1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #include <linux/bpf.h> 16 #include <linux/capability.h> 17 #include <linux/dcache.h> 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <net/flow.h> 32 33 #include <trace/events/initcall.h> 34 35 #define MAX_LSM_EVM_XATTR 2 36 37 /* Maximum number of letters for an LSM name string */ 38 #define SECURITY_NAME_MAX 10 39 40 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 42 43 char *lsm_names; 44 /* Boot-time LSM user choice */ 45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 46 CONFIG_DEFAULT_SECURITY; 47 48 static void __init do_security_initcalls(void) 49 { 50 int ret; 51 initcall_t *call; 52 call = __security_initcall_start; 53 trace_initcall_level("security"); 54 while (call < __security_initcall_end) { 55 trace_initcall_start((*call)); 56 ret = (*call) (); 57 trace_initcall_finish((*call), ret); 58 call++; 59 } 60 } 61 62 /** 63 * security_init - initializes the security framework 64 * 65 * This should be called early in the kernel initialization sequence. 66 */ 67 int __init security_init(void) 68 { 69 int i; 70 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 71 72 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 73 i++) 74 INIT_HLIST_HEAD(&list[i]); 75 pr_info("Security Framework initialized\n"); 76 77 /* 78 * Load minor LSMs, with the capability module always first. 79 */ 80 capability_add_hooks(); 81 yama_add_hooks(); 82 loadpin_add_hooks(); 83 84 /* 85 * Load all the remaining security modules. 86 */ 87 do_security_initcalls(); 88 89 return 0; 90 } 91 92 /* Save user chosen LSM */ 93 static int __init choose_lsm(char *str) 94 { 95 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 96 return 1; 97 } 98 __setup("security=", choose_lsm); 99 100 static bool match_last_lsm(const char *list, const char *lsm) 101 { 102 const char *last; 103 104 if (WARN_ON(!list || !lsm)) 105 return false; 106 last = strrchr(list, ','); 107 if (last) 108 /* Pass the comma, strcmp() will check for '\0' */ 109 last++; 110 else 111 last = list; 112 return !strcmp(last, lsm); 113 } 114 115 static int lsm_append(char *new, char **result) 116 { 117 char *cp; 118 119 if (*result == NULL) { 120 *result = kstrdup(new, GFP_KERNEL); 121 if (*result == NULL) 122 return -ENOMEM; 123 } else { 124 /* Check if it is the last registered name */ 125 if (match_last_lsm(*result, new)) 126 return 0; 127 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 128 if (cp == NULL) 129 return -ENOMEM; 130 kfree(*result); 131 *result = cp; 132 } 133 return 0; 134 } 135 136 /** 137 * security_module_enable - Load given security module on boot ? 138 * @module: the name of the module 139 * 140 * Each LSM must pass this method before registering its own operations 141 * to avoid security registration races. This method may also be used 142 * to check if your LSM is currently loaded during kernel initialization. 143 * 144 * Returns: 145 * 146 * true if: 147 * 148 * - The passed LSM is the one chosen by user at boot time, 149 * - or the passed LSM is configured as the default and the user did not 150 * choose an alternate LSM at boot time. 151 * 152 * Otherwise, return false. 153 */ 154 int __init security_module_enable(const char *module) 155 { 156 return !strcmp(module, chosen_lsm); 157 } 158 159 /** 160 * security_add_hooks - Add a modules hooks to the hook lists. 161 * @hooks: the hooks to add 162 * @count: the number of hooks to add 163 * @lsm: the name of the security module 164 * 165 * Each LSM has to register its hooks with the infrastructure. 166 */ 167 void __init security_add_hooks(struct security_hook_list *hooks, int count, 168 char *lsm) 169 { 170 int i; 171 172 for (i = 0; i < count; i++) { 173 hooks[i].lsm = lsm; 174 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 175 } 176 if (lsm_append(lsm, &lsm_names) < 0) 177 panic("%s - Cannot get early memory.\n", __func__); 178 } 179 180 int call_lsm_notifier(enum lsm_event event, void *data) 181 { 182 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 183 } 184 EXPORT_SYMBOL(call_lsm_notifier); 185 186 int register_lsm_notifier(struct notifier_block *nb) 187 { 188 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 189 } 190 EXPORT_SYMBOL(register_lsm_notifier); 191 192 int unregister_lsm_notifier(struct notifier_block *nb) 193 { 194 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 195 } 196 EXPORT_SYMBOL(unregister_lsm_notifier); 197 198 /* 199 * Hook list operation macros. 200 * 201 * call_void_hook: 202 * This is a hook that does not return a value. 203 * 204 * call_int_hook: 205 * This is a hook that returns a value. 206 */ 207 208 #define call_void_hook(FUNC, ...) \ 209 do { \ 210 struct security_hook_list *P; \ 211 \ 212 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 213 P->hook.FUNC(__VA_ARGS__); \ 214 } while (0) 215 216 #define call_int_hook(FUNC, IRC, ...) ({ \ 217 int RC = IRC; \ 218 do { \ 219 struct security_hook_list *P; \ 220 \ 221 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 222 RC = P->hook.FUNC(__VA_ARGS__); \ 223 if (RC != 0) \ 224 break; \ 225 } \ 226 } while (0); \ 227 RC; \ 228 }) 229 230 /* Security operations */ 231 232 int security_binder_set_context_mgr(struct task_struct *mgr) 233 { 234 return call_int_hook(binder_set_context_mgr, 0, mgr); 235 } 236 237 int security_binder_transaction(struct task_struct *from, 238 struct task_struct *to) 239 { 240 return call_int_hook(binder_transaction, 0, from, to); 241 } 242 243 int security_binder_transfer_binder(struct task_struct *from, 244 struct task_struct *to) 245 { 246 return call_int_hook(binder_transfer_binder, 0, from, to); 247 } 248 249 int security_binder_transfer_file(struct task_struct *from, 250 struct task_struct *to, struct file *file) 251 { 252 return call_int_hook(binder_transfer_file, 0, from, to, file); 253 } 254 255 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 256 { 257 return call_int_hook(ptrace_access_check, 0, child, mode); 258 } 259 260 int security_ptrace_traceme(struct task_struct *parent) 261 { 262 return