1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/mman.h> 23 #include <linux/mount.h> 24 #include <linux/personality.h> 25 #include <linux/backing-dev.h> 26 #include <linux/string.h> 27 #include <linux/xattr.h> 28 #include <linux/msg.h> 29 #include <linux/overflow.h> 30 #include <linux/perf_event.h> 31 #include <linux/fs.h> 32 #include <net/flow.h> 33 #include <net/sock.h> 34 35 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX 36 37 /* 38 * Identifier for the LSM static calls. 39 * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h 40 * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT 41 */ 42 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX 43 44 /* 45 * Call the macro M for each LSM hook MAX_LSM_COUNT times. 46 */ 47 #define LSM_LOOP_UNROLL(M, ...) \ 48 do { \ 49 UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \ 50 } while (0) 51 52 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) 53 54 /* 55 * These are descriptions of the reasons that can be passed to the 56 * security_locked_down() LSM hook. Placing this array here allows 57 * all security modules to use the same descriptions for auditing 58 * purposes. 59 */ 60 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 61 [LOCKDOWN_NONE] = "none", 62 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 63 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 64 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 65 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 66 [LOCKDOWN_HIBERNATION] = "hibernation", 67 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 68 [LOCKDOWN_IOPORT] = "raw io port access", 69 [LOCKDOWN_MSR] = "raw MSR access", 70 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 71 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 72 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 73 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 74 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 75 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 76 [LOCKDOWN_DEBUGFS] = "debugfs access", 77 [LOCKDOWN_XMON_WR] = "xmon write access", 78 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 79 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 80 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 81 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 82 [LOCKDOWN_KCORE] = "/proc/kcore access", 83 [LOCKDOWN_KPROBES] = "use of kprobes", 84 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 85 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 86 [LOCKDOWN_PERF] = "unsafe use of perf", 87 [LOCKDOWN_TRACEFS] = "use of tracefs", 88 [LOCKDOWN_XMON_RW] = "xmon read and write access", 89 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 90 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 91 }; 92 93 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 94 95 static struct kmem_cache *lsm_file_cache; 96 static struct kmem_cache *lsm_inode_cache; 97 98 char *lsm_names; 99 static struct lsm_blob_sizes blob_sizes __ro_after_init; 100 101 /* Boot-time LSM user choice */ 102 static __initdata const char *chosen_lsm_order; 103 static __initdata const char *chosen_major_lsm; 104 105 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 106 107 /* Ordered list of LSMs to initialize. */ 108 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1]; 109 static __initdata struct lsm_info *exclusive; 110 111 #ifdef CONFIG_HAVE_STATIC_CALL 112 #define LSM_HOOK_TRAMP(NAME, NUM) \ 113 &STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM)) 114 #else 115 #define LSM_HOOK_TRAMP(NAME, NUM) NULL 116 #endif 117 118 /* 119 * Define static calls and static keys for each LSM hook. 120 */ 121 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \ 122 DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \ 123 *((RET(*)(__VA_ARGS__))NULL)); \ 124 DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM)); 125 126 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 127 LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__) 128 #include <linux/lsm_hook_defs.h> 129 #undef LSM_HOOK 130 #undef DEFINE_LSM_STATIC_CALL 131 132 /* 133 * Initialise a table of static calls for each LSM hook. 134 * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY) 135 * and a trampoline (STATIC_CALL_TRAMP) which are used to call 136 * __static_call_update when updating the static call. 137 * 138 * The static calls table is used by early LSMs, some architectures can fault on 139 * unaligned accesses and the fault handling code may not be ready by then. 140 * Thus, the static calls table should be aligned to avoid any unhandled faults 141 * in early init. 142 */ 143 struct lsm_static_calls_table 144 static_calls_table __ro_after_init __aligned(sizeof(u64)) = { 145 #define INIT_LSM_STATIC_CALL(NUM, NAME) \ 146 (struct lsm_static_call) { \ 147 .key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \ 148 .trampoline = LSM_HOOK_TRAMP(NAME, NUM), \ 149 .active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \ 150 }, 151 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 152 .NAME = { \ 153 LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \ 154 }, 155 #include <linux/lsm_hook_defs.h> 156 #undef LSM_HOOK 157 #undef INIT_LSM_STATIC_CALL 158 }; 159 160 static __initdata bool debug; 161 #define init_debug(...) \ 162 do { \ 163 if (debug) \ 164 pr_info(__VA_ARGS__); \ 165 } while (0) 166 167 static bool __init is_enabled(struct lsm_info *lsm) 168 { 169 if (!lsm->enabled) 170 return false; 171 172 return *lsm->enabled; 173 } 174 175 /* Mark an LSM's enabled flag. */ 176 static int lsm_enabled_true __initdata = 1; 177 static int lsm_enabled_false __initdata = 0; 178 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 179 { 180 /* 181 * When an LSM hasn't configured an enable variable, we can use 182 * a hard-coded location for storing the default enabled state. 183 */ 184 if (!lsm->enabled) { 185 if (enabled) 186 lsm->enabled = &lsm_enabled_true; 187 else 188 lsm->enabled = &lsm_enabled_false; 189 } else if (lsm->enabled == &lsm_enabled_true) { 190 if (!enabled) 191 lsm->enabled = &lsm_enabled_false; 192 } else if (lsm->enabled == &lsm_enabled_false) { 193 if (enabled) 194 lsm->enabled = &lsm_enabled_true; 195 } else { 196 *lsm->enabled = enabled; 197 } 198 } 199 200 /* Is an LSM already listed in the ordered LSMs list? */ 201 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 202 { 203 struct lsm_info **check; 204 205 for (check = ordered_lsms; *check; check++) 206 if (*check == lsm) 207 return true; 208 209 return false; 210 } 211 212 /* Append an LSM to the list of ordered LSMs to initialize. */ 213 static int last_lsm __initdata; 214 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 215 { 216 /* Ignore duplicate selections. */ 217 if (exists_ordered_lsm(lsm)) 218 return; 219 220 if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from)) 221 return; 222 223 /* Enable this LSM, if it is not already set. */ 224 if (!lsm->enabled) 225 lsm->enabled = &lsm_enabled_true; 226 ordered_lsms[last_lsm++] = lsm; 227 228 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 229 is_enabled(lsm) ? "enabled" : "disabled"); 230 } 231 232 /* Is an LSM allowed to be initialized? */ 233 static bool __init lsm_allowed(struct lsm_info *lsm) 234 { 235 /* Skip if the LSM is disabled. */ 236 if (!is_enabled(lsm)) 237 return false; 238 239 /* Not allowed if another exclusive LSM already initialized. */ 240 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 241 init_debug("exclusive disabled: %s\n", lsm->name); 242 return false; 243 } 244 245 return true; 246 } 247 248 static void __init lsm_set_blob_size(int *need, int *lbs) 249 { 250 int offset; 251 252 if (*need <= 0) 253 return; 254 255 offset = ALIGN(*lbs, sizeof(void *)); 256 *lbs = offset + *need; 257 *need = offset; 258 } 259 260 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 261 { 262 if (!needed) 263 return; 264 265 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 266 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 267 lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib); 268 /* 269 * The inode blob gets an rcu_head in addition to 270 * what the modules might need. 271 */ 272 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 273 blob_sizes.lbs_inode = sizeof(struct rcu_head); 274 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 275 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 276 lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key); 277 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 278 lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event); 279 lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock); 280 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 281 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 282 lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev); 283 lsm_set_blob_size(&needed->lbs_xattr_count, 284 &blob_sizes.lbs_xattr_count); 285 lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev); 286 lsm_set_blob_size(&needed->lbs_bpf_map, &blob_sizes.lbs_bpf_map); 287 lsm_set_blob_size(&needed->lbs_bpf_prog, &blob_sizes.lbs_bpf_prog); 288 lsm_set_blob_size(&needed->lbs_bpf_token, &blob_sizes.lbs_bpf_token); 289 } 290 291 /* Prepare LSM for initialization. */ 292 static void __init prepare_lsm(struct lsm_info *lsm) 293 { 294 int enabled = lsm_allowed(lsm); 295 296 /* Record enablement (to handle any following exclusive LSMs). */ 297 set_enabled(lsm, enabled); 298 299 /* If enabled, do pre-initialization work. */ 300 if (enabled) { 301 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 302 exclusive = lsm; 303 init_debug("exclusive chosen: %s\n", lsm->name); 304 } 305 306 lsm_set_blob_sizes(lsm->blobs); 307 } 308 } 309 310 /* Initialize a given LSM, if it is enabled. */ 311 static void __init initialize_lsm(struct lsm_info *lsm) 312 { 313 if (is_enabled(lsm)) { 314 int ret; 315 316 init_debug("initializing %s\n", lsm->name); 317 ret = lsm->init(); 318 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 319 } 320 } 321 322 /* 323 * Current index to use while initializing the lsm id list. 324 */ 325 u32 lsm_active_cnt __ro_after_init; 326 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT]; 327 328 /* Populate ordered LSMs list from comma-separated LSM name list. */ 329 static void __init ordered_lsm_parse(const char *order, const char *origin) 330 { 331 struct lsm_info *lsm; 332 char *sep, *name, *next; 333 334 /* LSM_ORDER_FIRST is always first. */ 335 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 336 if (lsm->order == LSM_ORDER_FIRST) 337 append_ordered_lsm(lsm, " first"); 338 } 339 340 /* Process "security=", if given. */ 341 if (chosen_major_lsm) { 342 struct lsm_info *major; 343 344 /* 345 * To match the original "security=" behavior, this 346 * explicitly does NOT fallback to another Legacy Major 347 * if the selected one was separately disabled: disable 348 * all non-matching Legacy Major LSMs. 349 */ 350 for (major = __start_lsm_info; major < __end_lsm_info; 351 major++) { 352 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 353 strcmp(major->name, chosen_major_lsm) != 0) { 354 set_enabled(major, false); 355 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 356 chosen_major_lsm, major->name); 357 } 358 } 359 } 360 361 sep = kstrdup(order, GFP_KERNEL); 362 next = sep; 363 /* Walk the list, looking for matching LSMs. */ 364 while ((name = strsep(&next, ",")) != NULL) { 365 bool found = false; 366 367 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 368 if (strcmp(lsm->name, name) == 0) { 369 if (lsm->order == LSM_ORDER_MUTABLE) 370 append_ordered_lsm(lsm, origin); 371 found = true; 372 } 373 } 374 375 if (!found) 376 init_debug("%s ignored: %s (not built into kernel)\n", 377 origin, name); 378 } 379 380 /* Process "security=", if given. */ 381 if (chosen_major_lsm) { 382 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 383 if (exists_ordered_lsm(lsm)) 384 continue; 385 if (strcmp(lsm->name, chosen_major_lsm) == 0) 386 append_ordered_lsm(lsm, "security="); 387 } 388 } 389 390 /* LSM_ORDER_LAST is always last. */ 391 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 392 if (lsm->order == LSM_ORDER_LAST) 393 append_ordered_lsm(lsm, " last"); 394 } 395 396 /* Disable all LSMs not in the ordered list. */ 397 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 398 if (exists_ordered_lsm(lsm)) 399 continue; 400 set_enabled(lsm, false); 401 init_debug("%s skipped: %s (not in requested order)\n", 402 origin, lsm->name); 403 } 404 405 kfree(sep); 406 } 407 408 static void __init lsm_static_call_init(struct security_hook_list *hl) 409 { 410 struct lsm_static_call *scall = hl->scalls; 411 int i; 412 413 for (i = 0; i < MAX_LSM_COUNT; i++) { 414 /* Update the first static call that is not used yet */ 415 if (!scall->hl) { 416 __static_call_update(scall->key, scall->trampoline, 417 hl->hook.lsm_func_addr); 418 scall->hl = hl; 419 static_branch_enable(scall->active); 420 return; 421 } 422 scall++; 423 } 424 panic("%s - Ran out of static slots.\n", __func__); 425 } 426 427 static void __init lsm_early_cred(struct cred *cred); 428 static void __init lsm_early_task(struct task_struct *task); 429 430 static int lsm_append(const char *new, char **result); 431 432 static void __init report_lsm_order(void) 433 { 434 struct lsm_info **lsm, *early; 435 int first = 0; 436 437 pr_info("initializing lsm="); 438 439 /* Report each enabled LSM name, comma separated. */ 440 for (early = __start_early_lsm_info; 441 early < __end_early_lsm_info; early++) 442 if (is_enabled(early)) 443 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 444 for (lsm = ordered_lsms; *lsm; lsm++) 445 if (is_enabled(*lsm)) 446 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 447 448 pr_cont("\n"); 449 } 450 451 static void __init ordered_lsm_init(void) 452 { 453 struct lsm_info **lsm; 454 455 if (chosen_lsm_order) { 456 if (chosen_major_lsm) { 457 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 458 chosen_major_lsm, chosen_lsm_order); 459 chosen_major_lsm = NULL; 460 } 461 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 462 } else 463 ordered_lsm_parse(builtin_lsm_order, "builtin"); 464 465 for (lsm = ordered_lsms; *lsm; lsm++) 466 prepare_lsm(*lsm); 467 468 report_lsm_order(); 469 470 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 471 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 472 init_debug("ib blob size = %d\n", blob_sizes.lbs_ib); 473 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 474 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 475 #ifdef CONFIG_KEYS 476 init_debug("key blob size = %d\n", blob_sizes.lbs_key); 477 #endif /* CONFIG_KEYS */ 478 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 479 init_debug("sock blob size = %d\n", blob_sizes.lbs_sock); 480 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 481 init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event); 482 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 483 init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev); 484 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 485 init_debug("bdev blob size = %d\n", blob_sizes.lbs_bdev); 486 init_debug("bpf map blob size = %d\n", blob_sizes.lbs_bpf_map); 487 init_debug("bpf prog blob size = %d\n", blob_sizes.lbs_bpf_prog); 488 init_debug("bpf token blob size = %d\n", blob_sizes.lbs_bpf_token); 489 490 /* 491 * Create any kmem_caches needed for blobs 492 */ 493 if (blob_sizes.lbs_file) 494 lsm_file_cache = kmem_cache_create("lsm_file_cache", 495 blob_sizes.lbs_file, 0, 496 SLAB_PANIC, NULL); 497 if (blob_sizes.lbs_inode) 498 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 499 blob_sizes.lbs_inode, 0, 500 SLAB_PANIC, NULL); 501 502 lsm_early_cred((struct cred *) current->cred); 503 lsm_early_task(current); 504 for (lsm = ordered_lsms; *lsm; lsm++) 505 initialize_lsm(*lsm); 506 } 507 508 int __init early_security_init(void) 509 { 510 struct lsm_info *lsm; 511 512 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 513 if (!lsm->enabled) 514 lsm->enabled = &lsm_enabled_true; 515 prepare_lsm(lsm); 516 initialize_lsm(lsm); 517 } 518 519 return 0; 520 } 521 522 /** 523 * security_init - initializes the security framework 524 * 525 * This should be called early in the kernel initialization sequence. 526 */ 527 int __init security_init(void) 528 { 529 struct lsm_info *lsm; 530 531 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 532 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 533 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 534 535 /* 536 * Append the names of the early LSM modules now that kmalloc() is 537 * available 538 */ 539 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 540 init_debug(" early started: %s (%s)\n", lsm->name, 541 is_enabled(lsm) ? "enabled" : "disabled"); 542 if (lsm->enabled) 543 lsm_append(lsm->name, &lsm_names); 544 } 545 546 /* Load LSMs in specified order. */ 547 ordered_lsm_init(); 548 549 return 0; 550 } 551 552 /* Save user chosen LSM */ 553 static int __init choose_major_lsm(char *str) 554 { 555 chosen_major_lsm = str; 556 return 1; 557 } 558 __setup("security=", choose_major_lsm); 559 560 /* Explicitly choose LSM initialization order. */ 561 static int __init choose_lsm_order(char *str) 562 { 563 chosen_lsm_order = str; 564 return 1; 565 } 566 __setup("lsm=", choose_lsm_order); 567 568 /* Enable LSM order debugging. */ 569 static int __init enable_debug(char *str) 570 { 571 debug = true; 572 return 1; 573 } 574 __setup("lsm.debug", enable_debug); 575 576 static bool match_last_lsm(const char *list, const char *lsm) 577 { 578 const char *last; 579 580 if (WARN_ON(!list || !lsm)) 581 return false; 582 last = strrchr(list, ','); 583 if (last) 584 /* Pass the comma, strcmp() will check for '\0' */ 585 last++; 586 else 587 last = list; 588 return !strcmp(last, lsm); 589 } 590 591 static int lsm_append(const char *new, char **result) 592 { 593 char *cp; 594 595 if (*result == NULL) { 596 *result = kstrdup(new, GFP_KERNEL); 597 if (*result == NULL) 598 return -ENOMEM; 599 } else { 600 /* Check if it is the last registered name */ 601 if (match_last_lsm(*result, new)) 602 return 0; 603 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 604 if (cp == NULL) 605 return -ENOMEM; 606 kfree(*result); 607 *result = cp; 608 } 609 return 0; 610 } 611 612 /** 613 * security_add_hooks - Add a modules hooks to the hook lists. 614 * @hooks: the hooks to add 615 * @count: the number of hooks to add 616 * @lsmid: the identification information for the security module 617 * 618 * Each LSM has to register its hooks with the infrastructure. 619 */ 620 void __init security_add_hooks(struct security_hook_list *hooks, int count, 621 const struct lsm_id *lsmid) 622 { 623 int i; 624 625 /* 626 * A security module may call security_add_hooks() more 627 * than once during initialization, and LSM initialization 628 * is serialized. Landlock is one such case. 629 * Look at the previous entry, if there is one, for duplication. 630 */ 631 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 632 if (lsm_active_cnt >= MAX_LSM_COUNT) 633 panic("%s Too many LSMs registered.\n", __func__); 634 lsm_idlist[lsm_active_cnt++] = lsmid; 635 } 636 637 for (i = 0; i < count; i++) { 638 hooks[i].lsmid = lsmid; 639 lsm_static_call_init(&hooks[i]); 640 } 641 642 /* 643 * Don't try to append during early_security_init(), we'll come back 644 * and fix this up afterwards. 645 */ 646 if (slab_is_available()) { 647 if (lsm_append(lsmid->name, &lsm_names) < 0) 648 panic("%s - Cannot get early memory.\n", __func__); 649 } 650 } 651 652 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 653 { 654 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 655 event, data); 656 } 657 EXPORT_SYMBOL(call_blocking_lsm_notifier); 658 659 int register_blocking_lsm_notifier(struct notifier_block *nb) 660 { 661 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 662 nb); 663 } 664 EXPORT_SYMBOL(register_blocking_lsm_notifier); 665 666 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 667 { 668 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 669 nb); 670 } 671 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 672 673 /** 674 * lsm_blob_alloc - allocate a composite blob 675 * @dest: the destination for the blob 676 * @size: the size of the blob 677 * @gfp: allocation type 678 * 679 * Allocate a blob for all the modules 680 * 681 * Returns 0, or -ENOMEM if memory can't be allocated. 682 */ 683 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp) 684 { 685 if (size == 0) { 686 *dest = NULL; 687 return 0; 688 } 689 690 *dest = kzalloc(size, gfp); 691 if (*dest == NULL) 692 return -ENOMEM; 693 return 0; 694 } 695 696 /** 697 * lsm_cred_alloc - allocate a composite cred blob 698 * @cred: the cred that needs a blob 699 * @gfp: allocation type 700 * 701 * Allocate the cred blob for all the modules 702 * 703 * Returns 0, or -ENOMEM if memory can't be allocated. 704 */ 705 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 706 { 707 return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp); 708 } 709 710 /** 711 * lsm_early_cred - during initialization allocate a composite cred blob 712 * @cred: the cred that needs a blob 713 * 714 * Allocate the cred blob for all the modules 715 */ 716 static void __init lsm_early_cred(struct cred *cred) 717 { 718 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 719 720 if (rc) 721 panic("%s: Early cred alloc failed.\n", __func__); 722 } 723 724 /** 725 * lsm_file_alloc - allocate a composite file blob 726 * @file: the file that needs a blob 727 * 728 * Allocate the file blob for all the modules 729 * 730 * Returns 0, or -ENOMEM if memory can't be allocated. 731 */ 732 static int lsm_file_alloc(struct file *file) 733 { 734 if (!lsm_file_cache) { 735 file->f_security = NULL; 736 return 0; 737 } 738 739 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 740 if (file->f_security == NULL) 741 return -ENOMEM; 742 return 0; 743 } 744 745 /** 746 * lsm_inode_alloc - allocate a composite inode blob 747 * @inode: the inode that needs a blob 748 * @gfp: allocation flags 749 * 750 * Allocate the inode blob for all the modules 751 * 752 * Returns 0, or -ENOMEM if memory can't be allocated. 753 */ 754 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp) 755 { 756 if (!lsm_inode_cache) { 757 inode->i_security = NULL; 758 return 0; 759 } 760 761 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp); 762 if (inode->i_security == NULL) 763 return -ENOMEM; 764 return 0; 765 } 766 767 /** 768 * lsm_task_alloc - allocate a composite task blob 769 * @task: the task that needs a blob 770 * 771 * Allocate the task blob for all the modules 772 * 773 * Returns 0, or -ENOMEM if memory can't be allocated. 774 */ 775 static int lsm_task_alloc(struct task_struct *task) 776 { 777 return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL); 778 } 779 780 /** 781 * lsm_ipc_alloc - allocate a composite ipc blob 782 * @kip: the ipc that needs a blob 783 * 784 * Allocate the ipc blob for all the modules 785 * 786 * Returns 0, or -ENOMEM if memory can't be allocated. 787 */ 788 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 789 { 790 return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL); 791 } 792 793 #ifdef CONFIG_KEYS 794 /** 795 * lsm_key_alloc - allocate a composite key blob 796 * @key: the key that needs a blob 797 * 798 * Allocate the key blob for all the modules 799 * 800 * Returns 0, or -ENOMEM if memory can't be allocated. 801 */ 802 static int lsm_key_alloc(struct key *key) 803 { 804 return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL); 805 } 806 #endif /* CONFIG_KEYS */ 807 808 /** 809 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 810 * @mp: the msg_msg that needs a blob 811 * 812 * Allocate the ipc blob for all the modules 813 * 814 * Returns 0, or -ENOMEM if memory can't be allocated. 815 */ 816 static int lsm_msg_msg_alloc(struct msg_msg *mp) 817 { 818 return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg, 819 GFP_KERNEL); 820 } 821 822 /** 823 * lsm_bdev_alloc - allocate a composite block_device blob 824 * @bdev: the block_device that needs a blob 825 * 826 * Allocate the block_device blob for all the modules 827 * 828 * Returns 0, or -ENOMEM if memory can't be allocated. 829 */ 830 static int lsm_bdev_alloc(struct block_device *bdev) 831 { 832 return lsm_blob_alloc(&bdev->bd_security, blob_sizes.lbs_bdev, 833 GFP_KERNEL); 834 } 835 836 #ifdef CONFIG_BPF_SYSCALL 837 /** 838 * lsm_bpf_map_alloc - allocate a composite bpf_map blob 839 * @map: the bpf_map that needs a blob 840 * 841 * Allocate the bpf_map blob for all the modules 842 * 843 * Returns 0, or -ENOMEM if memory can't be allocated. 