1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 63 [LOCKDOWN_KCORE] = "/proc/kcore access", 64 [LOCKDOWN_KPROBES] = "use of kprobes", 65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 66 [LOCKDOWN_PERF] = "unsafe use of perf", 67 [LOCKDOWN_TRACEFS] = "use of tracefs", 68 [LOCKDOWN_XMON_RW] = "xmon read and write access", 69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 71 }; 72 73 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 75 76 static struct kmem_cache *lsm_file_cache; 77 static struct kmem_cache *lsm_inode_cache; 78 79 char *lsm_names; 80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 81 82 /* Boot-time LSM user choice */ 83 static __initdata const char *chosen_lsm_order; 84 static __initdata const char *chosen_major_lsm; 85 86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 87 88 /* Ordered list of LSMs to initialize. */ 89 static __initdata struct lsm_info **ordered_lsms; 90 static __initdata struct lsm_info *exclusive; 91 92 static __initdata bool debug; 93 #define init_debug(...) \ 94 do { \ 95 if (debug) \ 96 pr_info(__VA_ARGS__); \ 97 } while (0) 98 99 static bool __init is_enabled(struct lsm_info *lsm) 100 { 101 if (!lsm->enabled) 102 return false; 103 104 return *lsm->enabled; 105 } 106 107 /* Mark an LSM's enabled flag. */ 108 static int lsm_enabled_true __initdata = 1; 109 static int lsm_enabled_false __initdata = 0; 110 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 111 { 112 /* 113 * When an LSM hasn't configured an enable variable, we can use 114 * a hard-coded location for storing the default enabled state. 115 */ 116 if (!lsm->enabled) { 117 if (enabled) 118 lsm->enabled = &lsm_enabled_true; 119 else 120 lsm->enabled = &lsm_enabled_false; 121 } else if (lsm->enabled == &lsm_enabled_true) { 122 if (!enabled) 123 lsm->enabled = &lsm_enabled_false; 124 } else if (lsm->enabled == &lsm_enabled_false) { 125 if (enabled) 126 lsm->enabled = &lsm_enabled_true; 127 } else { 128 *lsm->enabled = enabled; 129 } 130 } 131 132 /* Is an LSM already listed in the ordered LSMs list? */ 133 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 134 { 135 struct lsm_info **check; 136 137 for (check = ordered_lsms; *check; check++) 138 if (*check == lsm) 139 return true; 140 141 return false; 142 } 143 144 /* Append an LSM to the list of ordered LSMs to initialize. */ 145 static int last_lsm __initdata; 146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 147 { 148 /* Ignore duplicate selections. */ 149 if (exists_ordered_lsm(lsm)) 150 return; 151 152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 153 return; 154 155 /* Enable this LSM, if it is not already set. */ 156 if (!lsm->enabled) 157 lsm->enabled = &lsm_enabled_true; 158 ordered_lsms[last_lsm++] = lsm; 159 160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 161 is_enabled(lsm) ? "en" : "dis"); 162 } 163 164 /* Is an LSM allowed to be initialized? */ 165 static bool __init lsm_allowed(struct lsm_info *lsm) 166 { 167 /* Skip if the LSM is disabled. */ 168 if (!is_enabled(lsm)) 169 return false; 170 171 /* Not allowed if another exclusive LSM already initialized. */ 172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 173 init_debug("exclusive disabled: %s\n", lsm->name); 174 return false; 175 } 176 177 return true; 178 } 179 180 static void __init lsm_set_blob_size(int *need, int *lbs) 181 { 182 int offset; 183 184 if (*need > 0) { 185 offset = *lbs; 186 *lbs += *need; 187 *need = offset; 188 } 189 } 190 191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 192 { 193 if (!needed) 194 return; 195 196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 198 /* 199 * The inode blob gets an rcu_head in addition to 200 * what the modules might need. 201 */ 202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 203 blob_sizes.lbs_inode = sizeof(struct rcu_head); 204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 209 } 210 211 /* Prepare LSM for initialization. */ 212 static void __init prepare_lsm(struct lsm_info *lsm) 213 { 214 int enabled = lsm_allowed(lsm); 215 216 /* Record enablement (to handle any following exclusive LSMs). */ 217 set_enabled(lsm, enabled); 218 219 /* If enabled, do pre-initialization work. */ 220 if (enabled) { 221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 222 exclusive = lsm; 223 init_debug("exclusive chosen: %s\n", lsm->name); 224 } 225 226 lsm_set_blob_sizes(lsm->blobs); 227 } 228 } 229 230 /* Initialize a given LSM, if it is enabled. */ 231 static void __init initialize_lsm(struct lsm_info *lsm) 232 { 233 if (is_enabled(lsm)) { 234 int ret; 235 236 init_debug("initializing %s\n", lsm->name); 237 ret = lsm->init(); 238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 239 } 240 } 241 242 /* Populate ordered LSMs list from comma-separated LSM name list. */ 243 static void __init ordered_lsm_parse(const char *order, const char *origin) 244 { 245 struct lsm_info *lsm; 246 char *sep, *name, *next; 247 248 /* LSM_ORDER_FIRST is always first. */ 249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 250 if (lsm->order == LSM_ORDER_FIRST) 251 append_ordered_lsm(lsm, "first"); 252 } 253 254 /* Process "security=", if given. */ 255 if (chosen_major_lsm) { 256 struct lsm_info *major; 257 258 /* 259 * To match the original "security=" behavior, this 260 * explicitly does NOT fallback to another Legacy Major 261 * if the selected one was separately disabled: disable 262 * all non-matching Legacy Major LSMs. 263 */ 264 for (major = __start_lsm_info; major < __end_lsm_info; 265 major++) { 266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 267 strcmp(major->name, chosen_major_lsm) != 0) { 268 set_enabled(major, false); 269 init_debug("security=%s disabled: %s\n", 270 chosen_major_lsm, major->name); 271 } 272 } 273 } 274 275 sep = kstrdup(order, GFP_KERNEL); 276 next = sep; 277 /* Walk the list, looking for matching LSMs. */ 278 while ((name = strsep(&next, ",")) != NULL) { 279 bool found = false; 280 281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 282 if (lsm->order == LSM_ORDER_MUTABLE && 283 strcmp(lsm->name, name) == 0) { 284 append_ordered_lsm(lsm, origin); 285 found = true; 286 } 287 } 288 289 if (!found) 290 init_debug("%s ignored: %s\n", origin, name); 291 } 292 293 /* Process "security=", if given. */ 294 if (chosen_major_lsm) { 295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 296 if (exists_ordered_lsm(lsm)) 297 continue; 298 if (strcmp(lsm->name, chosen_major_lsm) == 0) 299 append_ordered_lsm(lsm, "security="); 300 } 301 } 302 303 /* Disable all LSMs not in the ordered list. */ 304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 305 if (exists_ordered_lsm(lsm)) 306 continue; 307 set_enabled(lsm, false); 308 init_debug("%s disabled: %s\n", origin, lsm->name); 309 } 310 311 kfree(sep); 312 } 313 314 static void __init lsm_early_cred(struct cred *cred); 315 static void __init lsm_early_task(struct task_struct *task); 316 317 static int lsm_append(const char *new, char **result); 318 319 static void __init ordered_lsm_init(void) 320 { 321 struct lsm_info **lsm; 322 323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 324 GFP_KERNEL); 325 326 if (chosen_lsm_order) { 327 if (chosen_major_lsm) { 328 pr_info("security= is ignored because it is superseded by lsm=\n"); 329 chosen_major_lsm = NULL; 330 } 331 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 332 } else 333 ordered_lsm_parse(builtin_lsm_order, "builtin"); 334 335 for (lsm = ordered_lsms; *lsm; lsm++) 336 prepare_lsm(*lsm); 337 338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 339 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 344 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 345 346 /* 347 * Create any kmem_caches needed for blobs 348 */ 349 if (blob_sizes.lbs_file) 350 lsm_file_cache = kmem_cache_create("lsm_file_cache", 351 blob_sizes.lbs_file, 0, 352 SLAB_PANIC, NULL); 353 if (blob_sizes.lbs_inode) 354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 355 blob_sizes.lbs_inode, 0, 356 SLAB_PANIC, NULL); 357 358 lsm_early_cred((struct cred *) current->cred); 359 lsm_early_task(current); 360 for (lsm = ordered_lsms; *lsm; lsm++) 361 initialize_lsm(*lsm); 362 363 kfree(ordered_lsms); 364 } 365 366 int __init early_security_init(void) 367 { 368 int i; 369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 370 struct lsm_info *lsm; 371 372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 373 i++) 374 INIT_HLIST_HEAD(&list[i]); 375 376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 377 if (!lsm->enabled) 378 lsm->enabled = &lsm_enabled_true; 379 prepare_lsm(lsm); 380 initialize_lsm(lsm); 381 } 382 383 return 0; 384 } 385 386 /** 387 * security_init - initializes the security framework 388 * 389 * This should be called early in the kernel initialization sequence. 