call_int_hook(ptrace_traceme, 0, parent); 263 } 264 265 int security_capget(struct task_struct *target, 266 kernel_cap_t *effective, 267 kernel_cap_t *inheritable, 268 kernel_cap_t *permitted) 269 { 270 return call_int_hook(capget, 0, target, 271 effective, inheritable, permitted); 272 } 273 274 int security_capset(struct cred *new, const struct cred *old, 275 const kernel_cap_t *effective, 276 const kernel_cap_t *inheritable, 277 const kernel_cap_t *permitted) 278 { 279 return call_int_hook(capset, 0, new, old, 280 effective, inheritable, permitted); 281 } 282 283 int security_capable(const struct cred *cred, struct user_namespace *ns, 284 int cap) 285 { 286 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT); 287 } 288 289 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 290 int cap) 291 { 292 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT); 293 } 294 295 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 296 { 297 return call_int_hook(quotactl, 0, cmds, type, id, sb); 298 } 299 300 int security_quota_on(struct dentry *dentry) 301 { 302 return call_int_hook(quota_on, 0, dentry); 303 } 304 305 int security_syslog(int type) 306 { 307 return call_int_hook(syslog, 0, type); 308 } 309 310 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 311 { 312 return call_int_hook(settime, 0, ts, tz); 313 } 314 315 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 316 { 317 struct security_hook_list *hp; 318 int cap_sys_admin = 1; 319 int rc; 320 321 /* 322 * The module will respond with a positive value if 323 * it thinks the __vm_enough_memory() call should be 324 * made with the cap_sys_admin set. If all of the modules 325 * agree that it should be set it will. If any module 326 * thinks it should not be set it won't. 327 */ 328 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 329 rc = hp->hook.vm_enough_memory(mm, pages); 330 if (rc <= 0) { 331 cap_sys_admin = 0; 332 break; 333 } 334 } 335 return __vm_enough_memory(mm, pages, cap_sys_admin); 336 } 337 338 int security_bprm_set_creds(struct linux_binprm *bprm) 339 { 340 return call_int_hook(bprm_set_creds, 0, bprm); 341 } 342 343 int security_bprm_check(struct linux_binprm *bprm) 344 { 345 int ret; 346 347 ret = call_int_hook(bprm_check_security, 0, bprm); 348 if (ret) 349 return ret; 350 return ima_bprm_check(bprm); 351 } 352 353 void security_bprm_committing_creds(struct linux_binprm *bprm) 354 { 355 call_void_hook(bprm_committing_creds, bprm); 356 } 357 358 void security_bprm_committed_creds(struct linux_binprm *bprm) 359 { 360 call_void_hook(bprm_committed_creds, bprm); 361 } 362 363 int security_sb_alloc(struct super_block *sb) 364 { 365 return call_int_hook(sb_alloc_security, 0, sb); 366 } 367 368 void security_sb_free(struct super_block *sb) 369 { 370 call_void_hook(sb_free_security, sb); 371 } 372 373 int security_sb_copy_data(char *orig, char *copy) 374 { 375 return call_int_hook(sb_copy_data, 0, orig, copy); 376 } 377 EXPORT_SYMBOL(security_sb_copy_data); 378 379 int security_sb_remount(struct super_block *sb, void *data) 380 { 381 return call_int_hook(sb_remount, 0, sb, data); 382 } 383 384 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 385 { 386 return call_int_hook(sb_kern_mount, 0, sb, flags, data); 387 } 388 389 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 390 { 391 return call_int_hook(sb_show_options, 0, m, sb); 392 } 393 394 int security_sb_statfs(struct dentry *dentry) 395 { 396 return call_int_hook(sb_statfs, 0, dentry); 397 } 398 399 int security_sb_mount(const char *dev_name, const struct path *path, 400 const char *type, unsigned long flags, void *data) 401 { 402 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 403 } 404 405 int security_sb_umount(struct vfsmount *mnt, int flags) 406 { 407 return call_int_hook(sb_umount, 0, mnt, flags); 408 } 409 410 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 411 { 412 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 413 } 414 415 int security_sb_set_mnt_opts(struct super_block *sb, 416 struct security_mnt_opts *opts, 417 unsigned long kern_flags, 418 unsigned long *set_kern_flags) 419 { 420 return call_int_hook(sb_set_mnt_opts, 421 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb, 422 opts, kern_flags, set_kern_flags); 423 } 424 EXPORT_SYMBOL(security_sb_set_mnt_opts); 425 426 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 427 struct super_block *newsb, 428 unsigned long kern_flags, 429 unsigned long *set_kern_flags) 430 { 431 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 432 kern_flags, set_kern_flags); 433 } 434 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 435 436 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 437 { 438 return call_int_hook(sb_parse_opts_str, 0, options, opts); 439 } 440 EXPORT_SYMBOL(security_sb_parse_opts_str); 441 442 int security_inode_alloc(struct inode *inode) 443 { 444 inode->i_security = NULL; 445 return call_int_hook(inode_alloc_security, 0, inode); 446 } 447 448 void security_inode_free(struct inode *inode) 449 { 450 integrity_inode_free(inode); 451 call_void_hook(inode_free_security, inode); 452 } 453 454 int security_dentry_init_security(struct dentry *dentry, int mode, 455 const struct qstr *name, void **ctx, 456 u32 *ctxlen) 457 { 458 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 459 name, ctx, ctxlen); 460 } 461 EXPORT_SYMBOL(security_dentry_init_security); 462 463 int security_dentry_create_files_as(struct dentry *dentry, int mode, 464 struct qstr *name, 465 const struct cred *old, struct cred *new) 466 { 467 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 468 name, old, new); 469 } 470 EXPORT_SYMBOL(security_dentry_create_files_as); 471 472 int security_inode_init_security(struct inode *inode, struct inode *dir, 473 const struct qstr *qstr, 474 const initxattrs initxattrs, void *fs_data) 475 { 476 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 477 struct xattr *lsm_xattr, *evm_xattr, *xattr; 478 int ret; 479 480 if (unlikely(IS_PRIVATE(inode))) 481 return 0; 482 483 if (!initxattrs) 484 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 485 dir, qstr, NULL, NULL, NULL); 486 memset(new_xattrs, 0, sizeof(new_xattrs)); 487 lsm_xattr = new_xattrs; 488 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 489 &lsm_xattr->name, 490 &lsm_xattr->value, 491 &lsm_xattr->value_len); 492 if (ret) 493 goto out; 494 495 evm_xattr = lsm_xattr + 1; 496 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 497 if (ret) 498 goto out; 499 ret = initxattrs(inode, new_xattrs, fs_data); 500 out: 501 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 502 kfree(xattr->value); 503 return (ret == -EOPNOTSUPP) ? 