844 */ 845 static int lsm_bpf_map_alloc(struct bpf_map *map) 846 { 847 return lsm_blob_alloc(&map->security, blob_sizes.lbs_bpf_map, GFP_KERNEL); 848 } 849 850 /** 851 * lsm_bpf_prog_alloc - allocate a composite bpf_prog blob 852 * @prog: the bpf_prog that needs a blob 853 * 854 * Allocate the bpf_prog blob for all the modules 855 * 856 * Returns 0, or -ENOMEM if memory can't be allocated. 857 */ 858 static int lsm_bpf_prog_alloc(struct bpf_prog *prog) 859 { 860 return lsm_blob_alloc(&prog->aux->security, blob_sizes.lbs_bpf_prog, GFP_KERNEL); 861 } 862 863 /** 864 * lsm_bpf_token_alloc - allocate a composite bpf_token blob 865 * @token: the bpf_token that needs a blob 866 * 867 * Allocate the bpf_token blob for all the modules 868 * 869 * Returns 0, or -ENOMEM if memory can't be allocated. 870 */ 871 static int lsm_bpf_token_alloc(struct bpf_token *token) 872 { 873 return lsm_blob_alloc(&token->security, blob_sizes.lbs_bpf_token, GFP_KERNEL); 874 } 875 #endif /* CONFIG_BPF_SYSCALL */ 876 877 /** 878 * lsm_early_task - during initialization allocate a composite task blob 879 * @task: the task that needs a blob 880 * 881 * Allocate the task blob for all the modules 882 */ 883 static void __init lsm_early_task(struct task_struct *task) 884 { 885 int rc = lsm_task_alloc(task); 886 887 if (rc) 888 panic("%s: Early task alloc failed.\n", __func__); 889 } 890 891 /** 892 * lsm_superblock_alloc - allocate a composite superblock blob 893 * @sb: the superblock that needs a blob 894 * 895 * Allocate the superblock blob for all the modules 896 * 897 * Returns 0, or -ENOMEM if memory can't be allocated. 898 */ 899 static int lsm_superblock_alloc(struct super_block *sb) 900 { 901 return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock, 902 GFP_KERNEL); 903 } 904 905 /** 906 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 907 * @uctx: a userspace LSM context to be filled 908 * @uctx_len: available uctx size (input), used uctx size (output) 909 * @val: the new LSM context value 910 * @val_len: the size of the new LSM context value 911 * @id: LSM id 912 * @flags: LSM defined flags 913 * 914 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL 915 * simply calculate the required size to output via @utc_len and return 916 * success. 917 * 918 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 919 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 920 */ 921 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len, 922 void *val, size_t val_len, 923 u64 id, u64 flags) 924 { 925 struct lsm_ctx *nctx = NULL; 926 size_t nctx_len; 927 int rc = 0; 928 929 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 930 if (nctx_len > *uctx_len) { 931 rc = -E2BIG; 932 goto out; 933 } 934 935 /* no buffer - return success/0 and set @uctx_len to the req size */ 936 if (!uctx) 937 goto out; 938 939 nctx = kzalloc(nctx_len, GFP_KERNEL); 940 if (nctx == NULL) { 941 rc = -ENOMEM; 942 goto out; 943 } 944 nctx->id = id; 945 nctx->flags = flags; 946 nctx->len = nctx_len; 947 nctx->ctx_len = val_len; 948 memcpy(nctx->ctx, val, val_len); 949 950 if (copy_to_user(uctx, nctx, nctx_len)) 951 rc = -EFAULT; 952 953 out: 954 kfree(nctx); 955 *uctx_len = nctx_len; 956 return rc; 957 } 958 959 /* 960 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 961 * can be accessed with: 962 * 963 * LSM_RET_DEFAULT(<hook_name>) 964 * 965 * The macros below define static constants for the default value of each 966 * LSM hook. 967 */ 968 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 969 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 970 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 971 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 972 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 973 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 974 975 #include <linux/lsm_hook_defs.h> 976 #undef LSM_HOOK 977 978 /* 979 * Hook list operation macros. 980 * 981 * call_void_hook: 982 * This is a hook that does not return a value. 983 * 984 * call_int_hook: 985 * This is a hook that returns a value. 986 */ 987 #define __CALL_STATIC_VOID(NUM, HOOK, ...) \ 988 do { \ 989 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \ 990 static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \ 991 } \ 992 } while (0); 993 994 #define call_void_hook(HOOK, ...) \ 995 do { \ 996 LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \ 997 } while (0) 998 999 1000 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \ 1001 do { \ 1002 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \ 1003 R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \ 1004 if (R != LSM_RET_DEFAULT(HOOK)) \ 1005 goto LABEL; \ 1006 } \ 1007 } while (0); 1008 1009 #define call_int_hook(HOOK, ...) \ 1010 ({ \ 1011 __label__ OUT; \ 1012 int RC = LSM_RET_DEFAULT(HOOK); \ 1013 \ 1014 LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \ 1015 OUT: \ 1016 RC; \ 1017 }) 1018 1019 #define lsm_for_each_hook(scall, NAME) \ 1020 for (scall = static_calls_table.NAME; \ 1021 scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \ 1022 if (static_key_enabled(&scall->active->key)) 1023 1024 /* Security operations */ 1025 1026 /** 1027 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 1028 * @mgr: task credentials of current binder process 1029 * 1030 * Check whether @mgr is allowed to be the binder context manager. 1031 * 1032 * Return: Return 0 if permission is granted. 1033 */ 1034 int security_binder_set_context_mgr(const struct cred *mgr) 1035 { 1036 return call_int_hook(binder_set_context_mgr, mgr); 1037 } 1038 1039 /** 1040 * security_binder_transaction() - Check if a binder transaction is allowed 1041 * @from: sending process 1042 * @to: receiving process 1043 * 1044 * Check whether @from is allowed to invoke a binder transaction call to @to. 1045 * 1046 * Return: Returns 0 if permission is granted. 1047 */ 1048 int security_binder_transaction(const struct cred *from, 1049 const struct cred *to) 1050 { 1051 return call_int_hook(binder_transaction, from, to); 1052 } 1053 1054 /** 1055 * security_binder_transfer_binder() - Check if a binder transfer is allowed 1056 * @from: sending process 1057 * @to: receiving process 1058 * 1059 * Check whether @from is allowed to transfer a binder reference to @to. 1060 * 1061 * Return: Returns 0 if permission is granted. 1062 */ 1063 int security_binder_transfer_binder(const struct cred *from, 1064 const struct cred *to) 1065 { 1066 return call_int_hook(binder_transfer_binder, from, to); 1067 } 1068 1069 /** 1070 * security_binder_transfer_file() - Check if a binder file xfer is allowed 1071 * @from: sending process 1072 * @to: receiving process 1073 * @file: file being transferred 1074 * 1075 * Check whether @from is allowed to transfer @file to @to. 1076 * 1077 * Return: Returns 0 if permission is granted. 1078 */ 1079 int security_binder_transfer_file(const struct cred *from, 1080 const struct cred *to, const struct file *file) 1081 { 1082 return call_int_hook(binder_transfer_file, from, to, file); 1083 } 1084 1085 /** 1086 * security_ptrace_access_check() - Check if tracing is allowed 1087 * @child: target process 1088 * @mode: PTRACE_MODE flags 1089 * 1090 * Check permission before allowing the current process to trace the @child 1091 * process. Security modules may also want to perform a process tracing check 1092 * during an execve in the set_security or apply_creds hooks of tracing check 1093 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 1094 * process is being traced and its security attributes would be changed by the 1095 * execve. 1096 * 1097 * Return: Returns 0 if permission is granted. 1098 */ 1099 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 1100 { 1101 return call_int_hook(ptrace_access_check, child, mode); 1102 } 1103 1104 /** 1105 * security_ptrace_traceme() - Check if tracing is allowed 1106 * @parent: tracing process 1107 * 1108 * Check that the @parent process has sufficient permission to trace the 1109 * current process before allowing the current process to present itself to the 1110 * @parent process for tracing. 1111 * 1112 * Return: Returns 0 if permission is granted. 1113 */ 1114 int security_ptrace_traceme(struct task_struct *parent) 1115 { 1116 return call_int_hook(ptrace_traceme, parent); 1117 } 1118 1119 /** 1120 * security_capget() - Get the capability sets for a process 1121 * @target: target process 1122 * @effective: effective capability set 1123 * @inheritable: inheritable capability set 1124 * @permitted: permitted capability set 1125 * 1126 * Get the @effective, @inheritable, and @permitted capability sets for the 1127 * @target process. The hook may also perform permission checking to determine 1128 * if the current process is allowed to see the capability sets of the @target 1129 * process. 1130 * 1131 * Return: Returns 0 if the capability sets were successfully obtained. 1132 */ 1133 int security_capget(const struct task_struct *target, 1134 kernel_cap_t *effective, 1135 kernel_cap_t *inheritable, 1136 kernel_cap_t *permitted) 1137 { 1138 return call_int_hook(capget, target, effective, inheritable, permitted); 1139 } 1140 1141 /** 1142 * security_capset() - Set the capability sets for a process 1143 * @new: new credentials for the target process 1144 * @old: current credentials of the target process 1145 * @effective: effective capability set 1146 * @inheritable: inheritable capability set 1147 * @permitted: permitted capability set 1148 * 1149 * Set the @effective, @inheritable, and @permitted capability sets for the 1150 * current process. 1151 * 1152 * Return: Returns 0 and update @new if permission is granted. 1153 */ 1154 int security_capset(struct cred *new, const struct cred *old, 1155 const kernel_cap_t *effective, 1156 const kernel_cap_t *inheritable, 1157 const kernel_cap_t *permitted) 1158 { 1159 return call_int_hook(capset, new, old, effective, inheritable, 1160 permitted); 1161 } 1162 1163 /** 1164 * security_capable() - Check if a process has the necessary capability 1165 * @cred: credentials to examine 1166 * @ns: user namespace 1167 * @cap: capability requested 1168 * @opts: capability check options 1169 * 1170 * Check whether the @tsk process has the @cap capability in the indicated 1171 * credentials. @cap contains the capability <include/linux/capability.h>. 1172 * @opts contains options for the capable check <include/linux/security.h>. 1173 * 1174 * Return: Returns 0 if the capability is granted. 1175 */ 1176 int security_capable(const struct cred *cred, 1177 struct user_namespace *ns, 1178 int cap, 1179 unsigned int opts) 1180 { 1181 return call_int_hook(capable, cred, ns, cap, opts); 1182 } 1183 1184 /** 1185 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1186 * @cmds: commands 1187 * @type: type 1188 * @id: id 1189 * @sb: filesystem 1190 * 1191 * Check whether the quotactl syscall is allowed for this @sb. 1192 * 1193 * Return: Returns 0 if permission is granted. 1194 */ 1195 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1196 { 1197 return call_int_hook(quotactl, cmds, type, id, sb); 1198 } 1199 1200 /** 1201 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1202 * @dentry: dentry 1203 * 1204 * Check whether QUOTAON is allowed for @dentry. 1205 * 1206 * Return: Returns 0 if permission is granted. 1207 */ 1208 int security_quota_on(struct dentry *dentry) 1209 { 1210 return call_int_hook(quota_on, dentry); 1211 } 1212 1213 /** 1214 * security_syslog() - Check if accessing the kernel message ring is allowed 1215 * @type: SYSLOG_ACTION_* type 1216 * 1217 * Check permission before accessing the kernel message ring or changing 1218 * logging to the console. See the syslog(2) manual page for an explanation of 1219 * the @type values. 1220 * 1221 * Return: Return 0 if permission is granted. 1222 */ 1223 int security_syslog(int type) 1224 { 1225 return call_int_hook(syslog, type); 1226 } 1227 1228 /** 1229 * security_settime64() - Check if changing the system time is allowed 1230 * @ts: new time 1231 * @tz: timezone 1232 * 1233 * Check permission to change the system time, struct timespec64 is defined in 1234 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1235 * 1236 * Return: Returns 0 if permission is granted. 1237 */ 1238 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1239 { 1240 return call_int_hook(settime, ts, tz); 1241 } 1242 1243 /** 1244 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1245 * @mm: mm struct 1246 * @pages: number of pages 1247 * 1248 * Check permissions for allocating a new virtual mapping. If all LSMs return 1249 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1250 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1251 * called with cap_sys_admin cleared. 1252 * 1253 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1254 * caller. 1255 */ 1256 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1257 { 1258 struct lsm_static_call *scall; 1259 int cap_sys_admin = 1; 1260 int rc; 1261 1262 /* 1263 * The module will respond with 0 if it thinks the __vm_enough_memory() 1264 * call should be made with the cap_sys_admin set. If all of the modules 1265 * agree that it should be set it will. If any module thinks it should 1266 * not be set it won't. 1267 */ 1268 lsm_for_each_hook(scall, vm_enough_memory) { 1269 rc = scall->hl->hook.vm_enough_memory(mm, pages); 1270 if (rc < 0) { 1271 cap_sys_admin = 0; 1272 break; 1273 } 1274 } 1275 return __vm_enough_memory(mm, pages, cap_sys_admin); 1276 } 1277 1278 /** 1279 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1280 * @bprm: binary program information 1281 * 1282 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1283 * properly for executing @bprm->file, update the LSM's portion of 1284 * @bprm->cred->security to be what commit_creds needs to install for the new 1285 * program. This hook may also optionally check permissions (e.g. for 1286 * transitions between security domains). The hook must set @bprm->secureexec 1287 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1288 * contains the linux_binprm structure. 1289 * 1290 * If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is 1291 * set. The result must be the same as without this flag even if the execution 1292 * will never really happen and @bprm will always be dropped. 1293 * 1294 * This hook must not change current->cred, only @bprm->cred. 1295 * 1296 * Return: Returns 0 if the hook is successful and permission is granted. 1297 */ 1298 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1299 { 1300 return call_int_hook(bprm_creds_for_exec, bprm); 1301 } 1302 1303 /** 1304 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1305 * @bprm: binary program information 1306 * @file: associated file 1307 * 1308 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1309 * exec, update @bprm->cred to reflect that change. This is called after 1310 * finding the binary that will be executed without an interpreter. This 1311 * ensures that the credentials will not be derived from a script that the 1312 * binary will need to reopen, which when reopend may end up being a completely 1313 * different file. This hook may also optionally check permissions (e.g. for 1314 * transitions between security domains). The hook must set @bprm->secureexec 1315 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1316 * hook must add to @bprm->per_clear any personality flags that should be 1317 * cleared from current->personality. @bprm contains the linux_binprm 1318 * structure. 1319 * 1320 * Return: Returns 0 if the hook is successful and permission is granted. 1321 */ 1322 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1323 { 1324 return call_int_hook(bprm_creds_from_file, bprm, file); 1325 } 1326 1327 /** 1328 * security_bprm_check() - Mediate binary handler search 1329 * @bprm: binary program information 1330 * 1331 * This hook mediates the point when a search for a binary handler will begin. 1332 * It allows a check against the @bprm->cred->security value which was set in 1333 * the preceding creds_for_exec call. The argv list and envp list are reliably 1334 * available in @bprm. This hook may be called multiple times during a single 1335 * execve. @bprm contains the linux_binprm structure. 1336 * 1337 * Return: Returns 0 if the hook is successful and permission is granted. 1338 */ 1339 int security_bprm_check(struct linux_binprm *bprm) 1340 { 1341 return call_int_hook(bprm_check_security, bprm); 1342 } 1343 1344 /** 1345 * security_bprm_committing_creds() - Install creds for a process during exec() 1346 * @bprm: binary program information 1347 * 1348 * Prepare to install the new security attributes of a process being 1349 * transformed by an execve operation, based on the old credentials pointed to 1350 * by @current->cred and the information set in @bprm->cred by the 1351 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1352 * hook is a good place to perform state changes on the process such as closing 1353 * open file descriptors to which access will no longer be granted when the 1354 * attributes are changed. This is called immediately before commit_creds(). 1355 */ 1356 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1357 { 1358 call_void_hook(bprm_committing_creds, bprm); 1359 } 1360 1361 /** 1362 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1363 * @bprm: binary program information 1364 * 1365 * Tidy up after the installation of the new security attributes of a process 1366 * being transformed by an execve operation. The new credentials have, by this 1367 * point, been set to @current->cred. @bprm points to the linux_binprm 1368 * structure. This hook is a good place to perform state changes on the 1369 * process such as clearing out non-inheritable signal state. This is called 1370 * immediately after commit_creds(). 1371 */ 1372 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1373 { 1374 call_void_hook(bprm_committed_creds, bprm); 1375 } 1376 1377 /** 1378 * security_fs_context_submount() - Initialise fc->security 1379 * @fc: new filesystem context 1380 * @reference: dentry reference for submount/remount 1381 * 1382 * Fill out the ->security field for a new fs_context. 1383 * 1384 * Return: Returns 0 on success or negative error code on failure. 1385 */ 1386 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1387 { 1388 return call_int_hook(fs_context_submount, fc, reference); 1389 } 1390 1391 /** 1392 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1393 * @fc: destination filesystem context 1394 * @src_fc: source filesystem context 1395 * 1396 * Allocate and attach a security structure to sc->security. This pointer is 1397 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1398 * @src_fc indicates the original filesystem context. 1399 * 1400 * Return: Returns 0 on success or a negative error code on failure. 1401 */ 1402 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1403 { 1404 return call_int_hook(fs_context_dup, fc, src_fc); 1405 } 1406 1407 /** 1408 * security_fs_context_parse_param() - Configure a filesystem context 1409 * @fc: filesystem context 1410 * @param: filesystem parameter 1411 * 1412 * Userspace provided a parameter to configure a superblock. The LSM can 1413 * consume the parameter or return it to the caller for use elsewhere. 1414 * 1415 * Return: If the parameter is used by the LSM it should return 0, if it is 1416 * returned to the caller -ENOPARAM is returned, otherwise a negative 1417 * error code is returned. 1418 */ 1419 int security_fs_context_parse_param(struct fs_context *fc, 1420 struct fs_parameter *param) 1421 { 1422 struct lsm_static_call *scall; 1423 int trc; 1424 int rc = -ENOPARAM; 1425 1426 lsm_for_each_hook(scall, fs_context_parse_param) { 1427 trc = scall->hl->hook.fs_context_parse_param(fc, param); 1428 if (trc == 0) 1429 rc = 0; 1430 else if (trc != -ENOPARAM) 1431 return trc; 1432 } 1433 return rc; 1434 } 1435 1436 /** 1437 * security_sb_alloc() - Allocate a super_block LSM blob 1438 * @sb: filesystem superblock 1439 * 1440 * Allocate and attach a security structure to the sb->s_security field. The 1441 * s_security field is initialized to NULL when the structure is allocated. 1442 * @sb contains the super_block structure to be modified. 1443 * 1444 * Return: Returns 0 if operation was successful. 1445 */ 1446 int security_sb_alloc(struct super_block *sb) 1447 { 1448 int rc = lsm_superblock_alloc(sb); 1449 1450 if (unlikely(rc)) 1451 return rc; 1452 rc = call_int_hook(sb_alloc_security, sb); 1453 if (unlikely(rc)) 1454 security_sb_free(sb); 1455 return rc; 1456 } 1457 1458 /** 1459 * security_sb_delete() - Release super_block LSM associated objects 1460 * @sb: filesystem superblock 1461 * 1462 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1463 * super_block structure being released. 1464 */ 1465 void security_sb_delete(struct super_block *sb) 1466 { 1467 call_void_hook(sb_delete, sb); 1468 } 1469 1470 /** 1471 * security_sb_free() - Free a super_block LSM blob 1472 * @sb: filesystem superblock 1473 * 1474 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1475 * structure to be modified. 1476 */ 1477 void security_sb_free(struct super_block *sb) 1478 { 1479 call_void_hook(sb_free_security, sb); 1480 kfree(sb->s_security); 1481 sb->s_security = NULL; 1482 } 1483 1484 /** 1485 * security_free_mnt_opts() - Free memory associated with mount options 1486 * @mnt_opts: LSM processed mount options 1487 * 1488 * Free memory associated with @mnt_ops. 1489 */ 1490 void security_free_mnt_opts(void **mnt_opts) 1491 { 1492 if (!*mnt_opts) 1493 return; 1494 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1495 *mnt_opts = NULL; 1496 } 1497 EXPORT_SYMBOL(security_free_mnt_opts); 1498 1499 /** 1500 * security_sb_eat_lsm_opts() - Consume LSM mount options 1501 * @options: mount options 1502 * @mnt_opts: LSM processed mount options 1503 * 1504 * Eat (scan @options) and save them in @mnt_opts. 1505 * 1506 * Return: Returns 0 on success, negative values on failure. 1507 */ 1508 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1509 { 1510 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts); 1511 } 1512 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1513 1514 /** 1515 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1516 * @sb: filesystem superblock 1517 * @mnt_opts: new mount options 1518 * 1519 * Determine if the new mount options in @mnt_opts are allowed given the 1520 * existing mounted filesystem at @sb. @sb superblock being compared. 1521 * 1522 * Return: Returns 0 if options are compatible. 1523 */ 1524 int security_sb_mnt_opts_compat(struct super_block *sb, 1525 void *mnt_opts) 1526 { 1527 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts); 1528 } 1529 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1530 1531 /** 1532 * security_sb_remount() - Verify no incompatible mount changes during remount 1533 * @sb: filesystem superblock 1534 * @mnt_opts: (re)mount options 1535 * 1536 * Extracts security system specific mount options and verifies no changes are 1537 * being made to those options. 1538 * 1539 * Return: Returns 0 if permission is granted. 1540 */ 1541 int security_sb_remount(struct super_block *sb, 1542 void *mnt_opts) 1543 { 1544 return call_int_hook(sb_remount, sb, mnt_opts); 1545 } 1546 EXPORT_SYMBOL(security_sb_remount); 1547 1548 /** 1549 * security_sb_kern_mount() - Check if a kernel mount is allowed 1550 * @sb: filesystem superblock 1551 * 1552 * Mount this @sb if allowed by permissions. 1553 * 1554 * Return: Returns 0 if permission is granted. 1555 */ 1556 int security_sb_kern_mount(const struct super_block *sb) 1557 { 1558 return call_int_hook(sb_kern_mount, sb); 1559 } 1560 1561 /** 1562 * security_sb_show_options() - Output the mount options for a superblock 1563 * @m: output file 1564 * @sb: filesystem superblock 1565 * 1566 * Show (print on @m) mount options for this @sb. 1567 * 1568 * Return: Returns 0 on success, negative values on failure. 1569 */ 1570 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1571 { 1572 return call_int_hook(sb_show_options, m, sb); 1573 } 1574 1575 /** 1576 * security_sb_statfs() - Check if accessing fs stats is allowed 1577 * @dentry: superblock handle 1578 * 1579 * Check permission before obtaining filesystem statistics for the @mnt 1580 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1581 * 1582 * Return: Returns 0 if permission is granted. 1583 */ 1584 int security_sb_statfs(struct dentry *dentry) 1585 { 1586 return call_int_hook(sb_statfs, dentry); 1587 } 1588 1589 /** 1590 * security_sb_mount() - Check permission for mounting a filesystem 1591 * @dev_name: filesystem backing device 1592 * @path: mount point 1593 * @type: filesystem type 1594 * @flags: mount flags 1595 * @data: filesystem specific data 1596 * 1597 * Check permission before an object specified by @dev_name is mounted on the 1598 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1599 * device if the file system type requires a device. For a remount 1600 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1601 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1602 * mounted. 