1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Landlock LSM - Filesystem management and hooks 4 * 5 * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net> 6 * Copyright © 2018-2020 ANSSI 7 * Copyright © 2021-2022 Microsoft Corporation 8 */ 9 10 #include <linux/atomic.h> 11 #include <linux/bitops.h> 12 #include <linux/bits.h> 13 #include <linux/compiler_types.h> 14 #include <linux/dcache.h> 15 #include <linux/err.h> 16 #include <linux/fs.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/limits.h> 20 #include <linux/list.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/mount.h> 23 #include <linux/namei.h> 24 #include <linux/path.h> 25 #include <linux/rcupdate.h> 26 #include <linux/spinlock.h> 27 #include <linux/stat.h> 28 #include <linux/types.h> 29 #include <linux/wait_bit.h> 30 #include <linux/workqueue.h> 31 #include <uapi/linux/landlock.h> 32 33 #include "common.h" 34 #include "cred.h" 35 #include "fs.h" 36 #include "limits.h" 37 #include "object.h" 38 #include "ruleset.h" 39 #include "setup.h" 40 41 /* Underlying object management */ 42 43 static void release_inode(struct landlock_object *const object) 44 __releases(object->lock) 45 { 46 struct inode *const inode = object->underobj; 47 struct super_block *sb; 48 49 if (!inode) { 50 spin_unlock(&object->lock); 51 return; 52 } 53 54 /* 55 * Protects against concurrent use by hook_sb_delete() of the reference 56 * to the underlying inode. 57 */ 58 object->underobj = NULL; 59 /* 60 * Makes sure that if the filesystem is concurrently unmounted, 61 * hook_sb_delete() will wait for us to finish iput(). 62 */ 63 sb = inode->i_sb; 64 atomic_long_inc(&landlock_superblock(sb)->inode_refs); 65 spin_unlock(&object->lock); 66 /* 67 * Because object->underobj was not NULL, hook_sb_delete() and 68 * get_inode_object() guarantee that it is safe to reset 69 * landlock_inode(inode)->object while it is not NULL. It is therefore 70 * not necessary to lock inode->i_lock. 71 */ 72 rcu_assign_pointer(landlock_inode(inode)->object, NULL); 73 /* 74 * Now, new rules can safely be tied to @inode with get_inode_object(). 75 */ 76 77 iput(inode); 78 if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs)) 79 wake_up_var(&landlock_superblock(sb)->inode_refs); 80 } 81 82 static const struct landlock_object_underops landlock_fs_underops = { 83 .release = release_inode 84 }; 85 86 /* Ruleset management */ 87 88 static struct landlock_object *get_inode_object(struct inode *const inode) 89 { 90 struct landlock_object *object, *new_object; 91 struct landlock_inode_security *inode_sec = landlock_inode(inode); 92 93 rcu_read_lock(); 94 retry: 95 object = rcu_dereference(inode_sec->object); 96 if (object) { 97 if (likely(refcount_inc_not_zero(&object->usage))) { 98 rcu_read_unlock(); 99 return object; 100 } 101 /* 102 * We are racing with release_inode(), the object is going 103 * away. Wait for release_inode(), then retry. 104 */ 105 spin_lock(&object->lock); 106 spin_unlock(&object->lock); 107 goto retry; 108 } 109 rcu_read_unlock(); 110 111 /* 112 * If there is no object tied to @inode, then create a new one (without 113 * holding any locks). 114 */ 115 new_object = landlock_create_object(&landlock_fs_underops, inode); 116 if (IS_ERR(new_object)) 117 return new_object; 118 119 /* 120 * Protects against concurrent calls to get_inode_object() or 121 * hook_sb_delete(). 122 */ 123 spin_lock(&inode->i_lock); 124 if (unlikely(rcu_access_pointer(inode_sec->object))) { 125 /* Someone else just created the object, bail out and retry. */ 126 spin_unlock(&inode->i_lock); 127 kfree(new_object); 128 129 rcu_read_lock(); 130 goto retry; 131 } 132 133 /* 134 * @inode will be released by hook_sb_delete() on its superblock 135 * shutdown, or by release_inode() when no more ruleset references the 136 * related object. 137 */ 138 ihold(inode); 139 rcu_assign_pointer(inode_sec->object, new_object); 140 spin_unlock(&inode->i_lock); 141 return new_object; 142 } 143 144 /* All access rights that can be tied to files. */ 145 /* clang-format off */ 146 #define ACCESS_FILE ( \ 147 LANDLOCK_ACCESS_FS_EXECUTE | \ 148 LANDLOCK_ACCESS_FS_WRITE_FILE | \ 149 LANDLOCK_ACCESS_FS_READ_FILE | \ 150 LANDLOCK_ACCESS_FS_TRUNCATE) 151 /* clang-format on */ 152 153 /* 154 * @path: Should have been checked by get_path_from_fd(). 