0 : ret; 504 } 505 EXPORT_SYMBOL(security_inode_init_security); 506 507 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 508 const struct qstr *qstr, const char **name, 509 void **value, size_t *len) 510 { 511 if (unlikely(IS_PRIVATE(inode))) 512 return -EOPNOTSUPP; 513 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 514 qstr, name, value, len); 515 } 516 EXPORT_SYMBOL(security_old_inode_init_security); 517 518 #ifdef CONFIG_SECURITY_PATH 519 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 520 unsigned int dev) 521 { 522 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 523 return 0; 524 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 525 } 526 EXPORT_SYMBOL(security_path_mknod); 527 528 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 529 { 530 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 531 return 0; 532 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 533 } 534 EXPORT_SYMBOL(security_path_mkdir); 535 536 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 537 { 538 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 539 return 0; 540 return call_int_hook(path_rmdir, 0, dir, dentry); 541 } 542 543 int security_path_unlink(const struct path *dir, struct dentry *dentry) 544 { 545 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 546 return 0; 547 return call_int_hook(path_unlink, 0, dir, dentry); 548 } 549 EXPORT_SYMBOL(security_path_unlink); 550 551 int security_path_symlink(const struct path *dir, struct dentry *dentry, 552 const char *old_name) 553 { 554 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 555 return 0; 556 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 557 } 558 559 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 560 struct dentry *new_dentry) 561 { 562 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 563 return 0; 564 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 565 } 566 567 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 568 const struct path *new_dir, struct dentry *new_dentry, 569 unsigned int flags) 570 { 571 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 572 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 573 return 0; 574 575 if (flags & RENAME_EXCHANGE) { 576 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 577 old_dir, old_dentry); 578 if (err) 579 return err; 580 } 581 582 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 583 new_dentry); 584 } 585 EXPORT_SYMBOL(security_path_rename); 586 587 int security_path_truncate(const struct path *path) 588 { 589 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 590 return 0; 591 return call_int_hook(path_truncate, 0, path); 592 } 593 594 int security_path_chmod(const struct path *path, umode_t mode) 595 { 596 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 597 return 0; 598 return call_int_hook(path_chmod, 0, path, mode); 599 } 600 601 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 602 { 603 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 604 return 0; 605 return call_int_hook(path_chown, 0, path, uid, gid); 606 } 607 608 int security_path_chroot(const struct path *path) 609 { 610 return call_int_hook(path_chroot, 0, path); 611 } 612 #endif 613 614 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 615 { 616 if (unlikely(IS_PRIVATE(dir))) 617 return 0; 618 return call_int_hook(inode_create, 0, dir, dentry, mode); 619 } 620 EXPORT_SYMBOL_GPL(security_inode_create); 621 622 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 623 struct dentry *new_dentry) 624 { 625 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 626 return 0; 627 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 628 } 629 630 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 631 { 632 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 633 return 0; 634 return call_int_hook(inode_unlink, 0, dir, dentry); 635 } 636 637 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 638 const char *old_name) 639 { 640 if (unlikely(IS_PRIVATE(dir))) 641 return 0; 642 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 643 } 644 645 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 646 { 647 if (unlikely(IS_PRIVATE(dir))) 648 return 0; 649 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 650 } 651 EXPORT_SYMBOL_GPL(security_inode_mkdir); 652 653 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 654 { 655 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 656 return 0; 657 return call_int_hook(inode_rmdir, 0, dir, dentry); 658 } 659 660 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 661 { 662 if (unlikely(IS_PRIVATE(dir))) 663 return 0; 664 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 665 } 666 667 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 668 struct inode *new_dir, struct dentry *new_dentry, 669 unsigned int flags) 670 { 671 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 672 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 673 return 0; 674 675 if (flags & RENAME_EXCHANGE) { 676 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 677 old_dir, old_dentry); 678 if (err) 679 return err; 680 } 681 682 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 683 new_dir, new_dentry); 684 } 685 686 int security_inode_readlink(struct dentry *dentry) 687 { 688 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 689 return 0; 690 return call_int_hook(inode_readlink, 0, dentry); 691 } 692 693 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 