1603 * 1604 * Return: Returns 0 if permission is granted. 1605 */ 1606 int security_sb_mount(const char *dev_name, const struct path *path, 1607 const char *type, unsigned long flags, void *data) 1608 { 1609 return call_int_hook(sb_mount, dev_name, path, type, flags, data); 1610 } 1611 1612 /** 1613 * security_sb_umount() - Check permission for unmounting a filesystem 1614 * @mnt: mounted filesystem 1615 * @flags: unmount flags 1616 * 1617 * Check permission before the @mnt file system is unmounted. 1618 * 1619 * Return: Returns 0 if permission is granted. 1620 */ 1621 int security_sb_umount(struct vfsmount *mnt, int flags) 1622 { 1623 return call_int_hook(sb_umount, mnt, flags); 1624 } 1625 1626 /** 1627 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1628 * @old_path: new location for current rootfs 1629 * @new_path: location of the new rootfs 1630 * 1631 * Check permission before pivoting the root filesystem. 1632 * 1633 * Return: Returns 0 if permission is granted. 1634 */ 1635 int security_sb_pivotroot(const struct path *old_path, 1636 const struct path *new_path) 1637 { 1638 return call_int_hook(sb_pivotroot, old_path, new_path); 1639 } 1640 1641 /** 1642 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1643 * @sb: filesystem superblock 1644 * @mnt_opts: binary mount options 1645 * @kern_flags: kernel flags (in) 1646 * @set_kern_flags: kernel flags (out) 1647 * 1648 * Set the security relevant mount options used for a superblock. 1649 * 1650 * Return: Returns 0 on success, error on failure. 1651 */ 1652 int security_sb_set_mnt_opts(struct super_block *sb, 1653 void *mnt_opts, 1654 unsigned long kern_flags, 1655 unsigned long *set_kern_flags) 1656 { 1657 struct lsm_static_call *scall; 1658 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts); 1659 1660 lsm_for_each_hook(scall, sb_set_mnt_opts) { 1661 rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags, 1662 set_kern_flags); 1663 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts)) 1664 break; 1665 } 1666 return rc; 1667 } 1668 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1669 1670 /** 1671 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1672 * @oldsb: source superblock 1673 * @newsb: destination superblock 1674 * @kern_flags: kernel flags (in) 1675 * @set_kern_flags: kernel flags (out) 1676 * 1677 * Copy all security options from a given superblock to another. 1678 * 1679 * Return: Returns 0 on success, error on failure. 1680 */ 1681 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1682 struct super_block *newsb, 1683 unsigned long kern_flags, 1684 unsigned long *set_kern_flags) 1685 { 1686 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb, 1687 kern_flags, set_kern_flags); 1688 } 1689 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1690 1691 /** 1692 * security_move_mount() - Check permissions for moving a mount 1693 * @from_path: source mount point 1694 * @to_path: destination mount point 1695 * 1696 * Check permission before a mount is moved. 1697 * 1698 * Return: Returns 0 if permission is granted. 1699 */ 1700 int security_move_mount(const struct path *from_path, 1701 const struct path *to_path) 1702 { 1703 return call_int_hook(move_mount, from_path, to_path); 1704 } 1705 1706 /** 1707 * security_path_notify() - Check if setting a watch is allowed 1708 * @path: file path 1709 * @mask: event mask 1710 * @obj_type: file path type 1711 * 1712 * Check permissions before setting a watch on events as defined by @mask, on 1713 * an object at @path, whose type is defined by @obj_type. 1714 * 1715 * Return: Returns 0 if permission is granted. 1716 */ 1717 int security_path_notify(const struct path *path, u64 mask, 1718 unsigned int obj_type) 1719 { 1720 return call_int_hook(path_notify, path, mask, obj_type); 1721 } 1722 1723 /** 1724 * security_inode_alloc() - Allocate an inode LSM blob 1725 * @inode: the inode 1726 * @gfp: allocation flags 1727 * 1728 * Allocate and attach a security structure to @inode->i_security. The 1729 * i_security field is initialized to NULL when the inode structure is 1730 * allocated. 1731 * 1732 * Return: Return 0 if operation was successful. 1733 */ 1734 int security_inode_alloc(struct inode *inode, gfp_t gfp) 1735 { 1736 int rc = lsm_inode_alloc(inode, gfp); 1737 1738 if (unlikely(rc)) 1739 return rc; 1740 rc = call_int_hook(inode_alloc_security, inode); 1741 if (unlikely(rc)) 1742 security_inode_free(inode); 1743 return rc; 1744 } 1745 1746 static void inode_free_by_rcu(struct rcu_head *head) 1747 { 1748 /* The rcu head is at the start of the inode blob */ 1749 call_void_hook(inode_free_security_rcu, head); 1750 kmem_cache_free(lsm_inode_cache, head); 1751 } 1752 1753 /** 1754 * security_inode_free() - Free an inode's LSM blob 1755 * @inode: the inode 1756 * 1757 * Release any LSM resources associated with @inode, although due to the 1758 * inode's RCU protections it is possible that the resources will not be 1759 * fully released until after the current RCU grace period has elapsed. 1760 * 1761 * It is important for LSMs to note that despite being present in a call to 1762 * security_inode_free(), @inode may still be referenced in a VFS path walk 1763 * and calls to security_inode_permission() may be made during, or after, 1764 * a call to security_inode_free(). For this reason the inode->i_security 1765 * field is released via a call_rcu() callback and any LSMs which need to 1766 * retain inode state for use in security_inode_permission() should only 1767 * release that state in the inode_free_security_rcu() LSM hook callback. 1768 */ 1769 void security_inode_free(struct inode *inode) 1770 { 1771 call_void_hook(inode_free_security, inode); 1772 if (!inode->i_security) 1773 return; 1774 call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu); 1775 } 1776 1777 /** 1778 * security_dentry_init_security() - Perform dentry initialization 1779 * @dentry: the dentry to initialize 1780 * @mode: mode used to determine resource type 1781 * @name: name of the last path component 1782 * @xattr_name: name of the security/LSM xattr 1783 * @lsmctx: pointer to the resulting LSM context 1784 * 1785 * Compute a context for a dentry as the inode is not yet available since NFSv4 1786 * has no label backed by an EA anyway. It is important to note that 1787 * @xattr_name does not need to be free'd by the caller, it is a static string. 1788 * 1789 * Return: Returns 0 on success, negative values on failure. 1790 */ 1791 int security_dentry_init_security(struct dentry *dentry, int mode, 1792 const struct qstr *name, 1793 const char **xattr_name, 1794 struct lsm_context *lsmctx) 1795 { 1796 return call_int_hook(dentry_init_security, dentry, mode, name, 1797 xattr_name, lsmctx); 1798 } 1799 EXPORT_SYMBOL(security_dentry_init_security); 1800 1801 /** 1802 * security_dentry_create_files_as() - Perform dentry initialization 1803 * @dentry: the dentry to initialize 1804 * @mode: mode used to determine resource type 1805 * @name: name of the last path component 1806 * @old: creds to use for LSM context calculations 1807 * @new: creds to modify 1808 * 1809 * Compute a context for a dentry as the inode is not yet available and set 1810 * that context in passed in creds so that new files are created using that 1811 * context. Context is calculated using the passed in creds and not the creds 1812 * of the caller. 1813 * 1814 * Return: Returns 0 on success, error on failure. 1815 */ 1816 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1817 struct qstr *name, 1818 const struct cred *old, struct cred *new) 1819 { 1820 return call_int_hook(dentry_create_files_as, dentry, mode, 1821 name, old, new); 1822 } 1823 EXPORT_SYMBOL(security_dentry_create_files_as); 1824 1825 /** 1826 * security_inode_init_security() - Initialize an inode's LSM context 1827 * @inode: the inode 1828 * @dir: parent directory 1829 * @qstr: last component of the pathname 1830 * @initxattrs: callback function to write xattrs 1831 * @fs_data: filesystem specific data 1832 * 1833 * Obtain the security attribute name suffix and value to set on a newly 1834 * created inode and set up the incore security field for the new inode. This 1835 * hook is called by the fs code as part of the inode creation transaction and 1836 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1837 * hooks called by the VFS. 1838 * 1839 * The hook function is expected to populate the xattrs array, by calling 1840 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1841 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1842 * slot, the hook function should set ->name to the attribute name suffix 1843 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1844 * to the attribute value, to set ->value_len to the length of the value. If 1845 * the security module does not use security attributes or does not wish to put 1846 * a security attribute on this particular inode, then it should return 1847 * -EOPNOTSUPP to skip this processing. 1848 * 1849 * Return: Returns 0 if the LSM successfully initialized all of the inode 1850 * security attributes that are required, negative values otherwise. 1851 */ 1852 int security_inode_init_security(struct inode *inode, struct inode *dir, 1853 const struct qstr *qstr, 1854 const initxattrs initxattrs, void *fs_data) 1855 { 1856 struct lsm_static_call *scall; 1857 struct xattr *new_xattrs = NULL; 1858 int ret = -EOPNOTSUPP, xattr_count = 0; 1859 1860 if (unlikely(IS_PRIVATE(inode))) 1861 return 0; 1862 1863 if (!blob_sizes.lbs_xattr_count) 1864 return 0; 1865 1866 if (initxattrs) { 1867 /* Allocate +1 as terminator. */ 1868 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1, 1869 sizeof(*new_xattrs), GFP_NOFS); 1870 if (!new_xattrs) 1871 return -ENOMEM; 1872 } 1873 1874 lsm_for_each_hook(scall, inode_init_security) { 1875 ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1876 &xattr_count); 1877 if (ret && ret != -EOPNOTSUPP) 1878 goto out; 1879 /* 1880 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1881 * means that the LSM is not willing to provide an xattr, not 1882 * that it wants to signal an error. Thus, continue to invoke 1883 * the remaining LSMs. 1884 */ 1885 } 1886 1887 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1888 if (!xattr_count) 1889 goto out; 1890 1891 ret = initxattrs(inode, new_xattrs, fs_data); 1892 out: 1893 for (; xattr_count > 0; xattr_count--) 1894 kfree(new_xattrs[xattr_count - 1].value); 1895 kfree(new_xattrs); 1896 return (ret == -EOPNOTSUPP) ? 0 : ret; 1897 } 1898 EXPORT_SYMBOL(security_inode_init_security); 1899 1900 /** 1901 * security_inode_init_security_anon() - Initialize an anonymous inode 1902 * @inode: the inode 1903 * @name: the anonymous inode class 1904 * @context_inode: an optional related inode 1905 * 1906 * Set up the incore security field for the new anonymous inode and return 1907 * whether the inode creation is permitted by the security module or not. 1908 * 1909 * Return: Returns 0 on success, -EACCES if the security module denies the 1910 * creation of this inode, or another -errno upon other errors. 1911 */ 1912 int security_inode_init_security_anon(struct inode *inode, 1913 const struct qstr *name, 1914 const struct inode *context_inode) 1915 { 1916 return call_int_hook(inode_init_security_anon, inode, name, 1917 context_inode); 1918 } 1919 1920 #ifdef CONFIG_SECURITY_PATH 1921 /** 1922 * security_path_mknod() - Check if creating a special file is allowed 1923 * @dir: parent directory 1924 * @dentry: new file 1925 * @mode: new file mode 1926 * @dev: device number 1927 * 1928 * Check permissions when creating a file. Note that this hook is called even 1929 * if mknod operation is being done for a regular file. 1930 * 1931 * Return: Returns 0 if permission is granted. 1932 */ 1933 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1934 umode_t mode, unsigned int dev) 1935 { 1936 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1937 return 0; 1938 return call_int_hook(path_mknod, dir, dentry, mode, dev); 1939 } 1940 EXPORT_SYMBOL(security_path_mknod); 1941 1942 /** 1943 * security_path_post_mknod() - Update inode security after reg file creation 1944 * @idmap: idmap of the mount 1945 * @dentry: new file 1946 * 1947 * Update inode security field after a regular file has been created. 1948 */ 1949 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) 1950 { 1951 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1952 return; 1953 call_void_hook(path_post_mknod, idmap, dentry); 1954 } 1955 1956 /** 1957 * security_path_mkdir() - Check if creating a new directory is allowed 1958 * @dir: parent directory 1959 * @dentry: new directory 1960 * @mode: new directory mode 1961 * 1962 * Check permissions to create a new directory in the existing directory. 1963 * 1964 * Return: Returns 0 if permission is granted. 1965 */ 1966 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1967 umode_t mode) 1968 { 1969 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1970 return 0; 1971 return call_int_hook(path_mkdir, dir, dentry, mode); 1972 } 1973 EXPORT_SYMBOL(security_path_mkdir); 1974 1975 /** 1976 * security_path_rmdir() - Check if removing a directory is allowed 1977 * @dir: parent directory 1978 * @dentry: directory to remove 1979 * 1980 * Check the permission to remove a directory. 1981 * 1982 * Return: Returns 0 if permission is granted. 1983 */ 1984 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1985 { 1986 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1987 return 0; 1988 return call_int_hook(path_rmdir, dir, dentry); 1989 } 1990 1991 /** 1992 * security_path_unlink() - Check if removing a hard link is allowed 1993 * @dir: parent directory 1994 * @dentry: file 1995 * 1996 * Check the permission to remove a hard link to a file. 1997 * 1998 * Return: Returns 0 if permission is granted. 1999 */ 2000 int security_path_unlink(const struct path *dir, struct dentry *dentry) 2001 { 2002 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 2003 return 0; 2004 return call_int_hook(path_unlink, dir, dentry); 2005 } 2006 EXPORT_SYMBOL(security_path_unlink); 2007 2008 /** 2009 * security_path_symlink() - Check if creating a symbolic link is allowed 2010 * @dir: parent directory 2011 * @dentry: symbolic link 2012 * @old_name: file pathname 2013 * 2014 * Check the permission to create a symbolic link to a file. 2015 * 2016 * Return: Returns 0 if permission is granted. 2017 */ 2018 int security_path_symlink(const struct path *dir, struct dentry *dentry, 2019 const char *old_name) 2020 { 2021 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 2022 return 0; 2023 return call_int_hook(path_symlink, dir, dentry, old_name); 2024 } 2025 2026 /** 2027 * security_path_link - Check if creating a hard link is allowed 2028 * @old_dentry: existing file 2029 * @new_dir: new parent directory 2030 * @new_dentry: new link 2031 * 2032 * Check permission before creating a new hard link to a file. 2033 * 2034 * Return: Returns 0 if permission is granted. 2035 */ 2036 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 2037 struct dentry *new_dentry) 2038 { 2039 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2040 return 0; 2041 return call_int_hook(path_link, old_dentry, new_dir, new_dentry); 2042 } 2043 2044 /** 2045 * security_path_rename() - Check if renaming a file is allowed 2046 * @old_dir: parent directory of the old file 2047 * @old_dentry: the old file 2048 * @new_dir: parent directory of the new file 2049 * @new_dentry: the new file 2050 * @flags: flags 2051 * 2052 * Check for permission to rename a file or directory. 2053 * 2054 * Return: Returns 0 if permission is granted. 2055 */ 2056 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 2057 const struct path *new_dir, struct dentry *new_dentry, 2058 unsigned int flags) 2059 { 2060 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2061 (d_is_positive(new_dentry) && 2062 IS_PRIVATE(d_backing_inode(new_dentry))))) 2063 return 0; 2064 2065 return call_int_hook(path_rename, old_dir, old_dentry, new_dir, 2066 new_dentry, flags); 2067 } 2068 EXPORT_SYMBOL(security_path_rename); 2069 2070 /** 2071 * security_path_truncate() - Check if truncating a file is allowed 2072 * @path: file 2073 * 2074 * Check permission before truncating the file indicated by path. Note that 2075 * truncation permissions may also be checked based on already opened files, 2076 * using the security_file_truncate() hook. 2077 * 2078 * Return: Returns 0 if permission is granted. 2079 */ 2080 int security_path_truncate(const struct path *path) 2081 { 2082 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2083 return 0; 2084 return call_int_hook(path_truncate, path); 2085 } 2086 2087 /** 2088 * security_path_chmod() - Check if changing the file's mode is allowed 2089 * @path: file 2090 * @mode: new mode 2091 * 2092 * Check for permission to change a mode of the file @path. The new mode is 2093 * specified in @mode which is a bitmask of constants from 2094 * <include/uapi/linux/stat.h>. 2095 * 2096 * Return: Returns 0 if permission is granted. 2097 */ 2098 int security_path_chmod(const struct path *path, umode_t mode) 2099 { 2100 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2101 return 0; 2102 return call_int_hook(path_chmod, path, mode); 2103 } 2104 2105 /** 2106 * security_path_chown() - Check if changing the file's owner/group is allowed 2107 * @path: file 2108 * @uid: file owner 2109 * @gid: file group 2110 * 2111 * Check for permission to change owner/group of a file or directory. 2112 * 2113 * Return: Returns 0 if permission is granted. 2114 */ 2115 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 2116 { 2117 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2118 return 0; 2119 return call_int_hook(path_chown, path, uid, gid); 2120 } 2121 2122 /** 2123 * security_path_chroot() - Check if changing the root directory is allowed 2124 * @path: directory 2125 * 2126 * Check for permission to change root directory. 2127 * 2128 * Return: Returns 0 if permission is granted. 2129 */ 2130 int security_path_chroot(const struct path *path) 2131 { 2132 return call_int_hook(path_chroot, path); 2133 } 2134 #endif /* CONFIG_SECURITY_PATH */ 2135 2136 /** 2137 * security_inode_create() - Check if creating a file is allowed 2138 * @dir: the parent directory 2139 * @dentry: the file being created 2140 * @mode: requested file mode 2141 * 2142 * Check permission to create a regular file. 2143 * 2144 * Return: Returns 0 if permission is granted. 2145 */ 2146 int security_inode_create(struct inode *dir, struct dentry *dentry, 2147 umode_t mode) 2148 { 2149 if (unlikely(IS_PRIVATE(dir))) 2150 return 0; 2151 return call_int_hook(inode_create, dir, dentry, mode); 2152 } 2153 EXPORT_SYMBOL_GPL(security_inode_create); 2154 2155 /** 2156 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile 2157 * @idmap: idmap of the mount 2158 * @inode: inode of the new tmpfile 2159 * 2160 * Update inode security data after a tmpfile has been created. 2161 */ 2162 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, 2163 struct inode *inode) 2164 { 2165 if (unlikely(IS_PRIVATE(inode))) 2166 return; 2167 call_void_hook(inode_post_create_tmpfile, idmap, inode); 2168 } 2169 2170 /** 2171 * security_inode_link() - Check if creating a hard link is allowed 2172 * @old_dentry: existing file 2173 * @dir: new parent directory 2174 * @new_dentry: new link 2175 * 2176 * Check permission before creating a new hard link to a file. 2177 * 2178 * Return: Returns 0 if permission is granted. 2179 */ 2180 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2181 struct dentry *new_dentry) 2182 { 2183 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2184 return 0; 2185 return call_int_hook(inode_link, old_dentry, dir, new_dentry); 2186 } 2187 2188 /** 2189 * security_inode_unlink() - Check if removing a hard link is allowed 2190 * @dir: parent directory 2191 * @dentry: file 2192 * 2193 * Check the permission to remove a hard link to a file. 2194 * 2195 * Return: Returns 0 if permission is granted. 2196 */ 2197 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2198 { 2199 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2200 return 0; 2201 return call_int_hook(inode_unlink, dir, dentry); 2202 } 2203 2204 /** 2205 * security_inode_symlink() - Check if creating a symbolic link is allowed 2206 * @dir: parent directory 2207 * @dentry: symbolic link 2208 * @old_name: existing filename 2209 * 2210 * Check the permission to create a symbolic link to a file. 2211 * 2212 * Return: Returns 0 if permission is granted. 2213 */ 2214 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2215 const char *old_name) 2216 { 2217 if (unlikely(IS_PRIVATE(dir))) 2218 return 0; 2219 return call_int_hook(inode_symlink, dir, dentry, old_name); 2220 } 2221 2222 /** 2223 * security_inode_mkdir() - Check if creating a new directory is allowed 2224 * @dir: parent directory 2225 * @dentry: new directory 2226 * @mode: new directory mode 2227 * 2228 * Check permissions to create a new directory in the existing directory 2229 * associated with inode structure @dir. 2230 * 2231 * Return: Returns 0 if permission is granted. 2232 */ 2233 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2234 { 2235 if (unlikely(IS_PRIVATE(dir))) 2236 return 0; 2237 return call_int_hook(inode_mkdir, dir, dentry, mode); 2238 } 2239 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2240 2241 /** 2242 * security_inode_rmdir() - Check if removing a directory is allowed 2243 * @dir: parent directory 2244 * @dentry: directory to be removed 2245 * 2246 * Check the permission to remove a directory. 2247 * 2248 * Return: Returns 0 if permission is granted. 2249 */ 2250 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2251 { 2252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2253 return 0; 2254 return call_int_hook(inode_rmdir, dir, dentry); 2255 } 2256 2257 /** 2258 * security_inode_mknod() - Check if creating a special file is allowed 2259 * @dir: parent directory 2260 * @dentry: new file 2261 * @mode: new file mode 2262 * @dev: device number 2263 * 2264 * Check permissions when creating a special file (or a socket or a fifo file 2265 * created via the mknod system call). Note that if mknod operation is being 2266 * done for a regular file, then the create hook will be called and not this 2267 * hook. 2268 * 2269 * Return: Returns 0 if permission is granted. 2270 */ 2271 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2272 umode_t mode, dev_t dev) 2273 { 2274 if (unlikely(IS_PRIVATE(dir))) 2275 return 0; 2276 return call_int_hook(inode_mknod, dir, dentry, mode, dev); 2277 } 2278 2279 /** 2280 * security_inode_rename() - Check if renaming a file is allowed 2281 * @old_dir: parent directory of the old file 2282 * @old_dentry: the old file 2283 * @new_dir: parent directory of the new file 2284 * @new_dentry: the new file 2285 * @flags: flags 2286 * 2287 * Check for permission to rename a file or directory. 2288 * 2289 * Return: Returns 0 if permission is granted. 2290 */ 2291 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2292 struct inode *new_dir, struct dentry *new_dentry, 2293 unsigned int flags) 2294 { 2295 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2296 (d_is_positive(new_dentry) && 2297 IS_PRIVATE(d_backing_inode(new_dentry))))) 2298 return 0; 2299 2300 if (flags & RENAME_EXCHANGE) { 2301 int err = call_int_hook(inode_rename, new_dir, new_dentry, 2302 old_dir, old_dentry); 2303 if (err) 2304 return err; 2305 } 2306 2307 return call_int_hook(inode_rename, old_dir, old_dentry, 2308 new_dir, new_dentry); 2309 } 2310 2311 /** 2312 * security_inode_readlink() - Check if reading a symbolic link is allowed 2313 * @dentry: link 2314 * 2315 * Check the permission to read the symbolic link. 2316 * 2317 * Return: Returns 0 if permission is granted. 2318 */ 2319 int security_inode_readlink(struct dentry *dentry) 2320 { 2321 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2322 return 0; 2323 return call_int_hook(inode_readlink, dentry); 2324 } 2325 2326 /** 2327 * security_inode_follow_link() - Check if following a symbolic link is allowed 2328 * @dentry: link dentry 2329 * @inode: link inode 2330 * @rcu: true if in RCU-walk mode 2331 * 2332 * Check permission to follow a symbolic link when looking up a pathname. If 2333 * @rcu is true, @inode is not stable. 2334 * 2335 * Return: Returns 0 if permission is granted. 