390 */ 391 int __init security_init(void) 392 { 393 struct lsm_info *lsm; 394 395 pr_info("Security Framework initializing\n"); 396 397 /* 398 * Append the names of the early LSM modules now that kmalloc() is 399 * available 400 */ 401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 402 if (lsm->enabled) 403 lsm_append(lsm->name, &lsm_names); 404 } 405 406 /* Load LSMs in specified order. */ 407 ordered_lsm_init(); 408 409 return 0; 410 } 411 412 /* Save user chosen LSM */ 413 static int __init choose_major_lsm(char *str) 414 { 415 chosen_major_lsm = str; 416 return 1; 417 } 418 __setup("security=", choose_major_lsm); 419 420 /* Explicitly choose LSM initialization order. */ 421 static int __init choose_lsm_order(char *str) 422 { 423 chosen_lsm_order = str; 424 return 1; 425 } 426 __setup("lsm=", choose_lsm_order); 427 428 /* Enable LSM order debugging. */ 429 static int __init enable_debug(char *str) 430 { 431 debug = true; 432 return 1; 433 } 434 __setup("lsm.debug", enable_debug); 435 436 static bool match_last_lsm(const char *list, const char *lsm) 437 { 438 const char *last; 439 440 if (WARN_ON(!list || !lsm)) 441 return false; 442 last = strrchr(list, ','); 443 if (last) 444 /* Pass the comma, strcmp() will check for '\0' */ 445 last++; 446 else 447 last = list; 448 return !strcmp(last, lsm); 449 } 450 451 static int lsm_append(const char *new, char **result) 452 { 453 char *cp; 454 455 if (*result == NULL) { 456 *result = kstrdup(new, GFP_KERNEL); 457 if (*result == NULL) 458 return -ENOMEM; 459 } else { 460 /* Check if it is the last registered name */ 461 if (match_last_lsm(*result, new)) 462 return 0; 463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 464 if (cp == NULL) 465 return -ENOMEM; 466 kfree(*result); 467 *result = cp; 468 } 469 return 0; 470 } 471 472 /** 473 * security_add_hooks - Add a modules hooks to the hook lists. 474 * @hooks: the hooks to add 475 * @count: the number of hooks to add 476 * @lsm: the name of the security module 477 * 478 * Each LSM has to register its hooks with the infrastructure. 479 */ 480 void __init security_add_hooks(struct security_hook_list *hooks, int count, 481 char *lsm) 482 { 483 int i; 484 485 for (i = 0; i < count; i++) { 486 hooks[i].lsm = lsm; 487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 488 } 489 490 /* 491 * Don't try to append during early_security_init(), we'll come back 492 * and fix this up afterwards. 493 */ 494 if (slab_is_available()) { 495 if (lsm_append(lsm, &lsm_names) < 0) 496 panic("%s - Cannot get early memory.\n", __func__); 497 } 498 } 499 500 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 501 { 502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 503 event, data); 504 } 505 EXPORT_SYMBOL(call_blocking_lsm_notifier); 506 507 int register_blocking_lsm_notifier(struct notifier_block *nb) 508 { 509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 510 nb); 511 } 512 EXPORT_SYMBOL(register_blocking_lsm_notifier); 513 514 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 515 { 516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 517 nb); 518 } 519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 520 521 /** 522 * lsm_cred_alloc - allocate a composite cred blob 523 * @cred: the cred that needs a blob 524 * @gfp: allocation type 525 * 526 * Allocate the cred blob for all the modules 527 * 528 * Returns 0, or -ENOMEM if memory can't be allocated. 529 */ 530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 531 { 532 if (blob_sizes.lbs_cred == 0) { 533 cred->security = NULL; 534 return 0; 535 } 536 537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 538 if (cred->security == NULL) 539 return -ENOMEM; 540 return 0; 541 } 542 543 /** 544 * lsm_early_cred - during initialization allocate a composite cred blob 545 * @cred: the cred that needs a blob 546 * 547 * Allocate the cred blob for all the modules 548 */ 549 static void __init lsm_early_cred(struct cred *cred) 550 { 551 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 552 553 if (rc) 554 panic("%s: Early cred alloc failed.\n", __func__); 555 } 556 557 /** 558 * lsm_file_alloc - allocate a composite file blob 559 * @file: the file that needs a blob 560 * 561 * Allocate the file blob for all the modules 562 * 563 * Returns 0, or -ENOMEM if memory can't be allocated. 564 */ 565 static int lsm_file_alloc(struct file *file) 566 { 567 if (!lsm_file_cache) { 568 file->f_security = NULL; 569 return 0; 570 } 571 572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 573 if (file->f_security == NULL) 574 return -ENOMEM; 575 return 0; 576 } 577 578 /** 579 * lsm_inode_alloc - allocate a composite inode blob 580 * @inode: the inode that needs a blob 581 * 582 * Allocate the inode blob for all the modules 583 * 584 * Returns 0, or -ENOMEM if memory can't be allocated. 585 */ 586 int lsm_inode_alloc(struct inode *inode) 587 { 588 if (!lsm_inode_cache) { 589 inode->i_security = NULL; 590 return 0; 591 } 592 593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 594 if (inode->i_security == NULL) 595 return -ENOMEM; 596 return 0; 597 } 598 599 /** 600 * lsm_task_alloc - allocate a composite task blob 601 * @task: the task that needs a blob 602 * 603 * Allocate the task blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_task_alloc(struct task_struct *task) 608 { 609 if (blob_sizes.lbs_task == 0) { 610 task->security = NULL; 611 return 0; 612 } 613 614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 615 if (task->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_ipc_alloc - allocate a composite ipc blob 622 * @kip: the ipc that needs a blob 623 * 624 * Allocate the ipc blob for all the modules 625 * 626 * Returns 0, or -ENOMEM if memory can't be allocated. 627 */ 628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 629 { 630 if (blob_sizes.lbs_ipc == 0) { 631 kip->security = NULL; 632 return 0; 633 } 634 635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 636 if (kip->security == NULL) 637 return -ENOMEM; 638 return 0; 639 } 640 641 /** 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 643 * @mp: the msg_msg that needs a blob 644 * 645 * Allocate the ipc blob for all the modules 646 * 647 * Returns 0, or -ENOMEM if memory can't be allocated. 648 */ 649 static int lsm_msg_msg_alloc(struct msg_msg *mp) 650 { 651 if (blob_sizes.lbs_msg_msg == 0) { 652 mp->security = NULL; 653 return 0; 654 } 655 656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 657 if (mp->security == NULL) 658 return -ENOMEM; 659 return 0; 660 } 661 662 /** 663 * lsm_early_task - during initialization allocate a composite task blob 664 * @task: the task that needs a blob 665 * 666 * Allocate the task blob for all the modules 667 */ 668 static void __init lsm_early_task(struct task_struct *task) 669 { 670 int rc = lsm_task_alloc(task); 671 672 if (rc) 673 panic("%s: Early task alloc failed.\n", __func__); 674 } 675 676 /** 677 * lsm_superblock_alloc - allocate a composite superblock blob 678 * @sb: the superblock that needs a blob 679 * 680 * Allocate the superblock blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_superblock_alloc(struct super_block *sb) 685 { 686 if (blob_sizes.lbs_superblock == 0) { 687 sb->s_security = NULL; 688 return 0; 689 } 690 691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 692 if (sb->s_security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /* 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 699 * can be accessed with: 700 * 701 * LSM_RET_DEFAULT(<hook_name>) 702 * 703 * The macros below define static constants for the default value of each 704 * LSM hook. 705 */ 706 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 709 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT); 710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 712 713 #include <linux/lsm_hook_defs.h> 714 #undef LSM_HOOK 715 716 /* 717 * Hook list operation macros. 718 * 719 * call_void_hook: 720 * This is a hook that does not return a value. 721 * 722 * call_int_hook: 723 * This is a hook that returns a value. 