1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 60 [LOCKDOWN_DEBUGFS] = "debugfs access", 61 [LOCKDOWN_XMON_WR] = "xmon write access", 62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 65 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 66 [LOCKDOWN_KCORE] = "/proc/kcore access", 67 [LOCKDOWN_KPROBES] = "use of kprobes", 68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 70 [LOCKDOWN_PERF] = "unsafe use of perf", 71 [LOCKDOWN_TRACEFS] = "use of tracefs", 72 [LOCKDOWN_XMON_RW] = "xmon read and write access", 73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 75 }; 76 77 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 79 80 static struct kmem_cache *lsm_file_cache; 81 static struct kmem_cache *lsm_inode_cache; 82 83 char *lsm_names; 84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 85 86 /* Boot-time LSM user choice */ 87 static __initdata const char *chosen_lsm_order; 88 static __initdata const char *chosen_major_lsm; 89 90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 91 92 /* Ordered list of LSMs to initialize. */ 93 static __initdata struct lsm_info **ordered_lsms; 94 static __initdata struct lsm_info *exclusive; 95 96 static __initdata bool debug; 97 #define init_debug(...) \ 98 do { \ 99 if (debug) \ 100 pr_info(__VA_ARGS__); \ 101 } while (0) 102 103 static bool __init is_enabled(struct lsm_info *lsm) 104 { 105 if (!lsm->enabled) 106 return false; 107 108 return *lsm->enabled; 109 } 110 111 /* Mark an LSM's enabled flag. */ 112 static int lsm_enabled_true __initdata = 1; 113 static int lsm_enabled_false __initdata = 0; 114 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 115 { 116 /* 117 * When an LSM hasn't configured an enable variable, we can use 118 * a hard-coded location for storing the default enabled state. 119 */ 120 if (!lsm->enabled) { 121 if (enabled) 122 lsm->enabled = &lsm_enabled_true; 123 else 124 lsm->enabled = &lsm_enabled_false; 125 } else if (lsm->enabled == &lsm_enabled_true) { 126 if (!enabled) 127 lsm->enabled = &lsm_enabled_false; 128 } else if (lsm->enabled == &lsm_enabled_false) { 129 if (enabled) 130 lsm->enabled = &lsm_enabled_true; 131 } else { 132 *lsm->enabled = enabled; 133 } 134 } 135 136 /* Is an LSM already listed in the ordered LSMs list? */ 137 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 138 { 139 struct lsm_info **check; 140 141 for (check = ordered_lsms; *check; check++) 142 if (*check == lsm) 143 return true; 144 145 return false; 146 } 147 148 /* Append an LSM to the list of ordered LSMs to initialize. */ 149 static int last_lsm __initdata; 150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 151 { 152 /* Ignore duplicate selections. */ 153 if (exists_ordered_lsm(lsm)) 154 return; 155 156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 157 return; 158 159 /* Enable this LSM, if it is not already set. */ 160 if (!lsm->enabled) 161 lsm->enabled = &lsm_enabled_true; 162 ordered_lsms[last_lsm++] = lsm; 163 164 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 165 is_enabled(lsm) ? "en" : "dis"); 166 } 167 168 /* Is an LSM allowed to be initialized? */ 169 static bool __init lsm_allowed(struct lsm_info *lsm) 170 { 171 /* Skip if the LSM is disabled. */ 172 if (!is_enabled(lsm)) 173 return false; 174 175 /* Not allowed if another exclusive LSM already initialized. */ 176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 177 init_debug("exclusive disabled: %s\n", lsm->name); 178 return false; 179 } 180 181 return true; 182 } 183 184 static void __init lsm_set_blob_size(int *need, int *lbs) 185 { 186 int offset; 187 188 if (*need > 0) { 189 offset = *lbs; 190 *lbs += *need; 191 *need = offset; 192 } 193 } 194 195 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 196 { 197 if (!needed) 198 return; 199 200 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 201 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 202 /* 203 * The inode blob gets an rcu_head in addition to 204 * what the modules might need. 205 */ 206 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 207 blob_sizes.lbs_inode = sizeof(struct rcu_head); 208 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 209 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 210 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 211 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 212 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 213 } 214 215 /* Prepare LSM for initialization. */ 216 static void __init prepare_lsm(struct lsm_info *lsm) 217 { 218 int enabled = lsm_allowed(lsm); 219 220 /* Record enablement (to handle any following exclusive LSMs). */ 221 set_enabled(lsm, enabled); 222 223 /* If enabled, do pre-initialization work. */ 224 if (enabled) { 225 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 226 exclusive = lsm; 227 init_debug("exclusive chosen: %s\n", lsm->name); 228 } 229 230 lsm_set_blob_sizes(lsm->blobs); 231 } 232 } 233 234 /* Initialize a given LSM, if it is enabled. */ 235 static void __init initialize_lsm(struct lsm_info *lsm) 236 { 237 if (is_enabled(lsm)) { 238 int ret; 239 240 init_debug("initializing %s\n", lsm->name); 241 ret = lsm->init(); 242 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 243 } 244 } 245 246 /* Populate ordered LSMs list from comma-separated LSM name list. */ 247 static void __init ordered_lsm_parse(const char *order, const char *origin) 248 { 249 struct lsm_info *lsm; 250 char *sep, *name, *next; 251 252 /* LSM_ORDER_FIRST is always first. */ 253 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 254 if (lsm->order == LSM_ORDER_FIRST) 255 append_ordered_lsm(lsm, "first"); 256 } 257 258 /* Process "security=", if given. */ 259 if (chosen_major_lsm) { 260 struct lsm_info *major; 261 262 /* 263 * To match the original "security=" behavior, this 264 * explicitly does NOT fallback to another Legacy Major 265 * if the selected one was separately disabled: disable 266 * all non-matching Legacy Major LSMs. 267 */ 268 for (major = __start_lsm_info; major < __end_lsm_info; 269 major++) { 270 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 271 strcmp(major->name, chosen_major_lsm) != 0) { 272 set_enabled(major, false); 273 init_debug("security=%s disabled: %s\n", 274 chosen_major_lsm, major->name); 275 } 276 } 277 } 278 279 sep = kstrdup(order, GFP_KERNEL); 280 next = sep; 281 /* Walk the list, looking for matching LSMs. */ 282 while ((name = strsep(&next, ",")) != NULL) { 283 bool found = false; 284 285 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 286 if (lsm->order == LSM_ORDER_MUTABLE && 287 strcmp(lsm->name, name) == 0) { 288 append_ordered_lsm(lsm, origin); 289 found = true; 290 } 291 } 292 293 if (!found) 294 init_debug("%s ignored: %s\n", origin, name); 295 } 296 297 /* Process "security=", if given. */ 298 if (chosen_major_lsm) { 299 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 300 if (exists_ordered_lsm(lsm)) 301 continue; 302 if (strcmp(lsm->name, chosen_major_lsm) == 0) 303 append_ordered_lsm(lsm, "security="); 304 } 305 } 306 307 /* Disable all LSMs not in the ordered list. */ 308 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 309 if (exists_ordered_lsm(lsm)) 310 continue; 311 set_enabled(lsm, false); 312 init_debug("%s disabled: %s\n", origin, lsm->name); 313 } 314 315 kfree(sep); 316 } 317 318 static void __init lsm_early_cred(struct cred *cred); 319 static void __init lsm_early_task(struct task_struct *task); 320 321 static int lsm_append(const char *new, char **result); 322 323 static void __init ordered_lsm_init(void) 324 { 325 struct lsm_info **lsm; 326 327 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 328 GFP_KERNEL); 329 330 if (chosen_lsm_order) { 331 if (chosen_major_lsm) { 332 pr_info("security= is ignored because it is superseded by lsm=\n"); 333 chosen_major_lsm = NULL; 334 } 335 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 336 } else 337 ordered_lsm_parse(builtin_lsm_order, "builtin"); 338 339 for (lsm = ordered_lsms; *lsm; lsm++) 340 prepare_lsm(*lsm); 341 342 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 343 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 344 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 345 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 346 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 347 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 348 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 349 350 /* 351 * Create any kmem_caches needed for blobs 352 */ 353 if (blob_sizes.lbs_file) 354 lsm_file_cache = kmem_cache_create("lsm_file_cache", 355 blob_sizes.lbs_file, 0, 356 SLAB_PANIC, NULL); 357 if (blob_sizes.lbs_inode) 358 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 359 blob_sizes.lbs_inode, 0, 360 SLAB_PANIC, NULL); 361 362 lsm_early_cred((struct cred *) current->cred); 363 lsm_early_task(current); 364 for (lsm = ordered_lsms; *lsm; lsm++) 365 initialize_lsm(*lsm); 366 367 kfree(ordered_lsms); 368 } 369 370 int __init early_security_init(void) 371 { 372 struct lsm_info *lsm; 373 374 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 375 INIT_HLIST_HEAD(&security_hook_heads.NAME); 376 #include "linux/lsm_hook_defs.h" 377 #undef LSM_HOOK 378 379 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 380 if (!lsm->enabled) 381 lsm->enabled = &lsm_enabled_true; 382 prepare_lsm(lsm); 383 initialize_lsm(lsm); 384 } 385 386 return 0; 387 } 388 389 /** 390 * security_init - initializes the security framework 391 * 392 * This should be called early in the kernel initialization sequence. 