694 bool rcu) 695 { 696 if (unlikely(IS_PRIVATE(inode))) 697 return 0; 698 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 699 } 700 701 int security_inode_permission(struct inode *inode, int mask) 702 { 703 if (unlikely(IS_PRIVATE(inode))) 704 return 0; 705 return call_int_hook(inode_permission, 0, inode, mask); 706 } 707 708 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 709 { 710 int ret; 711 712 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 713 return 0; 714 ret = call_int_hook(inode_setattr, 0, dentry, attr); 715 if (ret) 716 return ret; 717 return evm_inode_setattr(dentry, attr); 718 } 719 EXPORT_SYMBOL_GPL(security_inode_setattr); 720 721 int security_inode_getattr(const struct path *path) 722 { 723 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 724 return 0; 725 return call_int_hook(inode_getattr, 0, path); 726 } 727 728 int security_inode_setxattr(struct dentry *dentry, const char *name, 729 const void *value, size_t size, int flags) 730 { 731 int ret; 732 733 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 734 return 0; 735 /* 736 * SELinux and Smack integrate the cap call, 737 * so assume that all LSMs supplying this call do so. 738 */ 739 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 740 flags); 741 742 if (ret == 1) 743 ret = cap_inode_setxattr(dentry, name, value, size, flags); 744 if (ret) 745 return ret; 746 ret = ima_inode_setxattr(dentry, name, value, size); 747 if (ret) 748 return ret; 749 return evm_inode_setxattr(dentry, name, value, size); 750 } 751 752 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 753 const void *value, size_t size, int flags) 754 { 755 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 756 return; 757 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 758 evm_inode_post_setxattr(dentry, name, value, size); 759 } 760 761 int security_inode_getxattr(struct dentry *dentry, const char *name) 762 { 763 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 764 return 0; 765 return call_int_hook(inode_getxattr, 0, dentry, name); 766 } 767 768 int security_inode_listxattr(struct dentry *dentry) 769 { 770 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 771 return 0; 772 return call_int_hook(inode_listxattr, 0, dentry); 773 } 774 775 int security_inode_removexattr(struct dentry *dentry, const char *name) 776 { 777 int ret; 778 779 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 780 return 0; 781 /* 782 * SELinux and Smack integrate the cap call, 783 * so assume that all LSMs supplying this call do so. 784 */ 785 ret = call_int_hook(inode_removexattr, 1, dentry, name); 786 if (ret == 1) 787 ret = cap_inode_removexattr(dentry, name); 788 if (ret) 789 return ret; 790 ret = ima_inode_removexattr(dentry, name); 791 if (ret) 792 return ret; 793 return evm_inode_removexattr(dentry, name); 794 } 795 796 int security_inode_need_killpriv(struct dentry *dentry) 797 { 798 return call_int_hook(inode_need_killpriv, 0, dentry); 799 } 800 801 int security_inode_killpriv(struct dentry *dentry) 802 { 803 return call_int_hook(inode_killpriv, 0, dentry); 804 } 805 806 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 807 { 808 struct security_hook_list *hp; 809 int rc; 810 811 if (unlikely(IS_PRIVATE(inode))) 812 return -EOPNOTSUPP; 813 /* 814 * Only one module will provide an attribute with a given name. 815 */ 816 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 817 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 818 if (rc != -EOPNOTSUPP) 819 return rc; 820 } 821 return -EOPNOTSUPP; 822 } 823 824 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 825 { 826 struct security_hook_list *hp; 827 int rc; 828 829 if (unlikely(IS_PRIVATE(inode))) 830 return -EOPNOTSUPP; 831 /* 832 * Only one module will provide an attribute with a given name. 833 */ 834 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 835 rc = hp->hook.inode_setsecurity(inode, name, value, size, 836 flags); 837 if (rc != -EOPNOTSUPP) 838 return rc; 839 } 840 return -EOPNOTSUPP; 841 } 842 843 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 844 { 845 if (unlikely(IS_PRIVATE(inode))) 846 return 0; 847 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 848 } 849 EXPORT_SYMBOL(security_inode_listsecurity); 850 851 void security_inode_getsecid(struct inode *inode, u32 *secid) 852 { 853 call_void_hook(inode_getsecid, inode, secid); 854 } 855 856 int security_inode_copy_up(struct dentry *src, struct cred **new) 857 { 858 return call_int_hook(inode_copy_up, 0, src, new); 859 } 860 EXPORT_SYMBOL(security_inode_copy_up); 861 862 int security_inode_copy_up_xattr(const char *name) 863 { 864 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 865 } 866 EXPORT_SYMBOL(security_inode_copy_up_xattr); 867 868 int security_file_permission(struct file *file, int mask) 869 { 870 int ret; 871 872 ret = call_int_hook(file_permission, 0, file, mask); 873 if (ret) 874 return ret; 875 876 return fsnotify_perm(file, mask); 877 } 878 879 int security_file_alloc(struct file *file) 880 { 881 return call_int_hook(file_alloc_security, 0, file); 882 } 883 884 void security_file_free(struct file *file) 885 { 886 call_void_hook(file_free_security, file); 887 } 888 889 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 890 { 891 return call_int_hook(file_ioctl, 0, file, cmd, arg); 892 } 893 894 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 895 { 896 /* 897 * Does we have PROT_READ and does the application expect 898 * it to imply PROT_EXEC? If not, nothing to talk about... 899 */ 900 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 901 return prot; 902 if (!(current->personality & READ_IMPLIES_EXEC)) 903 return prot; 904 /* 905 * if that's an anonymous mapping, let it. 906 */ 907 if (!file) 908 return prot | PROT_EXEC; 909 /* 910 * ditto if it's not on noexec mount, except that on !MMU we need 911 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 912 */ 913 if (!path_noexec(&file->f_path)) { 914 #ifndef CONFIG_MMU 915 if (file->f_op->mmap_capabilities) { 916 unsigned caps = file->f_op->mmap_capabilities(file); 917 if (!