { 4838 return call_int_hook(tun_dev_attach_queue, 0, security); 4839 } 4840 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4841 4842 /** 4843 * security_tun_dev_attach() - Update TUN device LSM state on attach 4844 * @sk: associated sock 4845 * @security: TUN device LSM blob 4846 * 4847 * This hook can be used by the module to update any security state associated 4848 * with the TUN device's sock structure. 4849 * 4850 * Return: Returns 0 if permission is granted. 4851 */ 4852 int security_tun_dev_attach(struct sock *sk, void *security) 4853 { 4854 return call_int_hook(tun_dev_attach, 0, sk, security); 4855 } 4856 EXPORT_SYMBOL(security_tun_dev_attach); 4857 4858 /** 4859 * security_tun_dev_open() - Update TUN device LSM state on open 4860 * @security: TUN device LSM blob 4861 * 4862 * This hook can be used by the module to update any security state associated 4863 * with the TUN device's security structure. 4864 * 4865 * Return: Returns 0 if permission is granted. 4866 */ 4867 int security_tun_dev_open(void *security) 4868 { 4869 return call_int_hook(tun_dev_open, 0, security); 4870 } 4871 EXPORT_SYMBOL(security_tun_dev_open); 4872 4873 /** 4874 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4875 * @asoc: SCTP association 4876 * @skb: packet requesting the association 4877 * 4878 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4879 * 4880 * Return: Returns 0 on success, error on failure. 4881 */ 4882 int security_sctp_assoc_request(struct sctp_association *asoc, 4883 struct sk_buff *skb) 4884 { 4885 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 4886 } 4887 EXPORT_SYMBOL(security_sctp_assoc_request); 4888 4889 /** 4890 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4891 * @sk: socket 4892 * @optname: SCTP option to validate 4893 * @address: list of IP addresses to validate 4894 * @addrlen: length of the address list 4895 * 4896 * Validiate permissions required for each address associated with sock @sk. 4897 * Depending on @optname, the addresses will be treated as either a connect or 4898 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4899 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4900 * 4901 * Return: Returns 0 on success, error on failure. 4902 */ 4903 int security_sctp_bind_connect(struct sock *sk, int optname, 4904 struct sockaddr *address, int addrlen) 4905 { 4906 return call_int_hook(sctp_bind_connect, 0, sk, optname, 4907 address, addrlen); 4908 } 4909 EXPORT_SYMBOL(security_sctp_bind_connect); 4910 4911 /** 4912 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4913 * @asoc: SCTP association 4914 * @sk: original sock 4915 * @newsk: target sock 4916 * 4917 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4918 * socket) or when a socket is 'peeled off' e.g userspace calls 4919 * sctp_peeloff(3). 4920 */ 4921 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4922 struct sock *newsk) 4923 { 4924 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4925 } 4926 EXPORT_SYMBOL(security_sctp_sk_clone); 4927 4928 /** 4929 * security_sctp_assoc_established() - Update LSM state when assoc established 4930 * @asoc: SCTP association 4931 * @skb: packet establishing the association 4932 * 4933 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4934 * security module. 4935 * 4936 * Return: Returns 0 if permission is granted. 4937 */ 4938 int security_sctp_assoc_established(struct sctp_association *asoc, 4939 struct sk_buff *skb) 4940 { 4941 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 4942 } 4943 EXPORT_SYMBOL(security_sctp_assoc_established); 4944 4945 /** 4946 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4947 * @sk: the owning MPTCP socket 4948 * @ssk: the new subflow 4949 * 4950 * Update the labeling for the given MPTCP subflow, to match the one of the 4951 * owning MPTCP socket. This hook has to be called after the socket creation and 4952 * initialization via the security_socket_create() and 4953 * security_socket_post_create() LSM hooks. 4954 * 4955 * Return: Returns 0 on success or a negative error code on failure. 4956 */ 4957 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 4958 { 4959 return call_int_hook(mptcp_add_subflow, 0, sk, ssk); 4960 } 4961 4962 #endif /* CONFIG_SECURITY_NETWORK */ 4963 4964 #ifdef CONFIG_SECURITY_INFINIBAND 4965 /** 4966 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 4967 * @sec: LSM blob 4968 * @subnet_prefix: subnet prefix of the port 4969 * @pkey: IB pkey 4970 * 4971 * Check permission to access a pkey when modifying a QP. 4972 * 4973 * Return: Returns 0 if permission is granted. 