393 */ 394 int __init security_init(void) 395 { 396 struct lsm_info *lsm; 397 398 pr_info("Security Framework initializing\n"); 399 400 /* 401 * Append the names of the early LSM modules now that kmalloc() is 402 * available 403 */ 404 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 405 if (lsm->enabled) 406 lsm_append(lsm->name, &lsm_names); 407 } 408 409 /* Load LSMs in specified order. */ 410 ordered_lsm_init(); 411 412 return 0; 413 } 414 415 /* Save user chosen LSM */ 416 static int __init choose_major_lsm(char *str) 417 { 418 chosen_major_lsm = str; 419 return 1; 420 } 421 __setup("security=", choose_major_lsm); 422 423 /* Explicitly choose LSM initialization order. */ 424 static int __init choose_lsm_order(char *str) 425 { 426 chosen_lsm_order = str; 427 return 1; 428 } 429 __setup("lsm=", choose_lsm_order); 430 431 /* Enable LSM order debugging. */ 432 static int __init enable_debug(char *str) 433 { 434 debug = true; 435 return 1; 436 } 437 __setup("lsm.debug", enable_debug); 438 439 static bool match_last_lsm(const char *list, const char *lsm) 440 { 441 const char *last; 442 443 if (WARN_ON(!list || !lsm)) 444 return false; 445 last = strrchr(list, ','); 446 if (last) 447 /* Pass the comma, strcmp() will check for '\0' */ 448 last++; 449 else 450 last = list; 451 return !strcmp(last, lsm); 452 } 453 454 static int lsm_append(const char *new, char **result) 455 { 456 char *cp; 457 458 if (*result == NULL) { 459 *result = kstrdup(new, GFP_KERNEL); 460 if (*result == NULL) 461 return -ENOMEM; 462 } else { 463 /* Check if it is the last registered name */ 464 if (match_last_lsm(*result, new)) 465 return 0; 466 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 467 if (cp == NULL) 468 return -ENOMEM; 469 kfree(*result); 470 *result = cp; 471 } 472 return 0; 473 } 474 475 /** 476 * security_add_hooks - Add a modules hooks to the hook lists. 477 * @hooks: the hooks to add 478 * @count: the number of hooks to add 479 * @lsm: the name of the security module 480 * 481 * Each LSM has to register its hooks with the infrastructure. 482 */ 483 void __init security_add_hooks(struct security_hook_list *hooks, int count, 484 const char *lsm) 485 { 486 int i; 487 488 for (i = 0; i < count; i++) { 489 hooks[i].lsm = lsm; 490 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 491 } 492 493 /* 494 * Don't try to append during early_security_init(), we'll come back 495 * and fix this up afterwards. 496 */ 497 if (slab_is_available()) { 498 if (lsm_append(lsm, &lsm_names) < 0) 499 panic("%s - Cannot get early memory.\n", __func__); 500 } 501 } 502 503 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 504 { 505 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 506 event, data); 507 } 508 EXPORT_SYMBOL(call_blocking_lsm_notifier); 509 510 int register_blocking_lsm_notifier(struct notifier_block *nb) 511 { 512 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 513 nb); 514 } 515 EXPORT_SYMBOL(register_blocking_lsm_notifier); 516 517 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 518 { 519 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 520 nb); 521 } 522 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 523 524 /** 525 * lsm_cred_alloc - allocate a composite cred blob 526 * @cred: the cred that needs a blob 527 * @gfp: allocation type 528 * 529 * Allocate the cred blob for all the modules 530 * 531 * Returns 0, or -ENOMEM if memory can't be allocated. 532 */ 533 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 534 { 535 if (blob_sizes.lbs_cred == 0) { 536 cred->security = NULL; 537 return 0; 538 } 539 540 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 541 if (cred->security == NULL) 542 return -ENOMEM; 543 return 0; 544 } 545 546 /** 547 * lsm_early_cred - during initialization allocate a composite cred blob 548 * @cred: the cred that needs a blob 549 * 550 * Allocate the cred blob for all the modules 551 */ 552 static void __init lsm_early_cred(struct cred *cred) 553 { 554 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 555 556 if (rc) 557 panic("%s: Early cred alloc failed.\n", __func__); 558 } 559 560 /** 561 * lsm_file_alloc - allocate a composite file blob 562 * @file: the file that needs a blob 563 * 564 * Allocate the file blob for all the modules 565 * 566 * Returns 0, or -ENOMEM if memory can't be allocated. 567 */ 568 static int lsm_file_alloc(struct file *file) 569 { 570 if (!lsm_file_cache) { 571 file->f_security = NULL; 572 return 0; 573 } 574 575 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 576 if (file->f_security == NULL) 577 return -ENOMEM; 578 return 0; 579 } 580 581 /** 582 * lsm_inode_alloc - allocate a composite inode blob 583 * @inode: the inode that needs a blob 584 * 585 * Allocate the inode blob for all the modules 586 * 587 * Returns 0, or -ENOMEM if memory can't be allocated. 588 */ 589 int lsm_inode_alloc(struct inode *inode) 590 { 591 if (!lsm_inode_cache) { 592 inode->i_security = NULL; 593 return 0; 594 } 595 596 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 597 if (inode->i_security == NULL) 598 return -ENOMEM; 599 return 0; 600 } 601 602 /** 603 * lsm_task_alloc - allocate a composite task blob 604 * @task: the task that needs a blob 605 * 606 * Allocate the task blob for all the modules 607 * 608 * Returns 0, or -ENOMEM if memory can't be allocated. 609 */ 610 static int lsm_task_alloc(struct task_struct *task) 611 { 612 if (blob_sizes.lbs_task == 0) { 613 task->security = NULL; 614 return 0; 615 } 616 617 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 618 if (task->security == NULL) 619 return -ENOMEM; 620 return 0; 621 } 622 623 /** 624 * lsm_ipc_alloc - allocate a composite ipc blob 625 * @kip: the ipc that needs a blob 626 * 627 * Allocate the ipc blob for all the modules 628 * 629 * Returns 0, or -ENOMEM if memory can't be allocated. 630 */ 631 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 632 { 633 if (blob_sizes.lbs_ipc == 0) { 634 kip->security = NULL; 635 return 0; 636 } 637 638 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 639 if (kip->security == NULL) 640 return -ENOMEM; 641 return 0; 642 } 643 644 /** 645 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 646 * @mp: the msg_msg that needs a blob 647 * 648 * Allocate the ipc blob for all the modules 649 * 650 * Returns 0, or -ENOMEM if memory can't be allocated. 651 */ 652 static int lsm_msg_msg_alloc(struct msg_msg *mp) 653 { 654 if (blob_sizes.lbs_msg_msg == 0) { 655 mp->security = NULL; 656 return 0; 657 } 658 659 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 660 if (mp->security == NULL) 661 return -ENOMEM; 662 return 0; 663 } 664 665 /** 666 * lsm_early_task - during initialization allocate a composite task blob 667 * @task: the task that needs a blob 668 * 669 * Allocate the task blob for all the modules 670 */ 671 static void __init lsm_early_task(struct task_struct *task) 672 { 673 int rc = lsm_task_alloc(task); 674 675 if (rc) 676 panic("%s: Early task alloc failed.\n", __func__); 677 } 678 679 /** 680 * lsm_superblock_alloc - allocate a composite superblock blob 681 * @sb: the superblock that needs a blob 682 * 683 * Allocate the superblock blob for all the modules 684 * 685 * Returns 0, or -ENOMEM if memory can't be allocated. 686 */ 687 static int lsm_superblock_alloc(struct super_block *sb) 688 { 689 if (blob_sizes.lbs_superblock == 0) { 690 sb->s_security = NULL; 691 return 0; 692 } 693 694 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 695 if (sb->s_security == NULL) 696 return -ENOMEM; 697 return 0; 698 } 699 700 /* 701 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 702 * can be accessed with: 703 * 704 * LSM_RET_DEFAULT(<hook_name>) 705 * 706 * The macros below define static constants for the default value of each 707 * LSM hook. 708 */ 709 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 710 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 711 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 712 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 713 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 714 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 715 716 #include <linux/lsm_hook_defs.h> 717 #undef LSM_HOOK 718 719 /* 720 * Hook list operation macros. 721 * 722 * call_void_hook: 723 * This is a hook that does not return a value. 724 * 725 * call_int_hook: 726 * This is a hook that returns a value. 