(caps & NOMMU_MAP_EXEC)) 918 return prot; 919 } 920 #endif 921 return prot | PROT_EXEC; 922 } 923 /* anything on noexec mount won't get PROT_EXEC */ 924 return prot; 925 } 926 927 int security_mmap_file(struct file *file, unsigned long prot, 928 unsigned long flags) 929 { 930 int ret; 931 ret = call_int_hook(mmap_file, 0, file, prot, 932 mmap_prot(file, prot), flags); 933 if (ret) 934 return ret; 935 return ima_file_mmap(file, prot); 936 } 937 938 int security_mmap_addr(unsigned long addr) 939 { 940 return call_int_hook(mmap_addr, 0, addr); 941 } 942 943 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 944 unsigned long prot) 945 { 946 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 947 } 948 949 int security_file_lock(struct file *file, unsigned int cmd) 950 { 951 return call_int_hook(file_lock, 0, file, cmd); 952 } 953 954 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 955 { 956 return call_int_hook(file_fcntl, 0, file, cmd, arg); 957 } 958 959 void security_file_set_fowner(struct file *file) 960 { 961 call_void_hook(file_set_fowner, file); 962 } 963 964 int security_file_send_sigiotask(struct task_struct *tsk, 965 struct fown_struct *fown, int sig) 966 { 967 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 968 } 969 970 int security_file_receive(struct file *file) 971 { 972 return call_int_hook(file_receive, 0, file); 973 } 974 975 int security_file_open(struct file *file) 976 { 977 int ret; 978 979 ret = call_int_hook(file_open, 0, file); 980 if (ret) 981 return ret; 982 983 return fsnotify_perm(file, MAY_OPEN); 984 } 985 986 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 987 { 988 return call_int_hook(task_alloc, 0, task, clone_flags); 989 } 990 991 void security_task_free(struct task_struct *task) 992 { 993 call_void_hook(task_free, task); 994 } 995 996 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 997 { 998 return call_int_hook(cred_alloc_blank, 0, cred, gfp); 999 } 1000 1001 void security_cred_free(struct cred *cred) 1002 { 1003 call_void_hook(cred_free, cred); 1004 } 1005 1006 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1007 { 1008 return call_int_hook(cred_prepare, 0, new, old, gfp); 1009 } 1010 1011 void security_transfer_creds(struct cred *new, const struct cred *old) 1012 { 1013 call_void_hook(cred_transfer, new, old); 1014 } 1015 1016 void security_cred_getsecid(const struct cred *c, u32 *secid) 1017 { 1018 *secid = 0; 1019 call_void_hook(cred_getsecid, c, secid); 1020 } 1021 EXPORT_SYMBOL(security_cred_getsecid); 1022 1023 int security_kernel_act_as(struct cred *new, u32 secid) 1024 { 1025 return call_int_hook(kernel_act_as, 0, new, secid); 1026 } 1027 1028 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1029 { 1030 return call_int_hook(kernel_create_files_as, 0, new, inode); 1031 } 1032 1033 int security_kernel_module_request(char *kmod_name) 1034 { 1035 int ret; 1036 1037 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1038 if (ret) 1039 return ret; 1040 return integrity_kernel_module_request(kmod_name); 1041 } 1042 1043 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1044 { 1045 int ret; 1046 1047 ret = call_int_hook(kernel_read_file, 0, file, id); 1048 if (ret) 1049 return ret; 1050 return ima_read_file(file, id); 1051 } 1052 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1053 1054 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1055 enum kernel_read_file_id id) 1056 { 1057 int ret; 1058 1059 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1060 if (ret) 1061 return ret; 1062 return ima_post_read_file(file, buf, size, id); 1063 } 1064 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1065 1066 int security_kernel_load_data(enum kernel_load_data_id id) 1067 { 1068 int ret; 1069 1070 ret = call_int_hook(kernel_load_data, 0, id); 1071 if (ret) 1072 return ret; 1073 return ima_load_data(id); 1074 } 1075 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1076 1077 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1078 int flags) 1079 { 1080 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1081 } 1082 1083 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1084 { 1085 return call_int_hook(task_setpgid, 0, p, pgid); 1086 } 1087 1088 int security_task_getpgid(struct task_struct *p) 1089 { 1090 return call_int_hook(task_getpgid, 0, p); 1091 } 1092 1093 int security_task_getsid(struct task_struct *p) 1094 { 1095 return call_int_hook(task_getsid, 0, p); 1096 } 1097 1098 void security_task_getsecid(struct task_struct *p, u32 *secid) 1099 { 1100 *secid = 0; 1101 call_void_hook(task_getsecid, p, secid); 1102 } 1103 EXPORT_SYMBOL(security_task_getsecid); 1104 1105 int security_task_setnice(struct task_struct *p, int nice) 1106 { 1107 return call_int_hook(task_setnice, 0, p, nice); 1108 } 1109 1110 int security_task_setioprio(struct task_struct *p, int ioprio) 1111 { 1112 return call_int_hook(task_setioprio, 0, p, ioprio); 1113 } 1114 1115 int security_task_getioprio(struct task_struct *p) 1116 { 1117 return call_int_hook(task_getioprio, 0, p); 1118 } 1119 1120 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1121 unsigned int flags) 1122 { 1123 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1124 } 1125 1126 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1127 struct rlimit *new_rlim) 1128 { 1129 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1130 } 1131 1132 int security_task_setscheduler(struct task_struct *p) 1133 { 1134 return call_int_hook(task_setscheduler, 0, p); 1135 } 1136 1137 int security_task_getscheduler(struct task_struct *p) 1138 { 1139 return call_int_hook(task_getscheduler, 0, p); 1140 } 1141 1142 int security_task_movememory(struct task_struct *p) 1143 { 1144 return call_int_hook(task_movememory, 0, p); 1145 } 1146 1147 int security_task_kill(struct task_struct *p, struct siginfo *info, 1148 int sig, const struct cred *cred) 1149 { 1150 return call_int_hook(task_kill, 0, p, info, sig, cred); 1151 } 1152 1153 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1154 