724 */ 725 726 #define call_void_hook(FUNC, ...) \ 727 do { \ 728 struct security_hook_list *P; \ 729 \ 730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 731 P->hook.FUNC(__VA_ARGS__); \ 732 } while (0) 733 734 #define call_int_hook(FUNC, IRC, ...) ({ \ 735 int RC = IRC; \ 736 do { \ 737 struct security_hook_list *P; \ 738 \ 739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 740 RC = P->hook.FUNC(__VA_ARGS__); \ 741 if (RC != 0) \ 742 break; \ 743 } \ 744 } while (0); \ 745 RC; \ 746 }) 747 748 /* Security operations */ 749 750 int security_binder_set_context_mgr(struct task_struct *mgr) 751 { 752 return call_int_hook(binder_set_context_mgr, 0, mgr); 753 } 754 755 int security_binder_transaction(struct task_struct *from, 756 struct task_struct *to) 757 { 758 return call_int_hook(binder_transaction, 0, from, to); 759 } 760 761 int security_binder_transfer_binder(struct task_struct *from, 762 struct task_struct *to) 763 { 764 return call_int_hook(binder_transfer_binder, 0, from, to); 765 } 766 767 int security_binder_transfer_file(struct task_struct *from, 768 struct task_struct *to, struct file *file) 769 { 770 return call_int_hook(binder_transfer_file, 0, from, to, file); 771 } 772 773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 774 { 775 return call_int_hook(ptrace_access_check, 0, child, mode); 776 } 777 778 int security_ptrace_traceme(struct task_struct *parent) 779 { 780 return call_int_hook(ptrace_traceme, 0, parent); 781 } 782 783 int security_capget(struct task_struct *target, 784 kernel_cap_t *effective, 785 kernel_cap_t *inheritable, 786 kernel_cap_t *permitted) 787 { 788 return call_int_hook(capget, 0, target, 789 effective, inheritable, permitted); 790 } 791 792 int security_capset(struct cred *new, const struct cred *old, 793 const kernel_cap_t *effective, 794 const kernel_cap_t *inheritable, 795 const kernel_cap_t *permitted) 796 { 797 return call_int_hook(capset, 0, new, old, 798 effective, inheritable, permitted); 799 } 800 801 int security_capable(const struct cred *cred, 802 struct user_namespace *ns, 803 int cap, 804 unsigned int opts) 805 { 806 return call_int_hook(capable, 0, cred, ns, cap, opts); 807 } 808 809 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 810 { 811 return call_int_hook(quotactl, 0, cmds, type, id, sb); 812 } 813 814 int security_quota_on(struct dentry *dentry) 815 { 816 return call_int_hook(quota_on, 0, dentry); 817 } 818 819 int security_syslog(int type) 820 { 821 return call_int_hook(syslog, 0, type); 822 } 823 824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 825 { 826 return call_int_hook(settime, 0, ts, tz); 827 } 828 829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 830 { 831 struct security_hook_list *hp; 832 int cap_sys_admin = 1; 833 int rc; 834 835 /* 836 * The module will respond with a positive value if 837 * it thinks the __vm_enough_memory() call should be 838 * made with the cap_sys_admin set. If all of the modules 839 * agree that it should be set it will. If any module 840 * thinks it should not be set it won't. 841 */ 842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 843 rc = hp->hook.vm_enough_memory(mm, pages); 844 if (rc <= 0) { 845 cap_sys_admin = 0; 846 break; 847 } 848 } 849 return __vm_enough_memory(mm, pages, cap_sys_admin); 850 } 851 852 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 853 { 854 return call_int_hook(bprm_creds_for_exec, 0, bprm); 855 } 856 857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 858 { 859 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 860 } 861 862 int security_bprm_check(struct linux_binprm *bprm) 863 { 864 int ret; 865 866 ret = call_int_hook(bprm_check_security, 0, bprm); 867 if (ret) 868 return ret; 869 return ima_bprm_check(bprm); 870 } 871 872 void security_bprm_committing_creds(struct linux_binprm *bprm) 873 { 874 call_void_hook(bprm_committing_creds, bprm); 875 } 876 877 void security_bprm_committed_creds(struct linux_binprm *bprm) 878 { 879 call_void_hook(bprm_committed_creds, bprm); 880 } 881 882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 883 { 884 return call_int_hook(fs_context_dup, 0, fc, src_fc); 885 } 886 887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 888 { 889 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 890 } 891 892 int security_sb_alloc(struct super_block *sb) 893 { 894 int rc = lsm_superblock_alloc(sb); 895 896 if (unlikely(rc)) 897 return rc; 898 rc = call_int_hook(sb_alloc_security, 0, sb); 899 if (unlikely(rc)) 900 security_sb_free(sb); 901 return rc; 902 } 903 904 void security_sb_delete(struct super_block *sb) 905 { 906 call_void_hook(sb_delete, sb); 907 } 908 909 void security_sb_free(struct super_block *sb) 910 { 911 call_void_hook(sb_free_security, sb); 912 kfree(sb->s_security); 913 sb->s_security = NULL; 914 } 915 916 void security_free_mnt_opts(void **mnt_opts) 917 { 918 if (!*mnt_opts) 919 return; 920 call_void_hook(sb_free_mnt_opts, *mnt_opts); 921 *mnt_opts = NULL; 922 } 923 EXPORT_SYMBOL(security_free_mnt_opts); 924 925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 926 { 927 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 928 } 929 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 930 931 int security_sb_mnt_opts_compat(struct super_block *sb, 932 void *mnt_opts) 933 { 934 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 935 } 936 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 937 938 int security_sb_remount(struct super_block *sb, 939 void *mnt_opts) 940 { 941 return call_int_hook(sb_remount, 0, sb, mnt_opts); 942 } 943 EXPORT_SYMBOL(security_sb_remount); 944 945 int security_sb_kern_mount(struct super_block *sb) 946 { 947 return call_int_hook(sb_kern_mount, 0, sb); 948 } 949 950 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 951 { 952 return call_int_hook(sb_show_options, 0, m, sb); 953 } 954 955 int security_sb_statfs(struct dentry *dentry) 956 { 957 return call_int_hook(sb_statfs, 0, dentry); 958 } 959 960 int security_sb_mount(const char *dev_name, const struct path *path, 961 const char *type, unsigned long flags, void *data) 962 { 963 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 964 } 965 966 int security_sb_umount(struct vfsmount *mnt, int flags) 967 { 968 return call_int_hook(sb_umount, 0, mnt, flags); 969 } 970 971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 972 { 973 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 974 } 975 976 int security_sb_set_mnt_opts(struct super_block *sb, 977 void *mnt_opts, 978 unsigned long kern_flags, 979 unsigned long *set_kern_flags) 980 { 981 return call_int_hook(sb_set_mnt_opts, 982 mnt_opts ? -EOPNOTSUPP : 0, sb, 983 mnt_opts, kern_flags, set_kern_flags); 984 } 985 EXPORT_SYMBOL(security_sb_set_mnt_opts); 986 987 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 988 struct super_block *newsb, 989 unsigned long kern_flags, 990 unsigned long *set_kern_flags) 991 { 992 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 993 kern_flags, set_kern_flags); 994 } 995 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 996 997 int security_add_mnt_opt(const char *option, const char *val, int len, 998 void **mnt_opts) 999 { 1000 return call_int_hook(sb_add_mnt_opt, -EINVAL, 1001 option, val, len, mnt_opts); 1002 } 1003 EXPORT_SYMBOL(security_add_mnt_opt); 1004 1005 int security_move_mount(const struct path *from_path, const struct path *to_path) 1006 { 1007 return call_int_hook(move_mount, 0, from_path, to_path); 1008 } 1009 1010 int security_path_notify(const struct path *path, u64 mask, 1011 unsigned int obj_type) 1012 { 1013 return call_int_hook(path_notify, 0, path, mask, obj_type); 1014 } 1015 1016 int security_inode_alloc(struct inode *inode) 1017 { 1018 int rc = lsm_inode_alloc(inode); 1019 1020 if (unlikely(rc)) 1021 return rc; 1022 rc = call_int_hook(inode_alloc_security, 0, inode); 1023 if (unlikely(rc)) 1024 security_inode_free(inode); 1025 return rc; 1026 } 1027 1028 static void inode_free_by_rcu(struct rcu_head *head) 1029 { 1030 /* 1031 * The rcu head is at the start of the inode blob 1032 */ 1033 kmem_cache_free(lsm_inode_cache, head); 1034 } 1035 1036 void security_inode_free(struct inode *inode) 1037 { 1038 integrity_inode_free(inode); 1039 call_void_hook(inode_free_security, inode); 1040 /* 1041 * The inode may still be referenced in a path walk and 1042 * a call to security_inode_permission() can be made 1043 * after inode_free_security() is called. Ideally, the VFS 1044 * wouldn't do this, but fixing that is a much harder 1045 * job. For now, simply free the i_security via RCU, and 1046 * leave the current inode->i_security pointer intact. 