727 */ 728 729 #define call_void_hook(FUNC, ...) \ 730 do { \ 731 struct security_hook_list *P; \ 732 \ 733 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 734 P->hook.FUNC(__VA_ARGS__); \ 735 } while (0) 736 737 #define call_int_hook(FUNC, IRC, ...) ({ \ 738 int RC = IRC; \ 739 do { \ 740 struct security_hook_list *P; \ 741 \ 742 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 743 RC = P->hook.FUNC(__VA_ARGS__); \ 744 if (RC != 0) \ 745 break; \ 746 } \ 747 } while (0); \ 748 RC; \ 749 }) 750 751 /* Security operations */ 752 753 int security_binder_set_context_mgr(const struct cred *mgr) 754 { 755 return call_int_hook(binder_set_context_mgr, 0, mgr); 756 } 757 758 int security_binder_transaction(const struct cred *from, 759 const struct cred *to) 760 { 761 return call_int_hook(binder_transaction, 0, from, to); 762 } 763 764 int security_binder_transfer_binder(const struct cred *from, 765 const struct cred *to) 766 { 767 return call_int_hook(binder_transfer_binder, 0, from, to); 768 } 769 770 int security_binder_transfer_file(const struct cred *from, 771 const struct cred *to, struct file *file) 772 { 773 return call_int_hook(binder_transfer_file, 0, from, to, file); 774 } 775 776 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 777 { 778 return call_int_hook(ptrace_access_check, 0, child, mode); 779 } 780 781 int security_ptrace_traceme(struct task_struct *parent) 782 { 783 return call_int_hook(ptrace_traceme, 0, parent); 784 } 785 786 int security_capget(struct task_struct *target, 787 kernel_cap_t *effective, 788 kernel_cap_t *inheritable, 789 kernel_cap_t *permitted) 790 { 791 return call_int_hook(capget, 0, target, 792 effective, inheritable, permitted); 793 } 794 795 int security_capset(struct cred *new, const struct cred *old, 796 const kernel_cap_t *effective, 797 const kernel_cap_t *inheritable, 798 const kernel_cap_t *permitted) 799 { 800 return call_int_hook(capset, 0, new, old, 801 effective, inheritable, permitted); 802 } 803 804 int security_capable(const struct cred *cred, 805 struct user_namespace *ns, 806 int cap, 807 unsigned int opts) 808 { 809 return call_int_hook(capable, 0, cred, ns, cap, opts); 810 } 811 812 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 813 { 814 return call_int_hook(quotactl, 0, cmds, type, id, sb); 815 } 816 817 int security_quota_on(struct dentry *dentry) 818 { 819 return call_int_hook(quota_on, 0, dentry); 820 } 821 822 int security_syslog(int type) 823 { 824 return call_int_hook(syslog, 0, type); 825 } 826 827 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 828 { 829 return call_int_hook(settime, 0, ts, tz); 830 } 831 832 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 833 { 834 struct security_hook_list *hp; 835 int cap_sys_admin = 1; 836 int rc; 837 838 /* 839 * The module will respond with a positive value if 840 * it thinks the __vm_enough_memory() call should be 841 * made with the cap_sys_admin set. If all of the modules 842 * agree that it should be set it will. If any module 843 * thinks it should not be set it won't. 844 */ 845 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 846 rc = hp->hook.vm_enough_memory(mm, pages); 847 if (rc <= 0) { 848 cap_sys_admin = 0; 849 break; 850 } 851 } 852 return __vm_enough_memory(mm, pages, cap_sys_admin); 853 } 854 855 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 856 { 857 return call_int_hook(bprm_creds_for_exec, 0, bprm); 858 } 859 860 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 861 { 862 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 863 } 864 865 int security_bprm_check(struct linux_binprm *bprm) 866 { 867 int ret; 868 869 ret = call_int_hook(bprm_check_security, 0, bprm); 870 if (ret) 871 return ret; 872 return ima_bprm_check(bprm); 873 } 874 875 void security_bprm_committing_creds(struct linux_binprm *bprm) 876 { 877 call_void_hook(bprm_committing_creds, bprm); 878 } 879 880 void security_bprm_committed_creds(struct linux_binprm *bprm) 881 { 882 call_void_hook(bprm_committed_creds, bprm); 883 } 884 885 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 886 { 887 return call_int_hook(fs_context_dup, 0, fc, src_fc); 888 } 889 890 int security_fs_context_parse_param(struct fs_context *fc, 891 struct fs_parameter *param) 892 { 893 struct security_hook_list *hp; 894 int trc; 895 int rc = -ENOPARAM; 896 897 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 898 list) { 899 trc = hp->hook.fs_context_parse_param(fc, param); 900 if (trc == 0) 901 rc = 0; 902 else if (trc != -ENOPARAM) 903 return trc; 904 } 905 return rc; 906 } 907 908 int security_sb_alloc(struct super_block *sb) 909 { 910 int rc = lsm_superblock_alloc(sb); 911 912 if (unlikely(rc)) 913 return rc; 914 rc = call_int_hook(sb_alloc_security, 0, sb); 915 if (unlikely(rc)) 916 security_sb_free(sb); 917 return rc; 918 } 919 920 void security_sb_delete(struct super_block *sb) 921 { 922 call_void_hook(sb_delete, sb); 923 } 924 925 void security_sb_free(struct super_block *sb) 926 { 927 call_void_hook(sb_free_security, sb); 928 kfree(sb->s_security); 929 sb->s_security = NULL; 930 } 931 932 void security_free_mnt_opts(void **mnt_opts) 933 { 934 if (!*mnt_opts) 935 return; 936 call_void_hook(sb_free_mnt_opts, *mnt_opts); 937 *mnt_opts = NULL; 938 } 939 EXPORT_SYMBOL(security_free_mnt_opts); 940 941 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 942 { 943 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 944 } 945 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 946 947 int security_sb_mnt_opts_compat(struct super_block *sb, 948 void *mnt_opts) 949 { 950 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 951 } 952 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 953 954 int security_sb_remount(struct super_block *sb, 955 void *mnt_opts) 956 { 957 return call_int_hook(sb_remount, 0, sb, mnt_opts); 958 } 959 EXPORT_SYMBOL(security_sb_remount); 960 961 int security_sb_kern_mount(struct super_block *sb) 962 { 963 return call_int_hook(sb_kern_mount, 0, sb); 964 } 965 966 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 967 { 968 return call_int_hook(sb_show_options, 0, m, sb); 969 } 970 971 int security_sb_statfs(struct dentry *dentry) 972 { 973 return call_int_hook(sb_statfs, 0, dentry); 974 } 975 976 int security_sb_mount(const char *dev_name, const struct path *path, 977 const char *type, unsigned long flags, void *data) 978 { 979 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 980 } 981 982 int security_sb_umount(struct vfsmount *mnt, int flags) 983 { 984 return call_int_hook(sb_umount, 0, mnt, flags); 985 } 986 987 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 988 { 989 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 990 } 991 992 int security_sb_set_mnt_opts(struct super_block *sb, 993 void *mnt_opts, 994 unsigned long kern_flags, 995 unsigned long *set_kern_flags) 996 { 997 return call_int_hook(sb_set_mnt_opts, 998 mnt_opts ? -EOPNOTSUPP : 0, sb, 999 mnt_opts, kern_flags, set_kern_flags); 1000 } 1001 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1002 1003 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1004 struct super_block *newsb, 1005 unsigned long kern_flags, 1006 unsigned long *set_kern_flags) 1007 { 1008 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1009 kern_flags, set_kern_flags); 1010 } 1011 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1012 1013 int security_move_mount(const struct path *from_path, const struct path *to_path) 1014 { 1015 return call_int_hook(move_mount, 0, from_path, to_path); 1016 } 1017 1018 int security_path_notify(const struct path *path, u64 mask, 1019 unsigned int obj_type) 1020 { 1021 return call_int_hook(path_notify, 0, path, mask, obj_type); 1022 } 1023 1024 int security_inode_alloc(struct inode *inode) 1025 { 1026 int rc = lsm_inode_alloc(inode); 1027 1028 if (unlikely(rc)) 1029 return rc; 1030 rc = call_int_hook(inode_alloc_security, 0, inode); 1031 if (unlikely(rc)) 1032 security_inode_free(inode); 1033 return rc; 1034 } 1035 1036 static void inode_free_by_rcu(struct rcu_head *head) 1037 { 1038 /* 1039 * The rcu head is at the start of the inode blob 1040 */ 1041 kmem_cache_free(lsm_inode_cache, head); 1042 } 1043 1044 void security_inode_free(struct inode *inode) 1045 { 1046 integrity_inode_free(inode); 1047 call_void_hook(inode_free_security, inode); 1048 /* 1049 * The inode may still be referenced in a path walk and 1050 * a call to security_inode_permission() can be made 1051 * after inode_free_security() is called. Ideally, the VFS 1052 * wouldn't do this, but fixing that is a much harder 1053 * job. For now, simply free the i_security via RCU, and 1054 * leave the current inode->i_security pointer intact. 1055 * The inode will be freed after the RCU grace period too. 1056 */ 1057 if (inode->i_security) 1058 call_rcu((struct rcu_head *)inode->i_security, 1059 inode_free_by_rcu); 1060 } 1061 1062 int security_dentry_init_security(struct dentry *dentry, int mode, 1063 const struct qstr *name, 1064 const char **xattr_name, void **ctx, 1065 u32 *ctxlen) 1066 { 1067 struct security_hook_list *hp; 1068 int rc; 1069 1070 /* 1071 * Only one module will provide a security context. 