155 */ 156 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset, 157 const struct path *const path, 158 access_mask_t access_rights) 159 { 160 int err; 161 struct landlock_id id = { 162 .type = LANDLOCK_KEY_INODE, 163 }; 164 165 /* Files only get access rights that make sense. */ 166 if (!d_is_dir(path->dentry) && 167 (access_rights | ACCESS_FILE) != ACCESS_FILE) 168 return -EINVAL; 169 if (WARN_ON_ONCE(ruleset->num_layers != 1)) 170 return -EINVAL; 171 172 /* Transforms relative access rights to absolute ones. */ 173 access_rights |= LANDLOCK_MASK_ACCESS_FS & 174 ~landlock_get_fs_access_mask(ruleset, 0); 175 id.key.object = get_inode_object(d_backing_inode(path->dentry)); 176 if (IS_ERR(id.key.object)) 177 return PTR_ERR(id.key.object); 178 mutex_lock(&ruleset->lock); 179 err = landlock_insert_rule(ruleset, id, access_rights); 180 mutex_unlock(&ruleset->lock); 181 /* 182 * No need to check for an error because landlock_insert_rule() 183 * increments the refcount for the new object if needed. 184 */ 185 landlock_put_object(id.key.object); 186 return err; 187 } 188 189 /* Access-control management */ 190 191 /* 192 * The lifetime of the returned rule is tied to @domain. 193 * 194 * Returns NULL if no rule is found or if @dentry is negative. 195 */ 196 static const struct landlock_rule * 197 find_rule(const struct landlock_ruleset *const domain, 198 const struct dentry *const dentry) 199 { 200 const struct landlock_rule *rule; 201 const struct inode *inode; 202 struct landlock_id id = { 203 .type = LANDLOCK_KEY_INODE, 204 }; 205 206 /* Ignores nonexistent leafs. */ 207 if (d_is_negative(dentry)) 208 return NULL; 209 210 inode = d_backing_inode(dentry); 211 rcu_read_lock(); 212 id.key.object = rcu_dereference(landlock_inode(inode)->object); 213 rule = landlock_find_rule(domain, id); 214 rcu_read_unlock(); 215 return rule; 216 } 217 218 /* 219 * Allows access to pseudo filesystems that will never be mountable (e.g. 220 * sockfs, pipefs), but can still be reachable through 221 * /proc/<pid>/fd/<file-descriptor> 222 */ 223 static bool is_nouser_or_private(const struct dentry *dentry) 224 { 225 return (dentry->d_sb->s_flags & SB_NOUSER) || 226 (d_is_positive(dentry) && 227 unlikely(IS_PRIVATE(d_backing_inode(dentry)))); 228 } 229 230 static access_mask_t 231 get_raw_handled_fs_accesses(const struct landlock_ruleset *const domain) 232 { 233 access_mask_t access_dom = 0; 234 size_t layer_level; 235 236 for (layer_level = 0; layer_level < domain->num_layers; layer_level++) 237 access_dom |= 238 landlock_get_raw_fs_access_mask(domain, layer_level); 239 return access_dom; 240 } 241 242 static access_mask_t 243 get_handled_fs_accesses(const struct landlock_ruleset *const domain) 244 { 245 /* Handles all initially denied by default access rights. */ 246 return get_raw_handled_fs_accesses(domain) | 247 LANDLOCK_ACCESS_FS_INITIALLY_DENIED; 248 } 249 250 static const struct landlock_ruleset *get_current_fs_domain(void) 251 { 252 const struct landlock_ruleset *const dom = 253 landlock_get_current_domain(); 254 255 if (!dom || !get_raw_handled_fs_accesses(dom)) 256 return NULL; 257 258 return dom; 259 } 260 261 /* 262 * Check that a destination file hierarchy has more restrictions than a source 263 * file hierarchy. This is only used for link and rename actions. 264 * 265 * @layer_masks_child2: Optional child masks. 266 */ 267 static bool no_more_access( 268 const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], 269 const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS], 270 const bool child1_is_directory, 271 const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], 272 const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS], 273 const bool child2_is_directory) 274 { 275 unsigned long access_bit; 276 277 for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2); 278 access_bit++) { 279 /* Ignores accesses that only make sense for directories. */ 280 const bool is_file_access = 281 !!(BIT_ULL(access_bit) & ACCESS_FILE); 282 283 if (child1_is_directory || is_file_access) { 284 /* 285 * Checks if the destination restrictions are a 286 * superset of the source ones (i.e. inherited access 287 * rights without child exceptions): 288 * restrictions(parent2) >= restrictions(child1) 289 */ 290 if ((((*layer_masks_parent1)[access_bit] & 291 (*layer_masks_child1)[access_bit]) | 292 (*layer_masks_parent2)[access_bit]) != 293 (*layer_masks_parent2)[access_bit]) 294 return false; 295 } 296 297 if (!layer_masks_child2) 298 continue; 299 if (child2_is_directory || is_file_access) { 300 /* 301 * Checks inverted restrictions for RENAME_EXCHANGE: 302 * restrictions(parent1) >= restrictions(child2) 303 */ 304 if ((((*layer_masks_parent2)[access_bit] & 305 (*layer_masks_child2)[access_bit]) | 306 (*layer_masks_parent1)[access_bit]) != 307 (*layer_masks_parent1)[access_bit]) 308 return false; 309 } 310 } 311 return true; 312 } 313 314 /* 315 * Removes @layer_masks accesses that are not requested. 316 * 317 * Returns true if the request is allowed, false otherwise. 