2336 */ 2337 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2338 bool rcu) 2339 { 2340 if (unlikely(IS_PRIVATE(inode))) 2341 return 0; 2342 return call_int_hook(inode_follow_link, dentry, inode, rcu); 2343 } 2344 2345 /** 2346 * security_inode_permission() - Check if accessing an inode is allowed 2347 * @inode: inode 2348 * @mask: access mask 2349 * 2350 * Check permission before accessing an inode. This hook is called by the 2351 * existing Linux permission function, so a security module can use it to 2352 * provide additional checking for existing Linux permission checks. Notice 2353 * that this hook is called when a file is opened (as well as many other 2354 * operations), whereas the file_security_ops permission hook is called when 2355 * the actual read/write operations are performed. 2356 * 2357 * Return: Returns 0 if permission is granted. 2358 */ 2359 int security_inode_permission(struct inode *inode, int mask) 2360 { 2361 if (unlikely(IS_PRIVATE(inode))) 2362 return 0; 2363 return call_int_hook(inode_permission, inode, mask); 2364 } 2365 2366 /** 2367 * security_inode_setattr() - Check if setting file attributes is allowed 2368 * @idmap: idmap of the mount 2369 * @dentry: file 2370 * @attr: new attributes 2371 * 2372 * Check permission before setting file attributes. Note that the kernel call 2373 * to notify_change is performed from several locations, whenever file 2374 * attributes change (such as when a file is truncated, chown/chmod operations, 2375 * transferring disk quotas, etc). 2376 * 2377 * Return: Returns 0 if permission is granted. 2378 */ 2379 int security_inode_setattr(struct mnt_idmap *idmap, 2380 struct dentry *dentry, struct iattr *attr) 2381 { 2382 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2383 return 0; 2384 return call_int_hook(inode_setattr, idmap, dentry, attr); 2385 } 2386 EXPORT_SYMBOL_GPL(security_inode_setattr); 2387 2388 /** 2389 * security_inode_post_setattr() - Update the inode after a setattr operation 2390 * @idmap: idmap of the mount 2391 * @dentry: file 2392 * @ia_valid: file attributes set 2393 * 2394 * Update inode security field after successful setting file attributes. 2395 */ 2396 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 2397 int ia_valid) 2398 { 2399 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2400 return; 2401 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); 2402 } 2403 2404 /** 2405 * security_inode_getattr() - Check if getting file attributes is allowed 2406 * @path: file 2407 * 2408 * Check permission before obtaining file attributes. 2409 * 2410 * Return: Returns 0 if permission is granted. 2411 */ 2412 int security_inode_getattr(const struct path *path) 2413 { 2414 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2415 return 0; 2416 return call_int_hook(inode_getattr, path); 2417 } 2418 2419 /** 2420 * security_inode_setxattr() - Check if setting file xattrs is allowed 2421 * @idmap: idmap of the mount 2422 * @dentry: file 2423 * @name: xattr name 2424 * @value: xattr value 2425 * @size: size of xattr value 2426 * @flags: flags 2427 * 2428 * This hook performs the desired permission checks before setting the extended 2429 * attributes (xattrs) on @dentry. It is important to note that we have some 2430 * additional logic before the main LSM implementation calls to detect if we 2431 * need to perform an additional capability check at the LSM layer. 2432 * 2433 * Normally we enforce a capability check prior to executing the various LSM 2434 * hook implementations, but if a LSM wants to avoid this capability check, 2435 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for 2436 * xattrs that it wants to avoid the capability check, leaving the LSM fully 2437 * responsible for enforcing the access control for the specific xattr. If all 2438 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook, 2439 * or return a 0 (the default return value), the capability check is still 2440 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability 2441 * check is performed. 2442 * 2443 * Return: Returns 0 if permission is granted. 2444 */ 2445 int security_inode_setxattr(struct mnt_idmap *idmap, 2446 struct dentry *dentry, const char *name, 2447 const void *value, size_t size, int flags) 2448 { 2449 int rc; 2450 2451 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2452 return 0; 2453 2454 /* enforce the capability checks at the lsm layer, if needed */ 2455 if (!call_int_hook(inode_xattr_skipcap, name)) { 2456 rc = cap_inode_setxattr(dentry, name, value, size, flags); 2457 if (rc) 2458 return rc; 2459 } 2460 2461 return call_int_hook(inode_setxattr, idmap, dentry, name, value, size, 2462 flags); 2463 } 2464 2465 /** 2466 * security_inode_set_acl() - Check if setting posix acls is allowed 2467 * @idmap: idmap of the mount 2468 * @dentry: file 2469 * @acl_name: acl name 2470 * @kacl: acl struct 2471 * 2472 * Check permission before setting posix acls, the posix acls in @kacl are 2473 * identified by @acl_name. 2474 * 2475 * Return: Returns 0 if permission is granted. 2476 */ 2477 int security_inode_set_acl(struct mnt_idmap *idmap, 2478 struct dentry *dentry, const char *acl_name, 2479 struct posix_acl *kacl) 2480 { 2481 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2482 return 0; 2483 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl); 2484 } 2485 2486 /** 2487 * security_inode_post_set_acl() - Update inode security from posix acls set 2488 * @dentry: file 2489 * @acl_name: acl name 2490 * @kacl: acl struct 2491 * 2492 * Update inode security data after successfully setting posix acls on @dentry. 2493 * The posix acls in @kacl are identified by @acl_name. 2494 */ 2495 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, 2496 struct posix_acl *kacl) 2497 { 2498 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2499 return; 2500 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); 2501 } 2502 2503 /** 2504 * security_inode_get_acl() - Check if reading posix acls is allowed 2505 * @idmap: idmap of the mount 2506 * @dentry: file 2507 * @acl_name: acl name 2508 * 2509 * Check permission before getting osix acls, the posix acls are identified by 2510 * @acl_name. 2511 * 2512 * Return: Returns 0 if permission is granted. 2513 */ 2514 int security_inode_get_acl(struct mnt_idmap *idmap, 2515 struct dentry *dentry, const char *acl_name) 2516 { 2517 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2518 return 0; 2519 return call_int_hook(inode_get_acl, idmap, dentry, acl_name); 2520 } 2521 2522 /** 2523 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2524 * @idmap: idmap of the mount 2525 * @dentry: file 2526 * @acl_name: acl name 2527 * 2528 * Check permission before removing posix acls, the posix acls are identified 2529 * by @acl_name. 2530 * 2531 * Return: Returns 0 if permission is granted. 2532 */ 2533 int security_inode_remove_acl(struct mnt_idmap *idmap, 2534 struct dentry *dentry, const char *acl_name) 2535 { 2536 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2537 return 0; 2538 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name); 2539 } 2540 2541 /** 2542 * security_inode_post_remove_acl() - Update inode security after rm posix acls 2543 * @idmap: idmap of the mount 2544 * @dentry: file 2545 * @acl_name: acl name 2546 * 2547 * Update inode security data after successfully removing posix acls on 2548 * @dentry in @idmap. The posix acls are identified by @acl_name. 2549 */ 2550 void security_inode_post_remove_acl(struct mnt_idmap *idmap, 2551 struct dentry *dentry, const char *acl_name) 2552 { 2553 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2554 return; 2555 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); 2556 } 2557 2558 /** 2559 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2560 * @dentry: file 2561 * @name: xattr name 2562 * @value: xattr value 2563 * @size: xattr value size 2564 * @flags: flags 2565 * 2566 * Update inode security field after successful setxattr operation. 2567 */ 2568 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2569 const void *value, size_t size, int flags) 2570 { 2571 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2572 return; 2573 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2574 } 2575 2576 /** 2577 * security_inode_getxattr() - Check if xattr access is allowed 2578 * @dentry: file 2579 * @name: xattr name 2580 * 2581 * Check permission before obtaining the extended attributes identified by 2582 * @name for @dentry. 2583 * 2584 * Return: Returns 0 if permission is granted. 2585 */ 2586 int security_inode_getxattr(struct dentry *dentry, const char *name) 2587 { 2588 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2589 return 0; 2590 return call_int_hook(inode_getxattr, dentry, name); 2591 } 2592 2593 /** 2594 * security_inode_listxattr() - Check if listing xattrs is allowed 2595 * @dentry: file 2596 * 2597 * Check permission before obtaining the list of extended attribute names for 2598 * @dentry. 2599 * 2600 * Return: Returns 0 if permission is granted. 2601 */ 2602 int security_inode_listxattr(struct dentry *dentry) 2603 { 2604 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2605 return 0; 2606 return call_int_hook(inode_listxattr, dentry); 2607 } 2608 2609 /** 2610 * security_inode_removexattr() - Check if removing an xattr is allowed 2611 * @idmap: idmap of the mount 2612 * @dentry: file 2613 * @name: xattr name 2614 * 2615 * This hook performs the desired permission checks before setting the extended 2616 * attributes (xattrs) on @dentry. It is important to note that we have some 2617 * additional logic before the main LSM implementation calls to detect if we 2618 * need to perform an additional capability check at the LSM layer. 2619 * 2620 * Normally we enforce a capability check prior to executing the various LSM 2621 * hook implementations, but if a LSM wants to avoid this capability check, 2622 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for 2623 * xattrs that it wants to avoid the capability check, leaving the LSM fully 2624 * responsible for enforcing the access control for the specific xattr. If all 2625 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook, 2626 * or return a 0 (the default return value), the capability check is still 2627 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability 2628 * check is performed. 2629 * 2630 * Return: Returns 0 if permission is granted. 2631 */ 2632 int security_inode_removexattr(struct mnt_idmap *idmap, 2633 struct dentry *dentry, const char *name) 2634 { 2635 int rc; 2636 2637 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2638 return 0; 2639 2640 /* enforce the capability checks at the lsm layer, if needed */ 2641 if (!call_int_hook(inode_xattr_skipcap, name)) { 2642 rc = cap_inode_removexattr(idmap, dentry, name); 2643 if (rc) 2644 return rc; 2645 } 2646 2647 return call_int_hook(inode_removexattr, idmap, dentry, name); 2648 } 2649 2650 /** 2651 * security_inode_post_removexattr() - Update the inode after a removexattr op 2652 * @dentry: file 2653 * @name: xattr name 2654 * 2655 * Update the inode after a successful removexattr operation. 2656 */ 2657 void security_inode_post_removexattr(struct dentry *dentry, const char *name) 2658 { 2659 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2660 return; 2661 call_void_hook(inode_post_removexattr, dentry, name); 2662 } 2663 2664 /** 2665 * security_inode_file_setattr() - check if setting fsxattr is allowed 2666 * @dentry: file to set filesystem extended attributes on 2667 * @fa: extended attributes to set on the inode 2668 * 2669 * Called when file_setattr() syscall or FS_IOC_FSSETXATTR ioctl() is called on 2670 * inode 2671 * 2672 * Return: Returns 0 if permission is granted. 2673 */ 2674 int security_inode_file_setattr(struct dentry *dentry, struct file_kattr *fa) 2675 { 2676 return call_int_hook(inode_file_setattr, dentry, fa); 2677 } 2678 2679 /** 2680 * security_inode_file_getattr() - check if retrieving fsxattr is allowed 2681 * @dentry: file to retrieve filesystem extended attributes from 2682 * @fa: extended attributes to get 2683 * 2684 * Called when file_getattr() syscall or FS_IOC_FSGETXATTR ioctl() is called on 2685 * inode 2686 * 2687 * Return: Returns 0 if permission is granted. 2688 */ 2689 int security_inode_file_getattr(struct dentry *dentry, struct file_kattr *fa) 2690 { 2691 return call_int_hook(inode_file_getattr, dentry, fa); 2692 } 2693 2694 /** 2695 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2696 * @dentry: associated dentry 2697 * 2698 * Called when an inode has been changed to determine if 2699 * security_inode_killpriv() should be called. 2700 * 2701 * Return: Return <0 on error to abort the inode change operation, return 0 if 2702 * security_inode_killpriv() does not need to be called, return >0 if 2703 * security_inode_killpriv() does need to be called. 2704 */ 2705 int security_inode_need_killpriv(struct dentry *dentry) 2706 { 2707 return call_int_hook(inode_need_killpriv, dentry); 2708 } 2709 2710 /** 2711 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2712 * @idmap: idmap of the mount 2713 * @dentry: associated dentry 2714 * 2715 * The @dentry's setuid bit is being removed. Remove similar security labels. 2716 * Called with the dentry->d_inode->i_mutex held. 2717 * 2718 * Return: Return 0 on success. If error is returned, then the operation 2719 * causing setuid bit removal is failed. 2720 */ 2721 int security_inode_killpriv(struct mnt_idmap *idmap, 2722 struct dentry *dentry) 2723 { 2724 return call_int_hook(inode_killpriv, idmap, dentry); 2725 } 2726 2727 /** 2728 * security_inode_getsecurity() - Get the xattr security label of an inode 2729 * @idmap: idmap of the mount 2730 * @inode: inode 2731 * @name: xattr name 2732 * @buffer: security label buffer 2733 * @alloc: allocation flag 2734 * 2735 * Retrieve a copy of the extended attribute representation of the security 2736 * label associated with @name for @inode via @buffer. Note that @name is the 2737 * remainder of the attribute name after the security prefix has been removed. 2738 * @alloc is used to specify if the call should return a value via the buffer 2739 * or just the value length. 2740 * 2741 * Return: Returns size of buffer on success. 2742 */ 2743 int security_inode_getsecurity(struct mnt_idmap *idmap, 2744 struct inode *inode, const char *name, 2745 void **buffer, bool alloc) 2746 { 2747 if (unlikely(IS_PRIVATE(inode))) 2748 return LSM_RET_DEFAULT(inode_getsecurity); 2749 2750 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer, 2751 alloc); 2752 } 2753 2754 /** 2755 * security_inode_setsecurity() - Set the xattr security label of an inode 2756 * @inode: inode 2757 * @name: xattr name 2758 * @value: security label 2759 * @size: length of security label 2760 * @flags: flags 2761 * 2762 * Set the security label associated with @name for @inode from the extended 2763 * attribute value @value. @size indicates the size of the @value in bytes. 2764 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2765 * remainder of the attribute name after the security. prefix has been removed. 2766 * 2767 * Return: Returns 0 on success. 2768 */ 2769 int security_inode_setsecurity(struct inode *inode, const char *name, 2770 const void *value, size_t size, int flags) 2771 { 2772 if (unlikely(IS_PRIVATE(inode))) 2773 return LSM_RET_DEFAULT(inode_setsecurity); 2774 2775 return call_int_hook(inode_setsecurity, inode, name, value, size, 2776 flags); 2777 } 2778 2779 /** 2780 * security_inode_listsecurity() - List the xattr security label names 2781 * @inode: inode 2782 * @buffer: buffer 2783 * @buffer_size: size of buffer 2784 * 2785 * Copy the extended attribute names for the security labels associated with 2786 * @inode into @buffer. The maximum size of @buffer is specified by 2787 * @buffer_size. @buffer may be NULL to request the size of the buffer 2788 * required. 2789 * 2790 * Return: Returns number of bytes used/required on success. 2791 */ 2792 int security_inode_listsecurity(struct inode *inode, 2793 char *buffer, size_t buffer_size) 2794 { 2795 if (unlikely(IS_PRIVATE(inode))) 2796 return 0; 2797 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size); 2798 } 2799 EXPORT_SYMBOL(security_inode_listsecurity); 2800 2801 /** 2802 * security_inode_getlsmprop() - Get an inode's LSM data 2803 * @inode: inode 2804 * @prop: lsm specific information to return 2805 * 2806 * Get the lsm specific information associated with the node. 2807 */ 2808 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop) 2809 { 2810 call_void_hook(inode_getlsmprop, inode, prop); 2811 } 2812 2813 /** 2814 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2815 * @src: union dentry of copy-up file 2816 * @new: newly created creds 2817 * 2818 * A file is about to be copied up from lower layer to upper layer of overlay 2819 * filesystem. Security module can prepare a set of new creds and modify as 2820 * need be and return new creds. Caller will switch to new creds temporarily to 2821 * create new file and release newly allocated creds. 2822 * 2823 * Return: Returns 0 on success or a negative error code on error. 2824 */ 2825 int security_inode_copy_up(struct dentry *src, struct cred **new) 2826 { 2827 return call_int_hook(inode_copy_up, src, new); 2828 } 2829 EXPORT_SYMBOL(security_inode_copy_up); 2830 2831 /** 2832 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2833 * @src: union dentry of copy-up file 2834 * @name: xattr name 2835 * 2836 * Filter the xattrs being copied up when a unioned file is copied up from a 2837 * lower layer to the union/overlay layer. The caller is responsible for 2838 * reading and writing the xattrs, this hook is merely a filter. 2839 * 2840 * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr, 2841 * -EOPNOTSUPP if the security module does not know about attribute, 2842 * or a negative error code to abort the copy up. 2843 */ 2844 int security_inode_copy_up_xattr(struct dentry *src, const char *name) 2845 { 2846 int rc; 2847 2848 rc = call_int_hook(inode_copy_up_xattr, src, name); 2849 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2850 return rc; 2851 2852 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2853 } 2854 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2855 2856 /** 2857 * security_inode_setintegrity() - Set the inode's integrity data 2858 * @inode: inode 2859 * @type: type of integrity, e.g. hash digest, signature, etc 2860 * @value: the integrity value 2861 * @size: size of the integrity value 2862 * 2863 * Register a verified integrity measurement of a inode with LSMs. 2864 * LSMs should free the previously saved data if @value is NULL. 2865 * 2866 * Return: Returns 0 on success, negative values on failure. 2867 */ 2868 int security_inode_setintegrity(const struct inode *inode, 2869 enum lsm_integrity_type type, const void *value, 2870 size_t size) 2871 { 2872 return call_int_hook(inode_setintegrity, inode, type, value, size); 2873 } 2874 EXPORT_SYMBOL(security_inode_setintegrity); 2875 2876 /** 2877 * security_kernfs_init_security() - Init LSM context for a kernfs node 2878 * @kn_dir: parent kernfs node 2879 * @kn: the kernfs node to initialize 2880 * 2881 * Initialize the security context of a newly created kernfs node based on its 2882 * own and its parent's attributes. 2883 * 2884 * Return: Returns 0 if permission is granted. 2885 */ 2886 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2887 struct kernfs_node *kn) 2888 { 2889 return call_int_hook(kernfs_init_security, kn_dir, kn); 2890 } 2891 2892 /** 2893 * security_file_permission() - Check file permissions 2894 * @file: file 2895 * @mask: requested permissions 2896 * 2897 * Check file permissions before accessing an open file. This hook is called 2898 * by various operations that read or write files. A security module can use 2899 * this hook to perform additional checking on these operations, e.g. to 2900 * revalidate permissions on use to support privilege bracketing or policy 2901 * changes. Notice that this hook is used when the actual read/write 2902 * operations are performed, whereas the inode_security_ops hook is called when 2903 * a file is opened (as well as many other operations). Although this hook can 2904 * be used to revalidate permissions for various system call operations that 2905 * read or write files, it does not address the revalidation of permissions for 2906 * memory-mapped files. Security modules must handle this separately if they 2907 * need such revalidation. 2908 * 2909 * Return: Returns 0 if permission is granted. 2910 */ 2911 int security_file_permission(struct file *file, int mask) 2912 { 2913 return call_int_hook(file_permission, file, mask); 2914 } 2915 2916 /** 2917 * security_file_alloc() - Allocate and init a file's LSM blob 2918 * @file: the file 2919 * 2920 * Allocate and attach a security structure to the file->f_security field. The 2921 * security field is initialized to NULL when the structure is first created. 2922 * 2923 * Return: Return 0 if the hook is successful and permission is granted. 2924 */ 2925 int security_file_alloc(struct file *file) 2926 { 2927 int rc = lsm_file_alloc(file); 2928 2929 if (rc) 2930 return rc; 2931 rc = call_int_hook(file_alloc_security, file); 2932 if (unlikely(rc)) 2933 security_file_free(file); 2934 return rc; 2935 } 2936 2937 /** 2938 * security_file_release() - Perform actions before releasing the file ref 2939 * @file: the file 2940 * 2941 * Perform actions before releasing the last reference to a file. 2942 */ 2943 void security_file_release(struct file *file) 2944 { 2945 call_void_hook(file_release, file); 2946 } 2947 2948 /** 2949 * security_file_free() - Free a file's LSM blob 2950 * @file: the file 2951 * 2952 * Deallocate and free any security structures stored in file->f_security. 2953 */ 2954 void security_file_free(struct file *file) 2955 { 2956 void *blob; 2957 2958 call_void_hook(file_free_security, file); 2959 2960 blob = file->f_security; 2961 if (blob) { 2962 file->f_security = NULL; 2963 kmem_cache_free(lsm_file_cache, blob); 2964 } 2965 } 2966 2967 /** 2968 * security_file_ioctl() - Check if an ioctl is allowed 2969 * @file: associated file 2970 * @cmd: ioctl cmd 2971 * @arg: ioctl arguments 2972 * 2973 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2974 * represents a user space pointer; in other cases, it may be a simple integer 2975 * value. When @arg represents a user space pointer, it should never be used 2976 * by the security module. 2977 * 2978 * Return: Returns 0 if permission is granted. 2979 */ 2980 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2981 { 2982 return call_int_hook(file_ioctl, file, cmd, arg); 2983 } 2984 EXPORT_SYMBOL_GPL(security_file_ioctl); 2985 2986 /** 2987 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2988 * @file: associated file 2989 * @cmd: ioctl cmd 2990 * @arg: ioctl arguments 2991 * 2992 * Compat version of security_file_ioctl() that correctly handles 32-bit 2993 * processes running on 64-bit kernels. 2994 * 2995 * Return: Returns 0 if permission is granted. 2996 */ 2997 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2998 unsigned long arg) 2999 { 3000 return call_int_hook(file_ioctl_compat, file, cmd, arg); 3001 } 3002 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 3003 3004 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 3005 { 3006 /* 3007 * Does we have PROT_READ and does the application expect 3008 * it to imply PROT_EXEC? If not, nothing to talk about... 3009 */ 3010 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 3011 return prot; 3012 if (!(current->personality & READ_IMPLIES_EXEC)) 3013 return prot; 3014 /* 3015 * if that's an anonymous mapping, let it. 3016 */ 3017 if (!file) 3018 return prot | PROT_EXEC; 3019 /* 3020 * ditto if it's not on noexec mount, except that on !MMU we need 3021 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 3022 */ 3023 if (!path_noexec(&file->f_path)) { 3024 #ifndef CONFIG_MMU 3025 if (file->f_op->mmap_capabilities) { 3026 unsigned caps = file->f_op->mmap_capabilities(file); 3027 if (!(caps & NOMMU_MAP_EXEC)) 3028 return prot; 3029 } 3030 #endif 3031 return prot | PROT_EXEC; 3032 } 3033 /* anything on noexec mount won't get PROT_EXEC */ 3034 return prot; 3035 } 3036 3037 /** 3038 * security_mmap_file() - Check if mmap'ing a file is allowed 3039 * @file: file 3040 * @prot: protection applied by the kernel 3041 * @flags: flags 3042 * 3043 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 3044 * mapping anonymous memory. 3045 * 3046 * Return: Returns 0 if permission is granted. 