unsigned long arg4, unsigned long arg5) 1155 { 1156 int thisrc; 1157 int rc = -ENOSYS; 1158 struct security_hook_list *hp; 1159 1160 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1161 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1162 if (thisrc != -ENOSYS) { 1163 rc = thisrc; 1164 if (thisrc != 0) 1165 break; 1166 } 1167 } 1168 return rc; 1169 } 1170 1171 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1172 { 1173 call_void_hook(task_to_inode, p, inode); 1174 } 1175 1176 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1177 { 1178 return call_int_hook(ipc_permission, 0, ipcp, flag); 1179 } 1180 1181 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1182 { 1183 *secid = 0; 1184 call_void_hook(ipc_getsecid, ipcp, secid); 1185 } 1186 1187 int security_msg_msg_alloc(struct msg_msg *msg) 1188 { 1189 return call_int_hook(msg_msg_alloc_security, 0, msg); 1190 } 1191 1192 void security_msg_msg_free(struct msg_msg *msg) 1193 { 1194 call_void_hook(msg_msg_free_security, msg); 1195 } 1196 1197 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1198 { 1199 return call_int_hook(msg_queue_alloc_security, 0, msq); 1200 } 1201 1202 void security_msg_queue_free(struct kern_ipc_perm *msq) 1203 { 1204 call_void_hook(msg_queue_free_security, msq); 1205 } 1206 1207 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1208 { 1209 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1210 } 1211 1212 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1213 { 1214 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1215 } 1216 1217 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1218 struct msg_msg *msg, int msqflg) 1219 { 1220 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1221 } 1222 1223 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1224 struct task_struct *target, long type, int mode) 1225 { 1226 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1227 } 1228 1229 int security_shm_alloc(struct kern_ipc_perm *shp) 1230 { 1231 return call_int_hook(shm_alloc_security, 0, shp); 1232 } 1233 1234 void security_shm_free(struct kern_ipc_perm *shp) 1235 { 1236 call_void_hook(shm_free_security, shp); 1237 } 1238 1239 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1240 { 1241 return call_int_hook(shm_associate, 0, shp, shmflg); 1242 } 1243 1244 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1245 { 1246 return call_int_hook(shm_shmctl, 0, shp, cmd); 1247 } 1248 1249 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1250 { 1251 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1252 } 1253 1254 int security_sem_alloc(struct kern_ipc_perm *sma) 1255 { 1256 return call_int_hook(sem_alloc_security, 0, sma); 1257 } 1258 1259 void security_sem_free(struct kern_ipc_perm *sma) 1260 { 1261 call_void_hook(sem_free_security, sma); 1262 } 1263 1264 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1265 { 1266 return call_int_hook(sem_associate, 0, sma, semflg); 1267 } 1268 1269 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1270 { 1271 return call_int_hook(sem_semctl, 0, sma, cmd); 1272 } 1273 1274 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1275 unsigned nsops, int alter) 1276 { 1277 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1278 } 1279 1280 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1281 { 1282 if (unlikely(inode && IS_PRIVATE(inode))) 1283 return; 1284 call_void_hook(d_instantiate, dentry, inode); 1285 } 1286 EXPORT_SYMBOL(security_d_instantiate); 1287 1288 int security_getprocattr(struct task_struct *p, char *name, char **value) 1289 { 1290 return call_int_hook(getprocattr, -EINVAL, p, name, value); 1291 } 1292 1293 int security_setprocattr(const char *name, void *value, size_t size) 1294 { 1295 return call_int_hook(setprocattr, -EINVAL, name, value, size); 1296 } 1297 1298 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1299 { 1300 return call_int_hook(netlink_send, 0, sk, skb); 1301 } 1302 1303 int security_ismaclabel(const char *name) 1304 { 1305 return call_int_hook(ismaclabel, 0, name); 1306 } 1307 EXPORT_SYMBOL(security_ismaclabel); 1308 1309 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1310 { 1311 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1312 seclen); 1313 } 1314 EXPORT_SYMBOL(security_secid_to_secctx); 1315 1316 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1317 { 1318 *secid = 0; 1319 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1320 } 1321 EXPORT_SYMBOL(security_secctx_to_secid); 1322 1323 void security_release_secctx(char *secdata, u32 seclen) 1324 { 1325 call_void_hook(release_secctx, secdata, seclen); 1326 } 1327 EXPORT_SYMBOL(security_release_secctx); 1328 1329 void security_inode_invalidate_secctx(struct inode *inode) 1330 { 1331 call_void_hook(inode_invalidate_secctx, inode); 1332 } 1333 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1334 1335 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1336 { 1337 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1338 } 1339 EXPORT_SYMBOL(security_inode_notifysecctx); 1340 1341 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1342 { 1343 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1344 } 1345 EXPORT_SYMBOL(security_inode_setsecctx); 1346 1347 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1348 { 1349 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1350 } 1351 EXPORT_SYMBOL(security_inode_getsecctx); 1352 1353 #ifdef CONFIG_SECURITY_NETWORK 1354 1355 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1356 { 1357 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1358 } 1359 EXPORT_SYMBOL(security_unix_stream_connect); 1360 1361 int security_unix_may_send(struct socket *sock, struct socket *other) 1362 { 1363 return call_int_hook(unix_may_send, 0, sock, other); 1364 } 1365 EXPORT_SYMBOL(security_unix_may_send); 1366 1367 int security_socket_create(int family, int type, int protocol, int kern) 1368 { 1369 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1370 } 1371 1372 int security_socket_post_create(struct socket *sock, int family, 1373 int