xref: /linux/security/security.c (revision 0311507792b54069ac72e0a6c6b35c5d40aadad8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <linux/string.h>
28 #include <linux/xattr.h>
29 #include <linux/msg.h>
30 #include <linux/overflow.h>
31 #include <linux/perf_event.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * How many LSMs are built into the kernel as determined at
40  * build time. Used to determine fixed array sizes.
41  * The capability module is accounted for by CONFIG_SECURITY
42  */
43 #define LSM_CONFIG_COUNT ( \
44 	(IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
45 	(IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
46 	(IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
47 	(IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
48 	(IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
49 	(IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
50 	(IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
51 	(IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
52 	(IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
53 	(IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
54 	(IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
55 	(IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
56 	(IS_ENABLED(CONFIG_EVM) ? 1 : 0) + \
57 	(IS_ENABLED(CONFIG_SECURITY_IPE) ? 1 : 0))
58 
59 /*
60  * These are descriptions of the reasons that can be passed to the
61  * security_locked_down() LSM hook. Placing this array here allows
62  * all security modules to use the same descriptions for auditing
63  * purposes.
64  */
65 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
66 	[LOCKDOWN_NONE] = "none",
67 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
68 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
69 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
70 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
71 	[LOCKDOWN_HIBERNATION] = "hibernation",
72 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
73 	[LOCKDOWN_IOPORT] = "raw io port access",
74 	[LOCKDOWN_MSR] = "raw MSR access",
75 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
76 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
77 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
78 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
79 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
80 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
81 	[LOCKDOWN_DEBUGFS] = "debugfs access",
82 	[LOCKDOWN_XMON_WR] = "xmon write access",
83 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
84 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
85 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
86 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
87 	[LOCKDOWN_KCORE] = "/proc/kcore access",
88 	[LOCKDOWN_KPROBES] = "use of kprobes",
89 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
90 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
91 	[LOCKDOWN_PERF] = "unsafe use of perf",
92 	[LOCKDOWN_TRACEFS] = "use of tracefs",
93 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
94 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
95 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
96 };
97 
98 struct security_hook_heads security_hook_heads __ro_after_init;
99 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
100 
101 static struct kmem_cache *lsm_file_cache;
102 static struct kmem_cache *lsm_inode_cache;
103 
104 char *lsm_names;
105 static struct lsm_blob_sizes blob_sizes __ro_after_init;
106 
107 /* Boot-time LSM user choice */
108 static __initdata const char *chosen_lsm_order;
109 static __initdata const char *chosen_major_lsm;
110 
111 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
112 
113 /* Ordered list of LSMs to initialize. */
114 static __initdata struct lsm_info **ordered_lsms;
115 static __initdata struct lsm_info *exclusive;
116 
117 static __initdata bool debug;
118 #define init_debug(...)						\
119 	do {							\
120 		if (debug)					\
121 			pr_info(__VA_ARGS__);			\
122 	} while (0)
123 
124 static bool __init is_enabled(struct lsm_info *lsm)
125 {
126 	if (!lsm->enabled)
127 		return false;
128 
129 	return *lsm->enabled;
130 }
131 
132 /* Mark an LSM's enabled flag. */
133 static int lsm_enabled_true __initdata = 1;
134 static int lsm_enabled_false __initdata = 0;
135 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
136 {
137 	/*
138 	 * When an LSM hasn't configured an enable variable, we can use
139 	 * a hard-coded location for storing the default enabled state.
140 	 */
141 	if (!lsm->enabled) {
142 		if (enabled)
143 			lsm->enabled = &lsm_enabled_true;
144 		else
145 			lsm->enabled = &lsm_enabled_false;
146 	} else if (lsm->enabled == &lsm_enabled_true) {
147 		if (!enabled)
148 			lsm->enabled = &lsm_enabled_false;
149 	} else if (lsm->enabled == &lsm_enabled_false) {
150 		if (enabled)
151 			lsm->enabled = &lsm_enabled_true;
152 	} else {
153 		*lsm->enabled = enabled;
154 	}
155 }
156 
157 /* Is an LSM already listed in the ordered LSMs list? */
158 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
159 {
160 	struct lsm_info **check;
161 
162 	for (check = ordered_lsms; *check; check++)
163 		if (*check == lsm)
164 			return true;
165 
166 	return false;
167 }
168 
169 /* Append an LSM to the list of ordered LSMs to initialize. */
170 static int last_lsm __initdata;
171 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
172 {
173 	/* Ignore duplicate selections. */
174 	if (exists_ordered_lsm(lsm))
175 		return;
176 
177 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
178 		return;
179 
180 	/* Enable this LSM, if it is not already set. */
181 	if (!lsm->enabled)
182 		lsm->enabled = &lsm_enabled_true;
183 	ordered_lsms[last_lsm++] = lsm;
184 
185 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
186 		   is_enabled(lsm) ? "enabled" : "disabled");
187 }
188 
189 /* Is an LSM allowed to be initialized? */
190 static bool __init lsm_allowed(struct lsm_info *lsm)
191 {
192 	/* Skip if the LSM is disabled. */
193 	if (!is_enabled(lsm))
194 		return false;
195 
196 	/* Not allowed if another exclusive LSM already initialized. */
197 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
198 		init_debug("exclusive disabled: %s\n", lsm->name);
199 		return false;
200 	}
201 
202 	return true;
203 }
204 
205 static void __init lsm_set_blob_size(int *need, int *lbs)
206 {
207 	int offset;
208 
209 	if (*need <= 0)
210 		return;
211 
212 	offset = ALIGN(*lbs, sizeof(void *));
213 	*lbs = offset + *need;
214 	*need = offset;
215 }
216 
217 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
218 {
219 	if (!needed)
220 		return;
221 
222 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
223 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
224 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
225 	/*
226 	 * The inode blob gets an rcu_head in addition to
227 	 * what the modules might need.
228 	 */
229 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
230 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
231 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
232 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
233 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
234 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
235 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
236 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
237 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
238 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
239 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
240 	lsm_set_blob_size(&needed->lbs_xattr_count,
241 			  &blob_sizes.lbs_xattr_count);
242 }
243 
244 /* Prepare LSM for initialization. */
245 static void __init prepare_lsm(struct lsm_info *lsm)
246 {
247 	int enabled = lsm_allowed(lsm);
248 
249 	/* Record enablement (to handle any following exclusive LSMs). */
250 	set_enabled(lsm, enabled);
251 
252 	/* If enabled, do pre-initialization work. */
253 	if (enabled) {
254 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
255 			exclusive = lsm;
256 			init_debug("exclusive chosen:   %s\n", lsm->name);
257 		}
258 
259 		lsm_set_blob_sizes(lsm->blobs);
260 	}
261 }
262 
263 /* Initialize a given LSM, if it is enabled. */
264 static void __init initialize_lsm(struct lsm_info *lsm)
265 {
266 	if (is_enabled(lsm)) {
267 		int ret;
268 
269 		init_debug("initializing %s\n", lsm->name);
270 		ret = lsm->init();
271 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
272 	}
273 }
274 
275 /*
276  * Current index to use while initializing the lsm id list.
277  */
278 u32 lsm_active_cnt __ro_after_init;
279 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
280 
281 /* Populate ordered LSMs list from comma-separated LSM name list. */
282 static void __init ordered_lsm_parse(const char *order, const char *origin)
283 {
284 	struct lsm_info *lsm;
285 	char *sep, *name, *next;
286 
287 	/* LSM_ORDER_FIRST is always first. */
288 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
289 		if (lsm->order == LSM_ORDER_FIRST)
290 			append_ordered_lsm(lsm, "  first");
291 	}
292 
293 	/* Process "security=", if given. */
294 	if (chosen_major_lsm) {
295 		struct lsm_info *major;
296 
297 		/*
298 		 * To match the original "security=" behavior, this
299 		 * explicitly does NOT fallback to another Legacy Major
300 		 * if the selected one was separately disabled: disable
301 		 * all non-matching Legacy Major LSMs.
302 		 */
303 		for (major = __start_lsm_info; major < __end_lsm_info;
304 		     major++) {
305 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
306 			    strcmp(major->name, chosen_major_lsm) != 0) {
307 				set_enabled(major, false);
308 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
309 					   chosen_major_lsm, major->name);
310 			}
311 		}
312 	}
313 
314 	sep = kstrdup(order, GFP_KERNEL);
315 	next = sep;
316 	/* Walk the list, looking for matching LSMs. */
317 	while ((name = strsep(&next, ",")) != NULL) {
318 		bool found = false;
319 
320 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
321 			if (strcmp(lsm->name, name) == 0) {
322 				if (lsm->order == LSM_ORDER_MUTABLE)
323 					append_ordered_lsm(lsm, origin);
324 				found = true;
325 			}
326 		}
327 
328 		if (!found)
329 			init_debug("%s ignored: %s (not built into kernel)\n",
330 				   origin, name);
331 	}
332 
333 	/* Process "security=", if given. */
334 	if (chosen_major_lsm) {
335 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
336 			if (exists_ordered_lsm(lsm))
337 				continue;
338 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
339 				append_ordered_lsm(lsm, "security=");
340 		}
341 	}
342 
343 	/* LSM_ORDER_LAST is always last. */
344 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
345 		if (lsm->order == LSM_ORDER_LAST)
346 			append_ordered_lsm(lsm, "   last");
347 	}
348 
349 	/* Disable all LSMs not in the ordered list. */
350 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
351 		if (exists_ordered_lsm(lsm))
352 			continue;
353 		set_enabled(lsm, false);
354 		init_debug("%s skipped: %s (not in requested order)\n",
355 			   origin, lsm->name);
356 	}
357 
358 	kfree(sep);
359 }
360 
361 static void __init lsm_early_cred(struct cred *cred);
362 static void __init lsm_early_task(struct task_struct *task);
363 
364 static int lsm_append(const char *new, char **result);
365 
366 static void __init report_lsm_order(void)
367 {
368 	struct lsm_info **lsm, *early;
369 	int first = 0;
370 
371 	pr_info("initializing lsm=");
372 
373 	/* Report each enabled LSM name, comma separated. */
374 	for (early = __start_early_lsm_info;
375 	     early < __end_early_lsm_info; early++)
376 		if (is_enabled(early))
377 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
378 	for (lsm = ordered_lsms; *lsm; lsm++)
379 		if (is_enabled(*lsm))
380 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
381 
382 	pr_cont("\n");
383 }
384 
385 static void __init ordered_lsm_init(void)
386 {
387 	struct lsm_info **lsm;
388 
389 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
390 			       GFP_KERNEL);
391 
392 	if (chosen_lsm_order) {
393 		if (chosen_major_lsm) {
394 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
395 				chosen_major_lsm, chosen_lsm_order);
396 			chosen_major_lsm = NULL;
397 		}
398 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
399 	} else
400 		ordered_lsm_parse(builtin_lsm_order, "builtin");
401 
402 	for (lsm = ordered_lsms; *lsm; lsm++)
403 		prepare_lsm(*lsm);
404 
405 	report_lsm_order();
406 
407 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
408 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
409 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
410 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
411 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
412 #ifdef CONFIG_KEYS
413 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
414 #endif /* CONFIG_KEYS */
415 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
416 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
417 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
418 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
419 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
420 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
421 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
422 
423 	/*
424 	 * Create any kmem_caches needed for blobs
425 	 */
426 	if (blob_sizes.lbs_file)
427 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
428 						   blob_sizes.lbs_file, 0,
429 						   SLAB_PANIC, NULL);
430 	if (blob_sizes.lbs_inode)
431 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
432 						    blob_sizes.lbs_inode, 0,
433 						    SLAB_PANIC, NULL);
434 
435 	lsm_early_cred((struct cred *) current->cred);
436 	lsm_early_task(current);
437 	for (lsm = ordered_lsms; *lsm; lsm++)
438 		initialize_lsm(*lsm);
439 
440 	kfree(ordered_lsms);
441 }
442 
443 int __init early_security_init(void)
444 {
445 	struct lsm_info *lsm;
446 
447 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
448 	INIT_HLIST_HEAD(&security_hook_heads.NAME);
449 #include "linux/lsm_hook_defs.h"
450 #undef LSM_HOOK
451 
452 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
453 		if (!lsm->enabled)
454 			lsm->enabled = &lsm_enabled_true;
455 		prepare_lsm(lsm);
456 		initialize_lsm(lsm);
457 	}
458 
459 	return 0;
460 }
461 
462 /**
463  * security_init - initializes the security framework
464  *
465  * This should be called early in the kernel initialization sequence.
466  */
467 int __init security_init(void)
468 {
469 	struct lsm_info *lsm;
470 
471 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
472 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
473 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
474 
475 	/*
476 	 * Append the names of the early LSM modules now that kmalloc() is
477 	 * available
478 	 */
479 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
480 		init_debug("  early started: %s (%s)\n", lsm->name,
481 			   is_enabled(lsm) ? "enabled" : "disabled");
482 		if (lsm->enabled)
483 			lsm_append(lsm->name, &lsm_names);
484 	}
485 
486 	/* Load LSMs in specified order. */
487 	ordered_lsm_init();
488 
489 	return 0;
490 }
491 
492 /* Save user chosen LSM */
493 static int __init choose_major_lsm(char *str)
494 {
495 	chosen_major_lsm = str;
496 	return 1;
497 }
498 __setup("security=", choose_major_lsm);
499 
500 /* Explicitly choose LSM initialization order. */
501 static int __init choose_lsm_order(char *str)
502 {
503 	chosen_lsm_order = str;
504 	return 1;
505 }
506 __setup("lsm=", choose_lsm_order);
507 
508 /* Enable LSM order debugging. */
509 static int __init enable_debug(char *str)
510 {
511 	debug = true;
512 	return 1;
513 }
514 __setup("lsm.debug", enable_debug);
515 
516 static bool match_last_lsm(const char *list, const char *lsm)
517 {
518 	const char *last;
519 
520 	if (WARN_ON(!list || !lsm))
521 		return false;
522 	last = strrchr(list, ',');
523 	if (last)
524 		/* Pass the comma, strcmp() will check for '\0' */
525 		last++;
526 	else
527 		last = list;
528 	return !strcmp(last, lsm);
529 }
530 
531 static int lsm_append(const char *new, char **result)
532 {
533 	char *cp;
534 
535 	if (*result == NULL) {
536 		*result = kstrdup(new, GFP_KERNEL);
537 		if (*result == NULL)
538 			return -ENOMEM;
539 	} else {
540 		/* Check if it is the last registered name */
541 		if (match_last_lsm(*result, new))
542 			return 0;
543 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
544 		if (cp == NULL)
545 			return -ENOMEM;
546 		kfree(*result);
547 		*result = cp;
548 	}
549 	return 0;
550 }
551 
552 /**
553  * security_add_hooks - Add a modules hooks to the hook lists.
554  * @hooks: the hooks to add
555  * @count: the number of hooks to add
556  * @lsmid: the identification information for the security module
557  *
558  * Each LSM has to register its hooks with the infrastructure.
559  */
560 void __init security_add_hooks(struct security_hook_list *hooks, int count,
561 			       const struct lsm_id *lsmid)
562 {
563 	int i;
564 
565 	/*
566 	 * A security module may call security_add_hooks() more
567 	 * than once during initialization, and LSM initialization
568 	 * is serialized. Landlock is one such case.
569 	 * Look at the previous entry, if there is one, for duplication.
570 	 */
571 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
572 		if (lsm_active_cnt >= LSM_CONFIG_COUNT)
573 			panic("%s Too many LSMs registered.\n", __func__);
574 		lsm_idlist[lsm_active_cnt++] = lsmid;
575 	}
576 
577 	for (i = 0; i < count; i++) {
578 		hooks[i].lsmid = lsmid;
579 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
580 	}
581 
582 	/*
583 	 * Don't try to append during early_security_init(), we'll come back
584 	 * and fix this up afterwards.
585 	 */
586 	if (slab_is_available()) {
587 		if (lsm_append(lsmid->name, &lsm_names) < 0)
588 			panic("%s - Cannot get early memory.\n", __func__);
589 	}
590 }
591 
592 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
593 {
594 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
595 					    event, data);
596 }
597 EXPORT_SYMBOL(call_blocking_lsm_notifier);
598 
599 int register_blocking_lsm_notifier(struct notifier_block *nb)
600 {
601 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
602 						nb);
603 }
604 EXPORT_SYMBOL(register_blocking_lsm_notifier);
605 
606 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
607 {
608 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
609 						  nb);
610 }
611 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
612 
613 /**
614  * lsm_blob_alloc - allocate a composite blob
615  * @dest: the destination for the blob
616  * @size: the size of the blob
617  * @gfp: allocation type
618  *
619  * Allocate a blob for all the modules
620  *
621  * Returns 0, or -ENOMEM if memory can't be allocated.
622  */
623 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
624 {
625 	if (size == 0) {
626 		*dest = NULL;
627 		return 0;
628 	}
629 
630 	*dest = kzalloc(size, gfp);
631 	if (*dest == NULL)
632 		return -ENOMEM;
633 	return 0;
634 }
635 
636 /**
637  * lsm_cred_alloc - allocate a composite cred blob
638  * @cred: the cred that needs a blob
639  * @gfp: allocation type
640  *
641  * Allocate the cred blob for all the modules
642  *
643  * Returns 0, or -ENOMEM if memory can't be allocated.
644  */
645 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
646 {
647 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
648 }
649 
650 /**
651  * lsm_early_cred - during initialization allocate a composite cred blob
652  * @cred: the cred that needs a blob
653  *
654  * Allocate the cred blob for all the modules
655  */
656 static void __init lsm_early_cred(struct cred *cred)
657 {
658 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
659 
660 	if (rc)
661 		panic("%s: Early cred alloc failed.\n", __func__);
662 }
663 
664 /**
665  * lsm_file_alloc - allocate a composite file blob
666  * @file: the file that needs a blob
667  *
668  * Allocate the file blob for all the modules
669  *
670  * Returns 0, or -ENOMEM if memory can't be allocated.
671  */
672 static int lsm_file_alloc(struct file *file)
673 {
674 	if (!lsm_file_cache) {
675 		file->f_security = NULL;
676 		return 0;
677 	}
678 
679 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
680 	if (file->f_security == NULL)
681 		return -ENOMEM;
682 	return 0;
683 }
684 
685 /**
686  * lsm_inode_alloc - allocate a composite inode blob
687  * @inode: the inode that needs a blob
688  *
689  * Allocate the inode blob for all the modules
690  *
691  * Returns 0, or -ENOMEM if memory can't be allocated.
692  */
693 static int lsm_inode_alloc(struct inode *inode)
694 {
695 	if (!lsm_inode_cache) {
696 		inode->i_security = NULL;
697 		return 0;
698 	}
699 
700 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
701 	if (inode->i_security == NULL)
702 		return -ENOMEM;
703 	return 0;
704 }
705 
706 /**
707  * lsm_task_alloc - allocate a composite task blob
708  * @task: the task that needs a blob
709  *
710  * Allocate the task blob for all the modules
711  *
712  * Returns 0, or -ENOMEM if memory can't be allocated.
713  */
714 static int lsm_task_alloc(struct task_struct *task)
715 {
716 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
717 }
718 
719 /**
720  * lsm_ipc_alloc - allocate a composite ipc blob
721  * @kip: the ipc that needs a blob
722  *
723  * Allocate the ipc blob for all the modules
724  *
725  * Returns 0, or -ENOMEM if memory can't be allocated.
726  */
727 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
728 {
729 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
730 }
731 
732 #ifdef CONFIG_KEYS
733 /**
734  * lsm_key_alloc - allocate a composite key blob
735  * @key: the key that needs a blob
736  *
737  * Allocate the key blob for all the modules
738  *
739  * Returns 0, or -ENOMEM if memory can't be allocated.
740  */
741 static int lsm_key_alloc(struct key *key)
742 {
743 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
744 }
745 #endif /* CONFIG_KEYS */
746 
747 /**
748  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
749  * @mp: the msg_msg that needs a blob
750  *
751  * Allocate the ipc blob for all the modules
752  *
753  * Returns 0, or -ENOMEM if memory can't be allocated.
754  */
755 static int lsm_msg_msg_alloc(struct msg_msg *mp)
756 {
757 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
758 			      GFP_KERNEL);
759 }
760 
761 /**
762  * lsm_early_task - during initialization allocate a composite task blob
763  * @task: the task that needs a blob
764  *
765  * Allocate the task blob for all the modules
766  */
767 static void __init lsm_early_task(struct task_struct *task)
768 {
769 	int rc = lsm_task_alloc(task);
770 
771 	if (rc)
772 		panic("%s: Early task alloc failed.\n", __func__);
773 }
774 
775 /**
776  * lsm_superblock_alloc - allocate a composite superblock blob
777  * @sb: the superblock that needs a blob
778  *
779  * Allocate the superblock blob for all the modules
780  *
781  * Returns 0, or -ENOMEM if memory can't be allocated.
782  */
783 static int lsm_superblock_alloc(struct super_block *sb)
784 {
785 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
786 			      GFP_KERNEL);
787 }
788 
789 /**
790  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
791  * @uctx: a userspace LSM context to be filled
792  * @uctx_len: available uctx size (input), used uctx size (output)
793  * @val: the new LSM context value
794  * @val_len: the size of the new LSM context value
795  * @id: LSM id
796  * @flags: LSM defined flags
797  *
798  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
799  * simply calculate the required size to output via @utc_len and return
800  * success.