318 */ 319 static bool 320 scope_to_request(const access_mask_t access_request, 321 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 322 { 323 const unsigned long access_req = access_request; 324 unsigned long access_bit; 325 326 if (WARN_ON_ONCE(!layer_masks)) 327 return true; 328 329 for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks)) 330 (*layer_masks)[access_bit] = 0; 331 return !memchr_inv(layer_masks, 0, sizeof(*layer_masks)); 332 } 333 334 /* 335 * Returns true if there is at least one access right different than 336 * LANDLOCK_ACCESS_FS_REFER. 337 */ 338 static bool 339 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS], 340 const access_mask_t access_request) 341 { 342 unsigned long access_bit; 343 /* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */ 344 const unsigned long access_check = access_request & 345 ~LANDLOCK_ACCESS_FS_REFER; 346 347 if (!layer_masks) 348 return false; 349 350 for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) { 351 if ((*layer_masks)[access_bit]) 352 return true; 353 } 354 return false; 355 } 356 357 /** 358 * is_access_to_paths_allowed - Check accesses for requests with a common path 359 * 360 * @domain: Domain to check against. 361 * @path: File hierarchy to walk through. 362 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is 363 * equal to @layer_masks_parent2 (if any). This is tied to the unique 364 * requested path for most actions, or the source in case of a refer action 365 * (i.e. rename or link), or the source and destination in case of 366 * RENAME_EXCHANGE. 367 * @layer_masks_parent1: Pointer to a matrix of layer masks per access 368 * masks, identifying the layers that forbid a specific access. Bits from 369 * this matrix can be unset according to the @path walk. An empty matrix 370 * means that @domain allows all possible Landlock accesses (i.e. not only 371 * those identified by @access_request_parent1). This matrix can 372 * initially refer to domain layer masks and, when the accesses for the 373 * destination and source are the same, to requested layer masks. 374 * @dentry_child1: Dentry to the initial child of the parent1 path. This 375 * pointer must be NULL for non-refer actions (i.e. not link nor rename). 376 * @access_request_parent2: Similar to @access_request_parent1 but for a 377 * request involving a source and a destination. This refers to the 378 * destination, except in case of RENAME_EXCHANGE where it also refers to 379 * the source. Must be set to 0 when using a simple path request. 380 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer 381 * action. This must be NULL otherwise. 382 * @dentry_child2: Dentry to the initial child of the parent2 path. This 383 * pointer is only set for RENAME_EXCHANGE actions and must be NULL 384 * otherwise. 385 * 386 * This helper first checks that the destination has a superset of restrictions 387 * compared to the source (if any) for a common path. Because of 388 * RENAME_EXCHANGE actions, source and destinations may be swapped. It then 389 * checks that the collected accesses and the remaining ones are enough to 390 * allow the request. 391 * 392 * Returns: 393 * - true if the access request is granted; 394 * - false otherwise. 395 */ 396 static bool is_access_to_paths_allowed( 397 const struct landlock_ruleset *const domain, 398 const struct path *const path, 399 const access_mask_t access_request_parent1, 400 layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], 401 const struct dentry *const dentry_child1, 402 const access_mask_t access_request_parent2, 403 layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], 404 const struct dentry *const dentry_child2) 405 { 406 bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check, 407 child1_is_directory = true, child2_is_directory = true; 408 struct path walker_path; 409 access_mask_t access_masked_parent1, access_masked_parent2; 410 layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS], 411 _layer_masks_child2[LANDLOCK_NUM_ACCESS_FS]; 412 layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL, 413 (*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL; 414 415 if (!access_request_parent1 && !access_request_parent2) 416 return true; 417 if (WARN_ON_ONCE(!domain || !path)) 418 return true; 419 if (is_nouser_or_private(path->dentry)) 420 return true; 421 if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1)) 422 return false; 423 424 if (unlikely(layer_masks_parent2)) { 425 if (WARN_ON_ONCE(!dentry_child1)) 426 return false; 427 /* 428 * For a double request, first check for potential privilege 429 * escalation by looking at domain handled accesses (which are 430 * a superset of the meaningful requested accesses). 