1047 * The inode will be freed after the RCU grace period too. 1048 */ 1049 if (inode->i_security) 1050 call_rcu((struct rcu_head *)inode->i_security, 1051 inode_free_by_rcu); 1052 } 1053 1054 int security_dentry_init_security(struct dentry *dentry, int mode, 1055 const struct qstr *name, void **ctx, 1056 u32 *ctxlen) 1057 { 1058 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1059 name, ctx, ctxlen); 1060 } 1061 EXPORT_SYMBOL(security_dentry_init_security); 1062 1063 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1064 struct qstr *name, 1065 const struct cred *old, struct cred *new) 1066 { 1067 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1068 name, old, new); 1069 } 1070 EXPORT_SYMBOL(security_dentry_create_files_as); 1071 1072 int security_inode_init_security(struct inode *inode, struct inode *dir, 1073 const struct qstr *qstr, 1074 const initxattrs initxattrs, void *fs_data) 1075 { 1076 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1077 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1078 int ret; 1079 1080 if (unlikely(IS_PRIVATE(inode))) 1081 return 0; 1082 1083 if (!initxattrs) 1084 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1085 dir, qstr, NULL, NULL, NULL); 1086 memset(new_xattrs, 0, sizeof(new_xattrs)); 1087 lsm_xattr = new_xattrs; 1088 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1089 &lsm_xattr->name, 1090 &lsm_xattr->value, 1091 &lsm_xattr->value_len); 1092 if (ret) 1093 goto out; 1094 1095 evm_xattr = lsm_xattr + 1; 1096 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1097 if (ret) 1098 goto out; 1099 ret = initxattrs(inode, new_xattrs, fs_data); 1100 out: 1101 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1102 kfree(xattr->value); 1103 return (ret == -EOPNOTSUPP) ? 0 : ret; 1104 } 1105 EXPORT_SYMBOL(security_inode_init_security); 1106 1107 int security_inode_init_security_anon(struct inode *inode, 1108 const struct qstr *name, 1109 const struct inode *context_inode) 1110 { 1111 return call_int_hook(inode_init_security_anon, 0, inode, name, 1112 context_inode); 1113 } 1114 1115 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1116 const struct qstr *qstr, const char **name, 1117 void **value, size_t *len) 1118 { 1119 if (unlikely(IS_PRIVATE(inode))) 1120 return -EOPNOTSUPP; 1121 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1122 qstr, name, value, len); 1123 } 1124 EXPORT_SYMBOL(security_old_inode_init_security); 1125 1126 #ifdef CONFIG_SECURITY_PATH 1127 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1128 unsigned int dev) 1129 { 1130 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1131 return 0; 1132 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1133 } 1134 EXPORT_SYMBOL(security_path_mknod); 1135 1136 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1137 { 1138 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1139 return 0; 1140 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1141 } 1142 EXPORT_SYMBOL(security_path_mkdir); 1143 1144 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1145 { 1146 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1147 return 0; 1148 return call_int_hook(path_rmdir, 0, dir, dentry); 1149 } 1150 1151 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1152 { 1153 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1154 return 0; 1155 return call_int_hook(path_unlink, 0, dir, dentry); 1156 } 1157 EXPORT_SYMBOL(security_path_unlink); 1158 1159 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1160 const char *old_name) 1161 { 1162 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1163 return 0; 1164 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1165 } 1166 1167 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1168 struct dentry *new_dentry) 1169 { 1170 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1171 return 0; 1172 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1173 } 1174 1175 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1176 const struct path *new_dir, struct dentry *new_dentry, 1177 unsigned int flags) 1178 { 1179 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1180 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1181 return 0; 1182 1183 if (flags & RENAME_EXCHANGE) { 1184 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1185 old_dir, old_dentry); 1186 if (err) 1187 return err; 1188 } 1189 1190 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1191 new_dentry); 1192 } 1193 EXPORT_SYMBOL(security_path_rename); 1194 1195 int security_path_truncate(const struct path *path) 1196 { 1197 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1198 return 0; 1199 return call_int_hook(path_truncate, 0, path); 1200 } 1201 1202 int security_path_chmod(const struct path *path, umode_t mode) 1203 { 1204 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1205 return 0; 1206 return call_int_hook(path_chmod, 0, path, mode); 1207 } 1208 1209 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1210 { 1211 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1212 return 0; 1213 return call_int_hook(path_chown, 0, path, uid, gid); 1214 } 1215 1216 int security_path_chroot(const struct path *path) 1217 { 1218 return call_int_hook(path_chroot, 0, path); 1219 } 1220 #endif 1221 1222 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1223 { 1224 if (unlikely(IS_PRIVATE(dir))) 1225 return 0; 1226 return call_int_hook(inode_create, 0, dir, dentry, mode); 1227 } 1228 EXPORT_SYMBOL_GPL(security_inode_create); 1229 1230 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1231 struct dentry *new_dentry) 1232 { 1233 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1234 return 0; 1235 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1236 } 1237 1238 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1239 { 1240 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1241 return 0; 1242 return call_int_hook(inode_unlink, 0, dir, dentry); 1243 } 1244 1245 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1246 const char *old_name) 1247 { 1248 if (unlikely(IS_PRIVATE(dir))) 1249 return 0; 1250 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1251 } 1252 1253 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1254 { 1255 if (unlikely(IS_PRIVATE(dir))) 1256 return 0; 1257 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1258 } 1259 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1260 1261 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1262 { 1263 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1264 return 0; 1265 return call_int_hook(inode_rmdir, 0, dir, dentry); 1266 } 1267 1268 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1269 { 1270 if (unlikely(IS_PRIVATE(dir))) 1271 return 0; 1272 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1273 } 1274 1275 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1276 struct inode *new_dir, struct dentry *new_dentry, 1277 unsigned int flags) 1278 { 1279 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1280 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1281 return 0; 1282 1283 if (flags & RENAME_EXCHANGE) { 1284 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1285 old_dir, old_dentry); 1286 if (err) 1287 return err; 1288 } 1289 1290 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1291 new_dir, new_dentry); 1292 } 1293 1294 int security_inode_readlink(struct dentry *dentry) 1295 { 1296 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1297 return 0; 1298 return call_int_hook(inode_readlink, 0, dentry); 1299 } 1300 1301 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1302 bool rcu) 1303 { 1304 if (unlikely(IS_PRIVATE(inode))) 1305 return 0; 1306 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1307 } 1308 1309 int security_inode_permission(struct inode *inode, int mask) 1310 { 1311 if (unlikely(IS_PRIVATE(inode))) 1312 return 0; 1313 return call_int_hook(inode_permission, 0, inode, mask); 1314 } 1315 1316 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1317 { 1318 int ret; 1319 1320 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1321 return 0; 1322 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1323 if (ret) 1324 return ret; 1325 return evm_inode_setattr(dentry, attr); 1326 } 1327 EXPORT_SYMBOL_GPL(security_inode_setattr); 1328 1329 int security_inode_getattr(const struct path *path) 1330 { 1331 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1332 return 0; 1333 return call_int_hook(inode_getattr, 0, path); 1334 } 1335 1336 int security_inode_setxattr(struct user_namespace *mnt_userns, 1337 struct dentry *dentry, const char *name, 1338 const void *value, size_t size, int flags) 1339 { 1340 int ret; 1341 1342 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1343 return 0; 1344 /* 1345 * SELinux and Smack integrate the cap call, 1346 * so assume that all LSMs supplying this call do so. 1347 */ 1348 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1349 size, flags); 1350 1351 if (ret == 1) 1352 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1353 if (ret) 1354 return ret; 1355 ret = ima_inode_setxattr(dentry, name, value, size); 1356 if (ret) 1357 return ret; 1358 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1359 } 1360 1361 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1362 