3047 */ 3048 int security_mmap_file(struct file *file, unsigned long prot, 3049 unsigned long flags) 3050 { 3051 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot), 3052 flags); 3053 } 3054 3055 /** 3056 * security_mmap_addr() - Check if mmap'ing an address is allowed 3057 * @addr: address 3058 * 3059 * Check permissions for a mmap operation at @addr. 3060 * 3061 * Return: Returns 0 if permission is granted. 3062 */ 3063 int security_mmap_addr(unsigned long addr) 3064 { 3065 return call_int_hook(mmap_addr, addr); 3066 } 3067 3068 /** 3069 * security_file_mprotect() - Check if changing memory protections is allowed 3070 * @vma: memory region 3071 * @reqprot: application requested protection 3072 * @prot: protection applied by the kernel 3073 * 3074 * Check permissions before changing memory access permissions. 3075 * 3076 * Return: Returns 0 if permission is granted. 3077 */ 3078 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 3079 unsigned long prot) 3080 { 3081 return call_int_hook(file_mprotect, vma, reqprot, prot); 3082 } 3083 3084 /** 3085 * security_file_lock() - Check if a file lock is allowed 3086 * @file: file 3087 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 3088 * 3089 * Check permission before performing file locking operations. Note the hook 3090 * mediates both flock and fcntl style locks. 3091 * 3092 * Return: Returns 0 if permission is granted. 3093 */ 3094 int security_file_lock(struct file *file, unsigned int cmd) 3095 { 3096 return call_int_hook(file_lock, file, cmd); 3097 } 3098 3099 /** 3100 * security_file_fcntl() - Check if fcntl() op is allowed 3101 * @file: file 3102 * @cmd: fcntl command 3103 * @arg: command argument 3104 * 3105 * Check permission before allowing the file operation specified by @cmd from 3106 * being performed on the file @file. Note that @arg sometimes represents a 3107 * user space pointer; in other cases, it may be a simple integer value. When 3108 * @arg represents a user space pointer, it should never be used by the 3109 * security module. 3110 * 3111 * Return: Returns 0 if permission is granted. 3112 */ 3113 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 3114 { 3115 return call_int_hook(file_fcntl, file, cmd, arg); 3116 } 3117 3118 /** 3119 * security_file_set_fowner() - Set the file owner info in the LSM blob 3120 * @file: the file 3121 * 3122 * Save owner security information (typically from current->security) in 3123 * file->f_security for later use by the send_sigiotask hook. 3124 * 3125 * This hook is called with file->f_owner.lock held. 3126 * 3127 * Return: Returns 0 on success. 3128 */ 3129 void security_file_set_fowner(struct file *file) 3130 { 3131 call_void_hook(file_set_fowner, file); 3132 } 3133 3134 /** 3135 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 3136 * @tsk: target task 3137 * @fown: signal sender 3138 * @sig: signal to be sent, SIGIO is sent if 0 3139 * 3140 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 3141 * process @tsk. Note that this hook is sometimes called from interrupt. Note 3142 * that the fown_struct, @fown, is never outside the context of a struct file, 3143 * so the file structure (and associated security information) can always be 3144 * obtained: container_of(fown, struct file, f_owner). 3145 * 3146 * Return: Returns 0 if permission is granted. 3147 */ 3148 int security_file_send_sigiotask(struct task_struct *tsk, 3149 struct fown_struct *fown, int sig) 3150 { 3151 return call_int_hook(file_send_sigiotask, tsk, fown, sig); 3152 } 3153 3154 /** 3155 * security_file_receive() - Check if receiving a file via IPC is allowed 3156 * @file: file being received 3157 * 3158 * This hook allows security modules to control the ability of a process to 3159 * receive an open file descriptor via socket IPC. 3160 * 3161 * Return: Returns 0 if permission is granted. 3162 */ 3163 int security_file_receive(struct file *file) 3164 { 3165 return call_int_hook(file_receive, file); 3166 } 3167 3168 /** 3169 * security_file_open() - Save open() time state for late use by the LSM 3170 * @file: 3171 * 3172 * Save open-time permission checking state for later use upon file_permission, 3173 * and recheck access if anything has changed since inode_permission. 3174 * 3175 * We can check if a file is opened for execution (e.g. execve(2) call), either 3176 * directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags & 3177 * __FMODE_EXEC . 3178 * 3179 * Return: Returns 0 if permission is granted. 3180 */ 3181 int security_file_open(struct file *file) 3182 { 3183 return call_int_hook(file_open, file); 3184 } 3185 3186 /** 3187 * security_file_post_open() - Evaluate a file after it has been opened 3188 * @file: the file 3189 * @mask: access mask 3190 * 3191 * Evaluate an opened file and the access mask requested with open(). The hook 3192 * is useful for LSMs that require the file content to be available in order to 3193 * make decisions. 3194 * 3195 * Return: Returns 0 if permission is granted. 3196 */ 3197 int security_file_post_open(struct file *file, int mask) 3198 { 3199 return call_int_hook(file_post_open, file, mask); 3200 } 3201 EXPORT_SYMBOL_GPL(security_file_post_open); 3202 3203 /** 3204 * security_file_truncate() - Check if truncating a file is allowed 3205 * @file: file 3206 * 3207 * Check permission before truncating a file, i.e. using ftruncate. Note that 3208 * truncation permission may also be checked based on the path, using the 3209 * @path_truncate hook. 3210 * 3211 * Return: Returns 0 if permission is granted. 3212 */ 3213 int security_file_truncate(struct file *file) 3214 { 3215 return call_int_hook(file_truncate, file); 3216 } 3217 3218 /** 3219 * security_task_alloc() - Allocate a task's LSM blob 3220 * @task: the task 3221 * @clone_flags: flags indicating what is being shared 3222 * 3223 * Handle allocation of task-related resources. 3224 * 3225 * Return: Returns a zero on success, negative values on failure. 3226 */ 3227 int security_task_alloc(struct task_struct *task, u64 clone_flags) 3228 { 3229 int rc = lsm_task_alloc(task); 3230 3231 if (rc) 3232 return rc; 3233 rc = call_int_hook(task_alloc, task, clone_flags); 3234 if (unlikely(rc)) 3235 security_task_free(task); 3236 return rc; 3237 } 3238 3239 /** 3240 * security_task_free() - Free a task's LSM blob and related resources 3241 * @task: task 3242 * 3243 * Handle release of task-related resources. Note that this can be called from 3244 * interrupt context. 3245 */ 3246 void security_task_free(struct task_struct *task) 3247 { 3248 call_void_hook(task_free, task); 3249 3250 kfree(task->security); 3251 task->security = NULL; 3252 } 3253 3254 /** 3255 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 3256 * @cred: credentials 3257 * @gfp: gfp flags 3258 * 3259 * Only allocate sufficient memory and attach to @cred such that 3260 * cred_transfer() will not get ENOMEM. 3261 * 3262 * Return: Returns 0 on success, negative values on failure. 3263 */ 3264 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3265 { 3266 int rc = lsm_cred_alloc(cred, gfp); 3267 3268 if (rc) 3269 return rc; 3270 3271 rc = call_int_hook(cred_alloc_blank, cred, gfp); 3272 if (unlikely(rc)) 3273 security_cred_free(cred); 3274 return rc; 3275 } 3276 3277 /** 3278 * security_cred_free() - Free the cred's LSM blob and associated resources 3279 * @cred: credentials 3280 * 3281 * Deallocate and clear the cred->security field in a set of credentials. 3282 */ 3283 void security_cred_free(struct cred *cred) 3284 { 3285 /* 3286 * There is a failure case in prepare_creds() that 3287 * may result in a call here with ->security being NULL. 3288 */ 3289 if (unlikely(cred->security == NULL)) 3290 return; 3291 3292 call_void_hook(cred_free, cred); 3293 3294 kfree(cred->security); 3295 cred->security = NULL; 3296 } 3297 3298 /** 3299 * security_prepare_creds() - Prepare a new set of credentials 3300 * @new: new credentials 3301 * @old: original credentials 3302 * @gfp: gfp flags 3303 * 3304 * Prepare a new set of credentials by copying the data from the old set. 3305 * 3306 * Return: Returns 0 on success, negative values on failure. 3307 */ 3308 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3309 { 3310 int rc = lsm_cred_alloc(new, gfp); 3311 3312 if (rc) 3313 return rc; 3314 3315 rc = call_int_hook(cred_prepare, new, old, gfp); 3316 if (unlikely(rc)) 3317 security_cred_free(new); 3318 return rc; 3319 } 3320 3321 /** 3322 * security_transfer_creds() - Transfer creds 3323 * @new: target credentials 3324 * @old: original credentials 3325 * 3326 * Transfer data from original creds to new creds. 3327 */ 3328 void security_transfer_creds(struct cred *new, const struct cred *old) 3329 { 3330 call_void_hook(cred_transfer, new, old); 3331 } 3332 3333 /** 3334 * security_cred_getsecid() - Get the secid from a set of credentials 3335 * @c: credentials 3336 * @secid: secid value 3337 * 3338 * Retrieve the security identifier of the cred structure @c. In case of 3339 * failure, @secid will be set to zero. 3340 */ 3341 void security_cred_getsecid(const struct cred *c, u32 *secid) 3342 { 3343 *secid = 0; 3344 call_void_hook(cred_getsecid, c, secid); 3345 } 3346 EXPORT_SYMBOL(security_cred_getsecid); 3347 3348 /** 3349 * security_cred_getlsmprop() - Get the LSM data from a set of credentials 3350 * @c: credentials 3351 * @prop: destination for the LSM data 3352 * 3353 * Retrieve the security data of the cred structure @c. In case of 3354 * failure, @prop will be cleared. 3355 */ 3356 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop) 3357 { 3358 lsmprop_init(prop); 3359 call_void_hook(cred_getlsmprop, c, prop); 3360 } 3361 EXPORT_SYMBOL(security_cred_getlsmprop); 3362 3363 /** 3364 * security_kernel_act_as() - Set the kernel credentials to act as secid 3365 * @new: credentials 3366 * @secid: secid 3367 * 3368 * Set the credentials for a kernel service to act as (subjective context). 3369 * The current task must be the one that nominated @secid. 3370 * 3371 * Return: Returns 0 if successful. 3372 */ 3373 int security_kernel_act_as(struct cred *new, u32 secid) 3374 { 3375 return call_int_hook(kernel_act_as, new, secid); 3376 } 3377 3378 /** 3379 * security_kernel_create_files_as() - Set file creation context using an inode 3380 * @new: target credentials 3381 * @inode: reference inode 3382 * 3383 * Set the file creation context in a set of credentials to be the same as the 3384 * objective context of the specified inode. The current task must be the one 3385 * that nominated @inode. 3386 * 3387 * Return: Returns 0 if successful. 3388 */ 3389 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3390 { 3391 return call_int_hook(kernel_create_files_as, new, inode); 3392 } 3393 3394 /** 3395 * security_kernel_module_request() - Check if loading a module is allowed 3396 * @kmod_name: module name 3397 * 3398 * Ability to trigger the kernel to automatically upcall to userspace for 3399 * userspace to load a kernel module with the given name. 3400 * 3401 * Return: Returns 0 if successful. 3402 */ 3403 int security_kernel_module_request(char *kmod_name) 3404 { 3405 return call_int_hook(kernel_module_request, kmod_name); 3406 } 3407 3408 /** 3409 * security_kernel_read_file() - Read a file specified by userspace 3410 * @file: file 3411 * @id: file identifier 3412 * @contents: trust if security_kernel_post_read_file() will be called 3413 * 3414 * Read a file specified by userspace. 3415 * 3416 * Return: Returns 0 if permission is granted. 3417 */ 3418 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3419 bool contents) 3420 { 3421 return call_int_hook(kernel_read_file, file, id, contents); 3422 } 3423 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3424 3425 /** 3426 * security_kernel_post_read_file() - Read a file specified by userspace 3427 * @file: file 3428 * @buf: file contents 3429 * @size: size of file contents 3430 * @id: file identifier 3431 * 3432 * Read a file specified by userspace. This must be paired with a prior call 3433 * to security_kernel_read_file() call that indicated this hook would also be 3434 * called, see security_kernel_read_file() for more information. 3435 * 3436 * Return: Returns 0 if permission is granted. 3437 */ 3438 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3439 enum kernel_read_file_id id) 3440 { 3441 return call_int_hook(kernel_post_read_file, file, buf, size, id); 3442 } 3443 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3444 3445 /** 3446 * security_kernel_load_data() - Load data provided by userspace 3447 * @id: data identifier 3448 * @contents: true if security_kernel_post_load_data() will be called 3449 * 3450 * Load data provided by userspace. 3451 * 3452 * Return: Returns 0 if permission is granted. 3453 */ 3454 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3455 { 3456 return call_int_hook(kernel_load_data, id, contents); 3457 } 3458 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3459 3460 /** 3461 * security_kernel_post_load_data() - Load userspace data from a non-file source 3462 * @buf: data 3463 * @size: size of data 3464 * @id: data identifier 3465 * @description: text description of data, specific to the id value 3466 * 3467 * Load data provided by a non-file source (usually userspace buffer). This 3468 * must be paired with a prior security_kernel_load_data() call that indicated 3469 * this hook would also be called, see security_kernel_load_data() for more 3470 * information. 3471 * 3472 * Return: Returns 0 if permission is granted. 3473 */ 3474 int security_kernel_post_load_data(char *buf, loff_t size, 3475 enum kernel_load_data_id id, 3476 char *description) 3477 { 3478 return call_int_hook(kernel_post_load_data, buf, size, id, description); 3479 } 3480 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3481 3482 /** 3483 * security_task_fix_setuid() - Update LSM with new user id attributes 3484 * @new: updated credentials 3485 * @old: credentials being replaced 3486 * @flags: LSM_SETID_* flag values 3487 * 3488 * Update the module's state after setting one or more of the user identity 3489 * attributes of the current process. The @flags parameter indicates which of 3490 * the set*uid system calls invoked this hook. If @new is the set of 3491 * credentials that will be installed. Modifications should be made to this 3492 * rather than to @current->cred. 3493 * 3494 * Return: Returns 0 on success. 3495 */ 3496 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3497 int flags) 3498 { 3499 return call_int_hook(task_fix_setuid, new, old, flags); 3500 } 3501 3502 /** 3503 * security_task_fix_setgid() - Update LSM with new group id attributes 3504 * @new: updated credentials 3505 * @old: credentials being replaced 3506 * @flags: LSM_SETID_* flag value 3507 * 3508 * Update the module's state after setting one or more of the group identity 3509 * attributes of the current process. The @flags parameter indicates which of 3510 * the set*gid system calls invoked this hook. @new is the set of credentials 3511 * that will be installed. Modifications should be made to this rather than to 3512 * @current->cred. 3513 * 3514 * Return: Returns 0 on success. 3515 */ 3516 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3517 int flags) 3518 { 3519 return call_int_hook(task_fix_setgid, new, old, flags); 3520 } 3521 3522 /** 3523 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3524 * @new: updated credentials 3525 * @old: credentials being replaced 3526 * 3527 * Update the module's state after setting the supplementary group identity 3528 * attributes of the current process. @new is the set of credentials that will 3529 * be installed. Modifications should be made to this rather than to 3530 * @current->cred. 3531 * 3532 * Return: Returns 0 on success. 3533 */ 3534 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3535 { 3536 return call_int_hook(task_fix_setgroups, new, old); 3537 } 3538 3539 /** 3540 * security_task_setpgid() - Check if setting the pgid is allowed 3541 * @p: task being modified 3542 * @pgid: new pgid 3543 * 3544 * Check permission before setting the process group identifier of the process 3545 * @p to @pgid. 3546 * 3547 * Return: Returns 0 if permission is granted. 3548 */ 3549 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3550 { 3551 return call_int_hook(task_setpgid, p, pgid); 3552 } 3553 3554 /** 3555 * security_task_getpgid() - Check if getting the pgid is allowed 3556 * @p: task 3557 * 3558 * Check permission before getting the process group identifier of the process 3559 * @p. 3560 * 3561 * Return: Returns 0 if permission is granted. 3562 */ 3563 int security_task_getpgid(struct task_struct *p) 3564 { 3565 return call_int_hook(task_getpgid, p); 3566 } 3567 3568 /** 3569 * security_task_getsid() - Check if getting the session id is allowed 3570 * @p: task 3571 * 3572 * Check permission before getting the session identifier of the process @p. 3573 * 3574 * Return: Returns 0 if permission is granted. 3575 */ 3576 int security_task_getsid(struct task_struct *p) 3577 { 3578 return call_int_hook(task_getsid, p); 3579 } 3580 3581 /** 3582 * security_current_getlsmprop_subj() - Current task's subjective LSM data 3583 * @prop: lsm specific information 3584 * 3585 * Retrieve the subjective security identifier of the current task and return 3586 * it in @prop. 3587 */ 3588 void security_current_getlsmprop_subj(struct lsm_prop *prop) 3589 { 3590 lsmprop_init(prop); 3591 call_void_hook(current_getlsmprop_subj, prop); 3592 } 3593 EXPORT_SYMBOL(security_current_getlsmprop_subj); 3594 3595 /** 3596 * security_task_getlsmprop_obj() - Get a task's objective LSM data 3597 * @p: target task 3598 * @prop: lsm specific information 3599 * 3600 * Retrieve the objective security identifier of the task_struct in @p and 3601 * return it in @prop. 3602 */ 3603 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop) 3604 { 3605 lsmprop_init(prop); 3606 call_void_hook(task_getlsmprop_obj, p, prop); 3607 } 3608 EXPORT_SYMBOL(security_task_getlsmprop_obj); 3609 3610 /** 3611 * security_task_setnice() - Check if setting a task's nice value is allowed 3612 * @p: target task 3613 * @nice: nice value 3614 * 3615 * Check permission before setting the nice value of @p to @nice. 3616 * 3617 * Return: Returns 0 if permission is granted. 3618 */ 3619 int security_task_setnice(struct task_struct *p, int nice) 3620 { 3621 return call_int_hook(task_setnice, p, nice); 3622 } 3623 3624 /** 3625 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3626 * @p: target task 3627 * @ioprio: ioprio value 3628 * 3629 * Check permission before setting the ioprio value of @p to @ioprio. 3630 * 3631 * Return: Returns 0 if permission is granted. 3632 */ 3633 int security_task_setioprio(struct task_struct *p, int ioprio) 3634 { 3635 return call_int_hook(task_setioprio, p, ioprio); 3636 } 3637 3638 /** 3639 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3640 * @p: task 3641 * 3642 * Check permission before getting the ioprio value of @p. 3643 * 3644 * Return: Returns 0 if permission is granted. 3645 */ 3646 int security_task_getioprio(struct task_struct *p) 3647 { 3648 return call_int_hook(task_getioprio, p); 3649 } 3650 3651 /** 3652 * security_task_prlimit() - Check if get/setting resources limits is allowed 3653 * @cred: current task credentials 3654 * @tcred: target task credentials 3655 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3656 * 3657 * Check permission before getting and/or setting the resource limits of 3658 * another task. 3659 * 3660 * Return: Returns 0 if permission is granted. 3661 */ 3662 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3663 unsigned int flags) 3664 { 3665 return call_int_hook(task_prlimit, cred, tcred, flags); 3666 } 3667 3668 /** 3669 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3670 * @p: target task's group leader 3671 * @resource: resource whose limit is being set 3672 * @new_rlim: new resource limit 3673 * 3674 * Check permission before setting the resource limits of process @p for 3675 * @resource to @new_rlim. The old resource limit values can be examined by 3676 * dereferencing (p->signal->rlim + resource). 3677 * 3678 * Return: Returns 0 if permission is granted. 3679 */ 3680 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3681 struct rlimit *new_rlim) 3682 { 3683 return call_int_hook(task_setrlimit, p, resource, new_rlim); 3684 } 3685 3686 /** 3687 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3688 * @p: target task 3689 * 3690 * Check permission before setting scheduling policy and/or parameters of 3691 * process @p. 3692 * 3693 * Return: Returns 0 if permission is granted. 3694 */ 3695 int security_task_setscheduler(struct task_struct *p) 3696 { 3697 return call_int_hook(task_setscheduler, p); 3698 } 3699 3700 /** 3701 * security_task_getscheduler() - Check if getting scheduling info is allowed 3702 * @p: target task 3703 * 3704 * Check permission before obtaining scheduling information for process @p. 3705 * 3706 * Return: Returns 0 if permission is granted. 3707 */ 3708 int security_task_getscheduler(struct task_struct *p) 3709 { 3710 return call_int_hook(task_getscheduler, p); 3711 } 3712 3713 /** 3714 * security_task_movememory() - Check if moving memory is allowed 3715 * @p: task 3716 * 3717 * Check permission before moving memory owned by process @p. 3718 * 3719 * Return: Returns 0 if permission is granted. 3720 */ 3721 int security_task_movememory(struct task_struct *p) 3722 { 3723 return call_int_hook(task_movememory, p); 3724 } 3725 3726 /** 3727 * security_task_kill() - Check if sending a signal is allowed 3728 * @p: target process 3729 * @info: signal information 3730 * @sig: signal value 3731 * @cred: credentials of the signal sender, NULL if @current 3732 * 3733 * Check permission before sending signal @sig to @p. @info can be NULL, the 3734 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3735 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3736 * the kernel and should typically be permitted. SIGIO signals are handled 3737 * separately by the send_sigiotask hook in file_security_ops. 3738 * 3739 * Return: Returns 0 if permission is granted. 3740 */ 3741 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3742 int sig, const struct cred *cred) 3743 { 3744 return call_int_hook(task_kill, p, info, sig, cred); 3745 } 3746 3747 /** 3748 * security_task_prctl() - Check if a prctl op is allowed 3749 * @option: operation 3750 * @arg2: argument 3751 * @arg3: argument 3752 * @arg4: argument 3753 * @arg5: argument 3754 * 3755 * Check permission before performing a process control operation on the 3756 * current process. 3757 * 3758 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3759 * to cause prctl() to return immediately with that value. 3760 */ 3761 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3762 unsigned long arg4, unsigned long arg5) 3763 { 3764 int thisrc; 3765 int rc = LSM_RET_DEFAULT(task_prctl); 3766 struct lsm_static_call *scall; 3767 3768 lsm_for_each_hook(scall, task_prctl) { 3769 thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3770 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3771 rc = thisrc; 3772 if (thisrc != 0) 3773 break; 3774 } 3775 } 3776 return rc; 3777 } 3778 3779 /** 3780 * security_task_to_inode() - Set the security attributes of a task's inode 3781 * @p: task 3782 * @inode: inode 3783 * 3784 * Set the security attributes for an inode based on an associated task's 3785 * security attributes, e.g. for /proc/pid inodes. 3786 */ 3787 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3788 { 3789 call_void_hook(task_to_inode, p, inode); 3790 } 3791 3792 /** 3793 * security_create_user_ns() - Check if creating a new userns is allowed 3794 * @cred: prepared creds 3795 * 3796 * Check permission prior to creating a new user namespace. 3797 * 3798 * Return: Returns 0 if successful, otherwise < 0 error code. 3799 */ 3800 int security_create_user_ns(const struct cred *cred) 3801 { 3802 return call_int_hook(userns_create, cred); 3803 } 3804 3805 /** 3806 * security_ipc_permission() - Check if sysv ipc access is allowed 3807 * @ipcp: ipc permission structure 3808 * @flag: requested permissions 3809 * 3810 * Check permissions for access to IPC. 3811 * 3812 * Return: Returns 0 if permission is granted. 3813 */ 3814 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3815 { 3816 return call_int_hook(ipc_permission, ipcp, flag); 3817 } 3818 3819 /** 3820 * security_ipc_getlsmprop() - Get the sysv ipc object LSM data 3821 * @ipcp: ipc permission structure 3822 * @prop: pointer to lsm information 3823 * 3824 * Get the lsm information associated with the ipc object. 3825 */ 3826 3827 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop) 3828 { 3829 lsmprop_init(prop); 3830 call_void_hook(ipc_getlsmprop, ipcp, prop); 3831 } 3832 3833 /** 3834 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3835 * @msg: message structure 3836 * 3837 * Allocate and attach a security structure to the msg->security field. The 3838 * security field is initialized to NULL when the structure is first created. 