431 */ 432 access_masked_parent1 = access_masked_parent2 = 433 get_handled_fs_accesses(domain); 434 is_dom_check = true; 435 } else { 436 if (WARN_ON_ONCE(dentry_child1 || dentry_child2)) 437 return false; 438 /* For a simple request, only check for requested accesses. */ 439 access_masked_parent1 = access_request_parent1; 440 access_masked_parent2 = access_request_parent2; 441 is_dom_check = false; 442 } 443 444 if (unlikely(dentry_child1)) { 445 landlock_unmask_layers( 446 find_rule(domain, dentry_child1), 447 landlock_init_layer_masks( 448 domain, LANDLOCK_MASK_ACCESS_FS, 449 &_layer_masks_child1, LANDLOCK_KEY_INODE), 450 &_layer_masks_child1, ARRAY_SIZE(_layer_masks_child1)); 451 layer_masks_child1 = &_layer_masks_child1; 452 child1_is_directory = d_is_dir(dentry_child1); 453 } 454 if (unlikely(dentry_child2)) { 455 landlock_unmask_layers( 456 find_rule(domain, dentry_child2), 457 landlock_init_layer_masks( 458 domain, LANDLOCK_MASK_ACCESS_FS, 459 &_layer_masks_child2, LANDLOCK_KEY_INODE), 460 &_layer_masks_child2, ARRAY_SIZE(_layer_masks_child2)); 461 layer_masks_child2 = &_layer_masks_child2; 462 child2_is_directory = d_is_dir(dentry_child2); 463 } 464 465 walker_path = *path; 466 path_get(&walker_path); 467 /* 468 * We need to walk through all the hierarchy to not miss any relevant 469 * restriction. 470 */ 471 while (true) { 472 struct dentry *parent_dentry; 473 const struct landlock_rule *rule; 474 475 /* 476 * If at least all accesses allowed on the destination are 477 * already allowed on the source, respectively if there is at 478 * least as much as restrictions on the destination than on the 479 * source, then we can safely refer files from the source to 480 * the destination without risking a privilege escalation. 481 * This also applies in the case of RENAME_EXCHANGE, which 482 * implies checks on both direction. This is crucial for 483 * standalone multilayered security policies. Furthermore, 484 * this helps avoid policy writers to shoot themselves in the 485 * foot. 486 */ 487 if (unlikely(is_dom_check && 488 no_more_access( 489 layer_masks_parent1, layer_masks_child1, 490 child1_is_directory, layer_masks_parent2, 491 layer_masks_child2, 492 child2_is_directory))) { 493 allowed_parent1 = scope_to_request( 494 access_request_parent1, layer_masks_parent1); 495 allowed_parent2 = scope_to_request( 496 access_request_parent2, layer_masks_parent2); 497 498 /* Stops when all accesses are granted. */ 499 if (allowed_parent1 && allowed_parent2) 500 break; 501 502 /* 503 * Now, downgrades the remaining checks from domain 504 * handled accesses to requested accesses. 505 */ 506 is_dom_check = false; 507 access_masked_parent1 = access_request_parent1; 508 access_masked_parent2 = access_request_parent2; 509 } 510 511 rule = find_rule(domain, walker_path.dentry); 512 allowed_parent1 = landlock_unmask_layers( 513 rule, access_masked_parent1, layer_masks_parent1, 514 ARRAY_SIZE(*layer_masks_parent1)); 515 allowed_parent2 = landlock_unmask_layers( 516 rule, access_masked_parent2, layer_masks_parent2, 517 ARRAY_SIZE(*layer_masks_parent2)); 518 519 /* Stops when a rule from each layer grants access. */ 520 if (allowed_parent1 && allowed_parent2) 521 break; 522 jump_up: 523 if (walker_path.dentry == walker_path.mnt->mnt_root) { 524 if (follow_up(&walker_path)) { 525 /* Ignores hidden mount points. */ 526 goto jump_up; 527 } else { 528 /* 529 * Stops at the real root. Denies access 530 * because not all layers have granted access. 531 */ 532 break; 533 } 534 } 535 if (unlikely(IS_ROOT(walker_path.dentry))) { 536 /* 537 * Stops at disconnected root directories. Only allows 538 * access to internal filesystems (e.g. nsfs, which is 539 * reachable through /proc/<pid>/ns/<namespace>). 540 */ 541 allowed_parent1 = allowed_parent2 = 542 !!(walker_path.mnt->mnt_flags & MNT_INTERNAL); 543 break; 544 } 545 parent_dentry = dget_parent(walker_path.dentry); 546 dput(walker_path.dentry); 547 walker_path.dentry = parent_dentry; 548 } 549 path_put(&walker_path); 550 551 return allowed_parent1 && allowed_parent2; 552 } 553 554 static int check_access_path(const struct landlock_ruleset *const domain, 555 const struct path *const path, 556 access_mask_t access_request) 557 { 558 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 559 560 access_request = landlock_init_layer_masks( 561 domain, access_request, &layer_masks, LANDLOCK_KEY_INODE); 562 if (is_access_to_paths_allowed(domain, path, access_request, 563 &layer_masks, NULL, 0, NULL, NULL)) 564 return 0; 565 return -EACCES; 566 } 567 568 static int current_check_access_path(const struct path *const path, 569 const access_mask_t access_request) 570 { 571 const struct landlock_ruleset *const dom = get_current_fs_domain(); 572 573 if (!dom) 574 return 0; 575 return check_access_path(dom, path, access_request); 576 } 577 578 static access_mask_t get_mode_access(const umode_t mode) 579 { 580 switch (mode & S_IFMT) { 581 case S_IFLNK: 582 return LANDLOCK_ACCESS_FS_MAKE_SYM; 583 case 0: 584 /* A zero mode translates to S_IFREG. */ 585 case S_IFREG: 586 return LANDLOCK_ACCESS_FS_MAKE_REG; 587 case S_IFDIR: 588 return LANDLOCK_ACCESS_FS_MAKE_DIR; 589 case S_IFCHR: 590 return LANDLOCK_ACCESS_FS_MAKE_CHAR; 591 case S_IFBLK: 592 return LANDLOCK_ACCESS_FS_MAKE_BLOCK; 593 case S_IFIFO: 594 return LANDLOCK_ACCESS_FS_MAKE_FIFO; 595 case S_IFSOCK: 596 return LANDLOCK_ACCESS_FS_MAKE_SOCK; 597 default: 598 WARN_ON_ONCE(1); 599 return 0; 600 } 601 } 602 603 static access_mask_t maybe_remove(const struct dentry *const dentry) 604 { 605 if (d_is_negative(dentry)) 606 return 0; 607 return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR : 608 LANDLOCK_ACCESS_FS_REMOVE_FILE; 609 } 610 611 /** 612 * collect_domain_accesses - Walk through a file path and collect accesses 613 * 614 * @domain: Domain to check against. 615 * @mnt_root: Last directory to check. 616 * @dir: Directory to start the walk from. 617 * @layer_masks_dom: Where to store the collected accesses. 618 * 619 * This helper is useful to begin a path walk from the @dir directory to a 620 * @mnt_root directory used as a mount point. This mount point is the common 621 * ancestor between the source and the destination of a renamed and linked 622 * file. While walking from @dir to @mnt_root, we record all the domain's 623 * allowed accesses in @layer_masks_dom. 624 * 625 * This is similar to is_access_to_paths_allowed() but much simpler because it 626 * only handles walking on the same mount point and only checks one set of 627 * accesses. 628 * 629 * Returns: 630 * - true if all the domain access rights are allowed for @dir; 631 * - false if the walk reached @mnt_root. 632 */ 633 static bool collect_domain_accesses( 634 const struct landlock_ruleset *const domain, 635 const struct dentry *const mnt_root, struct dentry *dir, 636 layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS]) 637 { 638 unsigned long access_dom; 639 bool ret = false; 640 641 if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom)) 642 return true; 643 if (is_nouser_or_private(dir)) 644 return true; 645 646 access_dom = landlock_init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, 647 layer_masks_dom, 648 LANDLOCK_KEY_INODE); 649 650 dget(dir); 651 while (true) { 652 struct dentry *parent_dentry; 653 654 /* Gets all layers allowing all domain accesses. */ 655 if (landlock_unmask_layers(find_rule(domain, dir), access_dom, 656 layer_masks_dom, 657 ARRAY_SIZE(*layer_masks_dom))) { 658 /* 659 * Stops when all handled accesses are allowed by at 660 * least one rule in each layer. 661 */ 662 ret = true; 663 break; 664 } 665 666 /* We should not reach a root other than @mnt_root. */ 667 if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir))) 668 break; 669 670 parent_dentry = dget_parent(dir); 671 dput(dir); 672 dir = parent_dentry; 673 } 674 dput(dir); 675 return ret; 676 } 677 678 /** 679 * current_check_refer_path - Check if a rename or link action is allowed 680 * 681 * @old_dentry: File or directory requested to be moved or linked. 682 * @new_dir: Destination parent directory. 683 * @new_dentry: Destination file or directory. 684 * @removable: Sets to true if it is a rename operation. 685 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE. 686 * 687 * Because of its unprivileged constraints, Landlock relies on file hierarchies 688 * (and not only inodes) to tie access rights to files. Being able to link or 689 * rename a file hierarchy brings some challenges. Indeed, moving or linking a 690 * file (i.e. creating a new reference to an inode) can have an impact on the 691 * actions allowed for a set of files if it would change its parent directory 692 * (i.e. reparenting). 693 * 694 * To avoid trivial access right bypasses, Landlock first checks if the file or 695 * directory requested to be moved would gain new access rights inherited from 696 * its new hierarchy. Before returning any error, Landlock then checks that 697 * the parent source hierarchy and the destination hierarchy would allow the 698 * link or rename action. If it is not the case, an error with EACCES is 699 * returned to inform user space that there is no way to remove or create the 700 * requested source file type. If it should be allowed but the new inherited 701 * access rights would be greater than the source access rights, then the 702 * kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables 703 * user space to abort the whole operation if there is no way to do it, or to 704 * manually copy the source to the destination if this remains allowed, e.g. 705 * because file creation is allowed on the destination directory but not direct 706 * linking. 