1072 */ 1073 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1074 rc = hp->hook.dentry_init_security(dentry, mode, name, 1075 xattr_name, ctx, ctxlen); 1076 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1077 return rc; 1078 } 1079 return LSM_RET_DEFAULT(dentry_init_security); 1080 } 1081 EXPORT_SYMBOL(security_dentry_init_security); 1082 1083 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1084 struct qstr *name, 1085 const struct cred *old, struct cred *new) 1086 { 1087 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1088 name, old, new); 1089 } 1090 EXPORT_SYMBOL(security_dentry_create_files_as); 1091 1092 int security_inode_init_security(struct inode *inode, struct inode *dir, 1093 const struct qstr *qstr, 1094 const initxattrs initxattrs, void *fs_data) 1095 { 1096 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1097 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1098 int ret; 1099 1100 if (unlikely(IS_PRIVATE(inode))) 1101 return 0; 1102 1103 if (!initxattrs) 1104 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1105 dir, qstr, NULL, NULL, NULL); 1106 memset(new_xattrs, 0, sizeof(new_xattrs)); 1107 lsm_xattr = new_xattrs; 1108 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1109 &lsm_xattr->name, 1110 &lsm_xattr->value, 1111 &lsm_xattr->value_len); 1112 if (ret) 1113 goto out; 1114 1115 evm_xattr = lsm_xattr + 1; 1116 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1117 if (ret) 1118 goto out; 1119 ret = initxattrs(inode, new_xattrs, fs_data); 1120 out: 1121 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1122 kfree(xattr->value); 1123 return (ret == -EOPNOTSUPP) ? 0 : ret; 1124 } 1125 EXPORT_SYMBOL(security_inode_init_security); 1126 1127 int security_inode_init_security_anon(struct inode *inode, 1128 const struct qstr *name, 1129 const struct inode *context_inode) 1130 { 1131 return call_int_hook(inode_init_security_anon, 0, inode, name, 1132 context_inode); 1133 } 1134 1135 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1136 const struct qstr *qstr, const char **name, 1137 void **value, size_t *len) 1138 { 1139 if (unlikely(IS_PRIVATE(inode))) 1140 return -EOPNOTSUPP; 1141 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1142 qstr, name, value, len); 1143 } 1144 EXPORT_SYMBOL(security_old_inode_init_security); 1145 1146 #ifdef CONFIG_SECURITY_PATH 1147 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1148 unsigned int dev) 1149 { 1150 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1151 return 0; 1152 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1153 } 1154 EXPORT_SYMBOL(security_path_mknod); 1155 1156 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1157 { 1158 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1159 return 0; 1160 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1161 } 1162 EXPORT_SYMBOL(security_path_mkdir); 1163 1164 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1165 { 1166 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1167 return 0; 1168 return call_int_hook(path_rmdir, 0, dir, dentry); 1169 } 1170 1171 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1172 { 1173 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1174 return 0; 1175 return call_int_hook(path_unlink, 0, dir, dentry); 1176 } 1177 EXPORT_SYMBOL(security_path_unlink); 1178 1179 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1180 const char *old_name) 1181 { 1182 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1183 return 0; 1184 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1185 } 1186 1187 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1188 struct dentry *new_dentry) 1189 { 1190 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1191 return 0; 1192 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1193 } 1194 1195 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1196 const struct path *new_dir, struct dentry *new_dentry, 1197 unsigned int flags) 1198 { 1199 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1200 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1201 return 0; 1202 1203 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1204 new_dentry, flags); 1205 } 1206 EXPORT_SYMBOL(security_path_rename); 1207 1208 int security_path_truncate(const struct path *path) 1209 { 1210 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1211 return 0; 1212 return call_int_hook(path_truncate, 0, path); 1213 } 1214 1215 int security_path_chmod(const struct path *path, umode_t mode) 1216 { 1217 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1218 return 0; 1219 return call_int_hook(path_chmod, 0, path, mode); 1220 } 1221 1222 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1223 { 1224 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1225 return 0; 1226 return call_int_hook(path_chown, 0, path, uid, gid); 1227 } 1228 1229 int security_path_chroot(const struct path *path) 1230 { 1231 return call_int_hook(path_chroot, 0, path); 1232 } 1233 #endif 1234 1235 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1236 { 1237 if (unlikely(IS_PRIVATE(dir))) 1238 return 0; 1239 return call_int_hook(inode_create, 0, dir, dentry, mode); 1240 } 1241 EXPORT_SYMBOL_GPL(security_inode_create); 1242 1243 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1244 struct dentry *new_dentry) 1245 { 1246 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1247 return 0; 1248 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1249 } 1250 1251 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1252 { 1253 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1254 return 0; 1255 return call_int_hook(inode_unlink, 0, dir, dentry); 1256 } 1257 1258 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1259 const char *old_name) 1260 { 1261 if (unlikely(IS_PRIVATE(dir))) 1262 return 0; 1263 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1264 } 1265 1266 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1267 { 1268 if (unlikely(IS_PRIVATE(dir))) 1269 return 0; 1270 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1271 } 1272 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1273 1274 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1275 { 1276 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1277 return 0; 1278 return call_int_hook(inode_rmdir, 0, dir, dentry); 1279 } 1280 1281 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1282 { 1283 if (unlikely(IS_PRIVATE(dir))) 1284 return 0; 1285 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1286 } 1287 1288 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1289 struct inode *new_dir, struct dentry *new_dentry, 1290 unsigned int flags) 1291 { 1292 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1293 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1294 return 0; 1295 1296 if (flags & RENAME_EXCHANGE) { 1297 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1298 old_dir, old_dentry); 1299 if (err) 1300 return err; 1301 } 1302 1303 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1304 new_dir, new_dentry); 1305 } 1306 1307 int security_inode_readlink(struct dentry *dentry) 1308 { 1309 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1310 return 0; 1311 return call_int_hook(inode_readlink, 0, dentry); 1312 } 1313 1314 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1315 bool rcu) 1316 { 1317 if (unlikely(IS_PRIVATE(inode))) 1318 return 0; 1319 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1320 } 1321 1322 int security_inode_permission(struct inode *inode, int mask) 1323 { 1324 if (unlikely(IS_PRIVATE(inode))) 1325 return 0; 1326 return call_int_hook(inode_permission, 0, inode, mask); 1327 } 1328 1329 int security_inode_setattr(struct user_namespace *mnt_userns, 1330 struct dentry *dentry, struct iattr *attr) 1331 { 1332 int ret; 1333 1334 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1335 return 0; 1336 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1337 if (ret) 1338 return ret; 1339 return evm_inode_setattr(mnt_userns, dentry, attr); 1340 } 1341 EXPORT_SYMBOL_GPL(security_inode_setattr); 1342 1343 int security_inode_getattr(const struct path *path) 1344 { 1345 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1346 return 0; 1347 return call_int_hook(inode_getattr, 0, path); 1348 } 1349 1350 int security_inode_setxattr(struct user_namespace *mnt_userns, 1351 struct dentry *dentry, const char *name, 1352 const void *value, size_t size, int flags) 1353 { 1354 int ret; 1355 1356 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1357 return 0; 1358 /* 1359 * SELinux and Smack integrate the cap call, 1360 * so assume that all LSMs supplying this call do so. 1361 */ 1362 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1363 size, flags); 1364 1365 if (ret == 1) 1366 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1367 if (ret) 