3839 * 3840 * Return: Return 0 if operation was successful and permission is granted. 3841 */ 3842 int security_msg_msg_alloc(struct msg_msg *msg) 3843 { 3844 int rc = lsm_msg_msg_alloc(msg); 3845 3846 if (unlikely(rc)) 3847 return rc; 3848 rc = call_int_hook(msg_msg_alloc_security, msg); 3849 if (unlikely(rc)) 3850 security_msg_msg_free(msg); 3851 return rc; 3852 } 3853 3854 /** 3855 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3856 * @msg: message structure 3857 * 3858 * Deallocate the security structure for this message. 3859 */ 3860 void security_msg_msg_free(struct msg_msg *msg) 3861 { 3862 call_void_hook(msg_msg_free_security, msg); 3863 kfree(msg->security); 3864 msg->security = NULL; 3865 } 3866 3867 /** 3868 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3869 * @msq: sysv ipc permission structure 3870 * 3871 * Allocate and attach a security structure to @msg. The security field is 3872 * initialized to NULL when the structure is first created. 3873 * 3874 * Return: Returns 0 if operation was successful and permission is granted. 3875 */ 3876 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3877 { 3878 int rc = lsm_ipc_alloc(msq); 3879 3880 if (unlikely(rc)) 3881 return rc; 3882 rc = call_int_hook(msg_queue_alloc_security, msq); 3883 if (unlikely(rc)) 3884 security_msg_queue_free(msq); 3885 return rc; 3886 } 3887 3888 /** 3889 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3890 * @msq: sysv ipc permission structure 3891 * 3892 * Deallocate security field @perm->security for the message queue. 3893 */ 3894 void security_msg_queue_free(struct kern_ipc_perm *msq) 3895 { 3896 call_void_hook(msg_queue_free_security, msq); 3897 kfree(msq->security); 3898 msq->security = NULL; 3899 } 3900 3901 /** 3902 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3903 * @msq: sysv ipc permission structure 3904 * @msqflg: operation flags 3905 * 3906 * Check permission when a message queue is requested through the msgget system 3907 * call. This hook is only called when returning the message queue identifier 3908 * for an existing message queue, not when a new message queue is created. 3909 * 3910 * Return: Return 0 if permission is granted. 3911 */ 3912 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3913 { 3914 return call_int_hook(msg_queue_associate, msq, msqflg); 3915 } 3916 3917 /** 3918 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3919 * @msq: sysv ipc permission structure 3920 * @cmd: operation 3921 * 3922 * Check permission when a message control operation specified by @cmd is to be 3923 * performed on the message queue with permissions. 3924 * 3925 * Return: Returns 0 if permission is granted. 3926 */ 3927 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3928 { 3929 return call_int_hook(msg_queue_msgctl, msq, cmd); 3930 } 3931 3932 /** 3933 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3934 * @msq: sysv ipc permission structure 3935 * @msg: message 3936 * @msqflg: operation flags 3937 * 3938 * Check permission before a message, @msg, is enqueued on the message queue 3939 * with permissions specified in @msq. 3940 * 3941 * Return: Returns 0 if permission is granted. 3942 */ 3943 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3944 struct msg_msg *msg, int msqflg) 3945 { 3946 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg); 3947 } 3948 3949 /** 3950 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3951 * @msq: sysv ipc permission structure 3952 * @msg: message 3953 * @target: target task 3954 * @type: type of message requested 3955 * @mode: operation flags 3956 * 3957 * Check permission before a message, @msg, is removed from the message queue. 3958 * The @target task structure contains a pointer to the process that will be 3959 * receiving the message (not equal to the current process when inline receives 3960 * are being performed). 3961 * 3962 * Return: Returns 0 if permission is granted. 3963 */ 3964 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3965 struct task_struct *target, long type, int mode) 3966 { 3967 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode); 3968 } 3969 3970 /** 3971 * security_shm_alloc() - Allocate a sysv shm LSM blob 3972 * @shp: sysv ipc permission structure 3973 * 3974 * Allocate and attach a security structure to the @shp security field. The 3975 * security field is initialized to NULL when the structure is first created. 3976 * 3977 * Return: Returns 0 if operation was successful and permission is granted. 3978 */ 3979 int security_shm_alloc(struct kern_ipc_perm *shp) 3980 { 3981 int rc = lsm_ipc_alloc(shp); 3982 3983 if (unlikely(rc)) 3984 return rc; 3985 rc = call_int_hook(shm_alloc_security, shp); 3986 if (unlikely(rc)) 3987 security_shm_free(shp); 3988 return rc; 3989 } 3990 3991 /** 3992 * security_shm_free() - Free a sysv shm LSM blob 3993 * @shp: sysv ipc permission structure 3994 * 3995 * Deallocate the security structure @perm->security for the memory segment. 3996 */ 3997 void security_shm_free(struct kern_ipc_perm *shp) 3998 { 3999 call_void_hook(shm_free_security, shp); 4000 kfree(shp->security); 4001 shp->security = NULL; 4002 } 4003 4004 /** 4005 * security_shm_associate() - Check if a sysv shm operation is allowed 4006 * @shp: sysv ipc permission structure 4007 * @shmflg: operation flags 4008 * 4009 * Check permission when a shared memory region is requested through the shmget 4010 * system call. This hook is only called when returning the shared memory 4011 * region identifier for an existing region, not when a new shared memory 4012 * region is created. 4013 * 4014 * Return: Returns 0 if permission is granted. 4015 */ 4016 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 4017 { 4018 return call_int_hook(shm_associate, shp, shmflg); 4019 } 4020 4021 /** 4022 * security_shm_shmctl() - Check if a sysv shm operation is allowed 4023 * @shp: sysv ipc permission structure 4024 * @cmd: operation 4025 * 4026 * Check permission when a shared memory control operation specified by @cmd is 4027 * to be performed on the shared memory region with permissions in @shp. 4028 * 4029 * Return: Return 0 if permission is granted. 4030 */ 4031 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 4032 { 4033 return call_int_hook(shm_shmctl, shp, cmd); 4034 } 4035 4036 /** 4037 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 4038 * @shp: sysv ipc permission structure 4039 * @shmaddr: address of memory region to attach 4040 * @shmflg: operation flags 4041 * 4042 * Check permissions prior to allowing the shmat system call to attach the 4043 * shared memory segment with permissions @shp to the data segment of the 4044 * calling process. The attaching address is specified by @shmaddr. 4045 * 4046 * Return: Returns 0 if permission is granted. 4047 */ 4048 int security_shm_shmat(struct kern_ipc_perm *shp, 4049 char __user *shmaddr, int shmflg) 4050 { 4051 return call_int_hook(shm_shmat, shp, shmaddr, shmflg); 4052 } 4053 4054 /** 4055 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 4056 * @sma: sysv ipc permission structure 4057 * 4058 * Allocate and attach a security structure to the @sma security field. The 4059 * security field is initialized to NULL when the structure is first created. 4060 * 4061 * Return: Returns 0 if operation was successful and permission is granted. 4062 */ 4063 int security_sem_alloc(struct kern_ipc_perm *sma) 4064 { 4065 int rc = lsm_ipc_alloc(sma); 4066 4067 if (unlikely(rc)) 4068 return rc; 4069 rc = call_int_hook(sem_alloc_security, sma); 4070 if (unlikely(rc)) 4071 security_sem_free(sma); 4072 return rc; 4073 } 4074 4075 /** 4076 * security_sem_free() - Free a sysv semaphore LSM blob 4077 * @sma: sysv ipc permission structure 4078 * 4079 * Deallocate security structure @sma->security for the semaphore. 4080 */ 4081 void security_sem_free(struct kern_ipc_perm *sma) 4082 { 4083 call_void_hook(sem_free_security, sma); 4084 kfree(sma->security); 4085 sma->security = NULL; 4086 } 4087 4088 /** 4089 * security_sem_associate() - Check if a sysv semaphore operation is allowed 4090 * @sma: sysv ipc permission structure 4091 * @semflg: operation flags 4092 * 4093 * Check permission when a semaphore is requested through the semget system 4094 * call. This hook is only called when returning the semaphore identifier for 4095 * an existing semaphore, not when a new one must be created. 4096 * 4097 * Return: Returns 0 if permission is granted. 4098 */ 4099 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 4100 { 4101 return call_int_hook(sem_associate, sma, semflg); 4102 } 4103 4104 /** 4105 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 4106 * @sma: sysv ipc permission structure 4107 * @cmd: operation 4108 * 4109 * Check permission when a semaphore operation specified by @cmd is to be 4110 * performed on the semaphore. 4111 * 4112 * Return: Returns 0 if permission is granted. 4113 */ 4114 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 4115 { 4116 return call_int_hook(sem_semctl, sma, cmd); 4117 } 4118 4119 /** 4120 * security_sem_semop() - Check if a sysv semaphore operation is allowed 4121 * @sma: sysv ipc permission structure 4122 * @sops: operations to perform 4123 * @nsops: number of operations 4124 * @alter: flag indicating changes will be made 4125 * 4126 * Check permissions before performing operations on members of the semaphore 4127 * set. If the @alter flag is nonzero, the semaphore set may be modified. 4128 * 4129 * Return: Returns 0 if permission is granted. 4130 */ 4131 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 4132 unsigned nsops, int alter) 4133 { 4134 return call_int_hook(sem_semop, sma, sops, nsops, alter); 4135 } 4136 4137 /** 4138 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 4139 * @dentry: dentry 4140 * @inode: inode 4141 * 4142 * Fill in @inode security information for a @dentry if allowed. 4143 */ 4144 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 4145 { 4146 if (unlikely(inode && IS_PRIVATE(inode))) 4147 return; 4148 call_void_hook(d_instantiate, dentry, inode); 4149 } 4150 EXPORT_SYMBOL(security_d_instantiate); 4151 4152 /* 4153 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 4154 */ 4155 4156 /** 4157 * security_getselfattr - Read an LSM attribute of the current process. 4158 * @attr: which attribute to return 4159 * @uctx: the user-space destination for the information, or NULL 4160 * @size: pointer to the size of space available to receive the data 4161 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 4162 * attributes associated with the LSM identified in the passed @ctx be 4163 * reported. 4164 * 4165 * A NULL value for @uctx can be used to get both the number of attributes 4166 * and the size of the data. 4167 * 4168 * Returns the number of attributes found on success, negative value 4169 * on error. @size is reset to the total size of the data. 4170 * If @size is insufficient to contain the data -E2BIG is returned. 4171 */ 4172 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4173 u32 __user *size, u32 flags) 4174 { 4175 struct lsm_static_call *scall; 4176 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 4177 u8 __user *base = (u8 __user *)uctx; 4178 u32 entrysize; 4179 u32 total = 0; 4180 u32 left; 4181 bool toobig = false; 4182 bool single = false; 4183 int count = 0; 4184 int rc; 4185 4186 if (attr == LSM_ATTR_UNDEF) 4187 return -EINVAL; 4188 if (size == NULL) 4189 return -EINVAL; 4190 if (get_user(left, size)) 4191 return -EFAULT; 4192 4193 if (flags) { 4194 /* 4195 * Only flag supported is LSM_FLAG_SINGLE 4196 */ 4197 if (flags != LSM_FLAG_SINGLE || !uctx) 4198 return -EINVAL; 4199 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 4200 return -EFAULT; 4201 /* 4202 * If the LSM ID isn't specified it is an error. 4203 */ 4204 if (lctx.id == LSM_ID_UNDEF) 4205 return -EINVAL; 4206 single = true; 4207 } 4208 4209 /* 4210 * In the usual case gather all the data from the LSMs. 4211 * In the single case only get the data from the LSM specified. 4212 */ 4213 lsm_for_each_hook(scall, getselfattr) { 4214 if (single && lctx.id != scall->hl->lsmid->id) 4215 continue; 4216 entrysize = left; 4217 if (base) 4218 uctx = (struct lsm_ctx __user *)(base + total); 4219 rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags); 4220 if (rc == -EOPNOTSUPP) 4221 continue; 4222 if (rc == -E2BIG) { 4223 rc = 0; 4224 left = 0; 4225 toobig = true; 4226 } else if (rc < 0) 4227 return rc; 4228 else 4229 left -= entrysize; 4230 4231 total += entrysize; 4232 count += rc; 4233 if (single) 4234 break; 4235 } 4236 if (put_user(total, size)) 4237 return -EFAULT; 4238 if (toobig) 4239 return -E2BIG; 4240 if (count == 0) 4241 return LSM_RET_DEFAULT(getselfattr); 4242 return count; 4243 } 4244 4245 /* 4246 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 4247 */ 4248 4249 /** 4250 * security_setselfattr - Set an LSM attribute on the current process. 4251 * @attr: which attribute to set 4252 * @uctx: the user-space source for the information 4253 * @size: the size of the data 4254 * @flags: reserved for future use, must be 0 4255 * 4256 * Set an LSM attribute for the current process. The LSM, attribute 4257 * and new value are included in @uctx. 4258 * 4259 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4260 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4261 * LSM specific failure. 4262 */ 4263 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4264 u32 size, u32 flags) 4265 { 4266 struct lsm_static_call *scall; 4267 struct lsm_ctx *lctx; 4268 int rc = LSM_RET_DEFAULT(setselfattr); 4269 u64 required_len; 4270 4271 if (flags) 4272 return -EINVAL; 4273 if (size < sizeof(*lctx)) 4274 return -EINVAL; 4275 if (size > PAGE_SIZE) 4276 return -E2BIG; 4277 4278 lctx = memdup_user(uctx, size); 4279 if (IS_ERR(lctx)) 4280 return PTR_ERR(lctx); 4281 4282 if (size < lctx->len || 4283 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) || 4284 lctx->len < required_len) { 4285 rc = -EINVAL; 4286 goto free_out; 4287 } 4288 4289 lsm_for_each_hook(scall, setselfattr) 4290 if ((scall->hl->lsmid->id) == lctx->id) { 4291 rc = scall->hl->hook.setselfattr(attr, lctx, size, flags); 4292 break; 4293 } 4294 4295 free_out: 4296 kfree(lctx); 4297 return rc; 4298 } 4299 4300 /** 4301 * security_getprocattr() - Read an attribute for a task 4302 * @p: the task 4303 * @lsmid: LSM identification 4304 * @name: attribute name 4305 * @value: attribute value 4306 * 4307 * Read attribute @name for task @p and store it into @value if allowed. 4308 * 4309 * Return: Returns the length of @value on success, a negative value otherwise. 4310 */ 4311 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4312 char **value) 4313 { 4314 struct lsm_static_call *scall; 4315 4316 lsm_for_each_hook(scall, getprocattr) { 4317 if (lsmid != 0 && lsmid != scall->hl->lsmid->id) 4318 continue; 4319 return scall->hl->hook.getprocattr(p, name, value); 4320 } 4321 return LSM_RET_DEFAULT(getprocattr); 4322 } 4323 4324 /** 4325 * security_setprocattr() - Set an attribute for a task 4326 * @lsmid: LSM identification 4327 * @name: attribute name 4328 * @value: attribute value 4329 * @size: attribute value size 4330 * 4331 * Write (set) the current task's attribute @name to @value, size @size if 4332 * allowed. 4333 * 4334 * Return: Returns bytes written on success, a negative value otherwise. 4335 */ 4336 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4337 { 4338 struct lsm_static_call *scall; 4339 4340 lsm_for_each_hook(scall, setprocattr) { 4341 if (lsmid != 0 && lsmid != scall->hl->lsmid->id) 4342 continue; 4343 return scall->hl->hook.setprocattr(name, value, size); 4344 } 4345 return LSM_RET_DEFAULT(setprocattr); 4346 } 4347 4348 /** 4349 * security_ismaclabel() - Check if the named attribute is a MAC label 4350 * @name: full extended attribute name 4351 * 4352 * Check if the extended attribute specified by @name represents a MAC label. 4353 * 4354 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4355 */ 4356 int security_ismaclabel(const char *name) 4357 { 4358 return call_int_hook(ismaclabel, name); 4359 } 4360 EXPORT_SYMBOL(security_ismaclabel); 4361 4362 /** 4363 * security_secid_to_secctx() - Convert a secid to a secctx 4364 * @secid: secid 4365 * @cp: the LSM context 4366 * 4367 * Convert secid to security context. If @cp is NULL the length of the 4368 * result will be returned, but no data will be returned. This 4369 * does mean that the length could change between calls to check the length and 4370 * the next call which actually allocates and returns the data. 4371 * 4372 * Return: Return length of data on success, error on failure. 4373 */ 4374 int security_secid_to_secctx(u32 secid, struct lsm_context *cp) 4375 { 4376 return call_int_hook(secid_to_secctx, secid, cp); 4377 } 4378 EXPORT_SYMBOL(security_secid_to_secctx); 4379 4380 /** 4381 * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx 4382 * @prop: lsm specific information 4383 * @cp: the LSM context 4384 * @lsmid: which security module to report 4385 * 4386 * Convert a @prop entry to security context. If @cp is NULL the 4387 * length of the result will be returned. This does mean that the 4388 * length could change between calls to check the length and the 4389 * next call which actually allocates and returns the @cp. 4390 * 4391 * @lsmid identifies which LSM should supply the context. 4392 * A value of LSM_ID_UNDEF indicates that the first LSM suppling 4393 * the hook should be used. This is used in cases where the 4394 * ID of the supplying LSM is unambiguous. 4395 * 4396 * Return: Return length of data on success, error on failure. 4397 */ 4398 int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp, 4399 int lsmid) 4400 { 4401 struct lsm_static_call *scall; 4402 4403 lsm_for_each_hook(scall, lsmprop_to_secctx) { 4404 if (lsmid != LSM_ID_UNDEF && lsmid != scall->hl->lsmid->id) 4405 continue; 4406 return scall->hl->hook.lsmprop_to_secctx(prop, cp); 4407 } 4408 return LSM_RET_DEFAULT(lsmprop_to_secctx); 4409 } 4410 EXPORT_SYMBOL(security_lsmprop_to_secctx); 4411 4412 /** 4413 * security_secctx_to_secid() - Convert a secctx to a secid 4414 * @secdata: secctx 4415 * @seclen: length of secctx 4416 * @secid: secid 4417 * 4418 * Convert security context to secid. 4419 * 4420 * Return: Returns 0 on success, error on failure. 4421 */ 4422 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4423 { 4424 *secid = 0; 4425 return call_int_hook(secctx_to_secid, secdata, seclen, secid); 4426 } 4427 EXPORT_SYMBOL(security_secctx_to_secid); 4428 4429 /** 4430 * security_release_secctx() - Free a secctx buffer 4431 * @cp: the security context 4432 * 4433 * Release the security context. 4434 */ 4435 void security_release_secctx(struct lsm_context *cp) 4436 { 4437 call_void_hook(release_secctx, cp); 4438 memset(cp, 0, sizeof(*cp)); 4439 } 4440 EXPORT_SYMBOL(security_release_secctx); 4441 4442 /** 4443 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4444 * @inode: inode 4445 * 4446 * Notify the security module that it must revalidate the security context of 4447 * an inode. 4448 */ 4449 void security_inode_invalidate_secctx(struct inode *inode) 4450 { 4451 call_void_hook(inode_invalidate_secctx, inode); 4452 } 4453 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4454 4455 /** 4456 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4457 * @inode: inode 4458 * @ctx: secctx 4459 * @ctxlen: length of secctx 4460 * 4461 * Notify the security module of what the security context of an inode should 4462 * be. Initializes the incore security context managed by the security module 4463 * for this inode. Example usage: NFS client invokes this hook to initialize 4464 * the security context in its incore inode to the value provided by the server 4465 * for the file when the server returned the file's attributes to the client. 4466 * Must be called with inode->i_mutex locked. 4467 * 4468 * Return: Returns 0 on success, error on failure. 4469 */ 4470 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4471 { 4472 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen); 4473 } 4474 EXPORT_SYMBOL(security_inode_notifysecctx); 4475 4476 /** 4477 * security_inode_setsecctx() - Change the security label of an inode 4478 * @dentry: inode 4479 * @ctx: secctx 4480 * @ctxlen: length of secctx 4481 * 4482 * Change the security context of an inode. Updates the incore security 4483 * context managed by the security module and invokes the fs code as needed 4484 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4485 * context. Example usage: NFS server invokes this hook to change the security 4486 * context in its incore inode and on the backing filesystem to a value 4487 * provided by the client on a SETATTR operation. Must be called with 4488 * inode->i_mutex locked. 4489 * 4490 * Return: Returns 0 on success, error on failure. 4491 */ 4492 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4493 { 4494 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen); 4495 } 4496 EXPORT_SYMBOL(security_inode_setsecctx); 4497 4498 /** 4499 * security_inode_getsecctx() - Get the security label of an inode 4500 * @inode: inode 4501 * @cp: security context 4502 * 4503 * On success, returns 0 and fills out @cp with the security context 4504 * for the given @inode. 4505 * 4506 * Return: Returns 0 on success, error on failure. 4507 */ 4508 int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp) 4509 { 4510 memset(cp, 0, sizeof(*cp)); 4511 return call_int_hook(inode_getsecctx, inode, cp); 4512 } 4513 EXPORT_SYMBOL(security_inode_getsecctx); 4514 4515 #ifdef CONFIG_WATCH_QUEUE 4516 /** 4517 * security_post_notification() - Check if a watch notification can be posted 4518 * @w_cred: credentials of the task that set the watch 4519 * @cred: credentials of the task which triggered the watch 4520 * @n: the notification 4521 * 4522 * Check to see if a watch notification can be posted to a particular queue. 4523 * 4524 * Return: Returns 0 if permission is granted. 4525 */ 4526 int security_post_notification(const struct cred *w_cred, 4527 const struct cred *cred, 4528 struct watch_notification *n) 4529 { 4530 return call_int_hook(post_notification, w_cred, cred, n); 4531 } 4532 #endif /* CONFIG_WATCH_QUEUE */ 4533 4534 #ifdef CONFIG_KEY_NOTIFICATIONS 4535 /** 4536 * security_watch_key() - Check if a task is allowed to watch for key events 4537 * @key: the key to watch 4538 * 4539 * Check to see if a process is allowed to watch for event notifications from 4540 * a key or keyring. 4541 * 4542 * Return: Returns 0 if permission is granted. 4543 */ 4544 int security_watch_key(struct key *key) 4545 { 4546 return call_int_hook(watch_key, key); 4547 } 4548 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4549 4550 #ifdef CONFIG_SECURITY_NETWORK 4551 /** 4552 * security_netlink_send() - Save info and check if netlink sending is allowed 4553 * @sk: sending socket 4554 * @skb: netlink message 4555 * 4556 * Save security information for a netlink message so that permission checking 4557 * can be performed when the message is processed. The security information 4558 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4559 * Also may be used to provide fine grained control over message transmission. 4560 * 4561 * Return: Returns 0 if the information was successfully saved and message is 4562 * allowed to be transmitted. 4563 */ 4564 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4565 { 4566 return call_int_hook(netlink_send, sk, skb); 4567 } 4568 4569 /** 4570 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4571 * @sock: originating sock 4572 * @other: peer sock 4573 * @newsk: new sock 4574 * 4575 * Check permissions before establishing a Unix domain stream connection 4576 * between @sock and @other. 4577 * 4578 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4579 * Linux provides an alternative to the conventional file name space for Unix 4580 * domain sockets. Whereas binding and connecting to sockets in the file name 4581 * space is mediated by the typical file permissions (and caught by the mknod 4582 * and permission hooks in inode_security_ops), binding and connecting to 4583 * sockets in the abstract name space is completely unmediated. Sufficient 4584 * control of Unix domain sockets in the abstract name space isn't possible 4585 * using only the socket layer hooks, since we need to know the actual target 4586 * socket, which is not looked up until we are inside the af_unix code. 4587 * 4588 * Return: Returns 0 if permission is granted. 