707 * 708 * To achieve this goal, the kernel needs to compare two file hierarchies: the 709 * one identifying the source file or directory (including itself), and the 710 * destination one. This can be seen as a multilayer partial ordering problem. 711 * The kernel walks through these paths and collects in a matrix the access 712 * rights that are denied per layer. These matrices are then compared to see 713 * if the destination one has more (or the same) restrictions as the source 714 * one. If this is the case, the requested action will not return EXDEV, which 715 * doesn't mean the action is allowed. The parent hierarchy of the source 716 * (i.e. parent directory), and the destination hierarchy must also be checked 717 * to verify that they explicitly allow such action (i.e. referencing, 718 * creation and potentially removal rights). The kernel implementation is then 719 * required to rely on potentially four matrices of access rights: one for the 720 * source file or directory (i.e. the child), a potentially other one for the 721 * other source/destination (in case of RENAME_EXCHANGE), one for the source 722 * parent hierarchy and a last one for the destination hierarchy. These 723 * ephemeral matrices take some space on the stack, which limits the number of 724 * layers to a deemed reasonable number: 16. 725 * 726 * Returns: 727 * - 0 if access is allowed; 728 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir; 729 * - -EACCES if file removal or creation is denied. 730 */ 731 static int current_check_refer_path(struct dentry *const old_dentry, 732 const struct path *const new_dir, 733 struct dentry *const new_dentry, 734 const bool removable, const bool exchange) 735 { 736 const struct landlock_ruleset *const dom = get_current_fs_domain(); 737 bool allow_parent1, allow_parent2; 738 access_mask_t access_request_parent1, access_request_parent2; 739 struct path mnt_dir; 740 layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS], 741 layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS]; 742 743 if (!dom) 744 return 0; 745 if (WARN_ON_ONCE(dom->num_layers < 1)) 746 return -EACCES; 747 if (unlikely(d_is_negative(old_dentry))) 748 return -ENOENT; 749 if (exchange) { 750 if (unlikely(d_is_negative(new_dentry))) 751 return -ENOENT; 752 access_request_parent1 = 753 get_mode_access(d_backing_inode(new_dentry)->i_mode); 754 } else { 755 access_request_parent1 = 0; 756 } 757 access_request_parent2 = 758 get_mode_access(d_backing_inode(old_dentry)->i_mode); 759 if (removable) { 760 access_request_parent1 |= maybe_remove(old_dentry); 761 access_request_parent2 |= maybe_remove(new_dentry); 762 } 763 764 /* The mount points are the same for old and new paths, cf. EXDEV. */ 765 if (old_dentry->d_parent == new_dir->dentry) { 766 /* 767 * The LANDLOCK_ACCESS_FS_REFER access right is not required 768 * for same-directory referer (i.e. no reparenting). 769 */ 770 access_request_parent1 = landlock_init_layer_masks( 771 dom, access_request_parent1 | access_request_parent2, 772 &layer_masks_parent1, LANDLOCK_KEY_INODE); 773 if (is_access_to_paths_allowed( 774 dom, new_dir, access_request_parent1, 775 &layer_masks_parent1, NULL, 0, NULL, NULL)) 776 return 0; 777 return -EACCES; 778 } 779 780 access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER; 781 access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER; 782 783 /* Saves the common mount point. */ 784 mnt_dir.mnt = new_dir->mnt; 785 mnt_dir.dentry = new_dir->mnt->mnt_root; 786 787 /* new_dir->dentry is equal to new_dentry->d_parent */ 788 allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, 789 old_dentry->d_parent, 790 &layer_masks_parent1); 791 allow_parent2 = collect_domain_accesses( 792 dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2); 793 794 if (allow_parent1 && allow_parent2) 795 return 0; 796 797 /* 798 * To be able to compare source and destination domain access rights, 799 * take into account the @old_dentry access rights aggregated with its 800 * parent access rights. This will be useful to compare with the 801 * destination parent access rights. 802 */ 803 if (is_access_to_paths_allowed( 804 dom, &mnt_dir, access_request_parent1, &layer_masks_parent1, 805 old_dentry, access_request_parent2, &layer_masks_parent2, 806 exchange ? new_dentry : NULL)) 807 return 0; 808 809 /* 810 * This prioritizes EACCES over EXDEV for all actions, including 811 * renames with RENAME_EXCHANGE. 812 */ 813 if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) || 814 is_eacces(&layer_masks_parent2, access_request_parent2))) 815 return -EACCES; 816 817 /* 818 * Gracefully forbids reparenting if the destination directory 819 * hierarchy is not a superset of restrictions of the source directory 820 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the 821 * source or the destination. 