801  *
802  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
803  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
804  */
805 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
806 		      void *val, size_t val_len,
807 		      u64 id, u64 flags)
808 {
809 	struct lsm_ctx *nctx = NULL;
810 	size_t nctx_len;
811 	int rc = 0;
812 
813 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
814 	if (nctx_len > *uctx_len) {
815 		rc = -E2BIG;
816 		goto out;
817 	}
818 
819 	/* no buffer - return success/0 and set @uctx_len to the req size */
820 	if (!uctx)
821 		goto out;
822 
823 	nctx = kzalloc(nctx_len, GFP_KERNEL);
824 	if (nctx == NULL) {
825 		rc = -ENOMEM;
826 		goto out;
827 	}
828 	nctx->id = id;
829 	nctx->flags = flags;
830 	nctx->len = nctx_len;
831 	nctx->ctx_len = val_len;
832 	memcpy(nctx->ctx, val, val_len);
833 
834 	if (copy_to_user(uctx, nctx, nctx_len))
835 		rc = -EFAULT;
836 
837 out:
838 	kfree(nctx);
839 	*uctx_len = nctx_len;
840 	return rc;
841 }
842 
843 /*
844  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
845  * can be accessed with:
846  *
847  *	LSM_RET_DEFAULT(<hook_name>)
848  *
849  * The macros below define static constants for the default value of each
850  * LSM hook.
851  */
852 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
853 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
854 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
855 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
856 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
857 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
858 
859 #include <linux/lsm_hook_defs.h>
860 #undef LSM_HOOK
861 
862 /*
863  * Hook list operation macros.
864  *
865  * call_void_hook:
866  *	This is a hook that does not return a value.
867  *
868  * call_int_hook:
869  *	This is a hook that returns a value.
870  */
871 
872 #define call_void_hook(FUNC, ...)				\
873 	do {							\
874 		struct security_hook_list *P;			\
875 								\
876 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
877 			P->hook.FUNC(__VA_ARGS__);		\
878 	} while (0)
879 
880 #define call_int_hook(FUNC, ...) ({				\
881 	int RC = LSM_RET_DEFAULT(FUNC);				\
882 	do {							\
883 		struct security_hook_list *P;			\
884 								\
885 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
886 			RC = P->hook.FUNC(__VA_ARGS__);		\
887 			if (RC != LSM_RET_DEFAULT(FUNC))	\
888 				break;				\
889 		}						\
890 	} while (0);						\
891 	RC;							\
892 })
893 
894 /* Security operations */
895 
896 /**
897  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
898  * @mgr: task credentials of current binder process
899  *
900  * Check whether @mgr is allowed to be the binder context manager.
901  *
902  * Return: Return 0 if permission is granted.
903  */
904 int security_binder_set_context_mgr(const struct cred *mgr)
905 {
906 	return call_int_hook(binder_set_context_mgr, mgr);
907 }
908 
909 /**
910  * security_binder_transaction() - Check if a binder transaction is allowed
911  * @from: sending process
912  * @to: receiving process
913  *
914  * Check whether @from is allowed to invoke a binder transaction call to @to.
915  *
916  * Return: Returns 0 if permission is granted.
917  */
918 int security_binder_transaction(const struct cred *from,
919 				const struct cred *to)
920 {
921 	return call_int_hook(binder_transaction, from, to);
922 }
923 
924 /**
925  * security_binder_transfer_binder() - Check if a binder transfer is allowed
926  * @from: sending process
927  * @to: receiving process
928  *
929  * Check whether @from is allowed to transfer a binder reference to @to.
930  *
931  * Return: Returns 0 if permission is granted.
932  */
933 int security_binder_transfer_binder(const struct cred *from,
934 				    const struct cred *to)
935 {
936 	return call_int_hook(binder_transfer_binder, from, to);
937 }
938 
939 /**
940  * security_binder_transfer_file() - Check if a binder file xfer is allowed
941  * @from: sending process
942  * @to: receiving process
943  * @file: file being transferred
944  *
945  * Check whether @from is allowed to transfer @file to @to.
946  *
947  * Return: Returns 0 if permission is granted.
948  */
949 int security_binder_transfer_file(const struct cred *from,
950 				  const struct cred *to, const struct file *file)
951 {
952 	return call_int_hook(binder_transfer_file, from, to, file);
953 }
954 
955 /**
956  * security_ptrace_access_check() - Check if tracing is allowed
957  * @child: target process
958  * @mode: PTRACE_MODE flags
959  *
960  * Check permission before allowing the current process to trace the @child
961  * process.  Security modules may also want to perform a process tracing check
962  * during an execve in the set_security or apply_creds hooks of tracing check
963  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
964  * process is being traced and its security attributes would be changed by the
965  * execve.
966  *
967  * Return: Returns 0 if permission is granted.
968  */
969 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
970 {
971 	return call_int_hook(ptrace_access_check, child, mode);
972 }
973 
974 /**
975  * security_ptrace_traceme() - Check if tracing is allowed
976  * @parent: tracing process
977  *
978  * Check that the @parent process has sufficient permission to trace the
979  * current process before allowing the current process to present itself to the
980  * @parent process for tracing.
981  *
982  * Return: Returns 0 if permission is granted.
983  */
984 int security_ptrace_traceme(struct task_struct *parent)
985 {
986 	return call_int_hook(ptrace_traceme, parent);
987 }
988 
989 /**
990  * security_capget() - Get the capability sets for a process
991  * @target: target process
992  * @effective: effective capability set
993  * @inheritable: inheritable capability set
994  * @permitted: permitted capability set
995  *
996  * Get the @effective, @inheritable, and @permitted capability sets for the
997  * @target process.  The hook may also perform permission checking to determine
998  * if the current process is allowed to see the capability sets of the @target
999  * process.
1000  *
1001  * Return: Returns 0 if the capability sets were successfully obtained.
1002  */
1003 int security_capget(const struct task_struct *target,
1004 		    kernel_cap_t *effective,
1005 		    kernel_cap_t *inheritable,
1006 		    kernel_cap_t *permitted)
1007 {
1008 	return call_int_hook(capget, target, effective, inheritable, permitted);
1009 }
1010 
1011 /**
1012  * security_capset() - Set the capability sets for a process
1013  * @new: new credentials for the target process
1014  * @old: current credentials of the target process
1015  * @effective: effective capability set
1016  * @inheritable: inheritable capability set
1017  * @permitted: permitted capability set
1018  *
1019  * Set the @effective, @inheritable, and @permitted capability sets for the
1020  * current process.
1021  *
1022  * Return: Returns 0 and update @new if permission is granted.
1023  */
1024 int security_capset(struct cred *new, const struct cred *old,
1025 		    const kernel_cap_t *effective,
1026 		    const kernel_cap_t *inheritable,
1027 		    const kernel_cap_t *permitted)
1028 {
1029 	return call_int_hook(capset, new, old, effective, inheritable,
1030 			     permitted);
1031 }
1032 
1033 /**
1034  * security_capable() - Check if a process has the necessary capability
1035  * @cred: credentials to examine
1036  * @ns: user namespace
1037  * @cap: capability requested
1038  * @opts: capability check options
1039  *
1040  * Check whether the @tsk process has the @cap capability in the indicated
1041  * credentials.  @cap contains the capability <include/linux/capability.h>.
1042  * @opts contains options for the capable check <include/linux/security.h>.
1043  *
1044  * Return: Returns 0 if the capability is granted.
1045  */
1046 int security_capable(const struct cred *cred,
1047 		     struct user_namespace *ns,
1048 		     int cap,
1049 		     unsigned int opts)
1050 {
1051 	return call_int_hook(capable, cred, ns, cap, opts);
1052 }
1053 
1054 /**
1055  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1056  * @cmds: commands
1057  * @type: type
1058  * @id: id
1059  * @sb: filesystem
1060  *
1061  * Check whether the quotactl syscall is allowed for this @sb.
1062  *
1063  * Return: Returns 0 if permission is granted.
1064  */
1065 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1066 {
1067 	return call_int_hook(quotactl, cmds, type, id, sb);
1068 }
1069 
1070 /**
1071  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1072  * @dentry: dentry
1073  *
1074  * Check whether QUOTAON is allowed for @dentry.
1075  *
1076  * Return: Returns 0 if permission is granted.
1077  */
1078 int security_quota_on(struct dentry *dentry)
1079 {
1080 	return call_int_hook(quota_on, dentry);
1081 }
1082 
1083 /**
1084  * security_syslog() - Check if accessing the kernel message ring is allowed
1085  * @type: SYSLOG_ACTION_* type
1086  *
1087  * Check permission before accessing the kernel message ring or changing
1088  * logging to the console.  See the syslog(2) manual page for an explanation of
1089  * the @type values.
1090  *
1091  * Return: Return 0 if permission is granted.
1092  */
1093 int security_syslog(int type)
1094 {
1095 	return call_int_hook(syslog, type);
1096 }
1097 
1098 /**
1099  * security_settime64() - Check if changing the system time is allowed
1100  * @ts: new time
1101  * @tz: timezone
1102  *
1103  * Check permission to change the system time, struct timespec64 is defined in
1104  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1105  *
1106  * Return: Returns 0 if permission is granted.
1107  */
1108 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1109 {
1110 	return call_int_hook(settime, ts, tz);
1111 }
1112 
1113 /**
1114  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1115  * @mm: mm struct
1116  * @pages: number of pages
1117  *
1118  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1119  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1120  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1121  * called with cap_sys_admin cleared.
1122  *
1123  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1124  *         caller.
1125  */
1126 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1127 {
1128 	struct security_hook_list *hp;
1129 	int cap_sys_admin = 1;
1130 	int rc;
1131 
1132 	/*
1133 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1134 	 * call should be made with the cap_sys_admin set. If all of the modules
1135 	 * agree that it should be set it will. If any module thinks it should
1136 	 * not be set it won't.
1137 	 */
1138 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1139 		rc = hp->hook.vm_enough_memory(mm, pages);
1140 		if (rc < 0) {
1141 			cap_sys_admin = 0;
1142 			break;
1143 		}
1144 	}
1145 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1146 }
1147 
1148 /**
1149  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1150  * @bprm: binary program information
1151  *
1152  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1153  * properly for executing @bprm->file, update the LSM's portion of
1154  * @bprm->cred->security to be what commit_creds needs to install for the new
1155  * program.  This hook may also optionally check permissions (e.g. for
1156  * transitions between security domains).  The hook must set @bprm->secureexec
1157  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1158  * contains the linux_binprm structure.
1159  *
1160  * Return: Returns 0 if the hook is successful and permission is granted.
1161  */
1162 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1163 {
1164 	return call_int_hook(bprm_creds_for_exec, bprm);
1165 }
1166 
1167 /**
1168  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1169  * @bprm: binary program information
1170  * @file: associated file
1171  *
1172  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1173  * exec, update @bprm->cred to reflect that change. This is called after
1174  * finding the binary that will be executed without an interpreter.  This
1175  * ensures that the credentials will not be derived from a script that the
1176  * binary will need to reopen, which when reopend may end up being a completely
1177  * different file.  This hook may also optionally check permissions (e.g. for
1178  * transitions between security domains).  The hook must set @bprm->secureexec
1179  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1180  * hook must add to @bprm->per_clear any personality flags that should be
1181  * cleared from current->personality.  @bprm contains the linux_binprm
1182  * structure.
1183  *
1184  * Return: Returns 0 if the hook is successful and permission is granted.
1185  */
1186 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1187 {
1188 	return call_int_hook(bprm_creds_from_file, bprm, file);
1189 }
1190 
1191 /**
1192  * security_bprm_check() - Mediate binary handler search
1193  * @bprm: binary program information
1194  *
1195  * This hook mediates the point when a search for a binary handler will begin.
1196  * It allows a check against the @bprm->cred->security value which was set in
1197  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1198  * available in @bprm.  This hook may be called multiple times during a single
1199  * execve.  @bprm contains the linux_binprm structure.
1200  *
1201  * Return: Returns 0 if the hook is successful and permission is granted.
1202  */
1203 int security_bprm_check(struct linux_binprm *bprm)
1204 {
1205 	return call_int_hook(bprm_check_security, bprm);
1206 }
1207 
1208 /**
1209  * security_bprm_committing_creds() - Install creds for a process during exec()
1210  * @bprm: binary program information
1211  *
1212  * Prepare to install the new security attributes of a process being
1213  * transformed by an execve operation, based on the old credentials pointed to
1214  * by @current->cred and the information set in @bprm->cred by the
1215  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1216  * hook is a good place to perform state changes on the process such as closing
1217  * open file descriptors to which access will no longer be granted when the
1218  * attributes are changed.  This is called immediately before commit_creds().
1219  */
1220 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1221 {
1222 	call_void_hook(bprm_committing_creds, bprm);
1223 }
1224 
1225 /**
1226  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1227  * @bprm: binary program information
1228  *
1229  * Tidy up after the installation of the new security attributes of a process
1230  * being transformed by an execve operation.  The new credentials have, by this
1231  * point, been set to @current->cred.  @bprm points to the linux_binprm
1232  * structure.  This hook is a good place to perform state changes on the
1233  * process such as clearing out non-inheritable signal state.  This is called
1234  * immediately after commit_creds().
1235  */
1236 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1237 {
1238 	call_void_hook(bprm_committed_creds, bprm);
1239 }
1240 
1241 /**
1242  * security_fs_context_submount() - Initialise fc->security
1243  * @fc: new filesystem context
1244  * @reference: dentry reference for submount/remount
1245  *
1246  * Fill out the ->security field for a new fs_context.
1247  *
1248  * Return: Returns 0 on success or negative error code on failure.
1249  */
1250 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1251 {
1252 	return call_int_hook(fs_context_submount, fc, reference);
1253 }
1254 
1255 /**
1256  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1257  * @fc: destination filesystem context
1258  * @src_fc: source filesystem context
1259  *
1260  * Allocate and attach a security structure to sc->security.  This pointer is
1261  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1262  * @src_fc indicates the original filesystem context.
1263  *
1264  * Return: Returns 0 on success or a negative error code on failure.
1265  */
1266 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1267 {
1268 	return call_int_hook(fs_context_dup, fc, src_fc);
1269 }
1270 
1271 /**
1272  * security_fs_context_parse_param() - Configure a filesystem context
1273  * @fc: filesystem context
1274  * @param: filesystem parameter
1275  *
1276  * Userspace provided a parameter to configure a superblock.  The LSM can
1277  * consume the parameter or return it to the caller for use elsewhere.
1278  *
1279  * Return: If the parameter is used by the LSM it should return 0, if it is
1280  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1281  *         error code is returned.
1282  */
1283 int security_fs_context_parse_param(struct fs_context *fc,
1284 				    struct fs_parameter *param)
1285 {
1286 	struct security_hook_list *hp;
1287 	int trc;
1288 	int rc = -ENOPARAM;
1289 
1290 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1291 			     list) {
1292 		trc = hp->hook.fs_context_parse_param(fc, param);
1293 		if (trc == 0)
1294 			rc = 0;
1295 		else if (trc != -ENOPARAM)
1296 			return trc;
1297 	}
1298 	return rc;
1299 }
1300 
1301 /**
1302  * security_sb_alloc() - Allocate a super_block LSM blob
1303  * @sb: filesystem superblock
1304  *
1305  * Allocate and attach a security structure to the sb->s_security field.  The
1306  * s_security field is initialized to NULL when the structure is allocated.
1307  * @sb contains the super_block structure to be modified.
1308  *
1309  * Return: Returns 0 if operation was successful.
1310  */
1311 int security_sb_alloc(struct super_block *sb)
1312 {
1313 	int rc = lsm_superblock_alloc(sb);
1314 
1315 	if (unlikely(rc))
1316 		return rc;
1317 	rc = call_int_hook(sb_alloc_security, sb);
1318 	if (unlikely(rc))
1319 		security_sb_free(sb);
1320 	return rc;
1321 }
1322 
1323 /**
1324  * security_sb_delete() - Release super_block LSM associated objects
1325  * @sb: filesystem superblock
1326  *
1327  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1328  * super_block structure being released.
1329  */
1330 void security_sb_delete(struct super_block *sb)
1331 {
1332 	call_void_hook(sb_delete, sb);
1333 }
1334 
1335 /**
1336  * security_sb_free() - Free a super_block LSM blob
1337  * @sb: filesystem superblock
1338  *
1339  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1340  * structure to be modified.
1341  */
1342 void security_sb_free(struct super_block *sb)
1343 {
1344 	call_void_hook(sb_free_security, sb);
1345 	kfree(sb->s_security);
1346 	sb->s_security = NULL;
1347 }
1348 
1349 /**
1350  * security_free_mnt_opts() - Free memory associated with mount options
1351  * @mnt_opts: LSM processed mount options
1352  *
1353  * Free memory associated with @mnt_ops.
1354  */
1355 void security_free_mnt_opts(void **mnt_opts)
1356 {
1357 	if (!*mnt_opts)
1358 		return;
1359 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1360 	*mnt_opts = NULL;
1361 }
1362 EXPORT_SYMBOL(security_free_mnt_opts);
1363 
1364 /**
1365  * security_sb_eat_lsm_opts() - Consume LSM mount options
1366  * @options: mount options
1367  * @mnt_opts: LSM processed mount options
1368  *
1369  * Eat (scan @options) and save them in @mnt_opts.
1370  *
1371  * Return: Returns 0 on success, negative values on failure.
1372  */
1373 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1374 {
1375 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1376 }
1377 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1378 
1379 /**
1380  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1381  * @sb: filesystem superblock
1382  * @mnt_opts: new mount options
1383  *
1384  * Determine if the new mount options in @mnt_opts are allowed given the
1385  * existing mounted filesystem at @sb.  @sb superblock being compared.
1386  *
1387  * Return: Returns 0 if options are compatible.
1388  */
1389 int security_sb_mnt_opts_compat(struct super_block *sb,
1390 				void *mnt_opts)
1391 {
1392 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1393 }
1394 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1395 
1396 /**
1397  * security_sb_remount() - Verify no incompatible mount changes during remount
1398  * @sb: filesystem superblock
1399  * @mnt_opts: (re)mount options
1400  *
1401  * Extracts security system specific mount options and verifies no changes are
1402  * being made to those options.
1403  *
1404  * Return: Returns 0 if permission is granted.
1405  */
1406 int security_sb_remount(struct super_block *sb,
1407 			void *mnt_opts)
1408 {
1409 	return call_int_hook(sb_remount, sb, mnt_opts);
1410 }
1411 EXPORT_SYMBOL(security_sb_remount);
1412 
1413 /**
1414  * security_sb_kern_mount() - Check if a kernel mount is allowed
1415  * @sb: filesystem superblock
1416  *
1417  * Mount this @sb if allowed by permissions.
1418  *
1419  * Return: Returns 0 if permission is granted.
1420  */
1421 int security_sb_kern_mount(const struct super_block *sb)
1422 {
1423 	return call_int_hook(sb_kern_mount, sb);
1424 }
1425 
1426 /**
1427  * security_sb_show_options() - Output the mount options for a superblock
1428  * @m: output file
1429  * @sb: filesystem superblock
1430  *
1431  * Show (print on @m) mount options for this @sb.
1432  *
1433  * Return: Returns 0 on success, negative values on failure.
1434  */
1435 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1436 {
1437 	return call_int_hook(sb_show_options, m, sb);
1438 }
1439 
1440 /**
1441  * security_sb_statfs() - Check if accessing fs stats is allowed
1442  * @dentry: superblock handle
1443  *
1444  * Check permission before obtaining filesystem statistics for the @mnt
1445  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1446  *
1447  * Return: Returns 0 if permission is granted.
1448  */
1449 int security_sb_statfs(struct dentry *dentry)
1450 {
1451 	return call_int_hook(sb_statfs, dentry);
1452 }
1453 
1454 /**
1455  * security_sb_mount() - Check permission for mounting a filesystem
1456  * @dev_name: filesystem backing device
1457  * @path: mount point
1458  * @type: filesystem type
1459  * @flags: mount flags
1460  * @data: filesystem specific data
1461  *
1462  * Check permission before an object specified by @dev_name is mounted on the
1463  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1464  * device if the file system type requires a device.  For a remount
1465  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1466  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1467  * mounted.
1468  *
1469  * Return: Returns 0 if permission is granted.
1470  */
1471 int security_sb_mount(const char *dev_name, const struct path *path,
1472 		      const char *type, unsigned long flags, void *data)
1473 {
1474 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1475 }
1476 
1477 /**
1478  * security_sb_umount() - Check permission for unmounting a filesystem
1479  * @mnt: mounted filesystem
1480  * @flags: unmount flags
1481  *
1482  * Check permission before the @mnt file system is unmounted.
1483  *
1484  * Return: Returns 0 if permission is granted.
1485  */
1486 int security_sb_umount(struct vfsmount *mnt, int flags)
1487 {
1488 	return call_int_hook(sb_umount, mnt, flags);
1489 }
1490 
1491 /**
1492  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1493  * @old_path: new location for current rootfs
1494  * @new_path: location of the new rootfs
1495  *
1496  * Check permission before pivoting the root filesystem.
1497  *
1498  * Return: Returns 0 if permission is granted.
1499  */
1500 int security_sb_pivotroot(const struct path *old_path,
1501 			  const struct path *new_path)
1502 {
1503 	return call_int_hook(sb_pivotroot, old_path, new_path);
1504 }
1505 
1506 /**
1507  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1508  * @sb: filesystem superblock
1509  * @mnt_opts: binary mount options
1510  * @kern_flags: kernel flags (in)
1511  * @set_kern_flags: kernel flags (out)
1512  *
1513  * Set the security relevant mount options used for a superblock.
1514  *
1515  * Return: Returns 0 on success, error on failure.