4589 */ 4590 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4591 struct sock *newsk) 4592 { 4593 return call_int_hook(unix_stream_connect, sock, other, newsk); 4594 } 4595 EXPORT_SYMBOL(security_unix_stream_connect); 4596 4597 /** 4598 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4599 * @sock: originating sock 4600 * @other: peer sock 4601 * 4602 * Check permissions before connecting or sending datagrams from @sock to 4603 * @other. 4604 * 4605 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4606 * Linux provides an alternative to the conventional file name space for Unix 4607 * domain sockets. Whereas binding and connecting to sockets in the file name 4608 * space is mediated by the typical file permissions (and caught by the mknod 4609 * and permission hooks in inode_security_ops), binding and connecting to 4610 * sockets in the abstract name space is completely unmediated. Sufficient 4611 * control of Unix domain sockets in the abstract name space isn't possible 4612 * using only the socket layer hooks, since we need to know the actual target 4613 * socket, which is not looked up until we are inside the af_unix code. 4614 * 4615 * Return: Returns 0 if permission is granted. 4616 */ 4617 int security_unix_may_send(struct socket *sock, struct socket *other) 4618 { 4619 return call_int_hook(unix_may_send, sock, other); 4620 } 4621 EXPORT_SYMBOL(security_unix_may_send); 4622 4623 /** 4624 * security_socket_create() - Check if creating a new socket is allowed 4625 * @family: protocol family 4626 * @type: communications type 4627 * @protocol: requested protocol 4628 * @kern: set to 1 if a kernel socket is requested 4629 * 4630 * Check permissions prior to creating a new socket. 4631 * 4632 * Return: Returns 0 if permission is granted. 4633 */ 4634 int security_socket_create(int family, int type, int protocol, int kern) 4635 { 4636 return call_int_hook(socket_create, family, type, protocol, kern); 4637 } 4638 4639 /** 4640 * security_socket_post_create() - Initialize a newly created socket 4641 * @sock: socket 4642 * @family: protocol family 4643 * @type: communications type 4644 * @protocol: requested protocol 4645 * @kern: set to 1 if a kernel socket is requested 4646 * 4647 * This hook allows a module to update or allocate a per-socket security 4648 * structure. Note that the security field was not added directly to the socket 4649 * structure, but rather, the socket security information is stored in the 4650 * associated inode. Typically, the inode alloc_security hook will allocate 4651 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4652 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4653 * information that wasn't available when the inode was allocated. 4654 * 4655 * Return: Returns 0 if permission is granted. 4656 */ 4657 int security_socket_post_create(struct socket *sock, int family, 4658 int type, int protocol, int kern) 4659 { 4660 return call_int_hook(socket_post_create, sock, family, type, 4661 protocol, kern); 4662 } 4663 4664 /** 4665 * security_socket_socketpair() - Check if creating a socketpair is allowed 4666 * @socka: first socket 4667 * @sockb: second socket 4668 * 4669 * Check permissions before creating a fresh pair of sockets. 4670 * 4671 * Return: Returns 0 if permission is granted and the connection was 4672 * established. 4673 */ 4674 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4675 { 4676 return call_int_hook(socket_socketpair, socka, sockb); 4677 } 4678 EXPORT_SYMBOL(security_socket_socketpair); 4679 4680 /** 4681 * security_socket_bind() - Check if a socket bind operation is allowed 4682 * @sock: socket 4683 * @address: requested bind address 4684 * @addrlen: length of address 4685 * 4686 * Check permission before socket protocol layer bind operation is performed 4687 * and the socket @sock is bound to the address specified in the @address 4688 * parameter. 4689 * 4690 * Return: Returns 0 if permission is granted. 4691 */ 4692 int security_socket_bind(struct socket *sock, 4693 struct sockaddr *address, int addrlen) 4694 { 4695 return call_int_hook(socket_bind, sock, address, addrlen); 4696 } 4697 4698 /** 4699 * security_socket_connect() - Check if a socket connect operation is allowed 4700 * @sock: socket 4701 * @address: address of remote connection point 4702 * @addrlen: length of address 4703 * 4704 * Check permission before socket protocol layer connect operation attempts to 4705 * connect socket @sock to a remote address, @address. 4706 * 4707 * Return: Returns 0 if permission is granted. 4708 */ 4709 int security_socket_connect(struct socket *sock, 4710 struct sockaddr *address, int addrlen) 4711 { 4712 return call_int_hook(socket_connect, sock, address, addrlen); 4713 } 4714 4715 /** 4716 * security_socket_listen() - Check if a socket is allowed to listen 4717 * @sock: socket 4718 * @backlog: connection queue size 4719 * 4720 * Check permission before socket protocol layer listen operation. 4721 * 4722 * Return: Returns 0 if permission is granted. 4723 */ 4724 int security_socket_listen(struct socket *sock, int backlog) 4725 { 4726 return call_int_hook(socket_listen, sock, backlog); 4727 } 4728 4729 /** 4730 * security_socket_accept() - Check if a socket is allowed to accept connections 4731 * @sock: listening socket 4732 * @newsock: newly creation connection socket 4733 * 4734 * Check permission before accepting a new connection. Note that the new 4735 * socket, @newsock, has been created and some information copied to it, but 4736 * the accept operation has not actually been performed. 4737 * 4738 * Return: Returns 0 if permission is granted. 4739 */ 4740 int security_socket_accept(struct socket *sock, struct socket *newsock) 4741 { 4742 return call_int_hook(socket_accept, sock, newsock); 4743 } 4744 4745 /** 4746 * security_socket_sendmsg() - Check if sending a message is allowed 4747 * @sock: sending socket 4748 * @msg: message to send 4749 * @size: size of message 4750 * 4751 * Check permission before transmitting a message to another socket. 4752 * 4753 * Return: Returns 0 if permission is granted. 4754 */ 4755 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4756 { 4757 return call_int_hook(socket_sendmsg, sock, msg, size); 4758 } 4759 4760 /** 4761 * security_socket_recvmsg() - Check if receiving a message is allowed 4762 * @sock: receiving socket 4763 * @msg: message to receive 4764 * @size: size of message 4765 * @flags: operational flags 4766 * 4767 * Check permission before receiving a message from a socket. 4768 * 4769 * Return: Returns 0 if permission is granted. 4770 */ 4771 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4772 int size, int flags) 4773 { 4774 return call_int_hook(socket_recvmsg, sock, msg, size, flags); 4775 } 4776 4777 /** 4778 * security_socket_getsockname() - Check if reading the socket addr is allowed 4779 * @sock: socket 4780 * 4781 * Check permission before reading the local address (name) of the socket 4782 * object. 4783 * 4784 * Return: Returns 0 if permission is granted. 4785 */ 4786 int security_socket_getsockname(struct socket *sock) 4787 { 4788 return call_int_hook(socket_getsockname, sock); 4789 } 4790 4791 /** 4792 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4793 * @sock: socket 4794 * 4795 * Check permission before the remote address (name) of a socket object. 4796 * 4797 * Return: Returns 0 if permission is granted. 4798 */ 4799 int security_socket_getpeername(struct socket *sock) 4800 { 4801 return call_int_hook(socket_getpeername, sock); 4802 } 4803 4804 /** 4805 * security_socket_getsockopt() - Check if reading a socket option is allowed 4806 * @sock: socket 4807 * @level: option's protocol level 4808 * @optname: option name 4809 * 4810 * Check permissions before retrieving the options associated with socket 4811 * @sock. 4812 * 4813 * Return: Returns 0 if permission is granted. 4814 */ 4815 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4816 { 4817 return call_int_hook(socket_getsockopt, sock, level, optname); 4818 } 4819 4820 /** 4821 * security_socket_setsockopt() - Check if setting a socket option is allowed 4822 * @sock: socket 4823 * @level: option's protocol level 4824 * @optname: option name 4825 * 4826 * Check permissions before setting the options associated with socket @sock. 4827 * 4828 * Return: Returns 0 if permission is granted. 4829 */ 4830 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4831 { 4832 return call_int_hook(socket_setsockopt, sock, level, optname); 4833 } 4834 4835 /** 4836 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4837 * @sock: socket 4838 * @how: flag indicating how sends and receives are handled 4839 * 4840 * Checks permission before all or part of a connection on the socket @sock is 4841 * shut down. 4842 * 4843 * Return: Returns 0 if permission is granted. 4844 */ 4845 int security_socket_shutdown(struct socket *sock, int how) 4846 { 4847 return call_int_hook(socket_shutdown, sock, how); 4848 } 4849 4850 /** 4851 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4852 * @sk: destination sock 4853 * @skb: incoming packet 4854 * 4855 * Check permissions on incoming network packets. This hook is distinct from 4856 * Netfilter's IP input hooks since it is the first time that the incoming 4857 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4858 * sleep inside this hook because some callers hold spinlocks. 4859 * 4860 * Return: Returns 0 if permission is granted. 4861 */ 4862 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4863 { 4864 return call_int_hook(socket_sock_rcv_skb, sk, skb); 4865 } 4866 EXPORT_SYMBOL(security_sock_rcv_skb); 4867 4868 /** 4869 * security_socket_getpeersec_stream() - Get the remote peer label 4870 * @sock: socket 4871 * @optval: destination buffer 4872 * @optlen: size of peer label copied into the buffer 4873 * @len: maximum size of the destination buffer 4874 * 4875 * This hook allows the security module to provide peer socket security state 4876 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4877 * For tcp sockets this can be meaningful if the socket is associated with an 4878 * ipsec SA. 4879 * 4880 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4881 * values. 4882 */ 4883 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4884 sockptr_t optlen, unsigned int len) 4885 { 4886 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen, 4887 len); 4888 } 4889 4890 /** 4891 * security_socket_getpeersec_dgram() - Get the remote peer label 4892 * @sock: socket 4893 * @skb: datagram packet 4894 * @secid: remote peer label secid 4895 * 4896 * This hook allows the security module to provide peer socket security state 4897 * for udp sockets on a per-packet basis to userspace via getsockopt 4898 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4899 * option via getsockopt. It can then retrieve the security state returned by 4900 * this hook for a packet via the SCM_SECURITY ancillary message type. 4901 * 4902 * Return: Returns 0 on success, error on failure. 4903 */ 4904 int security_socket_getpeersec_dgram(struct socket *sock, 4905 struct sk_buff *skb, u32 *secid) 4906 { 4907 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid); 4908 } 4909 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4910 4911 /** 4912 * lsm_sock_alloc - allocate a composite sock blob 4913 * @sock: the sock that needs a blob 4914 * @gfp: allocation mode 4915 * 4916 * Allocate the sock blob for all the modules 4917 * 4918 * Returns 0, or -ENOMEM if memory can't be allocated. 4919 */ 4920 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp) 4921 { 4922 return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp); 4923 } 4924 4925 /** 4926 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4927 * @sk: sock 4928 * @family: protocol family 4929 * @priority: gfp flags 4930 * 4931 * Allocate and attach a security structure to the sk->sk_security field, which 4932 * is used to copy security attributes between local stream sockets. 4933 * 4934 * Return: Returns 0 on success, error on failure. 4935 */ 4936 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4937 { 4938 int rc = lsm_sock_alloc(sk, priority); 4939 4940 if (unlikely(rc)) 4941 return rc; 4942 rc = call_int_hook(sk_alloc_security, sk, family, priority); 4943 if (unlikely(rc)) 4944 security_sk_free(sk); 4945 return rc; 4946 } 4947 4948 /** 4949 * security_sk_free() - Free the sock's LSM blob 4950 * @sk: sock 4951 * 4952 * Deallocate security structure. 4953 */ 4954 void security_sk_free(struct sock *sk) 4955 { 4956 call_void_hook(sk_free_security, sk); 4957 kfree(sk->sk_security); 4958 sk->sk_security = NULL; 4959 } 4960 4961 /** 4962 * security_sk_clone() - Clone a sock's LSM state 4963 * @sk: original sock 4964 * @newsk: target sock 4965 * 4966 * Clone/copy security structure. 4967 */ 4968 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4969 { 4970 call_void_hook(sk_clone_security, sk, newsk); 4971 } 4972 EXPORT_SYMBOL(security_sk_clone); 4973 4974 /** 4975 * security_sk_classify_flow() - Set a flow's secid based on socket 4976 * @sk: original socket 4977 * @flic: target flow 4978 * 4979 * Set the target flow's secid to socket's secid. 4980 */ 4981 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4982 { 4983 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4984 } 4985 EXPORT_SYMBOL(security_sk_classify_flow); 4986 4987 /** 4988 * security_req_classify_flow() - Set a flow's secid based on request_sock 4989 * @req: request_sock 4990 * @flic: target flow 4991 * 4992 * Sets @flic's secid to @req's secid. 4993 */ 4994 void security_req_classify_flow(const struct request_sock *req, 4995 struct flowi_common *flic) 4996 { 4997 call_void_hook(req_classify_flow, req, flic); 4998 } 4999 EXPORT_SYMBOL(security_req_classify_flow); 5000 5001 /** 5002 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 5003 * @sk: sock being grafted 5004 * @parent: target parent socket 5005 * 5006 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 5007 * LSM state from @parent. 5008 */ 5009 void security_sock_graft(struct sock *sk, struct socket *parent) 5010 { 5011 call_void_hook(sock_graft, sk, parent); 5012 } 5013 EXPORT_SYMBOL(security_sock_graft); 5014 5015 /** 5016 * security_inet_conn_request() - Set request_sock state using incoming connect 5017 * @sk: parent listening sock 5018 * @skb: incoming connection 5019 * @req: new request_sock 5020 * 5021 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 5022 * 5023 * Return: Returns 0 if permission is granted. 5024 */ 5025 int security_inet_conn_request(const struct sock *sk, 5026 struct sk_buff *skb, struct request_sock *req) 5027 { 5028 return call_int_hook(inet_conn_request, sk, skb, req); 5029 } 5030 EXPORT_SYMBOL(security_inet_conn_request); 5031 5032 /** 5033 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 5034 * @newsk: new sock 5035 * @req: connection request_sock 5036 * 5037 * Set that LSM state of @sock using the LSM state from @req. 5038 */ 5039 void security_inet_csk_clone(struct sock *newsk, 5040 const struct request_sock *req) 5041 { 5042 call_void_hook(inet_csk_clone, newsk, req); 5043 } 5044 5045 /** 5046 * security_inet_conn_established() - Update sock's LSM state with connection 5047 * @sk: sock 5048 * @skb: connection packet 5049 * 5050 * Update @sock's LSM state to represent a new connection from @skb. 5051 */ 5052 void security_inet_conn_established(struct sock *sk, 5053 struct sk_buff *skb) 5054 { 5055 call_void_hook(inet_conn_established, sk, skb); 5056 } 5057 EXPORT_SYMBOL(security_inet_conn_established); 5058 5059 /** 5060 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 5061 * @secid: new secmark value 5062 * 5063 * Check if the process should be allowed to relabel packets to @secid. 5064 * 5065 * Return: Returns 0 if permission is granted. 5066 */ 5067 int security_secmark_relabel_packet(u32 secid) 5068 { 5069 return call_int_hook(secmark_relabel_packet, secid); 5070 } 5071 EXPORT_SYMBOL(security_secmark_relabel_packet); 5072 5073 /** 5074 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 5075 * 5076 * Tells the LSM to increment the number of secmark labeling rules loaded. 5077 */ 5078 void security_secmark_refcount_inc(void) 5079 { 5080 call_void_hook(secmark_refcount_inc); 5081 } 5082 EXPORT_SYMBOL(security_secmark_refcount_inc); 5083 5084 /** 5085 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 5086 * 5087 * Tells the LSM to decrement the number of secmark labeling rules loaded. 5088 */ 5089 void security_secmark_refcount_dec(void) 5090 { 5091 call_void_hook(secmark_refcount_dec); 5092 } 5093 EXPORT_SYMBOL(security_secmark_refcount_dec); 5094 5095 /** 5096 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 5097 * @security: pointer to the LSM blob 5098 * 5099 * This hook allows a module to allocate a security structure for a TUN device, 5100 * returning the pointer in @security. 5101 * 5102 * Return: Returns a zero on success, negative values on failure. 5103 */ 5104 int security_tun_dev_alloc_security(void **security) 5105 { 5106 int rc; 5107 5108 rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL); 5109 if (rc) 5110 return rc; 5111 5112 rc = call_int_hook(tun_dev_alloc_security, *security); 5113 if (rc) { 5114 kfree(*security); 5115 *security = NULL; 5116 } 5117 return rc; 5118 } 5119 EXPORT_SYMBOL(security_tun_dev_alloc_security); 5120 5121 /** 5122 * security_tun_dev_free_security() - Free a TUN device LSM blob 5123 * @security: LSM blob 5124 * 5125 * This hook allows a module to free the security structure for a TUN device. 5126 */ 5127 void security_tun_dev_free_security(void *security) 5128 { 5129 kfree(security); 5130 } 5131 EXPORT_SYMBOL(security_tun_dev_free_security); 5132 5133 /** 5134 * security_tun_dev_create() - Check if creating a TUN device is allowed 5135 * 5136 * Check permissions prior to creating a new TUN device. 5137 * 5138 * Return: Returns 0 if permission is granted. 5139 */ 5140 int security_tun_dev_create(void) 5141 { 5142 return call_int_hook(tun_dev_create); 5143 } 5144 EXPORT_SYMBOL(security_tun_dev_create); 5145 5146 /** 5147 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 5148 * @security: TUN device LSM blob 5149 * 5150 * Check permissions prior to attaching to a TUN device queue. 5151 * 5152 * Return: Returns 0 if permission is granted. 5153 */ 5154 int security_tun_dev_attach_queue(void *security) 5155 { 5156 return call_int_hook(tun_dev_attach_queue, security); 5157 } 5158 EXPORT_SYMBOL(security_tun_dev_attach_queue); 5159 5160 /** 5161 * security_tun_dev_attach() - Update TUN device LSM state on attach 5162 * @sk: associated sock 5163 * @security: TUN device LSM blob 5164 * 5165 * This hook can be used by the module to update any security state associated 5166 * with the TUN device's sock structure. 5167 * 5168 * Return: Returns 0 if permission is granted. 5169 */ 5170 int security_tun_dev_attach(struct sock *sk, void *security) 5171 { 5172 return call_int_hook(tun_dev_attach, sk, security); 5173 } 5174 EXPORT_SYMBOL(security_tun_dev_attach); 5175 5176 /** 5177 * security_tun_dev_open() - Update TUN device LSM state on open 5178 * @security: TUN device LSM blob 5179 * 5180 * This hook can be used by the module to update any security state associated 5181 * with the TUN device's security structure. 5182 * 5183 * Return: Returns 0 if permission is granted. 5184 */ 5185 int security_tun_dev_open(void *security) 5186 { 5187 return call_int_hook(tun_dev_open, security); 5188 } 5189 EXPORT_SYMBOL(security_tun_dev_open); 5190 5191 /** 5192 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 5193 * @asoc: SCTP association 5194 * @skb: packet requesting the association 5195 * 5196 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 5197 * 5198 * Return: Returns 0 on success, error on failure. 5199 */ 5200 int security_sctp_assoc_request(struct sctp_association *asoc, 5201 struct sk_buff *skb) 5202 { 5203 return call_int_hook(sctp_assoc_request, asoc, skb); 5204 } 5205 EXPORT_SYMBOL(security_sctp_assoc_request); 5206 5207 /** 5208 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 5209 * @sk: socket 5210 * @optname: SCTP option to validate 5211 * @address: list of IP addresses to validate 5212 * @addrlen: length of the address list 5213 * 5214 * Validiate permissions required for each address associated with sock @sk. 5215 * Depending on @optname, the addresses will be treated as either a connect or 5216 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 5217 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 5218 * 5219 * Return: Returns 0 on success, error on failure. 5220 */ 5221 int security_sctp_bind_connect(struct sock *sk, int optname, 5222 struct sockaddr *address, int addrlen) 5223 { 5224 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen); 5225 } 5226 EXPORT_SYMBOL(security_sctp_bind_connect); 5227 5228 /** 5229 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 5230 * @asoc: SCTP association 5231 * @sk: original sock 5232 * @newsk: target sock 5233 * 5234 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 5235 * socket) or when a socket is 'peeled off' e.g userspace calls 5236 * sctp_peeloff(3). 5237 */ 5238 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5239 struct sock *newsk) 5240 { 5241 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 5242 } 5243 EXPORT_SYMBOL(security_sctp_sk_clone); 5244 5245 /** 5246 * security_sctp_assoc_established() - Update LSM state when assoc established 5247 * @asoc: SCTP association 5248 * @skb: packet establishing the association 5249 * 5250 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 5251 * security module. 5252 * 5253 * Return: Returns 0 if permission is granted. 5254 */ 5255 int security_sctp_assoc_established(struct sctp_association *asoc, 5256 struct sk_buff *skb) 5257 { 5258 return call_int_hook(sctp_assoc_established, asoc, skb); 5259 } 5260 EXPORT_SYMBOL(security_sctp_assoc_established); 5261 5262 /** 5263 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 5264 * @sk: the owning MPTCP socket 5265 * @ssk: the new subflow 5266 * 5267 * Update the labeling for the given MPTCP subflow, to match the one of the 5268 * owning MPTCP socket. This hook has to be called after the socket creation and 5269 * initialization via the security_socket_create() and 5270 * security_socket_post_create() LSM hooks. 5271 * 5272 * Return: Returns 0 on success or a negative error code on failure. 5273 */ 5274 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5275 { 5276 return call_int_hook(mptcp_add_subflow, sk, ssk); 5277 } 5278 5279 #endif /* CONFIG_SECURITY_NETWORK */ 5280 5281 #ifdef CONFIG_SECURITY_INFINIBAND 5282 /** 5283 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 5284 * @sec: LSM blob 5285 * @subnet_prefix: subnet prefix of the port 5286 * @pkey: IB pkey 5287 * 5288 * Check permission to access a pkey when modifying a QP. 5289 * 5290 * Return: Returns 0 if permission is granted. 5291 */ 5292 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 5293 { 5294 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey); 5295 } 5296 EXPORT_SYMBOL(security_ib_pkey_access); 5297 5298 /** 5299 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 5300 * @sec: LSM blob 5301 * @dev_name: IB device name 5302 * @port_num: port number 5303 * 5304 * Check permissions to send and receive SMPs on a end port. 5305 * 5306 * Return: Returns 0 if permission is granted. 5307 */ 5308 int security_ib_endport_manage_subnet(void *sec, 5309 const char *dev_name, u8 port_num) 5310 { 5311 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num); 5312 } 5313 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5314 5315 /** 5316 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5317 * @sec: LSM blob 5318 * 5319 * Allocate a security structure for Infiniband objects. 5320 * 5321 * Return: Returns 0 on success, non-zero on failure. 5322 */ 5323 int security_ib_alloc_security(void **sec) 5324 { 5325 int rc; 5326 5327 rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL); 5328 if (rc) 5329 return rc; 5330 5331 rc = call_int_hook(ib_alloc_security, *sec); 5332 if (rc) { 5333 kfree(*sec); 5334 *sec = NULL; 5335 } 5336 return rc; 5337 } 5338 EXPORT_SYMBOL(security_ib_alloc_security); 5339 5340 /** 5341 * security_ib_free_security() - Free an Infiniband LSM blob 5342 * @sec: LSM blob 5343 * 5344 * Deallocate an Infiniband security structure. 5345 */ 5346 void security_ib_free_security(void *sec) 5347 { 5348 kfree(sec); 5349 } 5350 EXPORT_SYMBOL(security_ib_free_security); 5351 #endif /* CONFIG_SECURITY_INFINIBAND */ 5352 5353 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5354 /** 5355 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5356 * @ctxp: xfrm security context being added to the SPD 5357 * @sec_ctx: security label provided by userspace 5358 * @gfp: gfp flags 5359 * 5360 * Allocate a security structure to the xp->security field; the security field 5361 * is initialized to NULL when the xfrm_policy is allocated. 