4974 */ 4975 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 4976 { 4977 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 4978 } 4979 EXPORT_SYMBOL(security_ib_pkey_access); 4980 4981 /** 4982 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 4983 * @sec: LSM blob 4984 * @dev_name: IB device name 4985 * @port_num: port number 4986 * 4987 * Check permissions to send and receive SMPs on a end port. 4988 * 4989 * Return: Returns 0 if permission is granted. 4990 */ 4991 int security_ib_endport_manage_subnet(void *sec, 4992 const char *dev_name, u8 port_num) 4993 { 4994 return call_int_hook(ib_endport_manage_subnet, 0, sec, 4995 dev_name, port_num); 4996 } 4997 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 4998 4999 /** 5000 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5001 * @sec: LSM blob 5002 * 5003 * Allocate a security structure for Infiniband objects. 5004 * 5005 * Return: Returns 0 on success, non-zero on failure. 5006 */ 5007 int security_ib_alloc_security(void **sec) 5008 { 5009 return call_int_hook(ib_alloc_security, 0, sec); 5010 } 5011 EXPORT_SYMBOL(security_ib_alloc_security); 5012 5013 /** 5014 * security_ib_free_security() - Free an Infiniband LSM blob 5015 * @sec: LSM blob 5016 * 5017 * Deallocate an Infiniband security structure. 5018 */ 5019 void security_ib_free_security(void *sec) 5020 { 5021 call_void_hook(ib_free_security, sec); 5022 } 5023 EXPORT_SYMBOL(security_ib_free_security); 5024 #endif /* CONFIG_SECURITY_INFINIBAND */ 5025 5026 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5027 /** 5028 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5029 * @ctxp: xfrm security context being added to the SPD 5030 * @sec_ctx: security label provided by userspace 5031 * @gfp: gfp flags 5032 * 5033 * Allocate a security structure to the xp->security field; the security field 5034 * is initialized to NULL when the xfrm_policy is allocated. 5035 * 5036 * Return: Return 0 if operation was successful. 5037 */ 5038 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5039 struct xfrm_user_sec_ctx *sec_ctx, 5040 gfp_t gfp) 5041 { 5042 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 5043 } 5044 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5045 5046 /** 5047 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5048 * @old_ctx: xfrm security context 5049 * @new_ctxp: target xfrm security context 5050 * 5051 * Allocate a security structure in new_ctxp that contains the information from 5052 * the old_ctx structure. 5053 * 5054 * Return: Return 0 if operation was successful. 5055 */ 5056 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5057 struct xfrm_sec_ctx **new_ctxp) 5058 { 5059 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 5060 } 5061 5062 /** 5063 * security_xfrm_policy_free() - Free a xfrm security context 5064 * @ctx: xfrm security context 5065 * 5066 * Free LSM resources associated with @ctx. 5067 */ 5068 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5069 { 5070 call_void_hook(xfrm_policy_free_security, ctx); 5071 } 5072 EXPORT_SYMBOL(security_xfrm_policy_free); 5073 5074 /** 5075 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5076 * @ctx: xfrm security context 5077 * 5078 * Authorize deletion of a SPD entry. 5079 * 5080 * Return: Returns 0 if permission is granted. 5081 */ 5082 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5083 { 5084 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 5085 } 5086 5087 /** 5088 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5089 * @x: xfrm state being added to the SAD 5090 * @sec_ctx: security label provided by userspace 5091 * 5092 * Allocate a security structure to the @x->security field; the security field 5093 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5094 * correspond to @sec_ctx. 5095 * 5096 * Return: Return 0 if operation was successful. 5097 */ 5098 int security_xfrm_state_alloc(struct xfrm_state *x, 5099 struct xfrm_user_sec_ctx *sec_ctx) 5100 { 5101 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 5102 } 5103 EXPORT_SYMBOL(security_xfrm_state_alloc); 5104 5105 /** 5106 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5107 * @x: xfrm state being added to the SAD 5108 * @polsec: associated policy's security context 5109 * @secid: secid from the flow 5110 * 5111 * Allocate a security structure to the x->security field; the security field 5112 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5113 * correspond to secid. 