const void *value, size_t size, int flags) 1363 { 1364 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1365 return; 1366 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1367 evm_inode_post_setxattr(dentry, name, value, size); 1368 } 1369 1370 int security_inode_getxattr(struct dentry *dentry, const char *name) 1371 { 1372 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1373 return 0; 1374 return call_int_hook(inode_getxattr, 0, dentry, name); 1375 } 1376 1377 int security_inode_listxattr(struct dentry *dentry) 1378 { 1379 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1380 return 0; 1381 return call_int_hook(inode_listxattr, 0, dentry); 1382 } 1383 1384 int security_inode_removexattr(struct user_namespace *mnt_userns, 1385 struct dentry *dentry, const char *name) 1386 { 1387 int ret; 1388 1389 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1390 return 0; 1391 /* 1392 * SELinux and Smack integrate the cap call, 1393 * so assume that all LSMs supplying this call do so. 1394 */ 1395 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1396 if (ret == 1) 1397 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1398 if (ret) 1399 return ret; 1400 ret = ima_inode_removexattr(dentry, name); 1401 if (ret) 1402 return ret; 1403 return evm_inode_removexattr(mnt_userns, dentry, name); 1404 } 1405 1406 int security_inode_need_killpriv(struct dentry *dentry) 1407 { 1408 return call_int_hook(inode_need_killpriv, 0, dentry); 1409 } 1410 1411 int security_inode_killpriv(struct user_namespace *mnt_userns, 1412 struct dentry *dentry) 1413 { 1414 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1415 } 1416 1417 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1418 struct inode *inode, const char *name, 1419 void **buffer, bool alloc) 1420 { 1421 struct security_hook_list *hp; 1422 int rc; 1423 1424 if (unlikely(IS_PRIVATE(inode))) 1425 return LSM_RET_DEFAULT(inode_getsecurity); 1426 /* 1427 * Only one module will provide an attribute with a given name. 1428 */ 1429 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1430 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1431 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1432 return rc; 1433 } 1434 return LSM_RET_DEFAULT(inode_getsecurity); 1435 } 1436 1437 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1438 { 1439 struct security_hook_list *hp; 1440 int rc; 1441 1442 if (unlikely(IS_PRIVATE(inode))) 1443 return LSM_RET_DEFAULT(inode_setsecurity); 1444 /* 1445 * Only one module will provide an attribute with a given name. 1446 */ 1447 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1448 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1449 flags); 1450 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1451 return rc; 1452 } 1453 return LSM_RET_DEFAULT(inode_setsecurity); 1454 } 1455 1456 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1457 { 1458 if (unlikely(IS_PRIVATE(inode))) 1459 return 0; 1460 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1461 } 1462 EXPORT_SYMBOL(security_inode_listsecurity); 1463 1464 void security_inode_getsecid(struct inode *inode, u32 *secid) 1465 { 1466 call_void_hook(inode_getsecid, inode, secid); 1467 } 1468 1469 int security_inode_copy_up(struct dentry *src, struct cred **new) 1470 { 1471 return call_int_hook(inode_copy_up, 0, src, new); 1472 } 1473 EXPORT_SYMBOL(security_inode_copy_up); 1474 1475 int security_inode_copy_up_xattr(const char *name) 1476 { 1477 struct security_hook_list *hp; 1478 int rc; 1479 1480 /* 1481 * The implementation can return 0 (accept the xattr), 1 (discard the 1482 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1483 * any other error code incase of an error. 1484 */ 1485 hlist_for_each_entry(hp, 1486 &security_hook_heads.inode_copy_up_xattr, list) { 1487 rc = hp->hook.inode_copy_up_xattr(name); 1488 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1489 return rc; 1490 } 1491 1492 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1493 } 1494 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1495 1496 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1497 struct kernfs_node *kn) 1498 { 1499 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1500 } 1501 1502 int security_file_permission(struct file *file, int mask) 1503 { 1504 int ret; 1505 1506 ret = call_int_hook(file_permission, 0, file, mask); 1507 if (ret) 1508 return ret; 1509 1510 return fsnotify_perm(file, mask); 1511 } 1512 1513 int security_file_alloc(struct file *file) 1514 { 1515 int rc = lsm_file_alloc(file); 1516 1517 if (rc) 1518 return rc; 1519 rc = call_int_hook(file_alloc_security, 0, file); 1520 if (unlikely(rc)) 1521 security_file_free(file); 1522 return rc; 1523 } 1524 1525 void security_file_free(struct file *file) 1526 { 1527 void *blob; 1528 1529 call_void_hook(file_free_security, file); 1530 1531 blob = file->f_security; 1532 if (blob) { 1533 file->f_security = NULL; 1534 kmem_cache_free(lsm_file_cache, blob); 1535 } 1536 } 1537 1538 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1539 { 1540 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1541 } 1542 EXPORT_SYMBOL_GPL(security_file_ioctl); 1543 1544 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1545 { 1546 /* 1547 * Does we have PROT_READ and does the application expect 1548 * it to imply PROT_EXEC? If not, nothing to talk about... 1549 */ 1550 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1551 return prot; 1552 if (!(current->personality & READ_IMPLIES_EXEC)) 1553 return prot; 1554 /* 1555 * if that's an anonymous mapping, let it. 1556 */ 1557 if (!file) 1558 return prot | PROT_EXEC; 1559 /* 1560 * ditto if it's not on noexec mount, except that on !MMU we need 1561 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1562 */ 1563 if (!path_noexec(&file->f_path)) { 1564 #ifndef CONFIG_MMU 1565 if (file->f_op->mmap_capabilities) { 1566 unsigned caps = file->f_op->mmap_capabilities(file); 1567 if (!(caps & NOMMU_MAP_EXEC)) 1568 return prot; 1569 } 1570 #endif 1571 return prot | PROT_EXEC; 1572 } 1573 /* anything on noexec mount won't get PROT_EXEC */ 1574 return prot; 1575 } 1576 1577 int security_mmap_file(struct file *file, unsigned long prot, 1578 unsigned long flags) 1579 { 1580 int ret; 1581 ret = call_int_hook(mmap_file, 0, file, prot, 1582 mmap_prot(file, prot), flags); 1583 if (ret) 1584 return ret; 1585 return ima_file_mmap(file, prot); 1586 } 1587 1588 int security_mmap_addr(unsigned long addr) 1589 { 1590 return call_int_hook(mmap_addr, 0, addr); 1591 } 1592 1593 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1594 unsigned long prot) 1595 { 1596 int ret; 1597 1598 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1599 if (ret) 1600 return ret; 1601 return ima_file_mprotect(vma, prot); 1602 } 1603 1604 int security_file_lock(struct file *file, unsigned int cmd) 1605 { 1606 return call_int_hook(file_lock, 0, file, cmd); 1607 } 1608 1609 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1610 { 1611 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1612 } 1613 1614 void security_file_set_fowner(struct file *file) 1615 { 1616 call_void_hook(file_set_fowner, file); 1617 } 1618 1619 int security_file_send_sigiotask(struct task_struct *tsk, 1620 struct fown_struct *fown, int sig) 1621 { 1622 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1623 } 1624 1625 int security_file_receive(struct file *file) 1626 { 1627 return call_int_hook(file_receive, 0, file); 1628 } 1629 1630 int security_file_open(struct file *file) 1631 { 1632 int ret; 1633 1634 ret = call_int_hook(file_open, 0, file); 1635 if (ret) 1636 return ret; 1637 1638 return fsnotify_perm(file, MAY_OPEN); 1639 } 1640 1641 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1642 { 1643 int rc = lsm_task_alloc(task); 1644 1645 if (rc) 1646 return rc; 1647 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1648 if (unlikely(rc)) 1649 security_task_free(task); 1650 return rc; 1651 } 1652 1653 void security_task_free(struct task_struct *task) 1654 { 1655 call_void_hook(task_free, task); 1656 1657 kfree(task->security); 1658 task->security = NULL; 1659 } 1660 1661 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1662 { 1663 int rc = lsm_cred_alloc(cred, gfp); 1664 1665 if (rc) 1666 return rc; 1667 1668 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1669 if (unlikely(rc)) 1670 security_cred_free(cred); 1671 return rc; 1672 } 1673 1674 void security_cred_free(struct cred *cred) 1675 { 1676 /* 1677 * There is a failure case in prepare_creds() that 1678 * may result in a call here with ->security being NULL. 1679 */ 1680 if (unlikely(cred->security == NULL)) 1681 return; 1682 1683 call_void_hook(cred_free, cred); 1684 1685 