1516  */
1517 int security_sb_set_mnt_opts(struct super_block *sb,
1518 			     void *mnt_opts,
1519 			     unsigned long kern_flags,
1520 			     unsigned long *set_kern_flags)
1521 {
1522 	struct security_hook_list *hp;
1523 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1524 
1525 	hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts,
1526 			     list) {
1527 		rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1528 					      set_kern_flags);
1529 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1530 			break;
1531 	}
1532 	return rc;
1533 }
1534 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1535 
1536 /**
1537  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1538  * @oldsb: source superblock
1539  * @newsb: destination superblock
1540  * @kern_flags: kernel flags (in)
1541  * @set_kern_flags: kernel flags (out)
1542  *
1543  * Copy all security options from a given superblock to another.
1544  *
1545  * Return: Returns 0 on success, error on failure.
1546  */
1547 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1548 			       struct super_block *newsb,
1549 			       unsigned long kern_flags,
1550 			       unsigned long *set_kern_flags)
1551 {
1552 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1553 			     kern_flags, set_kern_flags);
1554 }
1555 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1556 
1557 /**
1558  * security_move_mount() - Check permissions for moving a mount
1559  * @from_path: source mount point
1560  * @to_path: destination mount point
1561  *
1562  * Check permission before a mount is moved.
1563  *
1564  * Return: Returns 0 if permission is granted.
1565  */
1566 int security_move_mount(const struct path *from_path,
1567 			const struct path *to_path)
1568 {
1569 	return call_int_hook(move_mount, from_path, to_path);
1570 }
1571 
1572 /**
1573  * security_path_notify() - Check if setting a watch is allowed
1574  * @path: file path
1575  * @mask: event mask
1576  * @obj_type: file path type
1577  *
1578  * Check permissions before setting a watch on events as defined by @mask, on
1579  * an object at @path, whose type is defined by @obj_type.
1580  *
1581  * Return: Returns 0 if permission is granted.
1582  */
1583 int security_path_notify(const struct path *path, u64 mask,
1584 			 unsigned int obj_type)
1585 {
1586 	return call_int_hook(path_notify, path, mask, obj_type);
1587 }
1588 
1589 /**
1590  * security_inode_alloc() - Allocate an inode LSM blob
1591  * @inode: the inode
1592  *
1593  * Allocate and attach a security structure to @inode->i_security.  The
1594  * i_security field is initialized to NULL when the inode structure is
1595  * allocated.
1596  *
1597  * Return: Return 0 if operation was successful.
1598  */
1599 int security_inode_alloc(struct inode *inode)
1600 {
1601 	int rc = lsm_inode_alloc(inode);
1602 
1603 	if (unlikely(rc))
1604 		return rc;
1605 	rc = call_int_hook(inode_alloc_security, inode);
1606 	if (unlikely(rc))
1607 		security_inode_free(inode);
1608 	return rc;
1609 }
1610 
1611 static void inode_free_by_rcu(struct rcu_head *head)
1612 {
1613 	/* The rcu head is at the start of the inode blob */
1614 	call_void_hook(inode_free_security_rcu, head);
1615 	kmem_cache_free(lsm_inode_cache, head);
1616 }
1617 
1618 /**
1619  * security_inode_free() - Free an inode's LSM blob
1620  * @inode: the inode
1621  *
1622  * Release any LSM resources associated with @inode, although due to the
1623  * inode's RCU protections it is possible that the resources will not be
1624  * fully released until after the current RCU grace period has elapsed.
1625  *
1626  * It is important for LSMs to note that despite being present in a call to
1627  * security_inode_free(), @inode may still be referenced in a VFS path walk
1628  * and calls to security_inode_permission() may be made during, or after,
1629  * a call to security_inode_free().  For this reason the inode->i_security
1630  * field is released via a call_rcu() callback and any LSMs which need to
1631  * retain inode state for use in security_inode_permission() should only
1632  * release that state in the inode_free_security_rcu() LSM hook callback.
1633  */
1634 void security_inode_free(struct inode *inode)
1635 {
1636 	call_void_hook(inode_free_security, inode);
1637 	if (!inode->i_security)
1638 		return;
1639 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1640 }
1641 
1642 /**
1643  * security_dentry_init_security() - Perform dentry initialization
1644  * @dentry: the dentry to initialize
1645  * @mode: mode used to determine resource type
1646  * @name: name of the last path component
1647  * @xattr_name: name of the security/LSM xattr
1648  * @ctx: pointer to the resulting LSM context
1649  * @ctxlen: length of @ctx
1650  *
1651  * Compute a context for a dentry as the inode is not yet available since NFSv4
1652  * has no label backed by an EA anyway.  It is important to note that
1653  * @xattr_name does not need to be free'd by the caller, it is a static string.
1654  *
1655  * Return: Returns 0 on success, negative values on failure.
1656  */
1657 int security_dentry_init_security(struct dentry *dentry, int mode,
1658 				  const struct qstr *name,
1659 				  const char **xattr_name, void **ctx,
1660 				  u32 *ctxlen)
1661 {
1662 	return call_int_hook(dentry_init_security, dentry, mode, name,
1663 			     xattr_name, ctx, ctxlen);
1664 }
1665 EXPORT_SYMBOL(security_dentry_init_security);
1666 
1667 /**
1668  * security_dentry_create_files_as() - Perform dentry initialization
1669  * @dentry: the dentry to initialize
1670  * @mode: mode used to determine resource type
1671  * @name: name of the last path component
1672  * @old: creds to use for LSM context calculations
1673  * @new: creds to modify
1674  *
1675  * Compute a context for a dentry as the inode is not yet available and set
1676  * that context in passed in creds so that new files are created using that
1677  * context. Context is calculated using the passed in creds and not the creds
1678  * of the caller.
1679  *
1680  * Return: Returns 0 on success, error on failure.
1681  */
1682 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1683 				    struct qstr *name,
1684 				    const struct cred *old, struct cred *new)
1685 {
1686 	return call_int_hook(dentry_create_files_as, dentry, mode,
1687 			     name, old, new);
1688 }
1689 EXPORT_SYMBOL(security_dentry_create_files_as);
1690 
1691 /**
1692  * security_inode_init_security() - Initialize an inode's LSM context
1693  * @inode: the inode
1694  * @dir: parent directory
1695  * @qstr: last component of the pathname
1696  * @initxattrs: callback function to write xattrs
1697  * @fs_data: filesystem specific data
1698  *
1699  * Obtain the security attribute name suffix and value to set on a newly
1700  * created inode and set up the incore security field for the new inode.  This
1701  * hook is called by the fs code as part of the inode creation transaction and
1702  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1703  * hooks called by the VFS.
1704  *
1705  * The hook function is expected to populate the xattrs array, by calling
1706  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1707  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1708  * slot, the hook function should set ->name to the attribute name suffix
1709  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1710  * to the attribute value, to set ->value_len to the length of the value.  If
1711  * the security module does not use security attributes or does not wish to put
1712  * a security attribute on this particular inode, then it should return
1713  * -EOPNOTSUPP to skip this processing.
1714  *
1715  * Return: Returns 0 if the LSM successfully initialized all of the inode
1716  *         security attributes that are required, negative values otherwise.
1717  */
1718 int security_inode_init_security(struct inode *inode, struct inode *dir,
1719 				 const struct qstr *qstr,
1720 				 const initxattrs initxattrs, void *fs_data)
1721 {
1722 	struct security_hook_list *hp;
1723 	struct xattr *new_xattrs = NULL;
1724 	int ret = -EOPNOTSUPP, xattr_count = 0;
1725 
1726 	if (unlikely(IS_PRIVATE(inode)))
1727 		return 0;
1728 
1729 	if (!blob_sizes.lbs_xattr_count)
1730 		return 0;
1731 
1732 	if (initxattrs) {
1733 		/* Allocate +1 as terminator. */
1734 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1735 				     sizeof(*new_xattrs), GFP_NOFS);
1736 		if (!new_xattrs)
1737 			return -ENOMEM;
1738 	}
1739 
1740 	hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1741 			     list) {
1742 		ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1743 						  &xattr_count);
1744 		if (ret && ret != -EOPNOTSUPP)
1745 			goto out;
1746 		/*
1747 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1748 		 * means that the LSM is not willing to provide an xattr, not
1749 		 * that it wants to signal an error. Thus, continue to invoke
1750 		 * the remaining LSMs.
1751 		 */
1752 	}
1753 
1754 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1755 	if (!xattr_count)
1756 		goto out;
1757 
1758 	ret = initxattrs(inode, new_xattrs, fs_data);
1759 out:
1760 	for (; xattr_count > 0; xattr_count--)
1761 		kfree(new_xattrs[xattr_count - 1].value);
1762 	kfree(new_xattrs);
1763 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1764 }
1765 EXPORT_SYMBOL(security_inode_init_security);
1766 
1767 /**
1768  * security_inode_init_security_anon() - Initialize an anonymous inode
1769  * @inode: the inode
1770  * @name: the anonymous inode class
1771  * @context_inode: an optional related inode
1772  *
1773  * Set up the incore security field for the new anonymous inode and return
1774  * whether the inode creation is permitted by the security module or not.
1775  *
1776  * Return: Returns 0 on success, -EACCES if the security module denies the
1777  * creation of this inode, or another -errno upon other errors.
1778  */
1779 int security_inode_init_security_anon(struct inode *inode,
1780 				      const struct qstr *name,
1781 				      const struct inode *context_inode)
1782 {
1783 	return call_int_hook(inode_init_security_anon, inode, name,
1784 			     context_inode);
1785 }
1786 
1787 #ifdef CONFIG_SECURITY_PATH
1788 /**
1789  * security_path_mknod() - Check if creating a special file is allowed
1790  * @dir: parent directory
1791  * @dentry: new file
1792  * @mode: new file mode
1793  * @dev: device number
1794  *
1795  * Check permissions when creating a file. Note that this hook is called even
1796  * if mknod operation is being done for a regular file.
1797  *
1798  * Return: Returns 0 if permission is granted.
1799  */
1800 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1801 			umode_t mode, unsigned int dev)
1802 {
1803 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1804 		return 0;
1805 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1806 }
1807 EXPORT_SYMBOL(security_path_mknod);
1808 
1809 /**
1810  * security_path_post_mknod() - Update inode security after reg file creation
1811  * @idmap: idmap of the mount
1812  * @dentry: new file
1813  *
1814  * Update inode security field after a regular file has been created.
1815  */
1816 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1817 {
1818 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1819 		return;
1820 	call_void_hook(path_post_mknod, idmap, dentry);
1821 }
1822 
1823 /**
1824  * security_path_mkdir() - Check if creating a new directory is allowed
1825  * @dir: parent directory
1826  * @dentry: new directory
1827  * @mode: new directory mode
1828  *
1829  * Check permissions to create a new directory in the existing directory.
1830  *
1831  * Return: Returns 0 if permission is granted.
1832  */
1833 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1834 			umode_t mode)
1835 {
1836 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1837 		return 0;
1838 	return call_int_hook(path_mkdir, dir, dentry, mode);
1839 }
1840 EXPORT_SYMBOL(security_path_mkdir);
1841 
1842 /**
1843  * security_path_rmdir() - Check if removing a directory is allowed
1844  * @dir: parent directory
1845  * @dentry: directory to remove
1846  *
1847  * Check the permission to remove a directory.
1848  *
1849  * Return: Returns 0 if permission is granted.
1850  */
1851 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1852 {
1853 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1854 		return 0;
1855 	return call_int_hook(path_rmdir, dir, dentry);
1856 }
1857 
1858 /**
1859  * security_path_unlink() - Check if removing a hard link is allowed
1860  * @dir: parent directory
1861  * @dentry: file
1862  *
1863  * Check the permission to remove a hard link to a file.
1864  *
1865  * Return: Returns 0 if permission is granted.
1866  */
1867 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1868 {
1869 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1870 		return 0;
1871 	return call_int_hook(path_unlink, dir, dentry);
1872 }
1873 EXPORT_SYMBOL(security_path_unlink);
1874 
1875 /**
1876  * security_path_symlink() - Check if creating a symbolic link is allowed
1877  * @dir: parent directory
1878  * @dentry: symbolic link
1879  * @old_name: file pathname
1880  *
1881  * Check the permission to create a symbolic link to a file.
1882  *
1883  * Return: Returns 0 if permission is granted.
1884  */
1885 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1886 			  const char *old_name)
1887 {
1888 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1889 		return 0;
1890 	return call_int_hook(path_symlink, dir, dentry, old_name);
1891 }
1892 
1893 /**
1894  * security_path_link - Check if creating a hard link is allowed
1895  * @old_dentry: existing file
1896  * @new_dir: new parent directory
1897  * @new_dentry: new link
1898  *
1899  * Check permission before creating a new hard link to a file.
1900  *
1901  * Return: Returns 0 if permission is granted.
1902  */
1903 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1904 		       struct dentry *new_dentry)
1905 {
1906 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1907 		return 0;
1908 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1909 }
1910 
1911 /**
1912  * security_path_rename() - Check if renaming a file is allowed
1913  * @old_dir: parent directory of the old file
1914  * @old_dentry: the old file
1915  * @new_dir: parent directory of the new file
1916  * @new_dentry: the new file
1917  * @flags: flags
1918  *
1919  * Check for permission to rename a file or directory.
1920  *
1921  * Return: Returns 0 if permission is granted.
1922  */
1923 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1924 			 const struct path *new_dir, struct dentry *new_dentry,
1925 			 unsigned int flags)
1926 {
1927 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1928 		     (d_is_positive(new_dentry) &&
1929 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
1930 		return 0;
1931 
1932 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1933 			     new_dentry, flags);
1934 }
1935 EXPORT_SYMBOL(security_path_rename);
1936 
1937 /**
1938  * security_path_truncate() - Check if truncating a file is allowed
1939  * @path: file
1940  *
1941  * Check permission before truncating the file indicated by path.  Note that
1942  * truncation permissions may also be checked based on already opened files,
1943  * using the security_file_truncate() hook.
1944  *
1945  * Return: Returns 0 if permission is granted.
1946  */
1947 int security_path_truncate(const struct path *path)
1948 {
1949 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1950 		return 0;
1951 	return call_int_hook(path_truncate, path);
1952 }
1953 
1954 /**
1955  * security_path_chmod() - Check if changing the file's mode is allowed
1956  * @path: file
1957  * @mode: new mode
1958  *
1959  * Check for permission to change a mode of the file @path. The new mode is
1960  * specified in @mode which is a bitmask of constants from
1961  * <include/uapi/linux/stat.h>.
1962  *
1963  * Return: Returns 0 if permission is granted.
1964  */
1965 int security_path_chmod(const struct path *path, umode_t mode)
1966 {
1967 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1968 		return 0;
1969 	return call_int_hook(path_chmod, path, mode);
1970 }
1971 
1972 /**
1973  * security_path_chown() - Check if changing the file's owner/group is allowed
1974  * @path: file
1975  * @uid: file owner
1976  * @gid: file group
1977  *
1978  * Check for permission to change owner/group of a file or directory.
1979  *
1980  * Return: Returns 0 if permission is granted.
1981  */
1982 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1983 {
1984 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1985 		return 0;
1986 	return call_int_hook(path_chown, path, uid, gid);
1987 }
1988 
1989 /**
1990  * security_path_chroot() - Check if changing the root directory is allowed
1991  * @path: directory
1992  *
1993  * Check for permission to change root directory.
1994  *
1995  * Return: Returns 0 if permission is granted.
1996  */
1997 int security_path_chroot(const struct path *path)
1998 {
1999 	return call_int_hook(path_chroot, path);
2000 }
2001 #endif /* CONFIG_SECURITY_PATH */
2002 
2003 /**
2004  * security_inode_create() - Check if creating a file is allowed
2005  * @dir: the parent directory
2006  * @dentry: the file being created
2007  * @mode: requested file mode
2008  *
2009  * Check permission to create a regular file.
2010  *
2011  * Return: Returns 0 if permission is granted.
2012  */
2013 int security_inode_create(struct inode *dir, struct dentry *dentry,
2014 			  umode_t mode)
2015 {
2016 	if (unlikely(IS_PRIVATE(dir)))
2017 		return 0;
2018 	return call_int_hook(inode_create, dir, dentry, mode);
2019 }
2020 EXPORT_SYMBOL_GPL(security_inode_create);
2021 
2022 /**
2023  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2024  * @idmap: idmap of the mount
2025  * @inode: inode of the new tmpfile
2026  *
2027  * Update inode security data after a tmpfile has been created.
2028  */
2029 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2030 					struct inode *inode)
2031 {
2032 	if (unlikely(IS_PRIVATE(inode)))
2033 		return;
2034 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2035 }
2036 
2037 /**
2038  * security_inode_link() - Check if creating a hard link is allowed
2039  * @old_dentry: existing file
2040  * @dir: new parent directory
2041  * @new_dentry: new link
2042  *
2043  * Check permission before creating a new hard link to a file.
2044  *
2045  * Return: Returns 0 if permission is granted.
2046  */
2047 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2048 			struct dentry *new_dentry)
2049 {
2050 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2051 		return 0;
2052 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2053 }
2054 
2055 /**
2056  * security_inode_unlink() - Check if removing a hard link is allowed
2057  * @dir: parent directory
2058  * @dentry: file
2059  *
2060  * Check the permission to remove a hard link to a file.
2061  *
2062  * Return: Returns 0 if permission is granted.
2063  */
2064 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2065 {
2066 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2067 		return 0;
2068 	return call_int_hook(inode_unlink, dir, dentry);
2069 }
2070 
2071 /**
2072  * security_inode_symlink() - Check if creating a symbolic link is allowed
2073  * @dir: parent directory
2074  * @dentry: symbolic link
2075  * @old_name: existing filename
2076  *
2077  * Check the permission to create a symbolic link to a file.
2078  *
2079  * Return: Returns 0 if permission is granted.
2080  */
2081 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2082 			   const char *old_name)
2083 {
2084 	if (unlikely(IS_PRIVATE(dir)))
2085 		return 0;
2086 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2087 }
2088 
2089 /**
2090  * security_inode_mkdir() - Check if creation a new director is allowed
2091  * @dir: parent directory
2092  * @dentry: new directory
2093  * @mode: new directory mode
2094  *
2095  * Check permissions to create a new directory in the existing directory
2096  * associated with inode structure @dir.
2097  *
2098  * Return: Returns 0 if permission is granted.
2099  */
2100 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2101 {
2102 	if (unlikely(IS_PRIVATE(dir)))
2103 		return 0;
2104 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2105 }
2106 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2107 
2108 /**
2109  * security_inode_rmdir() - Check if removing a directory is allowed
2110  * @dir: parent directory
2111  * @dentry: directory to be removed
2112  *
2113  * Check the permission to remove a directory.
2114  *
2115  * Return: Returns 0 if permission is granted.
2116  */
2117 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2118 {
2119 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2120 		return 0;
2121 	return call_int_hook(inode_rmdir, dir, dentry);
2122 }
2123 
2124 /**
2125  * security_inode_mknod() - Check if creating a special file is allowed
2126  * @dir: parent directory
2127  * @dentry: new file
2128  * @mode: new file mode
2129  * @dev: device number
2130  *
2131  * Check permissions when creating a special file (or a socket or a fifo file
2132  * created via the mknod system call).  Note that if mknod operation is being
2133  * done for a regular file, then the create hook will be called and not this
2134  * hook.
2135  *
2136  * Return: Returns 0 if permission is granted.
2137  */
2138 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2139 			 umode_t mode, dev_t dev)
2140 {
2141 	if (unlikely(IS_PRIVATE(dir)))
2142 		return 0;
2143 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2144 }
2145 
2146 /**
2147  * security_inode_rename() - Check if renaming a file is allowed
2148  * @old_dir: parent directory of the old file
2149  * @old_dentry: the old file
2150  * @new_dir: parent directory of the new file
2151  * @new_dentry: the new file
2152  * @flags: flags
2153  *
2154  * Check for permission to rename a file or directory.
2155  *
2156  * Return: Returns 0 if permission is granted.
2157  */
2158 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2159 			  struct inode *new_dir, struct dentry *new_dentry,
2160 			  unsigned int flags)
2161 {
2162 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2163 		     (d_is_positive(new_dentry) &&
2164 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2165 		return 0;
2166 
2167 	if (flags & RENAME_EXCHANGE) {
2168 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2169 					old_dir, old_dentry);
2170 		if (err)
2171 			return err;
2172 	}
2173 
2174 	return call_int_hook(inode_rename, old_dir, old_dentry,
2175 			     new_dir, new_dentry);
2176 }
2177 
2178 /**
2179  * security_inode_readlink() - Check if reading a symbolic link is allowed
2180  * @dentry: link
2181  *
2182  * Check the permission to read the symbolic link.
2183  *
2184  * Return: Returns 0 if permission is granted.
2185  */
2186 int security_inode_readlink(struct dentry *dentry)
2187 {
2188 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2189 		return 0;
2190 	return call_int_hook(inode_readlink, dentry);
2191 }
2192 
2193 /**
2194  * security_inode_follow_link() - Check if following a symbolic link is allowed
2195  * @dentry: link dentry
2196  * @inode: link inode
2197  * @rcu: true if in RCU-walk mode
2198  *
2199  * Check permission to follow a symbolic link when looking up a pathname.  If
2200  * @rcu is true, @inode is not stable.
2201  *
2202  * Return: Returns 0 if permission is granted.
2203  */
2204 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2205 			       bool rcu)
2206 {
2207 	if (unlikely(IS_PRIVATE(inode)))
2208 		return 0;
2209 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2210 }
2211 
2212 /**
2213  * security_inode_permission() - Check if accessing an inode is allowed
2214  * @inode: inode
2215  * @mask: access mask
2216  *
2217  * Check permission before accessing an inode.  This hook is called by the
2218  * existing Linux permission function, so a security module can use it to
2219  * provide additional checking for existing Linux permission checks.  Notice
2220  * that this hook is called when a file is opened (as well as many other
2221  * operations), whereas the file_security_ops permission hook is called when
2222  * the actual read/write operations are performed.