5114 * 5115 * Return: Returns 0 if operation was successful. 5116 */ 5117 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5118 struct xfrm_sec_ctx *polsec, u32 secid) 5119 { 5120 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 5121 } 5122 5123 /** 5124 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5125 * @x: xfrm state 5126 * 5127 * Authorize deletion of x->security. 5128 * 5129 * Return: Returns 0 if permission is granted. 5130 */ 5131 int security_xfrm_state_delete(struct xfrm_state *x) 5132 { 5133 return call_int_hook(xfrm_state_delete_security, 0, x); 5134 } 5135 EXPORT_SYMBOL(security_xfrm_state_delete); 5136 5137 /** 5138 * security_xfrm_state_free() - Free a xfrm state 5139 * @x: xfrm state 5140 * 5141 * Deallocate x->security. 5142 */ 5143 void security_xfrm_state_free(struct xfrm_state *x) 5144 { 5145 call_void_hook(xfrm_state_free_security, x); 5146 } 5147 5148 /** 5149 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5150 * @ctx: target xfrm security context 5151 * @fl_secid: flow secid used to authorize access 5152 * 5153 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5154 * packet. The hook is called when selecting either a per-socket policy or a 5155 * generic xfrm policy. 5156 * 5157 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5158 * other errors. 5159 */ 5160 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5161 { 5162 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 5163 } 5164 5165 /** 5166 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5167 * @x: xfrm state to match 5168 * @xp: xfrm policy to check for a match 5169 * @flic: flow to check for a match. 5170 * 5171 * Check @xp and @flic for a match with @x. 5172 * 5173 * Return: Returns 1 if there is a match. 5174 */ 5175 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5176 struct xfrm_policy *xp, 5177 const struct flowi_common *flic) 5178 { 5179 struct security_hook_list *hp; 5180 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5181 5182 /* 5183 * Since this function is expected to return 0 or 1, the judgment 5184 * becomes difficult if multiple LSMs supply this call. Fortunately, 5185 * we can use the first LSM's judgment because currently only SELinux 5186 * supplies this call. 5187 * 5188 * For speed optimization, we explicitly break the loop rather than 5189 * using the macro 5190 */ 5191 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5192 list) { 5193 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5194 break; 5195 } 5196 return rc; 5197 } 5198 5199 /** 5200 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5201 * @skb: xfrm packet 5202 * @secid: secid 5203 * 5204 * Decode the packet in @skb and return the security label in @secid. 5205 * 5206 * Return: Return 0 if all xfrms used have the same secid. 5207 */ 5208 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5209 { 5210 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 5211 } 5212 5213 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5214 { 5215 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 5216 0); 5217 5218 BUG_ON(rc); 5219 } 5220 EXPORT_SYMBOL(security_skb_classify_flow); 5221 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5222 5223 #ifdef CONFIG_KEYS 5224 /** 5225 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5226 * @key: key 5227 * @cred: credentials 5228 * @flags: allocation flags 5229 * 5230 * Permit allocation of a key and assign security data. Note that key does not 5231 * have a serial number assigned at this point. 5232 * 5233 * Return: Return 0 if permission is granted, -ve error otherwise. 5234 */ 5235 int security_key_alloc(struct key *key, const struct cred *cred, 5236 unsigned long flags) 5237 { 5238 return call_int_hook(key_alloc, 0, key, cred, flags); 5239 } 5240 5241 /** 5242 * security_key_free() - Free a kernel key LSM blob 5243 * @key: key 5244 * 5245 * Notification of destruction; free security data. 5246 */ 5247 void security_key_free(struct key *key) 5248 { 5249 call_void_hook(key_free, key); 5250 } 5251 5252 /** 5253 * security_key_permission() - Check if a kernel key operation is allowed 5254 * @key_ref: key reference 5255 * @cred: credentials of actor requesting access 5256 * @need_perm: requested permissions 5257 * 5258 * See whether a specific operational right is granted to a process on a key. 5259 * 5260 * Return: Return 0 if permission is granted, -ve error otherwise. 