822 */ 823 return -EXDEV; 824 } 825 826 /* Inode hooks */ 827 828 static void hook_inode_free_security(struct inode *const inode) 829 { 830 /* 831 * All inodes must already have been untied from their object by 832 * release_inode() or hook_sb_delete(). 833 */ 834 WARN_ON_ONCE(landlock_inode(inode)->object); 835 } 836 837 /* Super-block hooks */ 838 839 /* 840 * Release the inodes used in a security policy. 841 * 842 * Cf. fsnotify_unmount_inodes() and invalidate_inodes() 843 */ 844 static void hook_sb_delete(struct super_block *const sb) 845 { 846 struct inode *inode, *prev_inode = NULL; 847 848 if (!landlock_initialized) 849 return; 850 851 spin_lock(&sb->s_inode_list_lock); 852 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 853 struct landlock_object *object; 854 855 /* Only handles referenced inodes. */ 856 if (!atomic_read(&inode->i_count)) 857 continue; 858 859 /* 860 * Protects against concurrent modification of inode (e.g. 861 * from get_inode_object()). 862 */ 863 spin_lock(&inode->i_lock); 864 /* 865 * Checks I_FREEING and I_WILL_FREE to protect against a race 866 * condition when release_inode() just called iput(), which 867 * could lead to a NULL dereference of inode->security or a 868 * second call to iput() for the same Landlock object. Also 869 * checks I_NEW because such inode cannot be tied to an object. 870 */ 871 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 872 spin_unlock(&inode->i_lock); 873 continue; 874 } 875 876 rcu_read_lock(); 877 object = rcu_dereference(landlock_inode(inode)->object); 878 if (!object) { 879 rcu_read_unlock(); 880 spin_unlock(&inode->i_lock); 881 continue; 882 } 883 /* Keeps a reference to this inode until the next loop walk. */ 884 __iget(inode); 885 spin_unlock(&inode->i_lock); 886 887 /* 888 * If there is no concurrent release_inode() ongoing, then we 889 * are in charge of calling iput() on this inode, otherwise we 890 * will just wait for it to finish. 891 */ 892 spin_lock(&object->lock); 893 if (object->underobj == inode) { 894 object->underobj = NULL; 895 spin_unlock(&object->lock); 896 rcu_read_unlock(); 897 898 /* 899 * Because object->underobj was not NULL, 900 * release_inode() and get_inode_object() guarantee 901 * that it is safe to reset 902 * landlock_inode(inode)->object while it is not NULL. 903 * It is therefore not necessary to lock inode->i_lock. 904 */ 905 rcu_assign_pointer(landlock_inode(inode)->object, NULL); 906 /* 907 * At this point, we own the ihold() reference that was 908 * originally set up by get_inode_object() and the 909 * __iget() reference that we just set in this loop 910 * walk. Therefore the following call to iput() will 911 * not sleep nor drop the inode because there is now at 912 * least two references to it. 913 */ 914 iput(inode); 915 } else { 916 spin_unlock(&object->lock); 917 rcu_read_unlock(); 918 } 919 920 if (prev_inode) { 921 /* 922 * At this point, we still own the __iget() reference 923 * that we just set in this loop walk. Therefore we 924 * can drop the list lock and know that the inode won't 925 * disappear from under us until the next loop walk. 926 */ 927 spin_unlock(&sb->s_inode_list_lock); 928 /* 929 * We can now actually put the inode reference from the 930 * previous loop walk, which is not needed anymore. 931 */ 932 iput(prev_inode); 933 cond_resched(); 934 spin_lock(&sb->s_inode_list_lock); 935 } 936 prev_inode = inode; 937 } 938 spin_unlock(&sb->s_inode_list_lock); 939 940 /* Puts the inode reference from the last loop walk, if any. */ 941 if (prev_inode) 942 iput(prev_inode); 943 /* Waits for pending iput() in release_inode(). */ 944 wait_var_event(&landlock_superblock(sb)->inode_refs, 945 !atomic_long_read(&landlock_superblock(sb)->inode_refs)); 946 } 947 948 /* 949 * Because a Landlock security policy is defined according to the filesystem 950 * topology (i.e. the mount namespace), changing it may grant access to files 951 * not previously allowed. 952 * 953 * To make it simple, deny any filesystem topology modification by landlocked 954 * processes. Non-landlocked processes may still change the namespace of a 955 * landlocked process, but this kind of threat must be handled by a system-wide 956 * access-control security policy. 957 * 958 * This could be lifted in the future if Landlock can safely handle mount 959 * namespace updates requested by a landlocked process. Indeed, we could 960 * update the current domain (which is currently read-only) by taking into 961 * account the accesses of the source and the destination of a new mount point. 