type, int protocol, int kern) 1374 { 1375 return call_int_hook(socket_post_create, 0, sock, family, type, 1376 protocol, kern); 1377 } 1378 1379 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1380 { 1381 return call_int_hook(socket_socketpair, 0, socka, sockb); 1382 } 1383 EXPORT_SYMBOL(security_socket_socketpair); 1384 1385 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1386 { 1387 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1388 } 1389 1390 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1391 { 1392 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1393 } 1394 1395 int security_socket_listen(struct socket *sock, int backlog) 1396 { 1397 return call_int_hook(socket_listen, 0, sock, backlog); 1398 } 1399 1400 int security_socket_accept(struct socket *sock, struct socket *newsock) 1401 { 1402 return call_int_hook(socket_accept, 0, sock, newsock); 1403 } 1404 1405 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1406 { 1407 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1408 } 1409 1410 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1411 int size, int flags) 1412 { 1413 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1414 } 1415 1416 int security_socket_getsockname(struct socket *sock) 1417 { 1418 return call_int_hook(socket_getsockname, 0, sock); 1419 } 1420 1421 int security_socket_getpeername(struct socket *sock) 1422 { 1423 return call_int_hook(socket_getpeername, 0, sock); 1424 } 1425 1426 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1427 { 1428 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1429 } 1430 1431 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1432 { 1433 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1434 } 1435 1436 int security_socket_shutdown(struct socket *sock, int how) 1437 { 1438 return call_int_hook(socket_shutdown, 0, sock, how); 1439 } 1440 1441 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1442 { 1443 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 1444 } 1445 EXPORT_SYMBOL(security_sock_rcv_skb); 1446 1447 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1448 int __user *optlen, unsigned len) 1449 { 1450 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 1451 optval, optlen, len); 1452 } 1453 1454 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1455 { 1456 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 1457 skb, secid); 1458 } 1459 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1460 1461 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1462 { 1463 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 1464 } 1465 1466 void security_sk_free(struct sock *sk) 1467 { 1468 call_void_hook(sk_free_security, sk); 1469 } 1470 1471 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1472 { 1473 call_void_hook(sk_clone_security, sk, newsk); 1474 } 1475 EXPORT_SYMBOL(security_sk_clone); 1476 1477 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1478 { 1479 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 1480 } 1481 EXPORT_SYMBOL(security_sk_classify_flow); 1482 1483 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1484 { 1485 call_void_hook(req_classify_flow, req, fl); 1486 } 1487 EXPORT_SYMBOL(security_req_classify_flow); 1488 1489 void security_sock_graft(struct sock *sk, struct socket *parent) 1490 { 1491 call_void_hook(sock_graft, sk, parent); 1492 } 1493 EXPORT_SYMBOL(security_sock_graft); 1494 1495 int security_inet_conn_request(struct sock *sk, 1496 struct sk_buff *skb, struct request_sock *req) 1497 { 1498 return call_int_hook(inet_conn_request, 0, sk, skb, req); 1499 } 1500 EXPORT_SYMBOL(security_inet_conn_request); 1501 1502 void security_inet_csk_clone(struct sock *newsk, 1503 const struct request_sock *req) 1504 { 1505 call_void_hook(inet_csk_clone, newsk, req); 1506 } 1507 1508 void security_inet_conn_established(struct sock *sk, 1509 struct sk_buff *skb) 1510 { 1511 call_void_hook(inet_conn_established, sk, skb); 1512 } 1513 EXPORT_SYMBOL(security_inet_conn_established); 1514 1515 int security_secmark_relabel_packet(u32 secid) 1516 { 1517 return call_int_hook(secmark_relabel_packet, 0, secid); 1518 } 1519 EXPORT_SYMBOL(security_secmark_relabel_packet); 1520 1521 void security_secmark_refcount_inc(void) 1522 { 1523 call_void_hook(secmark_refcount_inc); 1524 } 1525 EXPORT_SYMBOL(security_secmark_refcount_inc); 1526 1527 void security_secmark_refcount_dec(void) 1528 { 1529 call_void_hook(secmark_refcount_dec); 1530 } 1531 EXPORT_SYMBOL(security_secmark_refcount_dec); 1532 1533 int security_tun_dev_alloc_security(void **security) 1534 { 1535 return call_int_hook(tun_dev_alloc_security, 0, security); 1536 } 1537 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1538 1539 void security_tun_dev_free_security(void *security) 1540 { 1541 call_void_hook(tun_dev_free_security, security); 1542 } 1543 EXPORT_SYMBOL(security_tun_dev_free_security); 1544 1545 int security_tun_dev_create(void) 1546 { 1547 return call_int_hook(tun_dev_create, 0); 1548 } 1549 EXPORT_SYMBOL(security_tun_dev_create); 1550 1551 int security_tun_dev_attach_queue(void *security) 1552 { 1553 return call_int_hook(tun_dev_attach_queue, 0, security); 1554 } 1555 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1556 1557 int security_tun_dev_attach(struct sock *sk, void *security) 1558 { 1559 return call_int_hook(tun_dev_attach, 0, sk, security); 1560 } 1561 EXPORT_SYMBOL(security_tun_dev_attach); 1562 1563 int security_tun_dev_open(void *security) 1564 { 1565 return call_int_hook(tun_dev_open, 0, security); 1566 } 1567 EXPORT_SYMBOL(security_tun_dev_open); 1568 1569 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 1570 { 1571 return call_int_hook(sctp_assoc_request, 0, ep, skb); 1572 } 1573 EXPORT_SYMBOL(security_sctp_assoc_request); 1574 1575 int security_sctp_bind_connect(struct sock *sk, int optname, 1576 struct sockaddr *address, int addrlen) 1577 { 1578 return call_int_hook(sctp_bind_connect, 0, sk, optname, 1579 address, addrlen); 1580 } 1581 EXPORT_SYMBOL(security_sctp_bind_connect); 1582 1583 