kfree(cred->security); 1686 cred->security = NULL; 1687 } 1688 1689 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1690 { 1691 int rc = lsm_cred_alloc(new, gfp); 1692 1693 if (rc) 1694 return rc; 1695 1696 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1697 if (unlikely(rc)) 1698 security_cred_free(new); 1699 return rc; 1700 } 1701 1702 void security_transfer_creds(struct cred *new, const struct cred *old) 1703 { 1704 call_void_hook(cred_transfer, new, old); 1705 } 1706 1707 void security_cred_getsecid(const struct cred *c, u32 *secid) 1708 { 1709 *secid = 0; 1710 call_void_hook(cred_getsecid, c, secid); 1711 } 1712 EXPORT_SYMBOL(security_cred_getsecid); 1713 1714 int security_kernel_act_as(struct cred *new, u32 secid) 1715 { 1716 return call_int_hook(kernel_act_as, 0, new, secid); 1717 } 1718 1719 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1720 { 1721 return call_int_hook(kernel_create_files_as, 0, new, inode); 1722 } 1723 1724 int security_kernel_module_request(char *kmod_name) 1725 { 1726 int ret; 1727 1728 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1729 if (ret) 1730 return ret; 1731 return integrity_kernel_module_request(kmod_name); 1732 } 1733 1734 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1735 bool contents) 1736 { 1737 int ret; 1738 1739 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1740 if (ret) 1741 return ret; 1742 return ima_read_file(file, id, contents); 1743 } 1744 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1745 1746 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1747 enum kernel_read_file_id id) 1748 { 1749 int ret; 1750 1751 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1752 if (ret) 1753 return ret; 1754 return ima_post_read_file(file, buf, size, id); 1755 } 1756 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1757 1758 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1759 { 1760 int ret; 1761 1762 ret = call_int_hook(kernel_load_data, 0, id, contents); 1763 if (ret) 1764 return ret; 1765 return ima_load_data(id, contents); 1766 } 1767 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1768 1769 int security_kernel_post_load_data(char *buf, loff_t size, 1770 enum kernel_load_data_id id, 1771 char *description) 1772 { 1773 int ret; 1774 1775 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1776 description); 1777 if (ret) 1778 return ret; 1779 return ima_post_load_data(buf, size, id, description); 1780 } 1781 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1782 1783 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1784 int flags) 1785 { 1786 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1787 } 1788 1789 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1790 int flags) 1791 { 1792 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1793 } 1794 1795 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1796 { 1797 return call_int_hook(task_setpgid, 0, p, pgid); 1798 } 1799 1800 int security_task_getpgid(struct task_struct *p) 1801 { 1802 return call_int_hook(task_getpgid, 0, p); 1803 } 1804 1805 int security_task_getsid(struct task_struct *p) 1806 { 1807 return call_int_hook(task_getsid, 0, p); 1808 } 1809 1810 void security_task_getsecid_subj(struct task_struct *p, u32 *secid) 1811 { 1812 *secid = 0; 1813 call_void_hook(task_getsecid_subj, p, secid); 1814 } 1815 EXPORT_SYMBOL(security_task_getsecid_subj); 1816 1817 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1818 { 1819 *secid = 0; 1820 call_void_hook(task_getsecid_obj, p, secid); 1821 } 1822 EXPORT_SYMBOL(security_task_getsecid_obj); 1823 1824 int security_task_setnice(struct task_struct *p, int nice) 1825 { 1826 return call_int_hook(task_setnice, 0, p, nice); 1827 } 1828 1829 int security_task_setioprio(struct task_struct *p, int ioprio) 1830 { 1831 return call_int_hook(task_setioprio, 0, p, ioprio); 1832 } 1833 1834 int security_task_getioprio(struct task_struct *p) 1835 { 1836 return call_int_hook(task_getioprio, 0, p); 1837 } 1838 1839 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1840 unsigned int flags) 1841 { 1842 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1843 } 1844 1845 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1846 struct rlimit *new_rlim) 1847 { 1848 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1849 } 1850 1851 int security_task_setscheduler(struct task_struct *p) 1852 { 1853 return call_int_hook(task_setscheduler, 0, p); 1854 } 1855 1856 int security_task_getscheduler(struct task_struct *p) 1857 { 1858 return call_int_hook(task_getscheduler, 0, p); 1859 } 1860 1861 int security_task_movememory(struct task_struct *p) 1862 { 1863 return call_int_hook(task_movememory, 0, p); 1864 } 1865 1866 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1867 int sig, const struct cred *cred) 1868 { 1869 return call_int_hook(task_kill, 0, p, info, sig, cred); 1870 } 1871 1872 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1873 unsigned long arg4, unsigned long arg5) 1874 { 1875 int thisrc; 1876 int rc = LSM_RET_DEFAULT(task_prctl); 1877 struct security_hook_list *hp; 1878 1879 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1880 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1881 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1882 rc = thisrc; 1883 if (thisrc != 0) 1884 break; 1885 } 1886 } 1887 return rc; 1888 } 1889 1890 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1891 { 1892 call_void_hook(task_to_inode, p, inode); 1893 } 1894 1895 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1896 { 1897 return call_int_hook(ipc_permission, 0, ipcp, flag); 1898 } 1899 1900 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1901 { 1902 *secid = 0; 1903 call_void_hook(ipc_getsecid, ipcp, secid); 1904 } 1905 1906 int security_msg_msg_alloc(struct msg_msg *msg) 1907 { 1908 int rc = lsm_msg_msg_alloc(msg); 1909 1910 if (unlikely(rc)) 1911 return rc; 1912 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1913 if (unlikely(rc)) 1914 security_msg_msg_free(msg); 1915 return rc; 1916 } 1917 1918 void security_msg_msg_free(struct msg_msg *msg) 1919 { 1920 call_void_hook(msg_msg_free_security, msg); 1921 kfree(msg->security); 1922 msg->security = NULL; 1923 } 1924 1925 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1926 { 1927 int rc = lsm_ipc_alloc(msq); 1928 1929 if (unlikely(rc)) 1930 return rc; 1931 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1932 if (unlikely(rc)) 1933 security_msg_queue_free(msq); 1934 return rc; 1935 } 1936 1937 void security_msg_queue_free(struct kern_ipc_perm *msq) 1938 { 1939 call_void_hook(msg_queue_free_security, msq); 1940 kfree(msq->security); 1941 msq->security = NULL; 1942 } 1943 1944 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1945 { 1946 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1947 } 1948 1949 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1950 { 1951 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1952 } 1953 1954 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1955 struct msg_msg *msg, int msqflg) 1956 { 1957 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1958 } 1959 1960 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1961 struct task_struct *target, long type, int mode) 1962 { 1963 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1964 } 1965 1966 int security_shm_alloc(struct kern_ipc_perm *shp) 1967 { 1968 int rc = lsm_ipc_alloc(shp); 1969 1970 if (unlikely(rc)) 1971 return rc; 1972 rc = call_int_hook(shm_alloc_security, 0, shp); 1973 if (unlikely(rc)) 1974 security_shm_free(shp); 1975 return rc; 1976 } 1977 1978 void security_shm_free(struct kern_ipc_perm *shp) 1979 { 1980 call_void_hook(shm_free_security, shp); 1981 kfree(shp->security); 1982 shp->security = NULL; 1983 } 1984 1985 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1986 { 1987 return call_int_hook(shm_associate, 0, shp, shmflg); 1988 } 1989 1990 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1991 { 1992 return call_int_hook(shm_shmctl, 0, shp, cmd); 1993 } 1994 1995 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1996 { 1997 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1998 } 1999 2000 int security_sem_alloc(struct kern_ipc_perm *sma) 2001 { 2002 int rc = lsm_ipc_alloc(sma); 2003 2004 if (unlikely(rc)) 2005 return rc; 2006 rc = call_int_hook(sem_alloc_security, 0, sma); 2007 if (unlikely(rc)) 2008 security_sem_free(sma); 2009 return rc; 2010 } 2011 2012 void security_sem_free(struct kern_ipc_perm *sma) 2013 { 2014 call_void_hook(sem_free_security, sma); 2015 kfree(sma->security); 2016 sma->security = NULL; 2017 } 2018 2019 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2020 { 2021 return call_int_hook(sem_associate, 