5362 * 5363 * Return: Return 0 if operation was successful. 5364 */ 5365 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5366 struct xfrm_user_sec_ctx *sec_ctx, 5367 gfp_t gfp) 5368 { 5369 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp); 5370 } 5371 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5372 5373 /** 5374 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5375 * @old_ctx: xfrm security context 5376 * @new_ctxp: target xfrm security context 5377 * 5378 * Allocate a security structure in new_ctxp that contains the information from 5379 * the old_ctx structure. 5380 * 5381 * Return: Return 0 if operation was successful. 5382 */ 5383 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5384 struct xfrm_sec_ctx **new_ctxp) 5385 { 5386 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp); 5387 } 5388 5389 /** 5390 * security_xfrm_policy_free() - Free a xfrm security context 5391 * @ctx: xfrm security context 5392 * 5393 * Free LSM resources associated with @ctx. 5394 */ 5395 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5396 { 5397 call_void_hook(xfrm_policy_free_security, ctx); 5398 } 5399 EXPORT_SYMBOL(security_xfrm_policy_free); 5400 5401 /** 5402 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5403 * @ctx: xfrm security context 5404 * 5405 * Authorize deletion of a SPD entry. 5406 * 5407 * Return: Returns 0 if permission is granted. 5408 */ 5409 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5410 { 5411 return call_int_hook(xfrm_policy_delete_security, ctx); 5412 } 5413 5414 /** 5415 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5416 * @x: xfrm state being added to the SAD 5417 * @sec_ctx: security label provided by userspace 5418 * 5419 * Allocate a security structure to the @x->security field; the security field 5420 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5421 * correspond to @sec_ctx. 5422 * 5423 * Return: Return 0 if operation was successful. 5424 */ 5425 int security_xfrm_state_alloc(struct xfrm_state *x, 5426 struct xfrm_user_sec_ctx *sec_ctx) 5427 { 5428 return call_int_hook(xfrm_state_alloc, x, sec_ctx); 5429 } 5430 EXPORT_SYMBOL(security_xfrm_state_alloc); 5431 5432 /** 5433 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5434 * @x: xfrm state being added to the SAD 5435 * @polsec: associated policy's security context 5436 * @secid: secid from the flow 5437 * 5438 * Allocate a security structure to the x->security field; the security field 5439 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5440 * correspond to secid. 5441 * 5442 * Return: Returns 0 if operation was successful. 5443 */ 5444 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5445 struct xfrm_sec_ctx *polsec, u32 secid) 5446 { 5447 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid); 5448 } 5449 5450 /** 5451 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5452 * @x: xfrm state 5453 * 5454 * Authorize deletion of x->security. 5455 * 5456 * Return: Returns 0 if permission is granted. 5457 */ 5458 int security_xfrm_state_delete(struct xfrm_state *x) 5459 { 5460 return call_int_hook(xfrm_state_delete_security, x); 5461 } 5462 EXPORT_SYMBOL(security_xfrm_state_delete); 5463 5464 /** 5465 * security_xfrm_state_free() - Free a xfrm state 5466 * @x: xfrm state 5467 * 5468 * Deallocate x->security. 5469 */ 5470 void security_xfrm_state_free(struct xfrm_state *x) 5471 { 5472 call_void_hook(xfrm_state_free_security, x); 5473 } 5474 5475 /** 5476 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5477 * @ctx: target xfrm security context 5478 * @fl_secid: flow secid used to authorize access 5479 * 5480 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5481 * packet. The hook is called when selecting either a per-socket policy or a 5482 * generic xfrm policy. 5483 * 5484 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5485 * other errors. 5486 */ 5487 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5488 { 5489 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid); 5490 } 5491 5492 /** 5493 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5494 * @x: xfrm state to match 5495 * @xp: xfrm policy to check for a match 5496 * @flic: flow to check for a match. 5497 * 5498 * Check @xp and @flic for a match with @x. 5499 * 5500 * Return: Returns 1 if there is a match. 5501 */ 5502 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5503 struct xfrm_policy *xp, 5504 const struct flowi_common *flic) 5505 { 5506 struct lsm_static_call *scall; 5507 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5508 5509 /* 5510 * Since this function is expected to return 0 or 1, the judgment 5511 * becomes difficult if multiple LSMs supply this call. Fortunately, 5512 * we can use the first LSM's judgment because currently only SELinux 5513 * supplies this call. 5514 * 5515 * For speed optimization, we explicitly break the loop rather than 5516 * using the macro 5517 */ 5518 lsm_for_each_hook(scall, xfrm_state_pol_flow_match) { 5519 rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic); 5520 break; 5521 } 5522 return rc; 5523 } 5524 5525 /** 5526 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5527 * @skb: xfrm packet 5528 * @secid: secid 5529 * 5530 * Decode the packet in @skb and return the security label in @secid. 5531 * 5532 * Return: Return 0 if all xfrms used have the same secid. 5533 */ 5534 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5535 { 5536 return call_int_hook(xfrm_decode_session, skb, secid, 1); 5537 } 5538 5539 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5540 { 5541 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid, 5542 0); 5543 5544 BUG_ON(rc); 5545 } 5546 EXPORT_SYMBOL(security_skb_classify_flow); 5547 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5548 5549 #ifdef CONFIG_KEYS 5550 /** 5551 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5552 * @key: key 5553 * @cred: credentials 5554 * @flags: allocation flags 5555 * 5556 * Permit allocation of a key and assign security data. Note that key does not 5557 * have a serial number assigned at this point. 5558 * 5559 * Return: Return 0 if permission is granted, -ve error otherwise. 5560 */ 5561 int security_key_alloc(struct key *key, const struct cred *cred, 5562 unsigned long flags) 5563 { 5564 int rc = lsm_key_alloc(key); 5565 5566 if (unlikely(rc)) 5567 return rc; 5568 rc = call_int_hook(key_alloc, key, cred, flags); 5569 if (unlikely(rc)) 5570 security_key_free(key); 5571 return rc; 5572 } 5573 5574 /** 5575 * security_key_free() - Free a kernel key LSM blob 5576 * @key: key 5577 * 5578 * Notification of destruction; free security data. 5579 */ 5580 void security_key_free(struct key *key) 5581 { 5582 kfree(key->security); 5583 key->security = NULL; 5584 } 5585 5586 /** 5587 * security_key_permission() - Check if a kernel key operation is allowed 5588 * @key_ref: key reference 5589 * @cred: credentials of actor requesting access 5590 * @need_perm: requested permissions 5591 * 5592 * See whether a specific operational right is granted to a process on a key. 5593 * 5594 * Return: Return 0 if permission is granted, -ve error otherwise. 5595 */ 5596 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5597 enum key_need_perm need_perm) 5598 { 5599 return call_int_hook(key_permission, key_ref, cred, need_perm); 5600 } 5601 5602 /** 5603 * security_key_getsecurity() - Get the key's security label 5604 * @key: key 5605 * @buffer: security label buffer 5606 * 5607 * Get a textual representation of the security context attached to a key for 5608 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5609 * storage for the NUL-terminated string and the caller should free it. 5610 * 5611 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5612 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5613 * there is no security label assigned to the key. 5614 */ 5615 int security_key_getsecurity(struct key *key, char **buffer) 5616 { 5617 *buffer = NULL; 5618 return call_int_hook(key_getsecurity, key, buffer); 5619 } 5620 5621 /** 5622 * security_key_post_create_or_update() - Notification of key create or update 5623 * @keyring: keyring to which the key is linked to 5624 * @key: created or updated key 5625 * @payload: data used to instantiate or update the key 5626 * @payload_len: length of payload 5627 * @flags: key flags 5628 * @create: flag indicating whether the key was created or updated 5629 * 5630 * Notify the caller of a key creation or update. 5631 */ 5632 void security_key_post_create_or_update(struct key *keyring, struct key *key, 5633 const void *payload, size_t payload_len, 5634 unsigned long flags, bool create) 5635 { 5636 call_void_hook(key_post_create_or_update, keyring, key, payload, 5637 payload_len, flags, create); 5638 } 5639 #endif /* CONFIG_KEYS */ 5640 5641 #ifdef CONFIG_AUDIT 5642 /** 5643 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5644 * @field: audit action 5645 * @op: rule operator 5646 * @rulestr: rule context 5647 * @lsmrule: receive buffer for audit rule struct 5648 * @gfp: GFP flag used for kmalloc 5649 * 5650 * Allocate and initialize an LSM audit rule structure. 5651 * 5652 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5653 * an invalid rule. 5654 */ 5655 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule, 5656 gfp_t gfp) 5657 { 5658 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp); 5659 } 5660 5661 /** 5662 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5663 * @krule: audit rule 5664 * 5665 * Specifies whether given @krule contains any fields related to the current 5666 * LSM. 5667 * 5668 * Return: Returns 1 in case of relation found, 0 otherwise. 5669 */ 5670 int security_audit_rule_known(struct audit_krule *krule) 5671 { 5672 return call_int_hook(audit_rule_known, krule); 5673 } 5674 5675 /** 5676 * security_audit_rule_free() - Free an LSM audit rule struct 5677 * @lsmrule: audit rule struct 5678 * 5679 * Deallocate the LSM audit rule structure previously allocated by 5680 * audit_rule_init(). 5681 */ 5682 void security_audit_rule_free(void *lsmrule) 5683 { 5684 call_void_hook(audit_rule_free, lsmrule); 5685 } 5686 5687 /** 5688 * security_audit_rule_match() - Check if a label matches an audit rule 5689 * @prop: security label 5690 * @field: LSM audit field 5691 * @op: matching operator 5692 * @lsmrule: audit rule 5693 * 5694 * Determine if given @secid matches a rule previously approved by 5695 * security_audit_rule_known(). 5696 * 5697 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5698 * failure. 5699 */ 5700 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, 5701 void *lsmrule) 5702 { 5703 return call_int_hook(audit_rule_match, prop, field, op, lsmrule); 5704 } 5705 #endif /* CONFIG_AUDIT */ 5706 5707 #ifdef CONFIG_BPF_SYSCALL 5708 /** 5709 * security_bpf() - Check if the bpf syscall operation is allowed 5710 * @cmd: command 5711 * @attr: bpf attribute 5712 * @size: size 5713 * @kernel: whether or not call originated from kernel 5714 * 5715 * Do a initial check for all bpf syscalls after the attribute is copied into 5716 * the kernel. The actual security module can implement their own rules to 5717 * check the specific cmd they need. 5718 * 5719 * Return: Returns 0 if permission is granted. 5720 */ 5721 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size, bool kernel) 5722 { 5723 return call_int_hook(bpf, cmd, attr, size, kernel); 5724 } 5725 5726 /** 5727 * security_bpf_map() - Check if access to a bpf map is allowed 5728 * @map: bpf map 5729 * @fmode: mode 5730 * 5731 * Do a check when the kernel generates and returns a file descriptor for eBPF 5732 * maps. 5733 * 5734 * Return: Returns 0 if permission is granted. 5735 */ 5736 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5737 { 5738 return call_int_hook(bpf_map, map, fmode); 5739 } 5740 5741 /** 5742 * security_bpf_prog() - Check if access to a bpf program is allowed 5743 * @prog: bpf program 5744 * 5745 * Do a check when the kernel generates and returns a file descriptor for eBPF 5746 * programs. 5747 * 5748 * Return: Returns 0 if permission is granted. 5749 */ 5750 int security_bpf_prog(struct bpf_prog *prog) 5751 { 5752 return call_int_hook(bpf_prog, prog); 5753 } 5754 5755 /** 5756 * security_bpf_map_create() - Check if BPF map creation is allowed 5757 * @map: BPF map object 5758 * @attr: BPF syscall attributes used to create BPF map 5759 * @token: BPF token used to grant user access 5760 * @kernel: whether or not call originated from kernel 5761 * 5762 * Do a check when the kernel creates a new BPF map. This is also the 5763 * point where LSM blob is allocated for LSMs that need them. 5764 * 5765 * Return: Returns 0 on success, error on failure. 5766 */ 5767 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 5768 struct bpf_token *token, bool kernel) 5769 { 5770 int rc; 5771 5772 rc = lsm_bpf_map_alloc(map); 5773 if (unlikely(rc)) 5774 return rc; 5775 5776 rc = call_int_hook(bpf_map_create, map, attr, token, kernel); 5777 if (unlikely(rc)) 5778 security_bpf_map_free(map); 5779 return rc; 5780 } 5781 5782 /** 5783 * security_bpf_prog_load() - Check if loading of BPF program is allowed 5784 * @prog: BPF program object 5785 * @attr: BPF syscall attributes used to create BPF program 5786 * @token: BPF token used to grant user access to BPF subsystem 5787 * @kernel: whether or not call originated from kernel 5788 * 5789 * Perform an access control check when the kernel loads a BPF program and 5790 * allocates associated BPF program object. This hook is also responsible for 5791 * allocating any required LSM state for the BPF program. 5792 * 5793 * Return: Returns 0 on success, error on failure. 5794 */ 5795 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 5796 struct bpf_token *token, bool kernel) 5797 { 5798 int rc; 5799 5800 rc = lsm_bpf_prog_alloc(prog); 5801 if (unlikely(rc)) 5802 return rc; 5803 5804 rc = call_int_hook(bpf_prog_load, prog, attr, token, kernel); 5805 if (unlikely(rc)) 5806 security_bpf_prog_free(prog); 5807 return rc; 5808 } 5809 5810 /** 5811 * security_bpf_token_create() - Check if creating of BPF token is allowed 5812 * @token: BPF token object 5813 * @attr: BPF syscall attributes used to create BPF token 5814 * @path: path pointing to BPF FS mount point from which BPF token is created 5815 * 5816 * Do a check when the kernel instantiates a new BPF token object from BPF FS 5817 * instance. This is also the point where LSM blob can be allocated for LSMs. 5818 * 5819 * Return: Returns 0 on success, error on failure. 5820 */ 5821 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 5822 const struct path *path) 5823 { 5824 int rc; 5825 5826 rc = lsm_bpf_token_alloc(token); 5827 if (unlikely(rc)) 5828 return rc; 5829 5830 rc = call_int_hook(bpf_token_create, token, attr, path); 5831 if (unlikely(rc)) 5832 security_bpf_token_free(token); 5833 return rc; 5834 } 5835 5836 /** 5837 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate 5838 * requested BPF syscall command 5839 * @token: BPF token object 5840 * @cmd: BPF syscall command requested to be delegated by BPF token 5841 * 5842 * Do a check when the kernel decides whether provided BPF token should allow 5843 * delegation of requested BPF syscall command. 5844 * 5845 * Return: Returns 0 on success, error on failure. 5846 */ 5847 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd) 5848 { 5849 return call_int_hook(bpf_token_cmd, token, cmd); 5850 } 5851 5852 /** 5853 * security_bpf_token_capable() - Check if BPF token is allowed to delegate 5854 * requested BPF-related capability 5855 * @token: BPF token object 5856 * @cap: capabilities requested to be delegated by BPF token 5857 * 5858 * Do a check when the kernel decides whether provided BPF token should allow 5859 * delegation of requested BPF-related capabilities. 5860 * 5861 * Return: Returns 0 on success, error on failure. 5862 */ 5863 int security_bpf_token_capable(const struct bpf_token *token, int cap) 5864 { 5865 return call_int_hook(bpf_token_capable, token, cap); 5866 } 5867 5868 /** 5869 * security_bpf_map_free() - Free a bpf map's LSM blob 5870 * @map: bpf map 5871 * 5872 * Clean up the security information stored inside bpf map. 5873 */ 5874 void security_bpf_map_free(struct bpf_map *map) 5875 { 5876 call_void_hook(bpf_map_free, map); 5877 kfree(map->security); 5878 map->security = NULL; 5879 } 5880 5881 /** 5882 * security_bpf_prog_free() - Free a BPF program's LSM blob 5883 * @prog: BPF program struct 5884 * 5885 * Clean up the security information stored inside BPF program. 5886 */ 5887 void security_bpf_prog_free(struct bpf_prog *prog) 5888 { 5889 call_void_hook(bpf_prog_free, prog); 5890 kfree(prog->aux->security); 5891 prog->aux->security = NULL; 5892 } 5893 5894 /** 5895 * security_bpf_token_free() - Free a BPF token's LSM blob 5896 * @token: BPF token struct 5897 * 5898 * Clean up the security information stored inside BPF token. 5899 */ 5900 void security_bpf_token_free(struct bpf_token *token) 5901 { 5902 call_void_hook(bpf_token_free, token); 5903 kfree(token->security); 5904 token->security = NULL; 5905 } 5906 #endif /* CONFIG_BPF_SYSCALL */ 5907 5908 /** 5909 * security_locked_down() - Check if a kernel feature is allowed 5910 * @what: requested kernel feature 5911 * 5912 * Determine whether a kernel feature that potentially enables arbitrary code 5913 * execution in kernel space should be permitted. 5914 * 5915 * Return: Returns 0 if permission is granted. 5916 */ 5917 int security_locked_down(enum lockdown_reason what) 5918 { 5919 return call_int_hook(locked_down, what); 5920 } 5921 EXPORT_SYMBOL(security_locked_down); 5922 5923 /** 5924 * security_bdev_alloc() - Allocate a block device LSM blob 5925 * @bdev: block device 5926 * 5927 * Allocate and attach a security structure to @bdev->bd_security. The 5928 * security field is initialized to NULL when the bdev structure is 5929 * allocated. 5930 * 5931 * Return: Return 0 if operation was successful. 5932 */ 5933 int security_bdev_alloc(struct block_device *bdev) 5934 { 5935 int rc = 0; 5936 5937 rc = lsm_bdev_alloc(bdev); 5938 if (unlikely(rc)) 5939 return rc; 5940 5941 rc = call_int_hook(bdev_alloc_security, bdev); 5942 if (unlikely(rc)) 5943 security_bdev_free(bdev); 5944 5945 return rc; 5946 } 5947 EXPORT_SYMBOL(security_bdev_alloc); 5948 5949 /** 5950 * security_bdev_free() - Free a block device's LSM blob 5951 * @bdev: block device 5952 * 5953 * Deallocate the bdev security structure and set @bdev->bd_security to NULL. 5954 */ 5955 void security_bdev_free(struct block_device *bdev) 5956 { 5957 if (!bdev->bd_security) 5958 return; 5959 5960 call_void_hook(bdev_free_security, bdev); 5961 5962 kfree(bdev->bd_security); 5963 bdev->bd_security = NULL; 5964 } 5965 EXPORT_SYMBOL(security_bdev_free); 5966 5967 /** 5968 * security_bdev_setintegrity() - Set the device's integrity data 5969 * @bdev: block device 5970 * @type: type of integrity, e.g. hash digest, signature, etc 5971 * @value: the integrity value 5972 * @size: size of the integrity value 5973 * 5974 * Register a verified integrity measurement of a bdev with LSMs. 5975 * LSMs should free the previously saved data if @value is NULL. 5976 * Please note that the new hook should be invoked every time the security 5977 * information is updated to keep these data current. For example, in dm-verity, 5978 * if the mapping table is reloaded and configured to use a different dm-verity 5979 * target with a new roothash and signing information, the previously stored 5980 * data in the LSM blob will become obsolete. It is crucial to re-invoke the 5981 * hook to refresh these data and ensure they are up to date. This necessity 5982 * arises from the design of device-mapper, where a device-mapper device is 5983 * first created, and then targets are subsequently loaded into it. These 5984 * targets can be modified multiple times during the device's lifetime. 5985 * Therefore, while the LSM blob is allocated during the creation of the block 5986 * device, its actual contents are not initialized at this stage and can change 5987 * substantially over time. This includes alterations from data that the LSMs 5988 * 'trusts' to those they do not, making it essential to handle these changes 5989 * correctly. Failure to address this dynamic aspect could potentially allow 5990 * for bypassing LSM checks. 5991 * 5992 * Return: Returns 0 on success, negative values on failure. 5993 */ 5994 int security_bdev_setintegrity(struct block_device *bdev, 5995 enum lsm_integrity_type type, const void *value, 5996 size_t size) 5997 { 5998 return call_int_hook(bdev_setintegrity, bdev, type, value, size); 5999 } 6000 EXPORT_SYMBOL(security_bdev_setintegrity); 6001 6002 #ifdef CONFIG_PERF_EVENTS 6003 /** 6004 * security_perf_event_open() - Check if a perf event open is allowed 6005 * @type: type of event 6006 * 6007 * Check whether the @type of perf_event_open syscall is allowed. 6008 * 6009 * Return: Returns 0 if permission is granted. 6010 */ 6011 int security_perf_event_open(int type) 6012 { 6013 return call_int_hook(perf_event_open, type); 6014 } 6015 6016 /** 6017 * security_perf_event_alloc() - Allocate a perf event LSM blob 6018 * @event: perf event 6019 * 6020 * Allocate and save perf_event security info. 6021 * 6022 * Return: Returns 0 on success, error on failure. 6023 */ 6024 int security_perf_event_alloc(struct perf_event *event) 6025 { 6026 int rc; 6027 6028 rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event, 6029 GFP_KERNEL); 6030 if (rc) 6031 return rc; 6032 6033 rc = call_int_hook(perf_event_alloc, event); 6034 if (rc) { 6035 kfree(event->security); 6036 event->security = NULL; 6037 } 6038 return rc; 6039 } 6040 6041 /** 6042 * security_perf_event_free() - Free a perf event LSM blob 6043 * @event: perf event 6044 * 6045 * Release (free) perf_event security info. 6046 */ 6047 void security_perf_event_free(struct perf_event *event) 6048 { 6049 kfree(event->security); 6050 event->security = NULL; 6051 } 6052 6053 /** 6054 * security_perf_event_read() - Check if reading a perf event label is allowed 6055 * @event: perf event 6056 * 6057 * Read perf_event security info if allowed. 6058 * 6059 * Return: Returns 0 if permission is granted. 6060 */ 6061 int security_perf_event_read(struct perf_event *event) 6062 { 6063 return call_int_hook(perf_event_read, event); 6064 } 6065 6066 /** 6067 * security_perf_event_write() - Check if writing a perf event label is allowed 6068 * @event: perf event 6069 * 6070 * Write perf_event security info if allowed. 6071 * 6072 * Return: Returns 0 if permission is granted. 6073 */ 6074 int security_perf_event_write(struct perf_event *event) 6075 { 6076 return call_int_hook(perf_event_write, event); 6077 } 6078 #endif /* CONFIG_PERF_EVENTS */ 6079 6080 #ifdef CONFIG_IO_URING 6081 /** 6082 * security_uring_override_creds() - Check if overriding creds is allowed 6083 * @new: new credentials 6084 * 6085 * Check if the current task, executing an io_uring operation, is allowed to 6086 * override it's credentials with @new. 6087 * 6088 * Return: Returns 0 if permission is granted. 6089 */ 6090 int security_uring_override_creds(const struct cred *new) 6091 { 6092 return call_int_hook(uring_override_creds, new); 6093 } 6094 6095 /** 6096 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 6097 * 6098 * Check whether the current task is allowed to spawn a io_uring polling thread 6099 * (IORING_SETUP_SQPOLL). 6100 * 6101 * Return: Returns 0 if permission is granted. 6102 */ 6103 int security_uring_sqpoll(void) 6104 { 6105 return call_int_hook(uring_sqpoll); 6106 } 6107 6108 /** 6109 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 6110 * @ioucmd: command 6111 * 6112 * Check whether the file_operations uring_cmd is allowed to run. 6113 * 6114 * Return: Returns 0 if permission is granted. 6115 */ 6116 int security_uring_cmd(struct io_uring_cmd *ioucmd) 6117 { 6118 return call_int_hook(uring_cmd, ioucmd); 6119 } 6120 6121 /** 6122 * security_uring_allowed() - Check if io_uring_setup() is allowed 6123 * 6124 * Check whether the current task is allowed to call io_uring_setup(). 6125 * 6126 * Return: Returns 0 if permission is granted. 6127 */ 6128 int security_uring_allowed(void) 6129 { 6130 return call_int_hook(uring_allowed); 6131 } 6132 #endif /* CONFIG_IO_URING */ 6133 6134 /** 6135 * security_initramfs_populated() - Notify LSMs that initramfs has been loaded 6136 * 6137 * Tells the LSMs the initramfs has been unpacked into the rootfs. 6138 */ 6139 void security_initramfs_populated(void) 6140 { 6141 call_void_hook(initramfs_populated); 6142 } 6143