2223  *
2224  * Return: Returns 0 if permission is granted.
2225  */
2226 int security_inode_permission(struct inode *inode, int mask)
2227 {
2228 	if (unlikely(IS_PRIVATE(inode)))
2229 		return 0;
2230 	return call_int_hook(inode_permission, inode, mask);
2231 }
2232 
2233 /**
2234  * security_inode_setattr() - Check if setting file attributes is allowed
2235  * @idmap: idmap of the mount
2236  * @dentry: file
2237  * @attr: new attributes
2238  *
2239  * Check permission before setting file attributes.  Note that the kernel call
2240  * to notify_change is performed from several locations, whenever file
2241  * attributes change (such as when a file is truncated, chown/chmod operations,
2242  * transferring disk quotas, etc).
2243  *
2244  * Return: Returns 0 if permission is granted.
2245  */
2246 int security_inode_setattr(struct mnt_idmap *idmap,
2247 			   struct dentry *dentry, struct iattr *attr)
2248 {
2249 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2250 		return 0;
2251 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2252 }
2253 EXPORT_SYMBOL_GPL(security_inode_setattr);
2254 
2255 /**
2256  * security_inode_post_setattr() - Update the inode after a setattr operation
2257  * @idmap: idmap of the mount
2258  * @dentry: file
2259  * @ia_valid: file attributes set
2260  *
2261  * Update inode security field after successful setting file attributes.
2262  */
2263 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2264 				 int ia_valid)
2265 {
2266 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2267 		return;
2268 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2269 }
2270 
2271 /**
2272  * security_inode_getattr() - Check if getting file attributes is allowed
2273  * @path: file
2274  *
2275  * Check permission before obtaining file attributes.
2276  *
2277  * Return: Returns 0 if permission is granted.
2278  */
2279 int security_inode_getattr(const struct path *path)
2280 {
2281 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2282 		return 0;
2283 	return call_int_hook(inode_getattr, path);
2284 }
2285 
2286 /**
2287  * security_inode_setxattr() - Check if setting file xattrs is allowed
2288  * @idmap: idmap of the mount
2289  * @dentry: file
2290  * @name: xattr name
2291  * @value: xattr value
2292  * @size: size of xattr value
2293  * @flags: flags
2294  *
2295  * This hook performs the desired permission checks before setting the extended
2296  * attributes (xattrs) on @dentry.  It is important to note that we have some
2297  * additional logic before the main LSM implementation calls to detect if we
2298  * need to perform an additional capability check at the LSM layer.
2299  *
2300  * Normally we enforce a capability check prior to executing the various LSM
2301  * hook implementations, but if a LSM wants to avoid this capability check,
2302  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2303  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2304  * responsible for enforcing the access control for the specific xattr.  If all
2305  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2306  * or return a 0 (the default return value), the capability check is still
2307  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2308  * check is performed.
2309  *
2310  * Return: Returns 0 if permission is granted.
2311  */
2312 int security_inode_setxattr(struct mnt_idmap *idmap,
2313 			    struct dentry *dentry, const char *name,
2314 			    const void *value, size_t size, int flags)
2315 {
2316 	int rc;
2317 
2318 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2319 		return 0;
2320 
2321 	/* enforce the capability checks at the lsm layer, if needed */
2322 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2323 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2324 		if (rc)
2325 			return rc;
2326 	}
2327 
2328 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2329 			     flags);
2330 }
2331 
2332 /**
2333  * security_inode_set_acl() - Check if setting posix acls is allowed
2334  * @idmap: idmap of the mount
2335  * @dentry: file
2336  * @acl_name: acl name
2337  * @kacl: acl struct
2338  *
2339  * Check permission before setting posix acls, the posix acls in @kacl are
2340  * identified by @acl_name.
2341  *
2342  * Return: Returns 0 if permission is granted.
2343  */
2344 int security_inode_set_acl(struct mnt_idmap *idmap,
2345 			   struct dentry *dentry, const char *acl_name,
2346 			   struct posix_acl *kacl)
2347 {
2348 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2349 		return 0;
2350 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2351 }
2352 
2353 /**
2354  * security_inode_post_set_acl() - Update inode security from posix acls set
2355  * @dentry: file
2356  * @acl_name: acl name
2357  * @kacl: acl struct
2358  *
2359  * Update inode security data after successfully setting posix acls on @dentry.
2360  * The posix acls in @kacl are identified by @acl_name.
2361  */
2362 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2363 				 struct posix_acl *kacl)
2364 {
2365 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2366 		return;
2367 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2368 }
2369 
2370 /**
2371  * security_inode_get_acl() - Check if reading posix acls is allowed
2372  * @idmap: idmap of the mount
2373  * @dentry: file
2374  * @acl_name: acl name
2375  *
2376  * Check permission before getting osix acls, the posix acls are identified by
2377  * @acl_name.
2378  *
2379  * Return: Returns 0 if permission is granted.
2380  */
2381 int security_inode_get_acl(struct mnt_idmap *idmap,
2382 			   struct dentry *dentry, const char *acl_name)
2383 {
2384 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2385 		return 0;
2386 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2387 }
2388 
2389 /**
2390  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2391  * @idmap: idmap of the mount
2392  * @dentry: file
2393  * @acl_name: acl name
2394  *
2395  * Check permission before removing posix acls, the posix acls are identified
2396  * by @acl_name.
2397  *
2398  * Return: Returns 0 if permission is granted.
2399  */
2400 int security_inode_remove_acl(struct mnt_idmap *idmap,
2401 			      struct dentry *dentry, const char *acl_name)
2402 {
2403 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2404 		return 0;
2405 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2406 }
2407 
2408 /**
2409  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2410  * @idmap: idmap of the mount
2411  * @dentry: file
2412  * @acl_name: acl name
2413  *
2414  * Update inode security data after successfully removing posix acls on
2415  * @dentry in @idmap. The posix acls are identified by @acl_name.
2416  */
2417 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2418 				    struct dentry *dentry, const char *acl_name)
2419 {
2420 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2421 		return;
2422 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2423 }
2424 
2425 /**
2426  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2427  * @dentry: file
2428  * @name: xattr name
2429  * @value: xattr value
2430  * @size: xattr value size
2431  * @flags: flags
2432  *
2433  * Update inode security field after successful setxattr operation.
2434  */
2435 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2436 				  const void *value, size_t size, int flags)
2437 {
2438 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2439 		return;
2440 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2441 }
2442 
2443 /**
2444  * security_inode_getxattr() - Check if xattr access is allowed
2445  * @dentry: file
2446  * @name: xattr name
2447  *
2448  * Check permission before obtaining the extended attributes identified by
2449  * @name for @dentry.
2450  *
2451  * Return: Returns 0 if permission is granted.
2452  */
2453 int security_inode_getxattr(struct dentry *dentry, const char *name)
2454 {
2455 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2456 		return 0;
2457 	return call_int_hook(inode_getxattr, dentry, name);
2458 }
2459 
2460 /**
2461  * security_inode_listxattr() - Check if listing xattrs is allowed
2462  * @dentry: file
2463  *
2464  * Check permission before obtaining the list of extended attribute names for
2465  * @dentry.
2466  *
2467  * Return: Returns 0 if permission is granted.
2468  */
2469 int security_inode_listxattr(struct dentry *dentry)
2470 {
2471 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2472 		return 0;
2473 	return call_int_hook(inode_listxattr, dentry);
2474 }
2475 
2476 /**
2477  * security_inode_removexattr() - Check if removing an xattr is allowed
2478  * @idmap: idmap of the mount
2479  * @dentry: file
2480  * @name: xattr name
2481  *
2482  * This hook performs the desired permission checks before setting the extended
2483  * attributes (xattrs) on @dentry.  It is important to note that we have some
2484  * additional logic before the main LSM implementation calls to detect if we
2485  * need to perform an additional capability check at the LSM layer.
2486  *
2487  * Normally we enforce a capability check prior to executing the various LSM
2488  * hook implementations, but if a LSM wants to avoid this capability check,
2489  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2490  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2491  * responsible for enforcing the access control for the specific xattr.  If all
2492  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2493  * or return a 0 (the default return value), the capability check is still
2494  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2495  * check is performed.
2496  *
2497  * Return: Returns 0 if permission is granted.
2498  */
2499 int security_inode_removexattr(struct mnt_idmap *idmap,
2500 			       struct dentry *dentry, const char *name)
2501 {
2502 	int rc;
2503 
2504 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2505 		return 0;
2506 
2507 	/* enforce the capability checks at the lsm layer, if needed */
2508 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2509 		rc = cap_inode_removexattr(idmap, dentry, name);
2510 		if (rc)
2511 			return rc;
2512 	}
2513 
2514 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2515 }
2516 
2517 /**
2518  * security_inode_post_removexattr() - Update the inode after a removexattr op
2519  * @dentry: file
2520  * @name: xattr name
2521  *
2522  * Update the inode after a successful removexattr operation.
2523  */
2524 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2525 {
2526 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2527 		return;
2528 	call_void_hook(inode_post_removexattr, dentry, name);
2529 }
2530 
2531 /**
2532  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2533  * @dentry: associated dentry
2534  *
2535  * Called when an inode has been changed to determine if
2536  * security_inode_killpriv() should be called.
2537  *
2538  * Return: Return <0 on error to abort the inode change operation, return 0 if
2539  *         security_inode_killpriv() does not need to be called, return >0 if
2540  *         security_inode_killpriv() does need to be called.
2541  */
2542 int security_inode_need_killpriv(struct dentry *dentry)
2543 {
2544 	return call_int_hook(inode_need_killpriv, dentry);
2545 }
2546 
2547 /**
2548  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2549  * @idmap: idmap of the mount
2550  * @dentry: associated dentry
2551  *
2552  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2553  * Called with the dentry->d_inode->i_mutex held.
2554  *
2555  * Return: Return 0 on success.  If error is returned, then the operation
2556  *         causing setuid bit removal is failed.
2557  */
2558 int security_inode_killpriv(struct mnt_idmap *idmap,
2559 			    struct dentry *dentry)
2560 {
2561 	return call_int_hook(inode_killpriv, idmap, dentry);
2562 }
2563 
2564 /**
2565  * security_inode_getsecurity() - Get the xattr security label of an inode
2566  * @idmap: idmap of the mount
2567  * @inode: inode
2568  * @name: xattr name
2569  * @buffer: security label buffer
2570  * @alloc: allocation flag
2571  *
2572  * Retrieve a copy of the extended attribute representation of the security
2573  * label associated with @name for @inode via @buffer.  Note that @name is the
2574  * remainder of the attribute name after the security prefix has been removed.
2575  * @alloc is used to specify if the call should return a value via the buffer
2576  * or just the value length.
2577  *
2578  * Return: Returns size of buffer on success.
2579  */
2580 int security_inode_getsecurity(struct mnt_idmap *idmap,
2581 			       struct inode *inode, const char *name,
2582 			       void **buffer, bool alloc)
2583 {
2584 	if (unlikely(IS_PRIVATE(inode)))
2585 		return LSM_RET_DEFAULT(inode_getsecurity);
2586 
2587 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2588 			     alloc);
2589 }
2590 
2591 /**
2592  * security_inode_setsecurity() - Set the xattr security label of an inode
2593  * @inode: inode
2594  * @name: xattr name
2595  * @value: security label
2596  * @size: length of security label
2597  * @flags: flags
2598  *
2599  * Set the security label associated with @name for @inode from the extended
2600  * attribute value @value.  @size indicates the size of the @value in bytes.
2601  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2602  * remainder of the attribute name after the security. prefix has been removed.
2603  *
2604  * Return: Returns 0 on success.
2605  */
2606 int security_inode_setsecurity(struct inode *inode, const char *name,
2607 			       const void *value, size_t size, int flags)
2608 {
2609 	if (unlikely(IS_PRIVATE(inode)))
2610 		return LSM_RET_DEFAULT(inode_setsecurity);
2611 
2612 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2613 			     flags);
2614 }
2615 
2616 /**
2617  * security_inode_listsecurity() - List the xattr security label names
2618  * @inode: inode
2619  * @buffer: buffer
2620  * @buffer_size: size of buffer
2621  *
2622  * Copy the extended attribute names for the security labels associated with
2623  * @inode into @buffer.  The maximum size of @buffer is specified by
2624  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2625  * required.
2626  *
2627  * Return: Returns number of bytes used/required on success.
2628  */
2629 int security_inode_listsecurity(struct inode *inode,
2630 				char *buffer, size_t buffer_size)
2631 {
2632 	if (unlikely(IS_PRIVATE(inode)))
2633 		return 0;
2634 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2635 }
2636 EXPORT_SYMBOL(security_inode_listsecurity);
2637 
2638 /**
2639  * security_inode_getsecid() - Get an inode's secid
2640  * @inode: inode
2641  * @secid: secid to return
2642  *
2643  * Get the secid associated with the node.  In case of failure, @secid will be
2644  * set to zero.
2645  */
2646 void security_inode_getsecid(struct inode *inode, u32 *secid)
2647 {
2648 	call_void_hook(inode_getsecid, inode, secid);
2649 }
2650 
2651 /**
2652  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2653  * @src: union dentry of copy-up file
2654  * @new: newly created creds
2655  *
2656  * A file is about to be copied up from lower layer to upper layer of overlay
2657  * filesystem. Security module can prepare a set of new creds and modify as
2658  * need be and return new creds. Caller will switch to new creds temporarily to
2659  * create new file and release newly allocated creds.
2660  *
2661  * Return: Returns 0 on success or a negative error code on error.
2662  */
2663 int security_inode_copy_up(struct dentry *src, struct cred **new)
2664 {
2665 	return call_int_hook(inode_copy_up, src, new);
2666 }
2667 EXPORT_SYMBOL(security_inode_copy_up);
2668 
2669 /**
2670  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2671  * @src: union dentry of copy-up file
2672  * @name: xattr name
2673  *
2674  * Filter the xattrs being copied up when a unioned file is copied up from a
2675  * lower layer to the union/overlay layer.   The caller is responsible for
2676  * reading and writing the xattrs, this hook is merely a filter.
2677  *
2678  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2679  *         -EOPNOTSUPP if the security module does not know about attribute,
2680  *         or a negative error code to abort the copy up.
2681  */
2682 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2683 {
2684 	int rc;
2685 
2686 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2687 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2688 		return rc;
2689 
2690 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2691 }
2692 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2693 
2694 /**
2695  * security_kernfs_init_security() - Init LSM context for a kernfs node
2696  * @kn_dir: parent kernfs node
2697  * @kn: the kernfs node to initialize
2698  *
2699  * Initialize the security context of a newly created kernfs node based on its
2700  * own and its parent's attributes.
2701  *
2702  * Return: Returns 0 if permission is granted.
2703  */
2704 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2705 				  struct kernfs_node *kn)
2706 {
2707 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2708 }
2709 
2710 /**
2711  * security_file_permission() - Check file permissions
2712  * @file: file
2713  * @mask: requested permissions
2714  *
2715  * Check file permissions before accessing an open file.  This hook is called
2716  * by various operations that read or write files.  A security module can use
2717  * this hook to perform additional checking on these operations, e.g. to
2718  * revalidate permissions on use to support privilege bracketing or policy
2719  * changes.  Notice that this hook is used when the actual read/write
2720  * operations are performed, whereas the inode_security_ops hook is called when
2721  * a file is opened (as well as many other operations).  Although this hook can
2722  * be used to revalidate permissions for various system call operations that
2723  * read or write files, it does not address the revalidation of permissions for
2724  * memory-mapped files.  Security modules must handle this separately if they
2725  * need such revalidation.
2726  *
2727  * Return: Returns 0 if permission is granted.
2728  */
2729 int security_file_permission(struct file *file, int mask)
2730 {
2731 	return call_int_hook(file_permission, file, mask);
2732 }
2733 
2734 /**
2735  * security_file_alloc() - Allocate and init a file's LSM blob
2736  * @file: the file
2737  *
2738  * Allocate and attach a security structure to the file->f_security field.  The
2739  * security field is initialized to NULL when the structure is first created.
2740  *
2741  * Return: Return 0 if the hook is successful and permission is granted.
2742  */
2743 int security_file_alloc(struct file *file)
2744 {
2745 	int rc = lsm_file_alloc(file);
2746 
2747 	if (rc)
2748 		return rc;
2749 	rc = call_int_hook(file_alloc_security, file);
2750 	if (unlikely(rc))
2751 		security_file_free(file);
2752 	return rc;
2753 }
2754 
2755 /**
2756  * security_file_release() - Perform actions before releasing the file ref
2757  * @file: the file
2758  *
2759  * Perform actions before releasing the last reference to a file.
2760  */
2761 void security_file_release(struct file *file)
2762 {
2763 	call_void_hook(file_release, file);
2764 }
2765 
2766 /**
2767  * security_file_free() - Free a file's LSM blob
2768  * @file: the file
2769  *
2770  * Deallocate and free any security structures stored in file->f_security.
2771  */
2772 void security_file_free(struct file *file)
2773 {
2774 	void *blob;
2775 
2776 	call_void_hook(file_free_security, file);
2777 
2778 	blob = file->f_security;
2779 	if (blob) {
2780 		file->f_security = NULL;
2781 		kmem_cache_free(lsm_file_cache, blob);
2782 	}
2783 }
2784 
2785 /**
2786  * security_file_ioctl() - Check if an ioctl is allowed
2787  * @file: associated file
2788  * @cmd: ioctl cmd
2789  * @arg: ioctl arguments
2790  *
2791  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2792  * represents a user space pointer; in other cases, it may be a simple integer
2793  * value.  When @arg represents a user space pointer, it should never be used
2794  * by the security module.
2795  *
2796  * Return: Returns 0 if permission is granted.
2797  */
2798 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2799 {
2800 	return call_int_hook(file_ioctl, file, cmd, arg);
2801 }
2802 EXPORT_SYMBOL_GPL(security_file_ioctl);
2803 
2804 /**
2805  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2806  * @file: associated file
2807  * @cmd: ioctl cmd
2808  * @arg: ioctl arguments
2809  *
2810  * Compat version of security_file_ioctl() that correctly handles 32-bit
2811  * processes running on 64-bit kernels.
2812  *
2813  * Return: Returns 0 if permission is granted.
2814  */
2815 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2816 			       unsigned long arg)
2817 {
2818 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2819 }
2820 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2821 
2822 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2823 {
2824 	/*
2825 	 * Does we have PROT_READ and does the application expect
2826 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2827 	 */
2828 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2829 		return prot;
2830 	if (!(current->personality & READ_IMPLIES_EXEC))
2831 		return prot;
2832 	/*
2833 	 * if that's an anonymous mapping, let it.
2834 	 */
2835 	if (!file)
2836 		return prot | PROT_EXEC;
2837 	/*
2838 	 * ditto if it's not on noexec mount, except that on !MMU we need
2839 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2840 	 */
2841 	if (!path_noexec(&file->f_path)) {
2842 #ifndef CONFIG_MMU
2843 		if (file->f_op->mmap_capabilities) {
2844 			unsigned caps = file->f_op->mmap_capabilities(file);
2845 			if (!(caps & NOMMU_MAP_EXEC))
2846 				return prot;
2847 		}
2848 #endif
2849 		return prot | PROT_EXEC;
2850 	}
2851 	/* anything on noexec mount won't get PROT_EXEC */
2852 	return prot;
2853 }
2854 
2855 /**
2856  * security_mmap_file() - Check if mmap'ing a file is allowed
2857  * @file: file
2858  * @prot: protection applied by the kernel
2859  * @flags: flags
2860  *
2861  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2862  * mapping anonymous memory.
2863  *
2864  * Return: Returns 0 if permission is granted.
2865  */
2866 int security_mmap_file(struct file *file, unsigned long prot,
2867 		       unsigned long flags)
2868 {
2869 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2870 			     flags);
2871 }
2872 
2873 /**
2874  * security_mmap_addr() - Check if mmap'ing an address is allowed
2875  * @addr: address
2876  *
2877  * Check permissions for a mmap operation at @addr.
2878  *
2879  * Return: Returns 0 if permission is granted.
2880  */
2881 int security_mmap_addr(unsigned long addr)
2882 {
2883 	return call_int_hook(mmap_addr, addr);
2884 }
2885 
2886 /**
2887  * security_file_mprotect() - Check if changing memory protections is allowed
2888  * @vma: memory region
2889  * @reqprot: application requested protection
2890  * @prot: protection applied by the kernel
2891  *
2892  * Check permissions before changing memory access permissions.
2893  *
2894  * Return: Returns 0 if permission is granted.
2895  */
2896 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2897 			   unsigned long prot)
2898 {
2899 	return call_int_hook(file_mprotect, vma, reqprot, prot);
2900 }
2901 
2902 /**
2903  * security_file_lock() - Check if a file lock is allowed
2904  * @file: file
2905  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2906  *
2907  * Check permission before performing file locking operations.  Note the hook
2908  * mediates both flock and fcntl style locks.
2909  *
2910  * Return: Returns 0 if permission is granted.
2911  */
2912 int security_file_lock(struct file *file, unsigned int cmd)
2913 {
2914 	return call_int_hook(file_lock, file, cmd);
2915 }
2916 
2917 /**
2918  * security_file_fcntl() - Check if fcntl() op is allowed
2919  * @file: file
2920  * @cmd: fcntl command
2921  * @arg: command argument
2922  *
2923  * Check permission before allowing the file operation specified by @cmd from
2924  * being performed on the file @file.  Note that @arg sometimes represents a
2925  * user space pointer; in other cases, it may be a simple integer value.  When
2926  * @arg represents a user space pointer, it should never be used by the
2927  * security module.