1368 return ret; 1369 ret = ima_inode_setxattr(dentry, name, value, size); 1370 if (ret) 1371 return ret; 1372 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1373 } 1374 1375 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1376 const void *value, size_t size, int flags) 1377 { 1378 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1379 return; 1380 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1381 evm_inode_post_setxattr(dentry, name, value, size); 1382 } 1383 1384 int security_inode_getxattr(struct dentry *dentry, const char *name) 1385 { 1386 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1387 return 0; 1388 return call_int_hook(inode_getxattr, 0, dentry, name); 1389 } 1390 1391 int security_inode_listxattr(struct dentry *dentry) 1392 { 1393 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1394 return 0; 1395 return call_int_hook(inode_listxattr, 0, dentry); 1396 } 1397 1398 int security_inode_removexattr(struct user_namespace *mnt_userns, 1399 struct dentry *dentry, const char *name) 1400 { 1401 int ret; 1402 1403 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1404 return 0; 1405 /* 1406 * SELinux and Smack integrate the cap call, 1407 * so assume that all LSMs supplying this call do so. 1408 */ 1409 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1410 if (ret == 1) 1411 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1412 if (ret) 1413 return ret; 1414 ret = ima_inode_removexattr(dentry, name); 1415 if (ret) 1416 return ret; 1417 return evm_inode_removexattr(mnt_userns, dentry, name); 1418 } 1419 1420 int security_inode_need_killpriv(struct dentry *dentry) 1421 { 1422 return call_int_hook(inode_need_killpriv, 0, dentry); 1423 } 1424 1425 int security_inode_killpriv(struct user_namespace *mnt_userns, 1426 struct dentry *dentry) 1427 { 1428 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1429 } 1430 1431 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1432 struct inode *inode, const char *name, 1433 void **buffer, bool alloc) 1434 { 1435 struct security_hook_list *hp; 1436 int rc; 1437 1438 if (unlikely(IS_PRIVATE(inode))) 1439 return LSM_RET_DEFAULT(inode_getsecurity); 1440 /* 1441 * Only one module will provide an attribute with a given name. 1442 */ 1443 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1444 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1445 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1446 return rc; 1447 } 1448 return LSM_RET_DEFAULT(inode_getsecurity); 1449 } 1450 1451 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1452 { 1453 struct security_hook_list *hp; 1454 int rc; 1455 1456 if (unlikely(IS_PRIVATE(inode))) 1457 return LSM_RET_DEFAULT(inode_setsecurity); 1458 /* 1459 * Only one module will provide an attribute with a given name. 1460 */ 1461 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1462 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1463 flags); 1464 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1465 return rc; 1466 } 1467 return LSM_RET_DEFAULT(inode_setsecurity); 1468 } 1469 1470 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1471 { 1472 if (unlikely(IS_PRIVATE(inode))) 1473 return 0; 1474 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1475 } 1476 EXPORT_SYMBOL(security_inode_listsecurity); 1477 1478 void security_inode_getsecid(struct inode *inode, u32 *secid) 1479 { 1480 call_void_hook(inode_getsecid, inode, secid); 1481 } 1482 1483 int security_inode_copy_up(struct dentry *src, struct cred **new) 1484 { 1485 return call_int_hook(inode_copy_up, 0, src, new); 1486 } 1487 EXPORT_SYMBOL(security_inode_copy_up); 1488 1489 int security_inode_copy_up_xattr(const char *name) 1490 { 1491 struct security_hook_list *hp; 1492 int rc; 1493 1494 /* 1495 * The implementation can return 0 (accept the xattr), 1 (discard the 1496 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1497 * any other error code incase of an error. 1498 */ 1499 hlist_for_each_entry(hp, 1500 &security_hook_heads.inode_copy_up_xattr, list) { 1501 rc = hp->hook.inode_copy_up_xattr(name); 1502 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1503 return rc; 1504 } 1505 1506 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1507 } 1508 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1509 1510 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1511 struct kernfs_node *kn) 1512 { 1513 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1514 } 1515 1516 int security_file_permission(struct file *file, int mask) 1517 { 1518 int ret; 1519 1520 ret = call_int_hook(file_permission, 0, file, mask); 1521 if (ret) 1522 return ret; 1523 1524 return fsnotify_perm(file, mask); 1525 } 1526 1527 int security_file_alloc(struct file *file) 1528 { 1529 int rc = lsm_file_alloc(file); 1530 1531 if (rc) 1532 return rc; 1533 rc = call_int_hook(file_alloc_security, 0, file); 1534 if (unlikely(rc)) 1535 security_file_free(file); 1536 return rc; 1537 } 1538 1539 void security_file_free(struct file *file) 1540 { 1541 void *blob; 1542 1543 call_void_hook(file_free_security, file); 1544 1545 blob = file->f_security; 1546 if (blob) { 1547 file->f_security = NULL; 1548 kmem_cache_free(lsm_file_cache, blob); 1549 } 1550 } 1551 1552 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1553 { 1554 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1555 } 1556 EXPORT_SYMBOL_GPL(security_file_ioctl); 1557 1558 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1559 { 1560 /* 1561 * Does we have PROT_READ and does the application expect 1562 * it to imply PROT_EXEC? If not, nothing to talk about... 1563 */ 1564 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1565 return prot; 1566 if (!(current->personality & READ_IMPLIES_EXEC)) 1567 return prot; 1568 /* 1569 * if that's an anonymous mapping, let it. 1570 */ 1571 if (!file) 1572 return prot | PROT_EXEC; 1573 /* 1574 * ditto if it's not on noexec mount, except that on !MMU we need 1575 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1576 */ 1577 if (!path_noexec(&file->f_path)) { 1578 #ifndef CONFIG_MMU 1579 if (file->f_op->mmap_capabilities) { 1580 unsigned caps = file->f_op->mmap_capabilities(file); 1581 if (!(caps & NOMMU_MAP_EXEC)) 1582 return prot; 1583 } 1584 #endif 1585 return prot | PROT_EXEC; 1586 } 1587 /* anything on noexec mount won't get PROT_EXEC */ 1588 return prot; 1589 } 1590 1591 int security_mmap_file(struct file *file, unsigned long prot, 1592 unsigned long flags) 1593 { 1594 int ret; 1595 ret = call_int_hook(mmap_file, 0, file, prot, 1596 mmap_prot(file, prot), flags); 1597 if (ret) 1598 return ret; 1599 return ima_file_mmap(file, prot); 1600 } 1601 1602 int security_mmap_addr(unsigned long addr) 1603 { 1604 return call_int_hook(mmap_addr, 0, addr); 1605 } 1606 1607 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1608 unsigned long prot) 1609 { 1610 int ret; 1611 1612 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1613 if (ret) 1614 return ret; 1615 return ima_file_mprotect(vma, prot); 1616 } 1617 1618 int security_file_lock(struct file *file, unsigned int cmd) 1619 { 1620 return call_int_hook(file_lock, 0, file, cmd); 1621 } 1622 1623 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1624 { 1625 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1626 } 1627 1628 void security_file_set_fowner(struct file *file) 1629 { 1630 call_void_hook(file_set_fowner, file); 1631 } 1632 1633 int security_file_send_sigiotask(struct task_struct *tsk, 1634 struct fown_struct *fown, int sig) 1635 { 1636 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1637 } 1638 1639 int security_file_receive(struct file *file) 1640 { 1641 return call_int_hook(file_receive, 0, file); 1642 } 1643 1644 int security_file_open(struct file *file) 1645 { 1646 int ret; 1647 1648 ret = call_int_hook(file_open, 0, file); 1649 if (ret) 1650 return ret; 1651 1652 return fsnotify_perm(file, MAY_OPEN); 1653 } 1654 1655 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1656 { 1657 int rc = lsm_task_alloc(task); 1658 1659 if (rc) 1660 return rc; 1661 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1662 if (unlikely(rc)) 1663 security_task_free(task); 1664 return rc; 1665 } 1666 1667 void security_task_free(struct task_struct *task) 1668 { 1669 call_void_hook(task_free, task); 1670 1671 kfree(task->security); 1672 task->security = NULL; 1673 } 1674 1675 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1676 { 1677 int rc = lsm_cred_alloc(cred, gfp); 1678 1679 if (rc) 1680 return rc; 1681 1682 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1683 if (unlikely(rc)) 1684 security_cred_free(cred); 1685 return rc; 1686 } 1687 1688 void security_cred_free(struct cred *cred) 1689 { 1690 /* 1691 * There is a failure case in prepare_creds() that 1692 * may result in a call here with ->security being NULL. 1693 */ 1694 if (unlikely(cred->security == NULL)) 1695 return; 1696 1697 call_void_hook(cred_free, cred); 1698 1699 kfree(cred->security); 1700 cred->security = NULL; 1701 } 1702 1703 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1704 { 1705 int rc = lsm_cred_alloc(new, gfp); 1706 1707 if (rc) 1708 return rc; 1709 1710 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1711 if (unlikely(rc)) 1712 security_cred_free(new); 1713 return rc; 1714 } 1715 1716 void security_transfer_creds(struct cred *new, const struct cred *old) 1717 { 1718 call_void_hook(cred_transfer, new, old); 1719 } 1720 1721 void security_cred_getsecid(const struct cred *c, u32 *secid) 1722 { 1723 *secid = 0; 1724 call_void_hook(cred_getsecid, c, secid); 1725 } 1726 EXPORT_SYMBOL(security_cred_getsecid); 1727 1728 int security_kernel_act_as(struct cred *new, u32 secid) 1729 { 1730 return call_int_hook(kernel_act_as, 0, new, secid); 1731 } 1732 1733 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1734 { 1735 return call_int_hook(kernel_create_files_as, 0, new, inode); 1736 } 1737 1738 int security_kernel_module_request(char *kmod_name) 1739 { 1740 int ret; 1741 1742 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1743 if (ret) 1744 return ret; 1745 return integrity_kernel_module_request(kmod_name); 1746 } 1747 1748 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1749 bool contents) 1750 { 1751 int ret; 1752 1753 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1754 if (ret) 1755 return ret; 1756 return ima_read_file(file, id, contents); 1757 } 1758 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1759 1760 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1761 enum kernel_read_file_id id) 1762 { 1763 int ret; 1764 1765 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1766 if (ret) 1767 return ret; 1768 return ima_post_read_file(file, buf, size, id); 1769 } 1770 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1771 1772 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1773 { 1774 int ret; 1775 1776 ret = call_int_hook(kernel_load_data, 0, id, contents); 1777 if (ret) 1778 return ret; 1779 return ima_load_data(id, contents); 1780 } 1781 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1782 1783 int security_kernel_post_load_data(char *buf, loff_t size, 1784 enum kernel_load_data_id id, 1785 char *description) 1786 { 1787 int ret; 1788 1789 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1790 description); 1791 if (ret) 1792 return ret; 1793 return ima_post_load_data(buf, size, id, description); 1794 } 1795 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1796 1797 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1798 int flags) 1799 { 1800 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1801 } 1802 1803 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1804 int flags) 1805 { 1806 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1807 } 1808 1809 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 1810 { 1811 return call_int_hook(task_fix_setgroups, 0, new, old); 1812 } 1813 1814 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1815 { 1816 return call_int_hook(task_setpgid, 0, p, pgid); 1817 } 1818 1819 int security_task_getpgid(struct task_struct *p) 1820 { 1821 return call_int_hook(task_getpgid, 0, p); 1822 } 1823 1824 int security_task_getsid(struct task_struct *p) 1825 { 1826 return call_int_hook(task_getsid, 0, p); 1827 } 1828 1829 void security_current_getsecid_subj(u32 *secid) 1830 { 1831 *secid = 0; 1832 call_void_hook(current_getsecid_subj, secid); 1833 } 1834 EXPORT_SYMBOL(security_current_getsecid_subj); 1835 1836 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1837 { 1838 *secid = 0; 1839 call_void_hook(task_getsecid_obj, p, secid); 1840 } 1841 EXPORT_SYMBOL(security_task_getsecid_obj); 1842 1843 int security_task_setnice(struct task_struct *p, int nice) 1844 { 1845 return call_int_hook(task_setnice, 0, p, nice); 1846 } 1847 1848 int security_task_setioprio(struct task_struct *p, int ioprio) 1849 { 1850 return call_int_hook(task_setioprio, 0, p, ioprio); 1851 } 1852 1853 int security_task_getioprio(struct task_struct *p) 1854 { 1855 return call_int_hook(task_getioprio, 0, p); 1856 } 1857 1858 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1859 unsigned int flags) 1860 { 1861 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1862 } 1863 1864 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1865 struct rlimit *new_rlim) 1866 { 1867 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1868 } 1869 1870 int security_task_setscheduler(struct task_struct *p) 1871 { 1872 return call_int_hook(task_setscheduler, 0, p); 1873 } 1874 1875 int security_task_getscheduler(struct task_struct *p) 1876 { 1877 return call_int_hook(task_getscheduler, 0, p); 1878 } 1879 1880 int security_task_movememory(struct task_struct *p) 1881 { 1882 return call_int_hook(task_movememory, 0, p); 1883 } 1884 1885 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1886 int sig, const struct cred *cred) 1887 { 1888 return call_int_hook(task_kill, 0, p, info, sig, cred); 1889 } 1890 1891 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1892 unsigned long arg4, unsigned long arg5) 1893 { 1894 int thisrc; 1895 int rc = LSM_RET_DEFAULT(task_prctl); 1896 struct security_hook_list *hp; 1897 1898 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1899 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1900 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1901 rc = thisrc; 1902 if (thisrc != 0) 1903 break; 1904 } 1905 } 1906 return rc; 1907 } 1908 1909 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1910 { 1911 call_void_hook(task_to_inode, p, inode); 1912 } 1913 1914 int security_create_user_ns(const struct cred *cred) 1915 { 1916 return call_int_hook(userns_create, 0, cred); 1917 } 1918 1919 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1920 { 1921 return call_int_hook(ipc_permission, 0, ipcp, flag); 1922 } 1923 1924 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1925 { 1926 *secid = 0; 1927 call_void_hook(ipc_getsecid, ipcp, secid); 1928 } 1929 1930 int security_msg_msg_alloc(struct msg_msg *msg) 1931 { 1932 int rc = lsm_msg_msg_alloc(msg); 1933 1934 if (unlikely(rc)) 1935 return rc; 1936 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1937 if (unlikely(rc)) 1938 security_msg_msg_free(msg); 1939 return rc; 1940 } 1941 1942 void security_msg_msg_free(struct msg_msg *msg) 1943 { 1944 call_void_hook(msg_msg_free_security, msg); 1945 kfree(msg->security); 1946 msg->security = NULL; 1947 } 1948 1949 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1950 { 1951 int rc = lsm_ipc_alloc(msq); 1952 1953 if (unlikely(rc)) 1954 return rc; 1955 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1956 if (unlikely(rc)) 1957 security_msg_queue_free(msq); 1958 return rc; 1959 } 1960 1961 void security_msg_queue_free(struct kern_ipc_perm *msq) 1962 { 1963 call_void_hook(msg_queue_free_security, msq); 1964 kfree(msq->security); 1965 msq->security = NULL; 1966 } 1967 1968 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1969 { 1970 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1971 } 1972 1973 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1974 { 1975 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1976 } 1977 1978 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1979 struct msg_msg *msg, int msqflg) 1980 { 1981 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1982 } 1983 1984 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1985 struct task_struct *target, long type, int mode) 1986 { 1987 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1988 } 1989 1990 int security_shm_alloc(struct kern_ipc_perm *shp) 1991 { 1992 int rc = lsm_ipc_alloc(shp); 1993 1994 if (unlikely(rc)) 1995 return rc; 1996 rc = call_int_hook(shm_alloc_security, 0, shp); 1997 if (unlikely(rc)) 1998 security_shm_free(shp); 1999 return rc; 2000 } 2001 2002 void security_shm_free(struct kern_ipc_perm *shp) 2003 { 2004 call_void_hook(shm_free_security, shp); 2005 kfree(shp->security); 2006 shp->security = NULL; 2007 } 2008 2009 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 2010 { 2011 return call_int_hook(shm_associate, 0, shp, shmflg); 2012 } 2013 2014 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 2015 { 2016 return call_int_hook(shm_shmctl, 0, shp, cmd); 2017 } 2018 2019 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2020 { 2021 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2022 } 2023 2024 int security_sem_alloc(struct kern_ipc_perm *sma) 2025 { 2026 int rc = lsm_ipc_alloc(sma); 2027 2028 if (unlikely(rc)) 2029 return rc; 2030 rc = call_int_hook(sem_alloc_security, 0, sma); 2031 if (unlikely(rc)) 2032 security_sem_free(sma); 2033 return rc; 2034 } 2035 2036 void security_sem_free(struct kern_ipc_perm *sma) 2037 { 2038 call_void_hook(sem_free_security, sma); 2039 kfree(sma->security); 2040 sma->security = NULL; 2041 } 2042 2043 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2044 { 2045 return call_int_hook(sem_associate, 0, sma, semflg); 2046 } 2047 2048 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2049 { 2050 return call_int_hook(sem_semctl, 0, sma, cmd); 2051 } 2052 2053 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2054 unsigned nsops, int alter) 2055 { 2056 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2057 } 2058 2059 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2060 { 2061 if (unlikely(inode && IS_PRIVATE(inode))) 2062 return; 2063 call_void_hook(d_instantiate, dentry, inode); 2064 } 2065 EXPORT_SYMBOL(security_d_instantiate); 2066 2067 int security_getprocattr(struct task_struct *p, const char *lsm, 2068 const char *name, char **value) 2069 { 2070 struct security_hook_list *hp; 2071 2072 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2073 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2074 continue; 2075 return hp->hook.getprocattr(p, name, value); 2076 } 2077 return LSM_RET_DEFAULT(getprocattr); 2078 } 2079 2080 int security_setprocattr(const char *lsm, const char *name, void *value, 2081 size_t size) 2082 { 2083 struct security_hook_list *hp; 2084 2085 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2086 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2087 continue; 2088 return hp->hook.setprocattr(name, value, size); 2089 } 2090 return LSM_RET_DEFAULT(setprocattr); 2091 } 2092 2093 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2094 { 2095 return call_int_hook(netlink_send, 0, sk, skb); 2096 } 2097 2098 int security_ismaclabel(const char *name) 2099 { 2100 return call_int_hook(ismaclabel, 0, name); 2101 } 2102 EXPORT_SYMBOL(security_ismaclabel); 2103 2104 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2105 { 2106 struct security_hook_list *hp; 2107 int rc; 2108 2109 /* 2110 * Currently, only one LSM can implement secid_to_secctx (i.e this 2111 * LSM hook is not "stackable"). 2112 */ 2113 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2114 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2115 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2116 return rc; 2117 } 2118 2119 return LSM_RET_DEFAULT(secid_to_secctx); 2120 } 2121 EXPORT_SYMBOL(security_secid_to_secctx); 2122 2123 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2124 { 2125 *secid = 0; 2126 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2127 } 2128 EXPORT_SYMBOL(security_secctx_to_secid); 2129 2130 void security_release_secctx(char *secdata, u32 seclen) 2131 { 2132 call_void_hook(release_secctx, secdata, seclen); 2133 } 2134 EXPORT_SYMBOL(security_release_secctx); 2135 2136 void security_inode_invalidate_secctx(struct inode *inode) 2137 { 2138 call_void_hook(inode_invalidate_secctx, inode); 2139 } 2140 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2141 2142 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2143 { 2144 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2145 } 2146 EXPORT_SYMBOL(security_inode_notifysecctx); 2147 2148 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2149 { 2150 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2151 } 2152 EXPORT_SYMBOL(security_inode_setsecctx); 2153 2154 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2155 { 2156 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2157 } 2158 EXPORT_SYMBOL(security_inode_getsecctx); 2159 2160 #ifdef CONFIG_WATCH_QUEUE 2161 int security_post_notification(const struct cred *w_cred, 2162 const struct cred *cred, 2163 struct watch_notification *n) 2164 { 2165 return call_int_hook(post_notification, 0, w_cred, cred, n); 2166 } 2167 #endif /* CONFIG_WATCH_QUEUE */ 2168 2169 #ifdef CONFIG_KEY_NOTIFICATIONS 2170 int security_watch_key(struct key *key) 2171 { 2172 return call_int_hook(watch_key, 0, key); 2173 } 2174 #endif 2175 2176 #ifdef CONFIG_SECURITY_NETWORK 2177 2178 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2179 { 2180 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2181 } 2182 EXPORT_SYMBOL(security_unix_stream_connect); 2183 2184 int security_unix_may_send(struct socket *sock, struct socket *other) 2185 { 2186 return call_int_hook(unix_may_send, 0, sock, other); 2187 } 2188 EXPORT_SYMBOL(security_unix_may_send); 2189 2190 int security_socket_create(int family, int type, int protocol, int kern) 2191 { 2192 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2193 } 2194 2195 int security_socket_post_create(struct socket *sock, int family, 2196 int type, int protocol, int kern) 2197 { 2198 return call_int_hook(socket_post_create, 0, sock, family, type, 2199 protocol, kern); 2200 } 2201 2202 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2203 { 2204 return call_int_hook(socket_socketpair, 0, socka, sockb); 2205 } 2206 EXPORT_SYMBOL(security_socket_socketpair); 2207 2208 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2209 { 2210 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2211 } 2212 2213 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2214 { 2215 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2216 } 2217 2218 int security_socket_listen(struct socket *sock, int backlog) 2219 { 2220 return call_int_hook(socket_listen, 0, sock, backlog); 2221 } 2222 2223 int security_socket_accept(struct socket *sock, struct socket *newsock) 2224 { 2225 return call_int_hook(socket_accept, 0, sock, newsock); 2226 } 2227 2228 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2229 { 2230 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2231 } 2232 2233 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2234 int size, int flags) 2235 { 2236 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2237 } 2238 2239 int security_socket_getsockname(struct socket *sock) 2240 { 2241 return call_int_hook(socket_getsockname, 0, sock); 2242 } 2243 2244 int security_socket_getpeername(struct socket *sock) 2245 { 2246 return call_int_hook(socket_getpeername, 0, sock); 2247 } 2248 2249 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2250 { 2251 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2252 } 2253 2254 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2255 { 2256 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2257 } 2258 2259 int security_socket_shutdown(struct socket *sock, int how) 2260 { 2261 return call_int_hook(socket_shutdown, 0, sock, how); 2262 } 2263 2264 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2265 { 2266 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2267 } 2268 EXPORT_SYMBOL(security_sock_rcv_skb); 2269 2270 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2271 int __user *optlen, unsigned len) 2272 { 2273 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2274 optval, optlen, len); 2275 } 2276 2277 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2278 { 2279 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2280 skb, secid); 2281 } 2282 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2283 2284 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2285 { 2286 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2287 } 2288 2289 void security_sk_free(struct sock *sk) 2290 { 2291 call_void_hook(sk_free_security, sk); 2292 } 2293 2294 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2295 { 2296 call_void_hook(sk_clone_security, sk, newsk); 2297 } 2298 EXPORT_SYMBOL(security_sk_clone); 2299 2300 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2301 { 2302 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2303 } 2304 EXPORT_SYMBOL(security_sk_classify_flow); 2305 2306 void security_req_classify_flow(const struct request_sock *req, 2307 struct flowi_common *flic) 2308 { 2309 call_void_hook(req_classify_flow, req, flic); 2310 } 2311 EXPORT_SYMBOL(security_req_classify_flow); 2312 2313 void security_sock_graft(struct sock *sk, struct socket *parent) 2314 { 2315 call_void_hook(sock_graft, sk, parent); 2316 } 2317 EXPORT_SYMBOL(security_sock_graft); 2318 2319 int security_inet_conn_request(const struct sock *sk, 2320 struct sk_buff *skb, struct request_sock *req) 2321 { 2322 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2323 } 2324 EXPORT_SYMBOL(security_inet_conn_request); 2325 2326 void security_inet_csk_clone(struct sock *newsk, 2327 const struct request_sock *req) 2328 { 2329 call_void_hook(inet_csk_clone, newsk, req); 2330 } 2331 2332 void security_inet_conn_established(struct sock *sk, 2333 struct sk_buff *skb) 2334 { 2335 call_void_hook(inet_conn_established, sk, skb); 2336 } 2337 EXPORT_SYMBOL(security_inet_conn_established); 2338 2339 int security_secmark_relabel_packet(u32 secid) 2340 { 2341 return call_int_hook(secmark_relabel_packet, 0, secid); 2342 } 2343 EXPORT_SYMBOL(security_secmark_relabel_packet); 2344 2345 void security_secmark_refcount_inc(void) 2346 { 2347 call_void_hook(secmark_refcount_inc); 2348 } 2349 EXPORT_SYMBOL(security_secmark_refcount_inc); 2350 2351 void security_secmark_refcount_dec(void) 2352 { 2353 call_void_hook(secmark_refcount_dec); 2354 } 2355 EXPORT_SYMBOL(security_secmark_refcount_dec); 2356 2357 int security_tun_dev_alloc_security(void **security) 2358 { 2359 return call_int_hook(tun_dev_alloc_security, 0, security); 2360 } 