5261 */ 5262 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5263 enum key_need_perm need_perm) 5264 { 5265 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 5266 } 5267 5268 /** 5269 * security_key_getsecurity() - Get the key's security label 5270 * @key: key 5271 * @buffer: security label buffer 5272 * 5273 * Get a textual representation of the security context attached to a key for 5274 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5275 * storage for the NUL-terminated string and the caller should free it. 5276 * 5277 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5278 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5279 * there is no security label assigned to the key. 5280 */ 5281 int security_key_getsecurity(struct key *key, char **buffer) 5282 { 5283 *buffer = NULL; 5284 return call_int_hook(key_getsecurity, 0, key, buffer); 5285 } 5286 #endif /* CONFIG_KEYS */ 5287 5288 #ifdef CONFIG_AUDIT 5289 /** 5290 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5291 * @field: audit action 5292 * @op: rule operator 5293 * @rulestr: rule context 5294 * @lsmrule: receive buffer for audit rule struct 5295 * 5296 * Allocate and initialize an LSM audit rule structure. 5297 * 5298 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5299 * an invalid rule. 5300 */ 5301 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5302 { 5303 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 5304 } 5305 5306 /** 5307 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5308 * @krule: audit rule 5309 * 5310 * Specifies whether given @krule contains any fields related to the current 5311 * LSM. 5312 * 5313 * Return: Returns 1 in case of relation found, 0 otherwise. 5314 */ 5315 int security_audit_rule_known(struct audit_krule *krule) 5316 { 5317 return call_int_hook(audit_rule_known, 0, krule); 5318 } 5319 5320 /** 5321 * security_audit_rule_free() - Free an LSM audit rule struct 5322 * @lsmrule: audit rule struct 5323 * 5324 * Deallocate the LSM audit rule structure previously allocated by 5325 * audit_rule_init(). 5326 */ 5327 void security_audit_rule_free(void *lsmrule) 5328 { 5329 call_void_hook(audit_rule_free, lsmrule); 5330 } 5331 5332 /** 5333 * security_audit_rule_match() - Check if a label matches an audit rule 5334 * @secid: security label 5335 * @field: LSM audit field 5336 * @op: matching operator 5337 * @lsmrule: audit rule 5338 * 5339 * Determine if given @secid matches a rule previously approved by 5340 * security_audit_rule_known(). 5341 * 5342 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5343 * failure. 5344 */ 5345 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5346 { 5347 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 5348 } 5349 #endif /* CONFIG_AUDIT */ 5350 5351 #ifdef CONFIG_BPF_SYSCALL 5352 /** 5353 * security_bpf() - Check if the bpf syscall operation is allowed 5354 * @cmd: command 5355 * @attr: bpf attribute 5356 * @size: size 5357 * 5358 * Do a initial check for all bpf syscalls after the attribute is copied into 5359 * the kernel. The actual security module can implement their own rules to 5360 * check the specific cmd they need. 5361 * 5362 * Return: Returns 0 if permission is granted. 5363 */ 5364 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5365 { 5366 return call_int_hook(bpf, 0, cmd, attr, size); 5367 } 5368 5369 /** 5370 * security_bpf_map() - Check if access to a bpf map is allowed 5371 * @map: bpf map 5372 * @fmode: mode 5373 * 5374 * Do a check when the kernel generates and returns a file descriptor for eBPF 5375 * maps. 5376 * 5377 * Return: Returns 0 if permission is granted. 5378 */ 5379 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5380 { 5381 return call_int_hook(bpf_map, 0, map, fmode); 5382 } 5383 5384 /** 5385 * security_bpf_prog() - Check if access to a bpf program is allowed 5386 * @prog: bpf program 5387 * 5388 * Do a check when the kernel generates and returns a file descriptor for eBPF 5389 * programs. 5390 * 5391 * Return: Returns 0 if permission is granted. 5392 */ 5393 int security_bpf_prog(struct bpf_prog *prog) 5394 { 5395 return call_int_hook(bpf_prog, 0, prog); 5396 } 5397 5398 /** 5399 * security_bpf_map_alloc() - Allocate a bpf map LSM blob 5400 * @map: bpf map 5401 * 5402 * Initialize the security field inside bpf map. 5403 * 5404 * Return: Returns 0 on success, error on failure. 5405 */ 5406 int security_bpf_map_alloc(struct bpf_map *map) 5407 { 5408 return call_int_hook(bpf_map_alloc_security, 0, map); 5409 } 5410 5411 /** 5412 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob 5413 * @aux: bpf program aux info struct 5414 * 5415 * Initialize the security field inside bpf program. 