2928  *
2929  * Return: Returns 0 if permission is granted.
2930  */
2931 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2932 {
2933 	return call_int_hook(file_fcntl, file, cmd, arg);
2934 }
2935 
2936 /**
2937  * security_file_set_fowner() - Set the file owner info in the LSM blob
2938  * @file: the file
2939  *
2940  * Save owner security information (typically from current->security) in
2941  * file->f_security for later use by the send_sigiotask hook.
2942  *
2943  * Return: Returns 0 on success.
2944  */
2945 void security_file_set_fowner(struct file *file)
2946 {
2947 	call_void_hook(file_set_fowner, file);
2948 }
2949 
2950 /**
2951  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2952  * @tsk: target task
2953  * @fown: signal sender
2954  * @sig: signal to be sent, SIGIO is sent if 0
2955  *
2956  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2957  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
2958  * that the fown_struct, @fown, is never outside the context of a struct file,
2959  * so the file structure (and associated security information) can always be
2960  * obtained: container_of(fown, struct file, f_owner).
2961  *
2962  * Return: Returns 0 if permission is granted.
2963  */
2964 int security_file_send_sigiotask(struct task_struct *tsk,
2965 				 struct fown_struct *fown, int sig)
2966 {
2967 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2968 }
2969 
2970 /**
2971  * security_file_receive() - Check if receiving a file via IPC is allowed
2972  * @file: file being received
2973  *
2974  * This hook allows security modules to control the ability of a process to
2975  * receive an open file descriptor via socket IPC.
2976  *
2977  * Return: Returns 0 if permission is granted.
2978  */
2979 int security_file_receive(struct file *file)
2980 {
2981 	return call_int_hook(file_receive, file);
2982 }
2983 
2984 /**
2985  * security_file_open() - Save open() time state for late use by the LSM
2986  * @file:
2987  *
2988  * Save open-time permission checking state for later use upon file_permission,
2989  * and recheck access if anything has changed since inode_permission.
2990  *
2991  * Return: Returns 0 if permission is granted.
2992  */
2993 int security_file_open(struct file *file)
2994 {
2995 	int ret;
2996 
2997 	ret = call_int_hook(file_open, file);
2998 	if (ret)
2999 		return ret;
3000 
3001 	return fsnotify_open_perm(file);
3002 }
3003 
3004 /**
3005  * security_file_post_open() - Evaluate a file after it has been opened
3006  * @file: the file
3007  * @mask: access mask
3008  *
3009  * Evaluate an opened file and the access mask requested with open(). The hook
3010  * is useful for LSMs that require the file content to be available in order to
3011  * make decisions.
3012  *
3013  * Return: Returns 0 if permission is granted.
3014  */
3015 int security_file_post_open(struct file *file, int mask)
3016 {
3017 	return call_int_hook(file_post_open, file, mask);
3018 }
3019 EXPORT_SYMBOL_GPL(security_file_post_open);
3020 
3021 /**
3022  * security_file_truncate() - Check if truncating a file is allowed
3023  * @file: file
3024  *
3025  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3026  * truncation permission may also be checked based on the path, using the
3027  * @path_truncate hook.
3028  *
3029  * Return: Returns 0 if permission is granted.
3030  */
3031 int security_file_truncate(struct file *file)
3032 {
3033 	return call_int_hook(file_truncate, file);
3034 }
3035 
3036 /**
3037  * security_task_alloc() - Allocate a task's LSM blob
3038  * @task: the task
3039  * @clone_flags: flags indicating what is being shared
3040  *
3041  * Handle allocation of task-related resources.
3042  *
3043  * Return: Returns a zero on success, negative values on failure.
3044  */
3045 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3046 {
3047 	int rc = lsm_task_alloc(task);
3048 
3049 	if (rc)
3050 		return rc;
3051 	rc = call_int_hook(task_alloc, task, clone_flags);
3052 	if (unlikely(rc))
3053 		security_task_free(task);
3054 	return rc;
3055 }
3056 
3057 /**
3058  * security_task_free() - Free a task's LSM blob and related resources
3059  * @task: task
3060  *
3061  * Handle release of task-related resources.  Note that this can be called from
3062  * interrupt context.
3063  */
3064 void security_task_free(struct task_struct *task)
3065 {
3066 	call_void_hook(task_free, task);
3067 
3068 	kfree(task->security);
3069 	task->security = NULL;
3070 }
3071 
3072 /**
3073  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3074  * @cred: credentials
3075  * @gfp: gfp flags
3076  *
3077  * Only allocate sufficient memory and attach to @cred such that
3078  * cred_transfer() will not get ENOMEM.
3079  *
3080  * Return: Returns 0 on success, negative values on failure.
3081  */
3082 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3083 {
3084 	int rc = lsm_cred_alloc(cred, gfp);
3085 
3086 	if (rc)
3087 		return rc;
3088 
3089 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3090 	if (unlikely(rc))
3091 		security_cred_free(cred);
3092 	return rc;
3093 }
3094 
3095 /**
3096  * security_cred_free() - Free the cred's LSM blob and associated resources
3097  * @cred: credentials
3098  *
3099  * Deallocate and clear the cred->security field in a set of credentials.
3100  */
3101 void security_cred_free(struct cred *cred)
3102 {
3103 	/*
3104 	 * There is a failure case in prepare_creds() that
3105 	 * may result in a call here with ->security being NULL.
3106 	 */
3107 	if (unlikely(cred->security == NULL))
3108 		return;
3109 
3110 	call_void_hook(cred_free, cred);
3111 
3112 	kfree(cred->security);
3113 	cred->security = NULL;
3114 }
3115 
3116 /**
3117  * security_prepare_creds() - Prepare a new set of credentials
3118  * @new: new credentials
3119  * @old: original credentials
3120  * @gfp: gfp flags
3121  *
3122  * Prepare a new set of credentials by copying the data from the old set.
3123  *
3124  * Return: Returns 0 on success, negative values on failure.
3125  */
3126 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3127 {
3128 	int rc = lsm_cred_alloc(new, gfp);
3129 
3130 	if (rc)
3131 		return rc;
3132 
3133 	rc = call_int_hook(cred_prepare, new, old, gfp);
3134 	if (unlikely(rc))
3135 		security_cred_free(new);
3136 	return rc;
3137 }
3138 
3139 /**
3140  * security_transfer_creds() - Transfer creds
3141  * @new: target credentials
3142  * @old: original credentials
3143  *
3144  * Transfer data from original creds to new creds.
3145  */
3146 void security_transfer_creds(struct cred *new, const struct cred *old)
3147 {
3148 	call_void_hook(cred_transfer, new, old);
3149 }
3150 
3151 /**
3152  * security_cred_getsecid() - Get the secid from a set of credentials
3153  * @c: credentials
3154  * @secid: secid value
3155  *
3156  * Retrieve the security identifier of the cred structure @c.  In case of
3157  * failure, @secid will be set to zero.
3158  */
3159 void security_cred_getsecid(const struct cred *c, u32 *secid)
3160 {
3161 	*secid = 0;
3162 	call_void_hook(cred_getsecid, c, secid);
3163 }
3164 EXPORT_SYMBOL(security_cred_getsecid);
3165 
3166 /**
3167  * security_kernel_act_as() - Set the kernel credentials to act as secid
3168  * @new: credentials
3169  * @secid: secid
3170  *
3171  * Set the credentials for a kernel service to act as (subjective context).
3172  * The current task must be the one that nominated @secid.
3173  *
3174  * Return: Returns 0 if successful.
3175  */
3176 int security_kernel_act_as(struct cred *new, u32 secid)
3177 {
3178 	return call_int_hook(kernel_act_as, new, secid);
3179 }
3180 
3181 /**
3182  * security_kernel_create_files_as() - Set file creation context using an inode
3183  * @new: target credentials
3184  * @inode: reference inode
3185  *
3186  * Set the file creation context in a set of credentials to be the same as the
3187  * objective context of the specified inode.  The current task must be the one
3188  * that nominated @inode.
3189  *
3190  * Return: Returns 0 if successful.
3191  */
3192 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3193 {
3194 	return call_int_hook(kernel_create_files_as, new, inode);
3195 }
3196 
3197 /**
3198  * security_kernel_module_request() - Check if loading a module is allowed
3199  * @kmod_name: module name
3200  *
3201  * Ability to trigger the kernel to automatically upcall to userspace for
3202  * userspace to load a kernel module with the given name.
3203  *
3204  * Return: Returns 0 if successful.
3205  */
3206 int security_kernel_module_request(char *kmod_name)
3207 {
3208 	return call_int_hook(kernel_module_request, kmod_name);
3209 }
3210 
3211 /**
3212  * security_kernel_read_file() - Read a file specified by userspace
3213  * @file: file
3214  * @id: file identifier
3215  * @contents: trust if security_kernel_post_read_file() will be called
3216  *
3217  * Read a file specified by userspace.
3218  *
3219  * Return: Returns 0 if permission is granted.
3220  */
3221 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3222 			      bool contents)
3223 {
3224 	return call_int_hook(kernel_read_file, file, id, contents);
3225 }
3226 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3227 
3228 /**
3229  * security_kernel_post_read_file() - Read a file specified by userspace
3230  * @file: file
3231  * @buf: file contents
3232  * @size: size of file contents
3233  * @id: file identifier
3234  *
3235  * Read a file specified by userspace.  This must be paired with a prior call
3236  * to security_kernel_read_file() call that indicated this hook would also be
3237  * called, see security_kernel_read_file() for more information.
3238  *
3239  * Return: Returns 0 if permission is granted.
3240  */
3241 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3242 				   enum kernel_read_file_id id)
3243 {
3244 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3245 }
3246 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3247 
3248 /**
3249  * security_kernel_load_data() - Load data provided by userspace
3250  * @id: data identifier
3251  * @contents: true if security_kernel_post_load_data() will be called
3252  *
3253  * Load data provided by userspace.
3254  *
3255  * Return: Returns 0 if permission is granted.
3256  */
3257 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3258 {
3259 	return call_int_hook(kernel_load_data, id, contents);
3260 }
3261 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3262 
3263 /**
3264  * security_kernel_post_load_data() - Load userspace data from a non-file source
3265  * @buf: data
3266  * @size: size of data
3267  * @id: data identifier
3268  * @description: text description of data, specific to the id value
3269  *
3270  * Load data provided by a non-file source (usually userspace buffer).  This
3271  * must be paired with a prior security_kernel_load_data() call that indicated
3272  * this hook would also be called, see security_kernel_load_data() for more
3273  * information.
3274  *
3275  * Return: Returns 0 if permission is granted.
3276  */
3277 int security_kernel_post_load_data(char *buf, loff_t size,
3278 				   enum kernel_load_data_id id,
3279 				   char *description)
3280 {
3281 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3282 }
3283 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3284 
3285 /**
3286  * security_task_fix_setuid() - Update LSM with new user id attributes
3287  * @new: updated credentials
3288  * @old: credentials being replaced
3289  * @flags: LSM_SETID_* flag values
3290  *
3291  * Update the module's state after setting one or more of the user identity
3292  * attributes of the current process.  The @flags parameter indicates which of
3293  * the set*uid system calls invoked this hook.  If @new is the set of
3294  * credentials that will be installed.  Modifications should be made to this
3295  * rather than to @current->cred.
3296  *
3297  * Return: Returns 0 on success.
3298  */
3299 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3300 			     int flags)
3301 {
3302 	return call_int_hook(task_fix_setuid, new, old, flags);
3303 }
3304 
3305 /**
3306  * security_task_fix_setgid() - Update LSM with new group id attributes
3307  * @new: updated credentials
3308  * @old: credentials being replaced
3309  * @flags: LSM_SETID_* flag value
3310  *
3311  * Update the module's state after setting one or more of the group identity
3312  * attributes of the current process.  The @flags parameter indicates which of
3313  * the set*gid system calls invoked this hook.  @new is the set of credentials
3314  * that will be installed.  Modifications should be made to this rather than to
3315  * @current->cred.
3316  *
3317  * Return: Returns 0 on success.
3318  */
3319 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3320 			     int flags)
3321 {
3322 	return call_int_hook(task_fix_setgid, new, old, flags);
3323 }
3324 
3325 /**
3326  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3327  * @new: updated credentials
3328  * @old: credentials being replaced
3329  *
3330  * Update the module's state after setting the supplementary group identity
3331  * attributes of the current process.  @new is the set of credentials that will
3332  * be installed.  Modifications should be made to this rather than to
3333  * @current->cred.
3334  *
3335  * Return: Returns 0 on success.
3336  */
3337 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3338 {
3339 	return call_int_hook(task_fix_setgroups, new, old);
3340 }
3341 
3342 /**
3343  * security_task_setpgid() - Check if setting the pgid is allowed
3344  * @p: task being modified
3345  * @pgid: new pgid
3346  *
3347  * Check permission before setting the process group identifier of the process
3348  * @p to @pgid.
3349  *
3350  * Return: Returns 0 if permission is granted.
3351  */
3352 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3353 {
3354 	return call_int_hook(task_setpgid, p, pgid);
3355 }
3356 
3357 /**
3358  * security_task_getpgid() - Check if getting the pgid is allowed
3359  * @p: task
3360  *
3361  * Check permission before getting the process group identifier of the process
3362  * @p.
3363  *
3364  * Return: Returns 0 if permission is granted.
3365  */
3366 int security_task_getpgid(struct task_struct *p)
3367 {
3368 	return call_int_hook(task_getpgid, p);
3369 }
3370 
3371 /**
3372  * security_task_getsid() - Check if getting the session id is allowed
3373  * @p: task
3374  *
3375  * Check permission before getting the session identifier of the process @p.
3376  *
3377  * Return: Returns 0 if permission is granted.
3378  */
3379 int security_task_getsid(struct task_struct *p)
3380 {
3381 	return call_int_hook(task_getsid, p);
3382 }
3383 
3384 /**
3385  * security_current_getsecid_subj() - Get the current task's subjective secid
3386  * @secid: secid value
3387  *
3388  * Retrieve the subjective security identifier of the current task and return
3389  * it in @secid.  In case of failure, @secid will be set to zero.
3390  */
3391 void security_current_getsecid_subj(u32 *secid)
3392 {
3393 	*secid = 0;
3394 	call_void_hook(current_getsecid_subj, secid);
3395 }
3396 EXPORT_SYMBOL(security_current_getsecid_subj);
3397 
3398 /**
3399  * security_task_getsecid_obj() - Get a task's objective secid
3400  * @p: target task
3401  * @secid: secid value
3402  *
3403  * Retrieve the objective security identifier of the task_struct in @p and
3404  * return it in @secid. In case of failure, @secid will be set to zero.
3405  */
3406 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3407 {
3408 	*secid = 0;
3409 	call_void_hook(task_getsecid_obj, p, secid);
3410 }
3411 EXPORT_SYMBOL(security_task_getsecid_obj);
3412 
3413 /**
3414  * security_task_setnice() - Check if setting a task's nice value is allowed
3415  * @p: target task
3416  * @nice: nice value
3417  *
3418  * Check permission before setting the nice value of @p to @nice.
3419  *
3420  * Return: Returns 0 if permission is granted.
3421  */
3422 int security_task_setnice(struct task_struct *p, int nice)
3423 {
3424 	return call_int_hook(task_setnice, p, nice);
3425 }
3426 
3427 /**
3428  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3429  * @p: target task
3430  * @ioprio: ioprio value
3431  *
3432  * Check permission before setting the ioprio value of @p to @ioprio.
3433  *
3434  * Return: Returns 0 if permission is granted.
3435  */
3436 int security_task_setioprio(struct task_struct *p, int ioprio)
3437 {
3438 	return call_int_hook(task_setioprio, p, ioprio);
3439 }
3440 
3441 /**
3442  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3443  * @p: task
3444  *
3445  * Check permission before getting the ioprio value of @p.
3446  *
3447  * Return: Returns 0 if permission is granted.
3448  */
3449 int security_task_getioprio(struct task_struct *p)
3450 {
3451 	return call_int_hook(task_getioprio, p);
3452 }
3453 
3454 /**
3455  * security_task_prlimit() - Check if get/setting resources limits is allowed
3456  * @cred: current task credentials
3457  * @tcred: target task credentials
3458  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3459  *
3460  * Check permission before getting and/or setting the resource limits of
3461  * another task.
3462  *
3463  * Return: Returns 0 if permission is granted.
3464  */
3465 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3466 			  unsigned int flags)
3467 {
3468 	return call_int_hook(task_prlimit, cred, tcred, flags);
3469 }
3470 
3471 /**
3472  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3473  * @p: target task's group leader
3474  * @resource: resource whose limit is being set
3475  * @new_rlim: new resource limit
3476  *
3477  * Check permission before setting the resource limits of process @p for
3478  * @resource to @new_rlim.  The old resource limit values can be examined by
3479  * dereferencing (p->signal->rlim + resource).
3480  *
3481  * Return: Returns 0 if permission is granted.
3482  */
3483 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3484 			    struct rlimit *new_rlim)
3485 {
3486 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3487 }
3488 
3489 /**
3490  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3491  * @p: target task
3492  *
3493  * Check permission before setting scheduling policy and/or parameters of
3494  * process @p.
3495  *
3496  * Return: Returns 0 if permission is granted.
3497  */
3498 int security_task_setscheduler(struct task_struct *p)
3499 {
3500 	return call_int_hook(task_setscheduler, p);
3501 }
3502 
3503 /**
3504  * security_task_getscheduler() - Check if getting scheduling info is allowed
3505  * @p: target task
3506  *
3507  * Check permission before obtaining scheduling information for process @p.
3508  *
3509  * Return: Returns 0 if permission is granted.
3510  */
3511 int security_task_getscheduler(struct task_struct *p)
3512 {
3513 	return call_int_hook(task_getscheduler, p);
3514 }
3515 
3516 /**
3517  * security_task_movememory() - Check if moving memory is allowed
3518  * @p: task
3519  *
3520  * Check permission before moving memory owned by process @p.
3521  *
3522  * Return: Returns 0 if permission is granted.
3523  */
3524 int security_task_movememory(struct task_struct *p)
3525 {
3526 	return call_int_hook(task_movememory, p);
3527 }
3528 
3529 /**
3530  * security_task_kill() - Check if sending a signal is allowed
3531  * @p: target process
3532  * @info: signal information
3533  * @sig: signal value
3534  * @cred: credentials of the signal sender, NULL if @current
3535  *
3536  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3537  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3538  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3539  * the kernel and should typically be permitted.  SIGIO signals are handled
3540  * separately by the send_sigiotask hook in file_security_ops.
3541  *
3542  * Return: Returns 0 if permission is granted.
3543  */
3544 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3545 		       int sig, const struct cred *cred)
3546 {
3547 	return call_int_hook(task_kill, p, info, sig, cred);
3548 }
3549 
3550 /**
3551  * security_task_prctl() - Check if a prctl op is allowed
3552  * @option: operation
3553  * @arg2: argument
3554  * @arg3: argument
3555  * @arg4: argument
3556  * @arg5: argument
3557  *
3558  * Check permission before performing a process control operation on the
3559  * current process.
3560  *
3561  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3562  *         to cause prctl() to return immediately with that value.
3563  */
3564 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3565 			unsigned long arg4, unsigned long arg5)
3566 {
3567 	int thisrc;
3568 	int rc = LSM_RET_DEFAULT(task_prctl);
3569 	struct security_hook_list *hp;
3570 
3571 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3572 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3573 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3574 			rc = thisrc;
3575 			if (thisrc != 0)
3576 				break;
3577 		}
3578 	}
3579 	return rc;
3580 }
3581 
3582 /**
3583  * security_task_to_inode() - Set the security attributes of a task's inode
3584  * @p: task
3585  * @inode: inode
3586  *
3587  * Set the security attributes for an inode based on an associated task's
3588  * security attributes, e.g. for /proc/pid inodes.
3589  */
3590 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3591 {
3592 	call_void_hook(task_to_inode, p, inode);
3593 }
3594 
3595 /**
3596  * security_create_user_ns() - Check if creating a new userns is allowed
3597  * @cred: prepared creds
3598  *
3599  * Check permission prior to creating a new user namespace.
3600  *
3601  * Return: Returns 0 if successful, otherwise < 0 error code.
3602  */
3603 int security_create_user_ns(const struct cred *cred)
3604 {
3605 	return call_int_hook(userns_create, cred);
3606 }
3607 
3608 /**
3609  * security_ipc_permission() - Check if sysv ipc access is allowed
3610  * @ipcp: ipc permission structure
3611  * @flag: requested permissions
3612  *
3613  * Check permissions for access to IPC.
3614  *
3615  * Return: Returns 0 if permission is granted.
3616  */
3617 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3618 {
3619 	return call_int_hook(ipc_permission, ipcp, flag);
3620 }
3621 
3622 /**
3623  * security_ipc_getsecid() - Get the sysv ipc object's secid
3624  * @ipcp: ipc permission structure
3625  * @secid: secid pointer
3626  *
3627  * Get the secid associated with the ipc object.  In case of failure, @secid
3628  * will be set to zero.
3629  */
3630 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3631 {
3632 	*secid = 0;
3633 	call_void_hook(ipc_getsecid, ipcp, secid);
3634 }
3635 
3636 /**
3637  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3638  * @msg: message structure
3639  *
3640  * Allocate and attach a security structure to the msg->security field.  The
3641  * security field is initialized to NULL when the structure is first created.