2361 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2362 2363 void security_tun_dev_free_security(void *security) 2364 { 2365 call_void_hook(tun_dev_free_security, security); 2366 } 2367 EXPORT_SYMBOL(security_tun_dev_free_security); 2368 2369 int security_tun_dev_create(void) 2370 { 2371 return call_int_hook(tun_dev_create, 0); 2372 } 2373 EXPORT_SYMBOL(security_tun_dev_create); 2374 2375 int security_tun_dev_attach_queue(void *security) 2376 { 2377 return call_int_hook(tun_dev_attach_queue, 0, security); 2378 } 2379 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2380 2381 int security_tun_dev_attach(struct sock *sk, void *security) 2382 { 2383 return call_int_hook(tun_dev_attach, 0, sk, security); 2384 } 2385 EXPORT_SYMBOL(security_tun_dev_attach); 2386 2387 int security_tun_dev_open(void *security) 2388 { 2389 return call_int_hook(tun_dev_open, 0, security); 2390 } 2391 EXPORT_SYMBOL(security_tun_dev_open); 2392 2393 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2394 { 2395 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2396 } 2397 EXPORT_SYMBOL(security_sctp_assoc_request); 2398 2399 int security_sctp_bind_connect(struct sock *sk, int optname, 2400 struct sockaddr *address, int addrlen) 2401 { 2402 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2403 address, addrlen); 2404 } 2405 EXPORT_SYMBOL(security_sctp_bind_connect); 2406 2407 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2408 struct sock *newsk) 2409 { 2410 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2411 } 2412 EXPORT_SYMBOL(security_sctp_sk_clone); 2413 2414 int security_sctp_assoc_established(struct sctp_association *asoc, 2415 struct sk_buff *skb) 2416 { 2417 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 2418 } 2419 EXPORT_SYMBOL(security_sctp_assoc_established); 2420 2421 #endif /* CONFIG_SECURITY_NETWORK */ 2422 2423 #ifdef CONFIG_SECURITY_INFINIBAND 2424 2425 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2426 { 2427 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2428 } 2429 EXPORT_SYMBOL(security_ib_pkey_access); 2430 2431 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2432 { 2433 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2434 } 2435 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2436 2437 int security_ib_alloc_security(void **sec) 2438 { 2439 return call_int_hook(ib_alloc_security, 0, sec); 2440 } 2441 EXPORT_SYMBOL(security_ib_alloc_security); 2442 2443 void security_ib_free_security(void *sec) 2444 { 2445 call_void_hook(ib_free_security, sec); 2446 } 2447 EXPORT_SYMBOL(security_ib_free_security); 2448 #endif /* CONFIG_SECURITY_INFINIBAND */ 2449 2450 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2451 2452 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2453 struct xfrm_user_sec_ctx *sec_ctx, 2454 gfp_t gfp) 2455 { 2456 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2457 } 2458 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2459 2460 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2461 struct xfrm_sec_ctx **new_ctxp) 2462 { 2463 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2464 } 2465 2466 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2467 { 2468 call_void_hook(xfrm_policy_free_security, ctx); 2469 } 2470 EXPORT_SYMBOL(security_xfrm_policy_free); 2471 2472 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2473 { 2474 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2475 } 2476 2477 int security_xfrm_state_alloc(struct xfrm_state *x, 2478 struct xfrm_user_sec_ctx *sec_ctx) 2479 { 2480 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2481 } 2482 EXPORT_SYMBOL(security_xfrm_state_alloc); 2483 2484 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2485 struct xfrm_sec_ctx *polsec, u32 secid) 2486 { 2487 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2488 } 2489 2490 int security_xfrm_state_delete(struct xfrm_state *x) 2491 { 2492 return call_int_hook(xfrm_state_delete_security, 0, x); 2493 } 2494 EXPORT_SYMBOL(security_xfrm_state_delete); 2495 2496 void security_xfrm_state_free(struct xfrm_state *x) 2497 { 2498 call_void_hook(xfrm_state_free_security, x); 2499 } 2500 2501 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2502 { 2503 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2504 } 2505 2506 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2507 struct xfrm_policy *xp, 2508 const struct flowi_common *flic) 2509 { 2510 struct security_hook_list *hp; 2511 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2512 2513 /* 2514 * Since this function is expected to return 0 or 1, the judgment 2515 * becomes difficult if multiple LSMs supply this call. Fortunately, 2516 * we can use the first LSM's judgment because currently only SELinux 2517 * supplies this call. 2518 * 2519 * For speed optimization, we explicitly break the loop rather than 2520 * using the macro 2521 */ 2522 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2523 list) { 2524 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2525 break; 2526 } 2527 return rc; 2528 } 2529 2530 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2531 { 2532 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2533 } 2534 2535 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2536 { 2537 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2538 0); 2539 2540 BUG_ON(rc); 2541 } 2542 EXPORT_SYMBOL(security_skb_classify_flow); 2543 2544 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2545 2546 #ifdef CONFIG_KEYS 2547 2548 int security_key_alloc(struct key *key, const struct cred *cred, 2549 unsigned long flags) 2550 { 2551 return call_int_hook(key_alloc, 0, key, cred, flags); 2552 } 2553 2554 void security_key_free(struct key *key) 2555 { 2556 call_void_hook(key_free, key); 2557 } 2558 2559 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2560 enum key_need_perm need_perm) 2561 { 2562 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2563 } 2564 2565 int security_key_getsecurity(struct key *key, char **_buffer) 2566 { 2567 *_buffer = NULL; 2568 return call_int_hook(key_getsecurity, 0, key, _buffer); 2569 } 2570 2571 #endif /* CONFIG_KEYS */ 2572 2573 #ifdef CONFIG_AUDIT 2574 2575 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2576 { 2577 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2578 } 2579 2580 int security_audit_rule_known(struct audit_krule *krule) 2581 { 2582 return call_int_hook(audit_rule_known, 0, krule); 2583 } 2584 2585 void security_audit_rule_free(void *lsmrule) 2586 { 2587 call_void_hook(audit_rule_free, lsmrule); 2588 } 2589 2590 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2591 { 2592 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2593 } 2594 #endif /* CONFIG_AUDIT */ 2595 2596 #ifdef CONFIG_BPF_SYSCALL 2597 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2598 { 2599 return call_int_hook(bpf, 0, cmd, attr, size); 2600 } 2601 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2602 { 2603 return call_int_hook(bpf_map, 0, map, fmode); 2604 } 2605 int security_bpf_prog(struct bpf_prog *prog) 2606 { 2607 return call_int_hook(bpf_prog, 0, prog); 2608 } 2609 int security_bpf_map_alloc(struct bpf_map *map) 2610 { 2611 return call_int_hook(bpf_map_alloc_security, 0, map); 2612 } 2613 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2614 { 2615 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2616 } 2617 void security_bpf_map_free(struct bpf_map *map) 2618 { 2619 call_void_hook(bpf_map_free_security, map); 2620 } 2621 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2622 { 2623 call_void_hook(bpf_prog_free_security, aux); 2624 } 2625 #endif /* CONFIG_BPF_SYSCALL */ 2626 2627 int security_locked_down(enum lockdown_reason what) 2628 { 2629 return call_int_hook(locked_down, 0, what); 2630 } 2631 EXPORT_SYMBOL(security_locked_down); 2632 2633 #ifdef CONFIG_PERF_EVENTS 2634 int security_perf_event_open(struct perf_event_attr *attr, int type) 2635 { 2636 return call_int_hook(perf_event_open, 0, attr, type); 2637 } 2638 2639 int security_perf_event_alloc(struct perf_event *event) 2640 { 2641 return call_int_hook(perf_event_alloc, 0, event); 2642 } 2643 2644 void security_perf_event_free(struct perf_event *event) 2645 { 2646 call_void_hook(perf_event_free, event); 2647 } 2648 2649 int security_perf_event_read(struct perf_event *event) 2650 { 2651 return call_int_hook(perf_event_read, 0, event); 2652 } 2653 2654 int security_perf_event_write(struct perf_event *event) 2655 { 2656 return call_int_hook(perf_event_write, 0, event); 2657 } 2658 #endif /* CONFIG_PERF_EVENTS */ 2659 2660 #ifdef CONFIG_IO_URING 2661 int security_uring_override_creds(const struct cred *new) 2662 { 2663 return call_int_hook(uring_override_creds, 0, new); 2664 } 2665 2666 int security_uring_sqpoll(void) 2667 { 2668 return call_int_hook(uring_sqpoll, 0); 2669 } 2670 int security_uring_cmd(struct io_uring_cmd *ioucmd) 2671 { 2672 return call_int_hook(uring_cmd, 0, ioucmd); 2673 } 2674 #endif /* CONFIG_IO_URING */ 2675