0, sma, semflg); 2022 } 2023 2024 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2025 { 2026 return call_int_hook(sem_semctl, 0, sma, cmd); 2027 } 2028 2029 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2030 unsigned nsops, int alter) 2031 { 2032 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2033 } 2034 2035 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2036 { 2037 if (unlikely(inode && IS_PRIVATE(inode))) 2038 return; 2039 call_void_hook(d_instantiate, dentry, inode); 2040 } 2041 EXPORT_SYMBOL(security_d_instantiate); 2042 2043 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2044 char **value) 2045 { 2046 struct security_hook_list *hp; 2047 2048 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2049 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2050 continue; 2051 return hp->hook.getprocattr(p, name, value); 2052 } 2053 return LSM_RET_DEFAULT(getprocattr); 2054 } 2055 2056 int security_setprocattr(const char *lsm, const char *name, void *value, 2057 size_t size) 2058 { 2059 struct security_hook_list *hp; 2060 2061 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2062 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2063 continue; 2064 return hp->hook.setprocattr(name, value, size); 2065 } 2066 return LSM_RET_DEFAULT(setprocattr); 2067 } 2068 2069 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2070 { 2071 return call_int_hook(netlink_send, 0, sk, skb); 2072 } 2073 2074 int security_ismaclabel(const char *name) 2075 { 2076 return call_int_hook(ismaclabel, 0, name); 2077 } 2078 EXPORT_SYMBOL(security_ismaclabel); 2079 2080 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2081 { 2082 struct security_hook_list *hp; 2083 int rc; 2084 2085 /* 2086 * Currently, only one LSM can implement secid_to_secctx (i.e this 2087 * LSM hook is not "stackable"). 2088 */ 2089 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2090 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2091 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2092 return rc; 2093 } 2094 2095 return LSM_RET_DEFAULT(secid_to_secctx); 2096 } 2097 EXPORT_SYMBOL(security_secid_to_secctx); 2098 2099 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2100 { 2101 *secid = 0; 2102 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2103 } 2104 EXPORT_SYMBOL(security_secctx_to_secid); 2105 2106 void security_release_secctx(char *secdata, u32 seclen) 2107 { 2108 call_void_hook(release_secctx, secdata, seclen); 2109 } 2110 EXPORT_SYMBOL(security_release_secctx); 2111 2112 void security_inode_invalidate_secctx(struct inode *inode) 2113 { 2114 call_void_hook(inode_invalidate_secctx, inode); 2115 } 2116 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2117 2118 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2119 { 2120 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2121 } 2122 EXPORT_SYMBOL(security_inode_notifysecctx); 2123 2124 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2125 { 2126 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2127 } 2128 EXPORT_SYMBOL(security_inode_setsecctx); 2129 2130 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2131 { 2132 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2133 } 2134 EXPORT_SYMBOL(security_inode_getsecctx); 2135 2136 #ifdef CONFIG_WATCH_QUEUE 2137 int security_post_notification(const struct cred *w_cred, 2138 const struct cred *cred, 2139 struct watch_notification *n) 2140 { 2141 return call_int_hook(post_notification, 0, w_cred, cred, n); 2142 } 2143 #endif /* CONFIG_WATCH_QUEUE */ 2144 2145 #ifdef CONFIG_KEY_NOTIFICATIONS 2146 int security_watch_key(struct key *key) 2147 { 2148 return call_int_hook(watch_key, 0, key); 2149 } 2150 #endif 2151 2152 #ifdef CONFIG_SECURITY_NETWORK 2153 2154 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2155 { 2156 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2157 } 2158 EXPORT_SYMBOL(security_unix_stream_connect); 2159 2160 int security_unix_may_send(struct socket *sock, struct socket *other) 2161 { 2162 return call_int_hook(unix_may_send, 0, sock, other); 2163 } 2164 EXPORT_SYMBOL(security_unix_may_send); 2165 2166 int security_socket_create(int family, int type, int protocol, int kern) 2167 { 2168 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2169 } 2170 2171 int security_socket_post_create(struct socket *sock, int family, 2172 int type, int protocol, int kern) 2173 { 2174 return call_int_hook(socket_post_create, 0, sock, family, type, 2175 protocol, kern); 2176 } 2177 2178 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2179 { 2180 return call_int_hook(socket_socketpair, 0, socka, sockb); 2181 } 2182 EXPORT_SYMBOL(security_socket_socketpair); 2183 2184 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2185 { 2186 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2187 } 2188 2189 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2190 { 2191 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2192 } 2193 2194 int security_socket_listen(struct socket *sock, int backlog) 2195 { 2196 return call_int_hook(socket_listen, 0, sock, backlog); 2197 } 2198 2199 int security_socket_accept(struct socket *sock, struct socket *newsock) 2200 { 2201 return call_int_hook(socket_accept, 0, sock, newsock); 2202 } 2203 2204 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2205 { 2206 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2207 } 2208 2209 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2210 int size, int flags) 2211 { 2212 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2213 } 2214 2215 int security_socket_getsockname(struct socket *sock) 2216 { 2217 return call_int_hook(socket_getsockname, 0, sock); 2218 } 2219 2220 int security_socket_getpeername(struct socket *sock) 2221 { 2222 return call_int_hook(socket_getpeername, 0, sock); 2223 } 2224 2225 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2226 { 2227 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2228 } 2229 2230 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2231 { 2232 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2233 } 2234 2235 int security_socket_shutdown(struct socket *sock, int how) 2236 { 2237 return call_int_hook(socket_shutdown, 0, sock, how); 2238 } 2239 2240 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2241 { 2242 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2243 } 2244 EXPORT_SYMBOL(security_sock_rcv_skb); 2245 2246 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2247 int __user *optlen, unsigned len) 2248 { 2249 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2250 optval, optlen, len); 2251 } 2252 2253 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2254 { 2255 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2256 skb, secid); 2257 } 2258 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2259 2260 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2261 { 2262 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2263 } 2264 2265 void security_sk_free(struct sock *sk) 2266 { 2267 call_void_hook(sk_free_security, sk); 2268 } 2269 2270 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2271 { 2272 call_void_hook(sk_clone_security, sk, newsk); 2273 } 2274 EXPORT_SYMBOL(security_sk_clone); 2275 2276 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2277 { 2278 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2279 } 2280 EXPORT_SYMBOL(security_sk_classify_flow); 2281 2282 void security_req_classify_flow(const struct request_sock *req, 2283 struct flowi_common *flic) 2284 { 2285 call_void_hook(req_classify_flow, req, flic); 2286 } 2287 EXPORT_SYMBOL(security_req_classify_flow); 2288 2289 void security_sock_graft(struct sock *sk, struct socket *parent) 2290 { 2291 call_void_hook(sock_graft, sk, parent); 2292 } 2293 EXPORT_SYMBOL(security_sock_graft); 2294 2295 int security_inet_conn_request(const struct sock *sk, 2296 struct sk_buff *skb, struct request_sock *req) 2297 { 2298 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2299 } 2300 EXPORT_SYMBOL(security_inet_conn_request); 2301 2302 void security_inet_csk_clone(struct sock *newsk, 2303 const struct request_sock *req) 2304 { 2305 call_void_hook(inet_csk_clone, newsk, req); 2306 } 2307 2308 void security_inet_conn_established(struct sock *sk, 2309 struct sk_buff *skb) 2310 { 2311 call_void_hook(inet_conn_established, sk, skb); 2312 } 2313 EXPORT_SYMBOL(security_inet_conn_established); 2314 2315 int security_secmark_relabel_packet(u32 secid) 2316 { 2317 return call_int_hook(secmark_relabel_packet, 0, secid); 2318 } 2319 EXPORT_SYMBOL(security_secmark_relabel_packet); 2320 2321 void security_secmark_refcount_inc(void) 2322 { 2323 call_void_hook(secmark_refcount_inc); 2324 } 2325 EXPORT_SYMBOL(security_secmark_refcount_inc); 2326 2327 void security_secmark_refcount_dec(void) 2328 { 2329 call_void_hook(secmark_refcount_dec); 2330 } 2331 EXPORT_SYMBOL(security_secmark_refcount_dec); 2332 2333 int security_tun_dev_alloc_security(void **security) 2334 { 2335 return call_int_hook(tun_dev_alloc_security, 0, security); 2336 } 2337 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2338 2339 void security_tun_dev_free_security(void *security) 2340 { 2341 call_void_hook(tun_dev_free_security, security); 2342 } 2343 EXPORT_SYMBOL(security_tun_dev_free_security); 2344 2345 int security_tun_dev_create(void) 2346 { 2347 return call_int_hook(tun_dev_create, 0); 2348 } 2349 EXPORT_SYMBOL(security_tun_dev_create); 2350 2351 int security_tun_dev_attach_queue(void *security) 2352 { 2353 return call_int_hook(tun_dev_attach_queue, 0, security); 2354 } 2355 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2356 2357 int security_tun_dev_attach(struct sock *sk, void *security) 2358 { 2359 return call_int_hook(tun_dev_attach, 0, sk, security); 2360 } 2361 EXPORT_SYMBOL(security_tun_dev_attach); 2362 2363 int security_tun_dev_open(void *security) 2364 { 2365 return call_int_hook(tun_dev_open, 0, security); 2366 } 2367 EXPORT_SYMBOL(security_tun_dev_open); 2368 2369 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2370 { 2371 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2372 } 2373 EXPORT_SYMBOL(security_sctp_assoc_request); 2374 2375 int security_sctp_bind_connect(struct sock *sk, int optname, 2376 struct sockaddr *address, int addrlen) 2377 { 2378 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2379 address, addrlen); 2380 } 2381 EXPORT_SYMBOL(security_sctp_bind_connect); 2382 2383 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2384 struct sock *newsk) 2385 { 2386 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2387 } 2388 EXPORT_SYMBOL(security_sctp_sk_clone); 2389 2390 #endif /* CONFIG_SECURITY_NETWORK */ 2391 2392 #ifdef CONFIG_SECURITY_INFINIBAND 2393 2394 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2395 { 2396 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2397 } 2398 EXPORT_SYMBOL(security_ib_pkey_access); 2399 2400 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2401 { 2402 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2403 } 2404 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2405 2406 int security_ib_alloc_security(void **sec) 2407 { 2408 return call_int_hook(ib_alloc_security, 0, sec); 2409 } 2410 EXPORT_SYMBOL(security_ib_alloc_security); 2411 2412 void security_ib_free_security(void *sec) 2413 { 2414 call_void_hook(ib_free_security, sec); 2415 } 2416 EXPORT_SYMBOL(security_ib_free_security); 2417 #endif /* CONFIG_SECURITY_INFINIBAND */ 2418 2419 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2420 2421 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2422 struct xfrm_user_sec_ctx *sec_ctx, 2423 gfp_t gfp) 2424 { 2425 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2426 } 2427 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2428 2429 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2430 struct xfrm_sec_ctx **new_ctxp) 2431 { 2432 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2433 } 2434 2435 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2436 { 2437 call_void_hook(xfrm_policy_free_security, ctx); 2438 } 2439 EXPORT_SYMBOL(security_xfrm_policy_free); 2440 2441 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2442 { 2443 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2444 } 2445 2446 int security_xfrm_state_alloc(struct xfrm_state *x, 2447 struct xfrm_user_sec_ctx *sec_ctx) 2448 { 2449 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2450 } 2451 EXPORT_SYMBOL(security_xfrm_state_alloc); 2452 2453 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2454 struct xfrm_sec_ctx *polsec, u32 secid) 2455 { 2456 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2457 } 2458 2459 int security_xfrm_state_delete(struct xfrm_state *x) 2460 { 2461 return call_int_hook(xfrm_state_delete_security, 0, x); 2462 } 2463 EXPORT_SYMBOL(security_xfrm_state_delete); 2464 2465 void security_xfrm_state_free(struct xfrm_state *x) 2466 { 2467 call_void_hook(xfrm_state_free_security, x); 2468 } 2469 2470 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2471 { 2472 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2473 } 2474 2475 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2476 struct xfrm_policy *xp, 2477 const struct flowi_common *flic) 2478 { 2479 struct security_hook_list *hp; 2480 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2481 2482 /* 2483 * Since this function is expected to return 0 or 1, the judgment 2484 * becomes difficult if multiple LSMs supply this call. Fortunately, 2485 * we can use the first LSM's judgment because currently only SELinux 2486 * supplies this call. 2487 * 2488 * For speed optimization, we explicitly break the loop rather than 2489 * using the macro 2490 */ 2491 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2492 list) { 2493 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2494 break; 2495 } 2496 return rc; 2497 } 2498 2499 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2500 { 2501 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2502 } 2503 2504 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2505 { 2506 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2507 0); 2508 2509 BUG_ON(rc); 2510 } 2511 EXPORT_SYMBOL(security_skb_classify_flow); 2512 2513 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2514 2515 #ifdef CONFIG_KEYS 2516 2517 int security_key_alloc(struct key *key, const struct cred *cred, 2518 unsigned long flags) 2519 { 2520 return call_int_hook(key_alloc, 0, key, cred, flags); 2521 } 2522 2523 void security_key_free(struct key *key) 2524 { 2525 call_void_hook(key_free, key); 2526 } 2527 2528 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2529 enum key_need_perm need_perm) 2530 { 2531 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2532 } 2533 2534 int security_key_getsecurity(struct key *key, char **_buffer) 2535 { 2536 *_buffer = NULL; 2537 return call_int_hook(key_getsecurity, 0, key, _buffer); 2538 } 2539 2540 #endif /* CONFIG_KEYS */ 2541 2542 #ifdef CONFIG_AUDIT 2543 2544 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2545 { 2546 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2547 } 2548 2549 int security_audit_rule_known(struct audit_krule *krule) 2550 { 2551 return call_int_hook(audit_rule_known, 0, krule); 2552 } 2553 2554 void security_audit_rule_free(void *lsmrule) 2555 { 2556 call_void_hook(audit_rule_free, lsmrule); 2557 } 2558 2559 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2560 { 2561 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2562 } 2563 #endif /* CONFIG_AUDIT */ 2564 2565 #ifdef CONFIG_BPF_SYSCALL 2566 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2567 { 2568 return call_int_hook(bpf, 0, cmd, attr, size); 2569 } 2570 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2571 { 2572 return call_int_hook(bpf_map, 0, map, fmode); 2573 } 2574 int security_bpf_prog(struct bpf_prog *prog) 2575 { 2576 return call_int_hook(bpf_prog, 0, prog); 2577 } 2578 int security_bpf_map_alloc(struct bpf_map *map) 2579 { 2580 return call_int_hook(bpf_map_alloc_security, 0, map); 2581 } 2582 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2583 { 2584 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2585 } 2586 void security_bpf_map_free(struct bpf_map *map) 2587 { 2588 call_void_hook(bpf_map_free_security, map); 2589 } 2590 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2591 { 2592 call_void_hook(bpf_prog_free_security, aux); 2593 } 2594 #endif /* CONFIG_BPF_SYSCALL */ 2595 2596 int security_locked_down(enum lockdown_reason what) 2597 { 2598 return call_int_hook(locked_down, 0, what); 2599 } 2600 EXPORT_SYMBOL(security_locked_down); 2601 2602 #ifdef CONFIG_PERF_EVENTS 2603 int security_perf_event_open(struct perf_event_attr *attr, int type) 2604 { 2605 return call_int_hook(perf_event_open, 0, attr, type); 2606 } 2607 2608 int security_perf_event_alloc(struct perf_event *event) 2609 { 2610 return call_int_hook(perf_event_alloc, 0, event); 2611 } 2612 2613 void security_perf_event_free(struct perf_event *event) 2614 { 2615 call_void_hook(perf_event_free, event); 2616 } 2617 2618 int security_perf_event_read(struct perf_event *event) 2619 { 2620 return call_int_hook(perf_event_read, 0, event); 2621 } 2622 2623 int security_perf_event_write(struct perf_event *event) 2624 { 2625 return call_int_hook(perf_event_write, 0, event); 2626 } 2627 #endif /* CONFIG_PERF_EVENTS */ 2628