3642  *
3643  * Return: Return 0 if operation was successful and permission is granted.
3644  */
3645 int security_msg_msg_alloc(struct msg_msg *msg)
3646 {
3647 	int rc = lsm_msg_msg_alloc(msg);
3648 
3649 	if (unlikely(rc))
3650 		return rc;
3651 	rc = call_int_hook(msg_msg_alloc_security, msg);
3652 	if (unlikely(rc))
3653 		security_msg_msg_free(msg);
3654 	return rc;
3655 }
3656 
3657 /**
3658  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3659  * @msg: message structure
3660  *
3661  * Deallocate the security structure for this message.
3662  */
3663 void security_msg_msg_free(struct msg_msg *msg)
3664 {
3665 	call_void_hook(msg_msg_free_security, msg);
3666 	kfree(msg->security);
3667 	msg->security = NULL;
3668 }
3669 
3670 /**
3671  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3672  * @msq: sysv ipc permission structure
3673  *
3674  * Allocate and attach a security structure to @msg. The security field is
3675  * initialized to NULL when the structure is first created.
3676  *
3677  * Return: Returns 0 if operation was successful and permission is granted.
3678  */
3679 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3680 {
3681 	int rc = lsm_ipc_alloc(msq);
3682 
3683 	if (unlikely(rc))
3684 		return rc;
3685 	rc = call_int_hook(msg_queue_alloc_security, msq);
3686 	if (unlikely(rc))
3687 		security_msg_queue_free(msq);
3688 	return rc;
3689 }
3690 
3691 /**
3692  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3693  * @msq: sysv ipc permission structure
3694  *
3695  * Deallocate security field @perm->security for the message queue.
3696  */
3697 void security_msg_queue_free(struct kern_ipc_perm *msq)
3698 {
3699 	call_void_hook(msg_queue_free_security, msq);
3700 	kfree(msq->security);
3701 	msq->security = NULL;
3702 }
3703 
3704 /**
3705  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3706  * @msq: sysv ipc permission structure
3707  * @msqflg: operation flags
3708  *
3709  * Check permission when a message queue is requested through the msgget system
3710  * call. This hook is only called when returning the message queue identifier
3711  * for an existing message queue, not when a new message queue is created.
3712  *
3713  * Return: Return 0 if permission is granted.
3714  */
3715 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3716 {
3717 	return call_int_hook(msg_queue_associate, msq, msqflg);
3718 }
3719 
3720 /**
3721  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3722  * @msq: sysv ipc permission structure
3723  * @cmd: operation
3724  *
3725  * Check permission when a message control operation specified by @cmd is to be
3726  * performed on the message queue with permissions.
3727  *
3728  * Return: Returns 0 if permission is granted.
3729  */
3730 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3731 {
3732 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3733 }
3734 
3735 /**
3736  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3737  * @msq: sysv ipc permission structure
3738  * @msg: message
3739  * @msqflg: operation flags
3740  *
3741  * Check permission before a message, @msg, is enqueued on the message queue
3742  * with permissions specified in @msq.
3743  *
3744  * Return: Returns 0 if permission is granted.
3745  */
3746 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3747 			      struct msg_msg *msg, int msqflg)
3748 {
3749 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3750 }
3751 
3752 /**
3753  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3754  * @msq: sysv ipc permission structure
3755  * @msg: message
3756  * @target: target task
3757  * @type: type of message requested
3758  * @mode: operation flags
3759  *
3760  * Check permission before a message, @msg, is removed from the message	queue.
3761  * The @target task structure contains a pointer to the process that will be
3762  * receiving the message (not equal to the current process when inline receives
3763  * are being performed).
3764  *
3765  * Return: Returns 0 if permission is granted.
3766  */
3767 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3768 			      struct task_struct *target, long type, int mode)
3769 {
3770 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3771 }
3772 
3773 /**
3774  * security_shm_alloc() - Allocate a sysv shm LSM blob
3775  * @shp: sysv ipc permission structure
3776  *
3777  * Allocate and attach a security structure to the @shp security field.  The
3778  * security field is initialized to NULL when the structure is first created.
3779  *
3780  * Return: Returns 0 if operation was successful and permission is granted.
3781  */
3782 int security_shm_alloc(struct kern_ipc_perm *shp)
3783 {
3784 	int rc = lsm_ipc_alloc(shp);
3785 
3786 	if (unlikely(rc))
3787 		return rc;
3788 	rc = call_int_hook(shm_alloc_security, shp);
3789 	if (unlikely(rc))
3790 		security_shm_free(shp);
3791 	return rc;
3792 }
3793 
3794 /**
3795  * security_shm_free() - Free a sysv shm LSM blob
3796  * @shp: sysv ipc permission structure
3797  *
3798  * Deallocate the security structure @perm->security for the memory segment.
3799  */
3800 void security_shm_free(struct kern_ipc_perm *shp)
3801 {
3802 	call_void_hook(shm_free_security, shp);
3803 	kfree(shp->security);
3804 	shp->security = NULL;
3805 }
3806 
3807 /**
3808  * security_shm_associate() - Check if a sysv shm operation is allowed
3809  * @shp: sysv ipc permission structure
3810  * @shmflg: operation flags
3811  *
3812  * Check permission when a shared memory region is requested through the shmget
3813  * system call. This hook is only called when returning the shared memory
3814  * region identifier for an existing region, not when a new shared memory
3815  * region is created.
3816  *
3817  * Return: Returns 0 if permission is granted.
3818  */
3819 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3820 {
3821 	return call_int_hook(shm_associate, shp, shmflg);
3822 }
3823 
3824 /**
3825  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3826  * @shp: sysv ipc permission structure
3827  * @cmd: operation
3828  *
3829  * Check permission when a shared memory control operation specified by @cmd is
3830  * to be performed on the shared memory region with permissions in @shp.
3831  *
3832  * Return: Return 0 if permission is granted.
3833  */
3834 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3835 {
3836 	return call_int_hook(shm_shmctl, shp, cmd);
3837 }
3838 
3839 /**
3840  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3841  * @shp: sysv ipc permission structure
3842  * @shmaddr: address of memory region to attach
3843  * @shmflg: operation flags
3844  *
3845  * Check permissions prior to allowing the shmat system call to attach the
3846  * shared memory segment with permissions @shp to the data segment of the
3847  * calling process. The attaching address is specified by @shmaddr.
3848  *
3849  * Return: Returns 0 if permission is granted.
3850  */
3851 int security_shm_shmat(struct kern_ipc_perm *shp,
3852 		       char __user *shmaddr, int shmflg)
3853 {
3854 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3855 }
3856 
3857 /**
3858  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3859  * @sma: sysv ipc permission structure
3860  *
3861  * Allocate and attach a security structure to the @sma security field. The
3862  * security field is initialized to NULL when the structure is first created.
3863  *
3864  * Return: Returns 0 if operation was successful and permission is granted.
3865  */
3866 int security_sem_alloc(struct kern_ipc_perm *sma)
3867 {
3868 	int rc = lsm_ipc_alloc(sma);
3869 
3870 	if (unlikely(rc))
3871 		return rc;
3872 	rc = call_int_hook(sem_alloc_security, sma);
3873 	if (unlikely(rc))
3874 		security_sem_free(sma);
3875 	return rc;
3876 }
3877 
3878 /**
3879  * security_sem_free() - Free a sysv semaphore LSM blob
3880  * @sma: sysv ipc permission structure
3881  *
3882  * Deallocate security structure @sma->security for the semaphore.
3883  */
3884 void security_sem_free(struct kern_ipc_perm *sma)
3885 {
3886 	call_void_hook(sem_free_security, sma);
3887 	kfree(sma->security);
3888 	sma->security = NULL;
3889 }
3890 
3891 /**
3892  * security_sem_associate() - Check if a sysv semaphore operation is allowed
3893  * @sma: sysv ipc permission structure
3894  * @semflg: operation flags
3895  *
3896  * Check permission when a semaphore is requested through the semget system
3897  * call. This hook is only called when returning the semaphore identifier for
3898  * an existing semaphore, not when a new one must be created.
3899  *
3900  * Return: Returns 0 if permission is granted.
3901  */
3902 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3903 {
3904 	return call_int_hook(sem_associate, sma, semflg);
3905 }
3906 
3907 /**
3908  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3909  * @sma: sysv ipc permission structure
3910  * @cmd: operation
3911  *
3912  * Check permission when a semaphore operation specified by @cmd is to be
3913  * performed on the semaphore.
3914  *
3915  * Return: Returns 0 if permission is granted.
3916  */
3917 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3918 {
3919 	return call_int_hook(sem_semctl, sma, cmd);
3920 }
3921 
3922 /**
3923  * security_sem_semop() - Check if a sysv semaphore operation is allowed
3924  * @sma: sysv ipc permission structure
3925  * @sops: operations to perform
3926  * @nsops: number of operations
3927  * @alter: flag indicating changes will be made
3928  *
3929  * Check permissions before performing operations on members of the semaphore
3930  * set. If the @alter flag is nonzero, the semaphore set may be modified.
3931  *
3932  * Return: Returns 0 if permission is granted.
3933  */
3934 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3935 		       unsigned nsops, int alter)
3936 {
3937 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
3938 }
3939 
3940 /**
3941  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3942  * @dentry: dentry
3943  * @inode: inode
3944  *
3945  * Fill in @inode security information for a @dentry if allowed.
3946  */
3947 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3948 {
3949 	if (unlikely(inode && IS_PRIVATE(inode)))
3950 		return;
3951 	call_void_hook(d_instantiate, dentry, inode);
3952 }
3953 EXPORT_SYMBOL(security_d_instantiate);
3954 
3955 /*
3956  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3957  */
3958 
3959 /**
3960  * security_getselfattr - Read an LSM attribute of the current process.
3961  * @attr: which attribute to return
3962  * @uctx: the user-space destination for the information, or NULL
3963  * @size: pointer to the size of space available to receive the data
3964  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3965  * attributes associated with the LSM identified in the passed @ctx be
3966  * reported.
3967  *
3968  * A NULL value for @uctx can be used to get both the number of attributes
3969  * and the size of the data.
3970  *
3971  * Returns the number of attributes found on success, negative value
3972  * on error. @size is reset to the total size of the data.
3973  * If @size is insufficient to contain the data -E2BIG is returned.
3974  */
3975 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3976 			 u32 __user *size, u32 flags)
3977 {
3978 	struct security_hook_list *hp;
3979 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3980 	u8 __user *base = (u8 __user *)uctx;
3981 	u32 entrysize;
3982 	u32 total = 0;
3983 	u32 left;
3984 	bool toobig = false;
3985 	bool single = false;
3986 	int count = 0;
3987 	int rc;
3988 
3989 	if (attr == LSM_ATTR_UNDEF)
3990 		return -EINVAL;
3991 	if (size == NULL)
3992 		return -EINVAL;
3993 	if (get_user(left, size))
3994 		return -EFAULT;
3995 
3996 	if (flags) {
3997 		/*
3998 		 * Only flag supported is LSM_FLAG_SINGLE
3999 		 */
4000 		if (flags != LSM_FLAG_SINGLE || !uctx)
4001 			return -EINVAL;
4002 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4003 			return -EFAULT;
4004 		/*
4005 		 * If the LSM ID isn't specified it is an error.
4006 		 */
4007 		if (lctx.id == LSM_ID_UNDEF)
4008 			return -EINVAL;
4009 		single = true;
4010 	}
4011 
4012 	/*
4013 	 * In the usual case gather all the data from the LSMs.
4014 	 * In the single case only get the data from the LSM specified.
4015 	 */
4016 	hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
4017 		if (single && lctx.id != hp->lsmid->id)
4018 			continue;
4019 		entrysize = left;
4020 		if (base)
4021 			uctx = (struct lsm_ctx __user *)(base + total);
4022 		rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
4023 		if (rc == -EOPNOTSUPP) {
4024 			rc = 0;
4025 			continue;
4026 		}
4027 		if (rc == -E2BIG) {
4028 			rc = 0;
4029 			left = 0;
4030 			toobig = true;
4031 		} else if (rc < 0)
4032 			return rc;
4033 		else
4034 			left -= entrysize;
4035 
4036 		total += entrysize;
4037 		count += rc;
4038 		if (single)
4039 			break;
4040 	}
4041 	if (put_user(total, size))
4042 		return -EFAULT;
4043 	if (toobig)
4044 		return -E2BIG;
4045 	if (count == 0)
4046 		return LSM_RET_DEFAULT(getselfattr);
4047 	return count;
4048 }
4049 
4050 /*
4051  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4052  */
4053 
4054 /**
4055  * security_setselfattr - Set an LSM attribute on the current process.
4056  * @attr: which attribute to set
4057  * @uctx: the user-space source for the information
4058  * @size: the size of the data
4059  * @flags: reserved for future use, must be 0
4060  *
4061  * Set an LSM attribute for the current process. The LSM, attribute
4062  * and new value are included in @uctx.
4063  *
4064  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4065  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4066  * LSM specific failure.
4067  */
4068 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4069 			 u32 size, u32 flags)
4070 {
4071 	struct security_hook_list *hp;
4072 	struct lsm_ctx *lctx;
4073 	int rc = LSM_RET_DEFAULT(setselfattr);
4074 	u64 required_len;
4075 
4076 	if (flags)
4077 		return -EINVAL;
4078 	if (size < sizeof(*lctx))
4079 		return -EINVAL;
4080 	if (size > PAGE_SIZE)
4081 		return -E2BIG;
4082 
4083 	lctx = memdup_user(uctx, size);
4084 	if (IS_ERR(lctx))
4085 		return PTR_ERR(lctx);
4086 
4087 	if (size < lctx->len ||
4088 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4089 	    lctx->len < required_len) {
4090 		rc = -EINVAL;
4091 		goto free_out;
4092 	}
4093 
4094 	hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4095 		if ((hp->lsmid->id) == lctx->id) {
4096 			rc = hp->hook.setselfattr(attr, lctx, size, flags);
4097 			break;
4098 		}
4099 
4100 free_out:
4101 	kfree(lctx);
4102 	return rc;
4103 }
4104 
4105 /**
4106  * security_getprocattr() - Read an attribute for a task
4107  * @p: the task
4108  * @lsmid: LSM identification
4109  * @name: attribute name
4110  * @value: attribute value
4111  *
4112  * Read attribute @name for task @p and store it into @value if allowed.
4113  *
4114  * Return: Returns the length of @value on success, a negative value otherwise.
4115  */
4116 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4117 			 char **value)
4118 {
4119 	struct security_hook_list *hp;
4120 
4121 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4122 		if (lsmid != 0 && lsmid != hp->lsmid->id)
4123 			continue;
4124 		return hp->hook.getprocattr(p, name, value);
4125 	}
4126 	return LSM_RET_DEFAULT(getprocattr);
4127 }
4128 
4129 /**
4130  * security_setprocattr() - Set an attribute for a task
4131  * @lsmid: LSM identification
4132  * @name: attribute name
4133  * @value: attribute value
4134  * @size: attribute value size
4135  *
4136  * Write (set) the current task's attribute @name to @value, size @size if
4137  * allowed.
4138  *
4139  * Return: Returns bytes written on success, a negative value otherwise.
4140  */
4141 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4142 {
4143 	struct security_hook_list *hp;
4144 
4145 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4146 		if (lsmid != 0 && lsmid != hp->lsmid->id)
4147 			continue;
4148 		return hp->hook.setprocattr(name, value, size);
4149 	}
4150 	return LSM_RET_DEFAULT(setprocattr);
4151 }
4152 
4153 /**
4154  * security_netlink_send() - Save info and check if netlink sending is allowed
4155  * @sk: sending socket
4156  * @skb: netlink message
4157  *
4158  * Save security information for a netlink message so that permission checking
4159  * can be performed when the message is processed.  The security information
4160  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4161  * Also may be used to provide fine grained control over message transmission.
4162  *
4163  * Return: Returns 0 if the information was successfully saved and message is
4164  *         allowed to be transmitted.
4165  */
4166 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4167 {
4168 	return call_int_hook(netlink_send, sk, skb);
4169 }
4170 
4171 /**
4172  * security_ismaclabel() - Check if the named attribute is a MAC label
4173  * @name: full extended attribute name
4174  *
4175  * Check if the extended attribute specified by @name represents a MAC label.
4176  *
4177  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4178  */
4179 int security_ismaclabel(const char *name)
4180 {
4181 	return call_int_hook(ismaclabel, name);
4182 }
4183 EXPORT_SYMBOL(security_ismaclabel);
4184 
4185 /**
4186  * security_secid_to_secctx() - Convert a secid to a secctx
4187  * @secid: secid
4188  * @secdata: secctx
4189  * @seclen: secctx length
4190  *
4191  * Convert secid to security context.  If @secdata is NULL the length of the
4192  * result will be returned in @seclen, but no @secdata will be returned.  This
4193  * does mean that the length could change between calls to check the length and
4194  * the next call which actually allocates and returns the @secdata.
4195  *
4196  * Return: Return 0 on success, error on failure.
4197  */
4198 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4199 {
4200 	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4201 }
4202 EXPORT_SYMBOL(security_secid_to_secctx);
4203 
4204 /**
4205  * security_secctx_to_secid() - Convert a secctx to a secid
4206  * @secdata: secctx
4207  * @seclen: length of secctx
4208  * @secid: secid
4209  *
4210  * Convert security context to secid.
4211  *
4212  * Return: Returns 0 on success, error on failure.
4213  */
4214 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4215 {
4216 	*secid = 0;
4217 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4218 }
4219 EXPORT_SYMBOL(security_secctx_to_secid);
4220 
4221 /**
4222  * security_release_secctx() - Free a secctx buffer
4223  * @secdata: secctx
4224  * @seclen: length of secctx
4225  *
4226  * Release the security context.
4227  */
4228 void security_release_secctx(char *secdata, u32 seclen)
4229 {
4230 	call_void_hook(release_secctx, secdata, seclen);
4231 }
4232 EXPORT_SYMBOL(security_release_secctx);
4233 
4234 /**
4235  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4236  * @inode: inode
4237  *
4238  * Notify the security module that it must revalidate the security context of
4239  * an inode.
4240  */
4241 void security_inode_invalidate_secctx(struct inode *inode)
4242 {
4243 	call_void_hook(inode_invalidate_secctx, inode);
4244 }
4245 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4246 
4247 /**
4248  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4249  * @inode: inode
4250  * @ctx: secctx
4251  * @ctxlen: length of secctx
4252  *
4253  * Notify the security module of what the security context of an inode should
4254  * be.  Initializes the incore security context managed by the security module
4255  * for this inode.  Example usage: NFS client invokes this hook to initialize
4256  * the security context in its incore inode to the value provided by the server
4257  * for the file when the server returned the file's attributes to the client.
4258  * Must be called with inode->i_mutex locked.
4259  *
4260  * Return: Returns 0 on success, error on failure.
4261  */
4262 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4263 {
4264 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4265 }
4266 EXPORT_SYMBOL(security_inode_notifysecctx);
4267 
4268 /**
4269  * security_inode_setsecctx() - Change the security label of an inode
4270  * @dentry: inode
4271  * @ctx: secctx
4272  * @ctxlen: length of secctx
4273  *
4274  * Change the security context of an inode.  Updates the incore security
4275  * context managed by the security module and invokes the fs code as needed
4276  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4277  * context.  Example usage: NFS server invokes this hook to change the security
4278  * context in its incore inode and on the backing filesystem to a value
4279  * provided by the client on a SETATTR operation.  Must be called with
4280  * inode->i_mutex locked.
4281  *
4282  * Return: Returns 0 on success, error on failure.
4283  */
4284 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4285 {
4286 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4287 }
4288 EXPORT_SYMBOL(security_inode_setsecctx);
4289 
4290 /**
4291  * security_inode_getsecctx() - Get the security label of an inode
4292  * @inode: inode
4293  * @ctx: secctx
4294  * @ctxlen: length of secctx
4295  *
4296  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4297  * context for the given @inode.
4298  *
4299  * Return: Returns 0 on success, error on failure.
4300  */
4301 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4302 {
4303 	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4304 }
4305 EXPORT_SYMBOL(security_inode_getsecctx);
4306 
4307 #ifdef CONFIG_WATCH_QUEUE
4308 /**
4309  * security_post_notification() - Check if a watch notification can be posted
4310  * @w_cred: credentials of the task that set the watch
4311  * @cred: credentials of the task which triggered the watch
4312  * @n: the notification
4313  *
4314  * Check to see if a watch notification can be posted to a particular queue.
4315  *
4316  * Return: Returns 0 if permission is granted.
4317  */
4318 int security_post_notification(const struct cred *w_cred,
4319 			       const struct cred *cred,
4320 			       struct watch_notification *n)
4321 {
4322 	return call_int_hook(post_notification, w_cred, cred, n);
4323 }
4324 #endif /* CONFIG_WATCH_QUEUE */
4325 
4326 #ifdef CONFIG_KEY_NOTIFICATIONS
4327 /**
4328  * security_watch_key() - Check if a task is allowed to watch for key events
4329  * @key: the key to watch
4330  *
4331  * Check to see if a process is allowed to watch for event notifications from
4332  * a key or keyring.
4333  *
4334  * Return: Returns 0 if permission is granted.
4335  */
4336 int security_watch_key(struct key *key)
4337 {
4338 	return call_int_hook(watch_key, key);
4339 }
4340 #endif /* CONFIG_KEY_NOTIFICATIONS */
4341 
4342 #ifdef CONFIG_SECURITY_NETWORK
4343 /**
4344  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4345  * @sock: originating sock
4346  * @other: peer sock
4347  * @newsk: new sock
4348  *
4349  * Check permissions before establishing a Unix domain stream connection
4350  * between @sock and @other.