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 1584 struct sock *newsk) 1585 { 1586 call_void_hook(sctp_sk_clone, ep, sk, newsk); 1587 } 1588 EXPORT_SYMBOL(security_sctp_sk_clone); 1589 1590 #endif /* CONFIG_SECURITY_NETWORK */ 1591 1592 #ifdef CONFIG_SECURITY_INFINIBAND 1593 1594 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 1595 { 1596 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 1597 } 1598 EXPORT_SYMBOL(security_ib_pkey_access); 1599 1600 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 1601 { 1602 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 1603 } 1604 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 1605 1606 int security_ib_alloc_security(void **sec) 1607 { 1608 return call_int_hook(ib_alloc_security, 0, sec); 1609 } 1610 EXPORT_SYMBOL(security_ib_alloc_security); 1611 1612 void security_ib_free_security(void *sec) 1613 { 1614 call_void_hook(ib_free_security, sec); 1615 } 1616 EXPORT_SYMBOL(security_ib_free_security); 1617 #endif /* CONFIG_SECURITY_INFINIBAND */ 1618 1619 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1620 1621 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1622 struct xfrm_user_sec_ctx *sec_ctx, 1623 gfp_t gfp) 1624 { 1625 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 1626 } 1627 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1628 1629 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1630 struct xfrm_sec_ctx **new_ctxp) 1631 { 1632 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 1633 } 1634 1635 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1636 { 1637 call_void_hook(xfrm_policy_free_security, ctx); 1638 } 1639 EXPORT_SYMBOL(security_xfrm_policy_free); 1640 1641 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1642 { 1643 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 1644 } 1645 1646 int security_xfrm_state_alloc(struct xfrm_state *x, 1647 struct xfrm_user_sec_ctx *sec_ctx) 1648 { 1649 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 1650 } 1651 EXPORT_SYMBOL(security_xfrm_state_alloc); 1652 1653 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1654 struct xfrm_sec_ctx *polsec, u32 secid) 1655 { 1656 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 1657 } 1658 1659 int security_xfrm_state_delete(struct xfrm_state *x) 1660 { 1661 return call_int_hook(xfrm_state_delete_security, 0, x); 1662 } 1663 EXPORT_SYMBOL(security_xfrm_state_delete); 1664 1665 void security_xfrm_state_free(struct xfrm_state *x) 1666 { 1667 call_void_hook(xfrm_state_free_security, x); 1668 } 1669 1670 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1671 { 1672 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 1673 } 1674 1675 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1676 struct xfrm_policy *xp, 1677 const struct flowi *fl) 1678 { 1679 struct security_hook_list *hp; 1680 int rc = 1; 1681 1682 /* 1683 * Since this function is expected to return 0 or 1, the judgment 1684 * becomes difficult if multiple LSMs supply this call. Fortunately, 1685 * we can use the first LSM's judgment because currently only SELinux 1686 * supplies this call. 1687 * 1688 * For speed optimization, we explicitly break the loop rather than 1689 * using the macro 1690 */ 1691 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 1692 list) { 1693 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 1694 break; 1695 } 1696 return rc; 1697 } 1698 1699 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1700 { 1701 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 1702 } 1703 1704 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1705 { 1706 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 1707 0); 1708 1709 BUG_ON(rc); 1710 } 1711 EXPORT_SYMBOL(security_skb_classify_flow); 1712 1713 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1714 1715 #ifdef CONFIG_KEYS 1716 1717 int security_key_alloc(struct key *key, const struct cred *cred, 1718 unsigned long flags) 1719 { 1720 return call_int_hook(key_alloc, 0, key, cred, flags); 1721 } 1722 1723 void security_key_free(struct key *key) 1724 { 1725 call_void_hook(key_free, key); 1726 } 1727 1728 int security_key_permission(key_ref_t key_ref, 1729 const struct cred *cred, unsigned perm) 1730 { 1731 return call_int_hook(key_permission, 0, key_ref, cred, perm); 1732 } 1733 1734 int security_key_getsecurity(struct key *key, char **_buffer) 1735 { 1736 *_buffer = NULL; 1737 return call_int_hook(key_getsecurity, 0, key, _buffer); 1738 } 1739 1740 #endif /* CONFIG_KEYS */ 1741 1742 #ifdef CONFIG_AUDIT 1743 1744 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1745 { 1746 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 1747 } 1748 1749 int security_audit_rule_known(struct audit_krule *krule) 1750 { 1751 return call_int_hook(audit_rule_known, 0, krule); 1752 } 1753 1754 void security_audit_rule_free(void *lsmrule) 1755 { 1756 call_void_hook(audit_rule_free, lsmrule); 1757 } 1758 1759 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1760 struct audit_context *actx) 1761 { 1762 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule, 1763 actx); 1764 } 1765 #endif /* CONFIG_AUDIT */ 1766 1767 #ifdef CONFIG_BPF_SYSCALL 1768 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 1769 { 1770 return call_int_hook(bpf, 0, cmd, attr, size); 1771 } 1772 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 1773 { 1774 return call_int_hook(bpf_map, 0, map, fmode); 1775 } 1776 int security_bpf_prog(struct bpf_prog *prog) 1777 { 1778 return call_int_hook(bpf_prog, 0, prog); 1779 } 1780 int security_bpf_map_alloc(struct bpf_map *map) 1781 { 1782 return call_int_hook(bpf_map_alloc_security, 0, map); 1783 } 1784 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 1785 { 1786 return call_int_hook(bpf_prog_alloc_security, 0, aux); 1787 } 1788 void security_bpf_map_free(struct bpf_map *map) 1789 { 1790 call_void_hook(bpf_map_free_security, map); 1791 } 1792 void security_bpf_prog_free(struct bpf_prog_aux *aux) 1793 { 1794 call_void_hook(bpf_prog_free_security, aux); 1795 } 1796 #endif /* CONFIG_BPF_SYSCALL */ 1797