5416 * 5417 * Return: Returns 0 on success, error on failure. 5418 */ 5419 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 5420 { 5421 return call_int_hook(bpf_prog_alloc_security, 0, aux); 5422 } 5423 5424 /** 5425 * security_bpf_map_free() - Free a bpf map's LSM blob 5426 * @map: bpf map 5427 * 5428 * Clean up the security information stored inside bpf map. 5429 */ 5430 void security_bpf_map_free(struct bpf_map *map) 5431 { 5432 call_void_hook(bpf_map_free_security, map); 5433 } 5434 5435 /** 5436 * security_bpf_prog_free() - Free a bpf program's LSM blob 5437 * @aux: bpf program aux info struct 5438 * 5439 * Clean up the security information stored inside bpf prog. 5440 */ 5441 void security_bpf_prog_free(struct bpf_prog_aux *aux) 5442 { 5443 call_void_hook(bpf_prog_free_security, aux); 5444 } 5445 #endif /* CONFIG_BPF_SYSCALL */ 5446 5447 /** 5448 * security_locked_down() - Check if a kernel feature is allowed 5449 * @what: requested kernel feature 5450 * 5451 * Determine whether a kernel feature that potentially enables arbitrary code 5452 * execution in kernel space should be permitted. 5453 * 5454 * Return: Returns 0 if permission is granted. 5455 */ 5456 int security_locked_down(enum lockdown_reason what) 5457 { 5458 return call_int_hook(locked_down, 0, what); 5459 } 5460 EXPORT_SYMBOL(security_locked_down); 5461 5462 #ifdef CONFIG_PERF_EVENTS 5463 /** 5464 * security_perf_event_open() - Check if a perf event open is allowed 5465 * @attr: perf event attribute 5466 * @type: type of event 5467 * 5468 * Check whether the @type of perf_event_open syscall is allowed. 5469 * 5470 * Return: Returns 0 if permission is granted. 5471 */ 5472 int security_perf_event_open(struct perf_event_attr *attr, int type) 5473 { 5474 return call_int_hook(perf_event_open, 0, attr, type); 5475 } 5476 5477 /** 5478 * security_perf_event_alloc() - Allocate a perf event LSM blob 5479 * @event: perf event 5480 * 5481 * Allocate and save perf_event security info. 5482 * 5483 * Return: Returns 0 on success, error on failure. 5484 */ 5485 int security_perf_event_alloc(struct perf_event *event) 5486 { 5487 return call_int_hook(perf_event_alloc, 0, event); 5488 } 5489 5490 /** 5491 * security_perf_event_free() - Free a perf event LSM blob 5492 * @event: perf event 5493 * 5494 * Release (free) perf_event security info. 5495 */ 5496 void security_perf_event_free(struct perf_event *event) 5497 { 5498 call_void_hook(perf_event_free, event); 5499 } 5500 5501 /** 5502 * security_perf_event_read() - Check if reading a perf event label is allowed 5503 * @event: perf event 5504 * 5505 * Read perf_event security info if allowed. 5506 * 5507 * Return: Returns 0 if permission is granted. 5508 */ 5509 int security_perf_event_read(struct perf_event *event) 5510 { 5511 return call_int_hook(perf_event_read, 0, event); 5512 } 5513 5514 /** 5515 * security_perf_event_write() - Check if writing a perf event label is allowed 5516 * @event: perf event 5517 * 5518 * Write perf_event security info if allowed. 5519 * 5520 * Return: Returns 0 if permission is granted. 5521 */ 5522 int security_perf_event_write(struct perf_event *event) 5523 { 5524 return call_int_hook(perf_event_write, 0, event); 5525 } 5526 #endif /* CONFIG_PERF_EVENTS */ 5527 5528 #ifdef CONFIG_IO_URING 5529 /** 5530 * security_uring_override_creds() - Check if overriding creds is allowed 5531 * @new: new credentials 5532 * 5533 * Check if the current task, executing an io_uring operation, is allowed to 5534 * override it's credentials with @new. 5535 * 5536 * Return: Returns 0 if permission is granted. 5537 */ 5538 int security_uring_override_creds(const struct cred *new) 5539 { 5540 return call_int_hook(uring_override_creds, 0, new); 5541 } 5542 5543 /** 5544 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5545 * 5546 * Check whether the current task is allowed to spawn a io_uring polling thread 5547 * (IORING_SETUP_SQPOLL). 5548 * 5549 * Return: Returns 0 if permission is granted. 5550 */ 5551 int security_uring_sqpoll(void) 5552 { 5553 return call_int_hook(uring_sqpoll, 0); 5554 } 5555 5556 /** 5557 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5558 * @ioucmd: command 5559 * 5560 * Check whether the file_operations uring_cmd is allowed to run. 5561 * 5562 * Return: Returns 0 if permission is granted. 5563 */ 5564 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5565 { 5566 return call_int_hook(uring_cmd, 0, ioucmd); 5567 } 5568 #endif /* CONFIG_IO_URING */ 5569