4351  *
4352  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4353  * Linux provides an alternative to the conventional file name space for Unix
4354  * domain sockets.  Whereas binding and connecting to sockets in the file name
4355  * space is mediated by the typical file permissions (and caught by the mknod
4356  * and permission hooks in inode_security_ops), binding and connecting to
4357  * sockets in the abstract name space is completely unmediated.  Sufficient
4358  * control of Unix domain sockets in the abstract name space isn't possible
4359  * using only the socket layer hooks, since we need to know the actual target
4360  * socket, which is not looked up until we are inside the af_unix code.
4361  *
4362  * Return: Returns 0 if permission is granted.
4363  */
4364 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4365 				 struct sock *newsk)
4366 {
4367 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4368 }
4369 EXPORT_SYMBOL(security_unix_stream_connect);
4370 
4371 /**
4372  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4373  * @sock: originating sock
4374  * @other: peer sock
4375  *
4376  * Check permissions before connecting or sending datagrams from @sock to
4377  * @other.
4378  *
4379  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4380  * Linux provides an alternative to the conventional file name space for Unix
4381  * domain sockets.  Whereas binding and connecting to sockets in the file name
4382  * space is mediated by the typical file permissions (and caught by the mknod
4383  * and permission hooks in inode_security_ops), binding and connecting to
4384  * sockets in the abstract name space is completely unmediated.  Sufficient
4385  * control of Unix domain sockets in the abstract name space isn't possible
4386  * using only the socket layer hooks, since we need to know the actual target
4387  * socket, which is not looked up until we are inside the af_unix code.
4388  *
4389  * Return: Returns 0 if permission is granted.
4390  */
4391 int security_unix_may_send(struct socket *sock,  struct socket *other)
4392 {
4393 	return call_int_hook(unix_may_send, sock, other);
4394 }
4395 EXPORT_SYMBOL(security_unix_may_send);
4396 
4397 /**
4398  * security_socket_create() - Check if creating a new socket is allowed
4399  * @family: protocol family
4400  * @type: communications type
4401  * @protocol: requested protocol
4402  * @kern: set to 1 if a kernel socket is requested
4403  *
4404  * Check permissions prior to creating a new socket.
4405  *
4406  * Return: Returns 0 if permission is granted.
4407  */
4408 int security_socket_create(int family, int type, int protocol, int kern)
4409 {
4410 	return call_int_hook(socket_create, family, type, protocol, kern);
4411 }
4412 
4413 /**
4414  * security_socket_post_create() - Initialize a newly created socket
4415  * @sock: socket
4416  * @family: protocol family
4417  * @type: communications type
4418  * @protocol: requested protocol
4419  * @kern: set to 1 if a kernel socket is requested
4420  *
4421  * This hook allows a module to update or allocate a per-socket security
4422  * structure. Note that the security field was not added directly to the socket
4423  * structure, but rather, the socket security information is stored in the
4424  * associated inode.  Typically, the inode alloc_security hook will allocate
4425  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4426  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4427  * information that wasn't available when the inode was allocated.
4428  *
4429  * Return: Returns 0 if permission is granted.
4430  */
4431 int security_socket_post_create(struct socket *sock, int family,
4432 				int type, int protocol, int kern)
4433 {
4434 	return call_int_hook(socket_post_create, sock, family, type,
4435 			     protocol, kern);
4436 }
4437 
4438 /**
4439  * security_socket_socketpair() - Check if creating a socketpair is allowed
4440  * @socka: first socket
4441  * @sockb: second socket
4442  *
4443  * Check permissions before creating a fresh pair of sockets.
4444  *
4445  * Return: Returns 0 if permission is granted and the connection was
4446  *         established.
4447  */
4448 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4449 {
4450 	return call_int_hook(socket_socketpair, socka, sockb);
4451 }
4452 EXPORT_SYMBOL(security_socket_socketpair);
4453 
4454 /**
4455  * security_socket_bind() - Check if a socket bind operation is allowed
4456  * @sock: socket
4457  * @address: requested bind address
4458  * @addrlen: length of address
4459  *
4460  * Check permission before socket protocol layer bind operation is performed
4461  * and the socket @sock is bound to the address specified in the @address
4462  * parameter.
4463  *
4464  * Return: Returns 0 if permission is granted.
4465  */
4466 int security_socket_bind(struct socket *sock,
4467 			 struct sockaddr *address, int addrlen)
4468 {
4469 	return call_int_hook(socket_bind, sock, address, addrlen);
4470 }
4471 
4472 /**
4473  * security_socket_connect() - Check if a socket connect operation is allowed
4474  * @sock: socket
4475  * @address: address of remote connection point
4476  * @addrlen: length of address
4477  *
4478  * Check permission before socket protocol layer connect operation attempts to
4479  * connect socket @sock to a remote address, @address.
4480  *
4481  * Return: Returns 0 if permission is granted.
4482  */
4483 int security_socket_connect(struct socket *sock,
4484 			    struct sockaddr *address, int addrlen)
4485 {
4486 	return call_int_hook(socket_connect, sock, address, addrlen);
4487 }
4488 
4489 /**
4490  * security_socket_listen() - Check if a socket is allowed to listen
4491  * @sock: socket
4492  * @backlog: connection queue size
4493  *
4494  * Check permission before socket protocol layer listen operation.
4495  *
4496  * Return: Returns 0 if permission is granted.
4497  */
4498 int security_socket_listen(struct socket *sock, int backlog)
4499 {
4500 	return call_int_hook(socket_listen, sock, backlog);
4501 }
4502 
4503 /**
4504  * security_socket_accept() - Check if a socket is allowed to accept connections
4505  * @sock: listening socket
4506  * @newsock: newly creation connection socket
4507  *
4508  * Check permission before accepting a new connection.  Note that the new
4509  * socket, @newsock, has been created and some information copied to it, but
4510  * the accept operation has not actually been performed.
4511  *
4512  * Return: Returns 0 if permission is granted.
4513  */
4514 int security_socket_accept(struct socket *sock, struct socket *newsock)
4515 {
4516 	return call_int_hook(socket_accept, sock, newsock);
4517 }
4518 
4519 /**
4520  * security_socket_sendmsg() - Check if sending a message is allowed
4521  * @sock: sending socket
4522  * @msg: message to send
4523  * @size: size of message
4524  *
4525  * Check permission before transmitting a message to another socket.
4526  *
4527  * Return: Returns 0 if permission is granted.
4528  */
4529 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4530 {
4531 	return call_int_hook(socket_sendmsg, sock, msg, size);
4532 }
4533 
4534 /**
4535  * security_socket_recvmsg() - Check if receiving a message is allowed
4536  * @sock: receiving socket
4537  * @msg: message to receive
4538  * @size: size of message
4539  * @flags: operational flags
4540  *
4541  * Check permission before receiving a message from a socket.
4542  *
4543  * Return: Returns 0 if permission is granted.
4544  */
4545 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4546 			    int size, int flags)
4547 {
4548 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4549 }
4550 
4551 /**
4552  * security_socket_getsockname() - Check if reading the socket addr is allowed
4553  * @sock: socket
4554  *
4555  * Check permission before reading the local address (name) of the socket
4556  * object.
4557  *
4558  * Return: Returns 0 if permission is granted.
4559  */
4560 int security_socket_getsockname(struct socket *sock)
4561 {
4562 	return call_int_hook(socket_getsockname, sock);
4563 }
4564 
4565 /**
4566  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4567  * @sock: socket
4568  *
4569  * Check permission before the remote address (name) of a socket object.
4570  *
4571  * Return: Returns 0 if permission is granted.
4572  */
4573 int security_socket_getpeername(struct socket *sock)
4574 {
4575 	return call_int_hook(socket_getpeername, sock);
4576 }
4577 
4578 /**
4579  * security_socket_getsockopt() - Check if reading a socket option is allowed
4580  * @sock: socket
4581  * @level: option's protocol level
4582  * @optname: option name
4583  *
4584  * Check permissions before retrieving the options associated with socket
4585  * @sock.
4586  *
4587  * Return: Returns 0 if permission is granted.
4588  */
4589 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4590 {
4591 	return call_int_hook(socket_getsockopt, sock, level, optname);
4592 }
4593 
4594 /**
4595  * security_socket_setsockopt() - Check if setting a socket option is allowed
4596  * @sock: socket
4597  * @level: option's protocol level
4598  * @optname: option name
4599  *
4600  * Check permissions before setting the options associated with socket @sock.
4601  *
4602  * Return: Returns 0 if permission is granted.
4603  */
4604 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4605 {
4606 	return call_int_hook(socket_setsockopt, sock, level, optname);
4607 }
4608 
4609 /**
4610  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4611  * @sock: socket
4612  * @how: flag indicating how sends and receives are handled
4613  *
4614  * Checks permission before all or part of a connection on the socket @sock is
4615  * shut down.
4616  *
4617  * Return: Returns 0 if permission is granted.
4618  */
4619 int security_socket_shutdown(struct socket *sock, int how)
4620 {
4621 	return call_int_hook(socket_shutdown, sock, how);
4622 }
4623 
4624 /**
4625  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4626  * @sk: destination sock
4627  * @skb: incoming packet
4628  *
4629  * Check permissions on incoming network packets.  This hook is distinct from
4630  * Netfilter's IP input hooks since it is the first time that the incoming
4631  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4632  * sleep inside this hook because some callers hold spinlocks.
4633  *
4634  * Return: Returns 0 if permission is granted.
4635  */
4636 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4637 {
4638 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4639 }
4640 EXPORT_SYMBOL(security_sock_rcv_skb);
4641 
4642 /**
4643  * security_socket_getpeersec_stream() - Get the remote peer label
4644  * @sock: socket
4645  * @optval: destination buffer
4646  * @optlen: size of peer label copied into the buffer
4647  * @len: maximum size of the destination buffer
4648  *
4649  * This hook allows the security module to provide peer socket security state
4650  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4651  * For tcp sockets this can be meaningful if the socket is associated with an
4652  * ipsec SA.
4653  *
4654  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4655  *         values.
4656  */
4657 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4658 				      sockptr_t optlen, unsigned int len)
4659 {
4660 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4661 			     len);
4662 }
4663 
4664 /**
4665  * security_socket_getpeersec_dgram() - Get the remote peer label
4666  * @sock: socket
4667  * @skb: datagram packet
4668  * @secid: remote peer label secid
4669  *
4670  * This hook allows the security module to provide peer socket security state
4671  * for udp sockets on a per-packet basis to userspace via getsockopt
4672  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4673  * option via getsockopt. It can then retrieve the security state returned by
4674  * this hook for a packet via the SCM_SECURITY ancillary message type.
4675  *
4676  * Return: Returns 0 on success, error on failure.
4677  */
4678 int security_socket_getpeersec_dgram(struct socket *sock,
4679 				     struct sk_buff *skb, u32 *secid)
4680 {
4681 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4682 }
4683 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4684 
4685 /**
4686  * lsm_sock_alloc - allocate a composite sock blob
4687  * @sock: the sock that needs a blob
4688  * @gfp: allocation mode
4689  *
4690  * Allocate the sock blob for all the modules
4691  *
4692  * Returns 0, or -ENOMEM if memory can't be allocated.
4693  */
4694 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4695 {
4696 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4697 }
4698 
4699 /**
4700  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4701  * @sk: sock
4702  * @family: protocol family
4703  * @priority: gfp flags
4704  *
4705  * Allocate and attach a security structure to the sk->sk_security field, which
4706  * is used to copy security attributes between local stream sockets.
4707  *
4708  * Return: Returns 0 on success, error on failure.
4709  */
4710 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4711 {
4712 	int rc = lsm_sock_alloc(sk, priority);
4713 
4714 	if (unlikely(rc))
4715 		return rc;
4716 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4717 	if (unlikely(rc))
4718 		security_sk_free(sk);
4719 	return rc;
4720 }
4721 
4722 /**
4723  * security_sk_free() - Free the sock's LSM blob
4724  * @sk: sock
4725  *
4726  * Deallocate security structure.
4727  */
4728 void security_sk_free(struct sock *sk)
4729 {
4730 	call_void_hook(sk_free_security, sk);
4731 	kfree(sk->sk_security);
4732 	sk->sk_security = NULL;
4733 }
4734 
4735 /**
4736  * security_sk_clone() - Clone a sock's LSM state
4737  * @sk: original sock
4738  * @newsk: target sock
4739  *
4740  * Clone/copy security structure.
4741  */
4742 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4743 {
4744 	call_void_hook(sk_clone_security, sk, newsk);
4745 }
4746 EXPORT_SYMBOL(security_sk_clone);
4747 
4748 /**
4749  * security_sk_classify_flow() - Set a flow's secid based on socket
4750  * @sk: original socket
4751  * @flic: target flow
4752  *
4753  * Set the target flow's secid to socket's secid.
4754  */
4755 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4756 {
4757 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4758 }
4759 EXPORT_SYMBOL(security_sk_classify_flow);
4760 
4761 /**
4762  * security_req_classify_flow() - Set a flow's secid based on request_sock
4763  * @req: request_sock
4764  * @flic: target flow
4765  *
4766  * Sets @flic's secid to @req's secid.
4767  */
4768 void security_req_classify_flow(const struct request_sock *req,
4769 				struct flowi_common *flic)
4770 {
4771 	call_void_hook(req_classify_flow, req, flic);
4772 }
4773 EXPORT_SYMBOL(security_req_classify_flow);
4774 
4775 /**
4776  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4777  * @sk: sock being grafted
4778  * @parent: target parent socket
4779  *
4780  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4781  * LSM state from @parent.
4782  */
4783 void security_sock_graft(struct sock *sk, struct socket *parent)
4784 {
4785 	call_void_hook(sock_graft, sk, parent);
4786 }
4787 EXPORT_SYMBOL(security_sock_graft);
4788 
4789 /**
4790  * security_inet_conn_request() - Set request_sock state using incoming connect
4791  * @sk: parent listening sock
4792  * @skb: incoming connection
4793  * @req: new request_sock
4794  *
4795  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4796  *
4797  * Return: Returns 0 if permission is granted.
4798  */
4799 int security_inet_conn_request(const struct sock *sk,
4800 			       struct sk_buff *skb, struct request_sock *req)
4801 {
4802 	return call_int_hook(inet_conn_request, sk, skb, req);
4803 }
4804 EXPORT_SYMBOL(security_inet_conn_request);
4805 
4806 /**
4807  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4808  * @newsk: new sock
4809  * @req: connection request_sock
4810  *
4811  * Set that LSM state of @sock using the LSM state from @req.
4812  */
4813 void security_inet_csk_clone(struct sock *newsk,
4814 			     const struct request_sock *req)
4815 {
4816 	call_void_hook(inet_csk_clone, newsk, req);
4817 }
4818 
4819 /**
4820  * security_inet_conn_established() - Update sock's LSM state with connection
4821  * @sk: sock
4822  * @skb: connection packet
4823  *
4824  * Update @sock's LSM state to represent a new connection from @skb.
4825  */
4826 void security_inet_conn_established(struct sock *sk,
4827 				    struct sk_buff *skb)
4828 {
4829 	call_void_hook(inet_conn_established, sk, skb);
4830 }
4831 EXPORT_SYMBOL(security_inet_conn_established);
4832 
4833 /**
4834  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4835  * @secid: new secmark value
4836  *
4837  * Check if the process should be allowed to relabel packets to @secid.
4838  *
4839  * Return: Returns 0 if permission is granted.
4840  */
4841 int security_secmark_relabel_packet(u32 secid)
4842 {
4843 	return call_int_hook(secmark_relabel_packet, secid);
4844 }
4845 EXPORT_SYMBOL(security_secmark_relabel_packet);
4846 
4847 /**
4848  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4849  *
4850  * Tells the LSM to increment the number of secmark labeling rules loaded.
4851  */
4852 void security_secmark_refcount_inc(void)
4853 {
4854 	call_void_hook(secmark_refcount_inc);
4855 }
4856 EXPORT_SYMBOL(security_secmark_refcount_inc);
4857 
4858 /**
4859  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4860  *
4861  * Tells the LSM to decrement the number of secmark labeling rules loaded.
4862  */
4863 void security_secmark_refcount_dec(void)
4864 {
4865 	call_void_hook(secmark_refcount_dec);
4866 }
4867 EXPORT_SYMBOL(security_secmark_refcount_dec);
4868 
4869 /**
4870  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4871  * @security: pointer to the LSM blob
4872  *
4873  * This hook allows a module to allocate a security structure for a TUN	device,
4874  * returning the pointer in @security.
4875  *
4876  * Return: Returns a zero on success, negative values on failure.
4877  */
4878 int security_tun_dev_alloc_security(void **security)
4879 {
4880 	int rc;
4881 
4882 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
4883 	if (rc)
4884 		return rc;
4885 
4886 	rc = call_int_hook(tun_dev_alloc_security, *security);
4887 	if (rc) {
4888 		kfree(*security);
4889 		*security = NULL;
4890 	}
4891 	return rc;
4892 }
4893 EXPORT_SYMBOL(security_tun_dev_alloc_security);
4894 
4895 /**
4896  * security_tun_dev_free_security() - Free a TUN device LSM blob
4897  * @security: LSM blob
4898  *
4899  * This hook allows a module to free the security structure for a TUN device.
4900  */
4901 void security_tun_dev_free_security(void *security)
4902 {
4903 	kfree(security);
4904 }
4905 EXPORT_SYMBOL(security_tun_dev_free_security);
4906 
4907 /**
4908  * security_tun_dev_create() - Check if creating a TUN device is allowed
4909  *
4910  * Check permissions prior to creating a new TUN device.
4911  *
4912  * Return: Returns 0 if permission is granted.
4913  */
4914 int security_tun_dev_create(void)
4915 {
4916 	return call_int_hook(tun_dev_create);
4917 }
4918 EXPORT_SYMBOL(security_tun_dev_create);
4919 
4920 /**
4921  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4922  * @security: TUN device LSM blob
4923  *
4924  * Check permissions prior to attaching to a TUN device queue.
4925  *
4926  * Return: Returns 0 if permission is granted.
4927  */
4928 int security_tun_dev_attach_queue(void *security)
4929 {
4930 	return call_int_hook(tun_dev_attach_queue, security);
4931 }
4932 EXPORT_SYMBOL(security_tun_dev_attach_queue);
4933 
4934 /**
4935  * security_tun_dev_attach() - Update TUN device LSM state on attach
4936  * @sk: associated sock
4937  * @security: TUN device LSM blob
4938  *
4939  * This hook can be used by the module to update any security state associated
4940  * with the TUN device's sock structure.
4941  *
4942  * Return: Returns 0 if permission is granted.
4943  */
4944 int security_tun_dev_attach(struct sock *sk, void *security)
4945 {
4946 	return call_int_hook(tun_dev_attach, sk, security);
4947 }
4948 EXPORT_SYMBOL(security_tun_dev_attach);
4949 
4950 /**
4951  * security_tun_dev_open() - Update TUN device LSM state on open
4952  * @security: TUN device LSM blob
4953  *
4954  * This hook can be used by the module to update any security state associated
4955  * with the TUN device's security structure.
4956  *
4957  * Return: Returns 0 if permission is granted.
4958  */
4959 int security_tun_dev_open(void *security)
4960 {
4961 	return call_int_hook(tun_dev_open, security);
4962 }
4963 EXPORT_SYMBOL(security_tun_dev_open);
4964 
4965 /**
4966  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4967  * @asoc: SCTP association
4968  * @skb: packet requesting the association
4969  *
4970  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4971  *
4972  * Return: Returns 0 on success, error on failure.
4973  */
4974 int security_sctp_assoc_request(struct sctp_association *asoc,
4975 				struct sk_buff *skb)
4976 {
4977 	return call_int_hook(sctp_assoc_request, asoc, skb);
4978 }
4979 EXPORT_SYMBOL(security_sctp_assoc_request);
4980 
4981 /**
4982  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4983  * @sk: socket
4984  * @optname: SCTP option to validate
4985  * @address: list of IP addresses to validate
4986  * @addrlen: length of the address list
4987  *
4988  * Validiate permissions required for each address associated with sock	@sk.
4989  * Depending on @optname, the addresses will be treated as either a connect or
4990  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4991  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4992  *
4993  * Return: Returns 0 on success, error on failure.
4994  */
4995 int security_sctp_bind_connect(struct sock *sk, int optname,
4996 			       struct sockaddr *address, int addrlen)
4997 {
4998 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
4999 }
5000 EXPORT_SYMBOL(security_sctp_bind_connect);
5001 
5002 /**
5003  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5004  * @asoc: SCTP association
5005  * @sk: original sock
5006  * @newsk: target sock
5007  *
5008  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5009  * socket) or when a socket is 'peeled off' e.g userspace calls
5010  * sctp_peeloff(3).
5011  */
5012 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5013 			    struct sock *newsk)
5014 {
5015 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5016 }
5017 EXPORT_SYMBOL(security_sctp_sk_clone);
5018 
5019 /**
5020  * security_sctp_assoc_established() - Update LSM state when assoc established
5021  * @asoc: SCTP association
5022  * @skb: packet establishing the association
5023  *
5024  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5025  * security module.
5026  *
5027  * Return: Returns 0 if permission is granted.
5028  */
5029 int security_sctp_assoc_established(struct sctp_association *asoc,
5030 				    struct sk_buff *skb)
5031 {
5032 	return call_int_hook(sctp_assoc_established, asoc, skb);
5033 }
5034 EXPORT_SYMBOL(security_sctp_assoc_established);
5035 
5036 /**
5037  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5038  * @sk: the owning MPTCP socket
5039  * @ssk: the new subflow
5040  *
5041  * Update the labeling for the given MPTCP subflow, to match the one of the
5042  * owning MPTCP socket. This hook has to be called after the socket creation and
5043  * initialization via the security_socket_create() and
5044  * security_socket_post_create() LSM hooks.
5045  *
5046  * Return: Returns 0 on success or a negative error code on failure.
5047  */
5048 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5049 {
5050 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5051 }
5052 
5053 #endif	/* CONFIG_SECURITY_NETWORK */
5054 
5055 #ifdef CONFIG_SECURITY_INFINIBAND
5056 /**
5057  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5058  * @sec: LSM blob
5059  * @subnet_prefix: subnet prefix of the port
5060  * @pkey: IB pkey
5061  *
5062  * Check permission to access a pkey when modifying a QP.
5063  *
5064  * Return: Returns 0 if permission is granted.
5065  */
5066 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5067 {
5068 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5069 }
5070 EXPORT_SYMBOL(security_ib_pkey_access);
5071 
5072 /**
5073  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5074  * @sec: LSM blob
5075  * @dev_name: IB device name
5076  * @port_num: port number
5077  *
5078  * Check permissions to send and receive SMPs on a end port.
5079  *
5080  * Return: Returns 0 if permission is granted.
5081  */
5082 int security_ib_endport_manage_subnet(void *sec,
5083 				      const char *dev_name, u8 port_num)
5084 {
5085 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5086 }
5087 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5088 
5089 /**
5090  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5091  * @sec: LSM blob
5092  *
5093  * Allocate a security structure for Infiniband objects.
5094  *
5095  * Return: Returns 0 on success, non-zero on failure.
5096  */
5097 int security_ib_alloc_security(void **sec)
5098 {
5099 	int rc;
5100 
5101 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5102 	if (rc)
5103 		return rc;
5104 
5105 	rc = call_int_hook(ib_alloc_security, *sec);
5106 	if (rc) {
5107 		kfree(*sec);
5108 		*sec = NULL;
5109 	}
5110 	return rc;
5111 }
5112 EXPORT_SYMBOL(security_ib_alloc_security);
5113 
5114 /**
5115  * security_ib_free_security() - Free an Infiniband LSM blob
5116  * @sec: LSM blob
5117  *
5118  * Deallocate an Infiniband security structure.
5119  */
5120 void security_ib_free_security(void *sec)
5121 {
5122 	kfree(sec);
5123 }
5124 EXPORT_SYMBOL(security_ib_free_security);
5125 #endif	/* CONFIG_SECURITY_INFINIBAND */
5126 
5127 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5128 /**
5129  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5130  * @ctxp: xfrm security context being added to the SPD
5131  * @sec_ctx: security label provided by userspace
5132  * @gfp: gfp flags
5133  *
5134  * Allocate a security structure to the xp->security field; the security field
5135  * is initialized to NULL when the xfrm_policy is allocated.
5136  *
5137  * Return:  Return 0 if operation was successful.
5138  */
5139 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5140 			       struct xfrm_user_sec_ctx *sec_ctx,
5141 			       gfp_t gfp)
5142 {
5143 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5144 }
5145 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5146 
5147 /**
5148  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5149  * @old_ctx: xfrm security context
5150  * @new_ctxp: target xfrm security context
5151  *
5152  * Allocate a security structure in new_ctxp that contains the information from
5153  * the old_ctx structure.
5154  *
5155  * Return: Return 0 if operation was successful.
5156  */
5157 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5158 			       struct xfrm_sec_ctx **new_ctxp)
5159 {
5160 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5161 }
5162 
5163 /**
5164  * security_xfrm_policy_free() - Free a xfrm security context
5165  * @ctx: xfrm security context
5166  *
5167  * Free LSM resources associated with @ctx.
5168  */
5169 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5170 {
5171 	call_void_hook(xfrm_policy_free_security, ctx);
5172 }
5173 EXPORT_SYMBOL(security_xfrm_policy_free);
5174 
5175 /**
5176  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5177  * @ctx: xfrm security context
5178  *
5179  * Authorize deletion of a SPD entry.
5180  *
5181  * Return: Returns 0 if permission is granted.
5182  */
5183 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5184 {
5185 	return call_int_hook(xfrm_policy_delete_security, ctx);
5186 }
5187 
5188 /**
5189  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5190  * @x: xfrm state being added to the SAD
5191  * @sec_ctx: security label provided by userspace
5192  *
5193  * Allocate a security structure to the @x->security field; the security field
5194  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5195  * correspond to @sec_ctx.
5196  *
5197  * Return: Return 0 if operation was successful.
5198  */
5199 int security_xfrm_state_alloc(struct xfrm_state *x,
5200 			      struct xfrm_user_sec_ctx *sec_ctx)
5201 {
5202 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5203 }
5204 EXPORT_SYMBOL(security_xfrm_state_alloc);
5205 
5206 /**
5207  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5208  * @x: xfrm state being added to the SAD
5209  * @polsec: associated policy's security context
5210  * @secid: secid from the flow
5211  *
5212  * Allocate a security structure to the x->security field; the security field
5213  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5214  * correspond to secid.
5215  *
5216  * Return: Returns 0 if operation was successful.
5217  */
5218 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5219 				      struct xfrm_sec_ctx *polsec, u32 secid)
5220 {
5221 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5222 }
5223 
5224 /**
5225  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5226  * @x: xfrm state
5227  *
5228  * Authorize deletion of x->security.
5229  *
5230  * Return: Returns 0 if permission is granted.
5231  */
5232 int security_xfrm_state_delete(struct xfrm_state *x)
5233 {
5234 	return call_int_hook(xfrm_state_delete_security, x);
5235 }
5236 EXPORT_SYMBOL(security_xfrm_state_delete);
5237 
5238 /**
5239  * security_xfrm_state_free() - Free a xfrm state
5240  * @x: xfrm state
5241  *
5242  * Deallocate x->security.
5243  */
5244 void security_xfrm_state_free(struct xfrm_state *x)
5245 {
5246 	call_void_hook(xfrm_state_free_security, x);
5247 }
5248 
5249 /**
5250  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5251  * @ctx: target xfrm security context
5252  * @fl_secid: flow secid used to authorize access
5253  *
5254  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5255  * packet.  The hook is called when selecting either a per-socket policy or a
5256  * generic xfrm policy.
5257  *
5258  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5259  *         other errors.
5260  */
5261 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5262 {
5263 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5264 }
5265 
5266 /**
5267  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5268  * @x: xfrm state to match
5269  * @xp: xfrm policy to check for a match
5270  * @flic: flow to check for a match.
5271  *
5272  * Check @xp and @flic for a match with @x.
5273  *
5274  * Return: Returns 1 if there is a match.
5275  */
5276 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5277 				       struct xfrm_policy *xp,
5278 				       const struct flowi_common *flic)
5279 {
5280 	struct security_hook_list *hp;
5281 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5282 
5283 	/*
5284 	 * Since this function is expected to return 0 or 1, the judgment
5285 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5286 	 * we can use the first LSM's judgment because currently only SELinux
5287 	 * supplies this call.
5288 	 *
5289 	 * For speed optimization, we explicitly break the loop rather than
5290 	 * using the macro
5291 	 */
5292 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5293 			     list) {
5294 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5295 		break;
5296 	}
5297 	return rc;
5298 }
5299 
5300 /**
5301  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5302  * @skb: xfrm packet
5303  * @secid: secid
5304  *
5305  * Decode the packet in @skb and return the security label in @secid.
5306  *
5307  * Return: Return 0 if all xfrms used have the same secid.
5308  */
5309 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5310 {
5311 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5312 }
5313 
5314 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5315 {
5316 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5317 			       0);
5318 
5319 	BUG_ON(rc);
5320 }
5321 EXPORT_SYMBOL(security_skb_classify_flow);
5322 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5323 
5324 #ifdef CONFIG_KEYS
5325 /**
5326  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5327  * @key: key
5328  * @cred: credentials
5329  * @flags: allocation flags
5330  *
5331  * Permit allocation of a key and assign security data. Note that key does not
5332  * have a serial number assigned at this point.
5333  *
5334  * Return: Return 0 if permission is granted, -ve error otherwise.
5335  */
5336 int security_key_alloc(struct key *key, const struct cred *cred,
5337 		       unsigned long flags)
5338 {
5339 	int rc = lsm_key_alloc(key);
5340 
5341 	if (unlikely(rc))
5342 		return rc;
5343 	rc = call_int_hook(key_alloc, key, cred, flags);
5344 	if (unlikely(rc))
5345 		security_key_free(key);
5346 	return rc;
5347 }
5348 
5349 /**
5350  * security_key_free() - Free a kernel key LSM blob
5351  * @key: key
5352  *
5353  * Notification of destruction; free security data.
5354  */
5355 void security_key_free(struct key *key)
5356 {
5357 	kfree(key->security);
5358 	key->security = NULL;
5359 }
5360 
5361 /**
5362  * security_key_permission() - Check if a kernel key operation is allowed
5363  * @key_ref: key reference
5364  * @cred: credentials of actor requesting access
5365  * @need_perm: requested permissions
5366  *
5367  * See whether a specific operational right is granted to a process on a key.
5368  *
5369  * Return: Return 0 if permission is granted, -ve error otherwise.
5370  */
5371 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5372 			    enum key_need_perm need_perm)
5373 {
5374 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5375 }
5376 
5377 /**
5378  * security_key_getsecurity() - Get the key's security label
5379  * @key: key
5380  * @buffer: security label buffer
5381  *
5382  * Get a textual representation of the security context attached to a key for
5383  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5384  * storage for the NUL-terminated string and the caller should free it.
5385  *
5386  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5387  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5388  *         there is no security label assigned to the key.
5389  */
5390 int security_key_getsecurity(struct key *key, char **buffer)
5391 {
5392 	*buffer = NULL;
5393 	return call_int_hook(key_getsecurity, key, buffer);
5394 }
5395 
5396 /**
5397  * security_key_post_create_or_update() - Notification of key create or update
5398  * @keyring: keyring to which the key is linked to
5399  * @key: created or updated key
5400  * @payload: data used to instantiate or update the key
5401  * @payload_len: length of payload
5402  * @flags: key flags
5403  * @create: flag indicating whether the key was created or updated
5404  *
5405  * Notify the caller of a key creation or update.
5406  */
5407 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5408 					const void *payload, size_t payload_len,
5409 					unsigned long flags, bool create)
5410 {
5411 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5412 		       payload_len, flags, create);
5413 }
5414 #endif	/* CONFIG_KEYS */
5415 
5416 #ifdef CONFIG_AUDIT
5417 /**
5418  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5419  * @field: audit action
5420  * @op: rule operator
5421  * @rulestr: rule context
5422  * @lsmrule: receive buffer for audit rule struct
5423  * @gfp: GFP flag used for kmalloc
5424  *
5425  * Allocate and initialize an LSM audit rule structure.
5426  *
5427  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5428  *         an invalid rule.
5429  */
5430 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5431 			     gfp_t gfp)
5432 {
5433 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5434 }
5435 
5436 /**
5437  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5438  * @krule: audit rule
5439  *
5440  * Specifies whether given @krule contains any fields related to the current
5441  * LSM.
5442  *
5443  * Return: Returns 1 in case of relation found, 0 otherwise.
5444  */
5445 int security_audit_rule_known(struct audit_krule *krule)
5446 {
5447 	return call_int_hook(audit_rule_known, krule);
5448 }
5449 
5450 /**
5451  * security_audit_rule_free() - Free an LSM audit rule struct
5452  * @lsmrule: audit rule struct
5453  *
5454  * Deallocate the LSM audit rule structure previously allocated by
5455  * audit_rule_init().
5456  */
5457 void security_audit_rule_free(void *lsmrule)
5458 {
5459 	call_void_hook(audit_rule_free, lsmrule);
5460 }
5461 
5462 /**
5463  * security_audit_rule_match() - Check if a label matches an audit rule
5464  * @secid: security label
5465  * @field: LSM audit field
5466  * @op: matching operator
5467  * @lsmrule: audit rule
5468  *
5469  * Determine if given @secid matches a rule previously approved by
5470  * security_audit_rule_known().
5471  *
5472  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5473  *         failure.
5474  */
5475 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5476 {
5477 	return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5478 }
5479 #endif /* CONFIG_AUDIT */
5480 
5481 #ifdef CONFIG_BPF_SYSCALL
5482 /**
5483  * security_bpf() - Check if the bpf syscall operation is allowed
5484  * @cmd: command
5485  * @attr: bpf attribute
5486  * @size: size
5487  *
5488  * Do a initial check for all bpf syscalls after the attribute is copied into
5489  * the kernel. The actual security module can implement their own rules to
5490  * check the specific cmd they need.
5491  *
5492  * Return: Returns 0 if permission is granted.
5493  */
5494 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5495 {
5496 	return call_int_hook(bpf, cmd, attr, size);
5497 }
5498 
5499 /**
5500  * security_bpf_map() - Check if access to a bpf map is allowed
5501  * @map: bpf map
5502  * @fmode: mode
5503  *
5504  * Do a check when the kernel generates and returns a file descriptor for eBPF
5505  * maps.
5506  *
5507  * Return: Returns 0 if permission is granted.
5508  */
5509 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5510 {
5511 	return call_int_hook(bpf_map, map, fmode);
5512 }
5513 
5514 /**
5515  * security_bpf_prog() - Check if access to a bpf program is allowed
5516  * @prog: bpf program
5517  *
5518  * Do a check when the kernel generates and returns a file descriptor for eBPF
5519  * programs.
5520  *
5521  * Return: Returns 0 if permission is granted.
5522  */
5523 int security_bpf_prog(struct bpf_prog *prog)
5524 {
5525 	return call_int_hook(bpf_prog, prog);
5526 }
5527 
5528 /**
5529  * security_bpf_map_create() - Check if BPF map creation is allowed
5530  * @map: BPF map object
5531  * @attr: BPF syscall attributes used to create BPF map
5532  * @token: BPF token used to grant user access
5533  *
5534  * Do a check when the kernel creates a new BPF map. This is also the
5535  * point where LSM blob is allocated for LSMs that need them.
5536  *
5537  * Return: Returns 0 on success, error on failure.
5538  */
5539 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5540 			    struct bpf_token *token)
5541 {
5542 	return call_int_hook(bpf_map_create, map, attr, token);
5543 }
5544 
5545 /**
5546  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5547  * @prog: BPF program object
5548  * @attr: BPF syscall attributes used to create BPF program
5549  * @token: BPF token used to grant user access to BPF subsystem
5550  *
5551  * Perform an access control check when the kernel loads a BPF program and
5552  * allocates associated BPF program object. This hook is also responsible for
5553  * allocating any required LSM state for the BPF program.
5554  *
5555  * Return: Returns 0 on success, error on failure.
5556  */
5557 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5558 			   struct bpf_token *token)
5559 {
5560 	return call_int_hook(bpf_prog_load, prog, attr, token);
5561 }
5562 
5563 /**
5564  * security_bpf_token_create() - Check if creating of BPF token is allowed
5565  * @token: BPF token object
5566  * @attr: BPF syscall attributes used to create BPF token
5567  * @path: path pointing to BPF FS mount point from which BPF token is created
5568  *
5569  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5570  * instance. This is also the point where LSM blob can be allocated for LSMs.
5571  *
5572  * Return: Returns 0 on success, error on failure.
5573  */
5574 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5575 			      struct path *path)
5576 {
5577 	return call_int_hook(bpf_token_create, token, attr, path);
5578 }
5579 
5580 /**
5581  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5582  * requested BPF syscall command
5583  * @token: BPF token object
5584  * @cmd: BPF syscall command requested to be delegated by BPF token
5585  *
5586  * Do a check when the kernel decides whether provided BPF token should allow
5587  * delegation of requested BPF syscall command.
5588  *
5589  * Return: Returns 0 on success, error on failure.
5590  */
5591 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5592 {
5593 	return call_int_hook(bpf_token_cmd, token, cmd);
5594 }
5595 
5596 /**
5597  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5598  * requested BPF-related capability
5599  * @token: BPF token object
5600  * @cap: capabilities requested to be delegated by BPF token
5601  *
5602  * Do a check when the kernel decides whether provided BPF token should allow
5603  * delegation of requested BPF-related capabilities.
5604  *
5605  * Return: Returns 0 on success, error on failure.
5606  */
5607 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5608 {
5609 	return call_int_hook(bpf_token_capable, token, cap);
5610 }
5611 
5612 /**
5613  * security_bpf_map_free() - Free a bpf map's LSM blob
5614  * @map: bpf map
5615  *
5616  * Clean up the security information stored inside bpf map.
5617  */
5618 void security_bpf_map_free(struct bpf_map *map)
5619 {
5620 	call_void_hook(bpf_map_free, map);
5621 }
5622 
5623 /**
5624  * security_bpf_prog_free() - Free a BPF program's LSM blob
5625  * @prog: BPF program struct
5626  *
5627  * Clean up the security information stored inside BPF program.
5628  */
5629 void security_bpf_prog_free(struct bpf_prog *prog)
5630 {
5631 	call_void_hook(bpf_prog_free, prog);
5632 }
5633 
5634 /**
5635  * security_bpf_token_free() - Free a BPF token's LSM blob
5636  * @token: BPF token struct
5637  *
5638  * Clean up the security information stored inside BPF token.
5639  */
5640 void security_bpf_token_free(struct bpf_token *token)
5641 {
5642 	call_void_hook(bpf_token_free, token);
5643 }
5644 #endif /* CONFIG_BPF_SYSCALL */
5645 
5646 /**
5647  * security_locked_down() - Check if a kernel feature is allowed
5648  * @what: requested kernel feature
5649  *
5650  * Determine whether a kernel feature that potentially enables arbitrary code
5651  * execution in kernel space should be permitted.
5652  *
5653  * Return: Returns 0 if permission is granted.
5654  */
5655 int security_locked_down(enum lockdown_reason what)
5656 {
5657 	return call_int_hook(locked_down, what);
5658 }
5659 EXPORT_SYMBOL(security_locked_down);
5660 
5661 #ifdef CONFIG_PERF_EVENTS
5662 /**
5663  * security_perf_event_open() - Check if a perf event open is allowed
5664  * @attr: perf event attribute
5665  * @type: type of event
5666  *
5667  * Check whether the @type of perf_event_open syscall is allowed.
5668  *
5669  * Return: Returns 0 if permission is granted.
5670  */
5671 int security_perf_event_open(struct perf_event_attr *attr, int type)
5672 {
5673 	return call_int_hook(perf_event_open, attr, type);
5674 }
5675 
5676 /**
5677  * security_perf_event_alloc() - Allocate a perf event LSM blob
5678  * @event: perf event
5679  *
5680  * Allocate and save perf_event security info.
5681  *
5682  * Return: Returns 0 on success, error on failure.
5683  */
5684 int security_perf_event_alloc(struct perf_event *event)
5685 {
5686 	int rc;
5687 
5688 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5689 			    GFP_KERNEL);
5690 	if (rc)
5691 		return rc;
5692 
5693 	rc = call_int_hook(perf_event_alloc, event);
5694 	if (rc) {
5695 		kfree(event->security);
5696 		event->security = NULL;
5697 	}
5698 	return rc;
5699 }
5700 
5701 /**
5702  * security_perf_event_free() - Free a perf event LSM blob
5703  * @event: perf event
5704  *
5705  * Release (free) perf_event security info.
5706  */
5707 void security_perf_event_free(struct perf_event *event)
5708 {
5709 	kfree(event->security);
5710 	event->security = NULL;
5711 }
5712 
5713 /**
5714  * security_perf_event_read() - Check if reading a perf event label is allowed
5715  * @event: perf event
5716  *
5717  * Read perf_event security info if allowed.
5718  *
5719  * Return: Returns 0 if permission is granted.
5720  */
5721 int security_perf_event_read(struct perf_event *event)
5722 {
5723 	return call_int_hook(perf_event_read, event);
5724 }
5725 
5726 /**
5727  * security_perf_event_write() - Check if writing a perf event label is allowed
5728  * @event: perf event
5729  *
5730  * Write perf_event security info if allowed.
5731  *
5732  * Return: Returns 0 if permission is granted.
5733  */
5734 int security_perf_event_write(struct perf_event *event)
5735 {
5736 	return call_int_hook(perf_event_write, event);
5737 }
5738 #endif /* CONFIG_PERF_EVENTS */
5739 
5740 #ifdef CONFIG_IO_URING
5741 /**
5742  * security_uring_override_creds() - Check if overriding creds is allowed
5743  * @new: new credentials
5744  *
5745  * Check if the current task, executing an io_uring operation, is allowed to
5746  * override it's credentials with @new.
5747  *
5748  * Return: Returns 0 if permission is granted.
5749  */
5750 int security_uring_override_creds(const struct cred *new)
5751 {
5752 	return call_int_hook(uring_override_creds, new);
5753 }
5754 
5755 /**
5756  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5757  *
5758  * Check whether the current task is allowed to spawn a io_uring polling thread
5759  * (IORING_SETUP_SQPOLL).
5760  *
5761  * Return: Returns 0 if permission is granted.
5762  */
5763 int security_uring_sqpoll(void)
5764 {
5765 	return call_int_hook(uring_sqpoll);
5766 }
5767 
5768 /**
5769  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5770  * @ioucmd: command
5771  *
5772  * Check whether the file_operations uring_cmd is allowed to run.
5773  *
5774  * Return: Returns 0 if permission is granted.
5775  */
5776 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5777 {
5778 	return call_int_hook(uring_cmd, ioucmd);
5779 }
5780 #endif /* CONFIG_IO_URING */
5781