962 * However, it would also require to make all the child domains dynamically 963 * inherit these new constraints. Anyway, for backward compatibility reasons, 964 * a dedicated user space option would be required (e.g. as a ruleset flag). 965 */ 966 static int hook_sb_mount(const char *const dev_name, 967 const struct path *const path, const char *const type, 968 const unsigned long flags, void *const data) 969 { 970 if (!get_current_fs_domain()) 971 return 0; 972 return -EPERM; 973 } 974 975 static int hook_move_mount(const struct path *const from_path, 976 const struct path *const to_path) 977 { 978 if (!get_current_fs_domain()) 979 return 0; 980 return -EPERM; 981 } 982 983 /* 984 * Removing a mount point may reveal a previously hidden file hierarchy, which 985 * may then grant access to files, which may have previously been forbidden. 986 */ 987 static int hook_sb_umount(struct vfsmount *const mnt, const int flags) 988 { 989 if (!get_current_fs_domain()) 990 return 0; 991 return -EPERM; 992 } 993 994 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts) 995 { 996 if (!get_current_fs_domain()) 997 return 0; 998 return -EPERM; 999 } 1000 1001 /* 1002 * pivot_root(2), like mount(2), changes the current mount namespace. It must 1003 * then be forbidden for a landlocked process. 1004 * 1005 * However, chroot(2) may be allowed because it only changes the relative root 1006 * directory of the current process. Moreover, it can be used to restrict the 1007 * view of the filesystem. 1008 */ 1009 static int hook_sb_pivotroot(const struct path *const old_path, 1010 const struct path *const new_path) 1011 { 1012 if (!get_current_fs_domain()) 1013 return 0; 1014 return -EPERM; 1015 } 1016 1017 /* Path hooks */ 1018 1019 static int hook_path_link(struct dentry *const old_dentry, 1020 const struct path *const new_dir, 1021 struct dentry *const new_dentry) 1022 { 1023 return current_check_refer_path(old_dentry, new_dir, new_dentry, false, 1024 false); 1025 } 1026 1027 static int hook_path_rename(const struct path *const old_dir, 1028 struct dentry *const old_dentry, 1029 const struct path *const new_dir, 1030 struct dentry *const new_dentry, 1031 const unsigned int flags) 1032 { 1033 /* old_dir refers to old_dentry->d_parent and new_dir->mnt */ 1034 return current_check_refer_path(old_dentry, new_dir, new_dentry, true, 1035 !!(flags & RENAME_EXCHANGE)); 1036 } 1037 1038 static int hook_path_mkdir(const struct path *const dir, 1039 struct dentry *const dentry, const umode_t mode) 1040 { 1041 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR); 1042 } 1043 1044 static int hook_path_mknod(const struct path *const dir, 1045 struct dentry *const dentry, const umode_t mode, 1046 const unsigned int dev) 1047 { 1048 const struct landlock_ruleset *const dom = get_current_fs_domain(); 1049 1050 if (!dom) 1051 return 0; 1052 return check_access_path(dom, dir, get_mode_access(mode)); 1053 } 1054 1055 static int hook_path_symlink(const struct path *const dir, 1056 struct dentry *const dentry, 1057 const char *const old_name) 1058 { 1059 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM); 1060 } 1061 1062 static int hook_path_unlink(const struct path *const dir, 1063 struct dentry *const dentry) 1064 { 1065 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE); 1066 } 1067 1068 static int hook_path_rmdir(const struct path *const dir, 1069 struct dentry *const dentry) 1070 { 1071 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR); 1072 } 1073 1074 static int hook_path_truncate(const struct path *const path) 1075 { 1076 return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE); 1077 } 1078 1079 /* File hooks */ 1080 1081 /** 1082 * get_required_file_open_access - Get access needed to open a file 1083 * 1084 * @file: File being opened. 1085 * 1086 * Returns the access rights that are required for opening the given file, 1087 * depending on the file type and open mode. 1088 */ 1089 static inline access_mask_t 1090 get_required_file_open_access(const struct file *const file) 1091 { 1092 access_mask_t access = 0; 1093 1094 if (file->f_mode & FMODE_READ) { 1095 /* A directory can only be opened in read mode. */ 1096 if (S_ISDIR(file_inode(file)->i_mode)) 1097 return LANDLOCK_ACCESS_FS_READ_DIR; 1098 access = LANDLOCK_ACCESS_FS_READ_FILE; 1099 } 1100 if (file->f_mode & FMODE_WRITE) 1101 access |= LANDLOCK_ACCESS_FS_WRITE_FILE; 1102 /* __FMODE_EXEC is indeed part of f_flags, not f_mode. */ 1103 if (file->f_flags & __FMODE_EXEC) 1104 access |= LANDLOCK_ACCESS_FS_EXECUTE; 1105 return access; 1106 } 1107 1108 static int hook_file_alloc_security(struct file *const file) 1109 { 1110 /* 1111 * Grants all access rights, even if most of them are not checked later 1112 * on. It is more consistent. 1113 * 1114 * Notably, file descriptors for regular files can also be acquired 1115 * without going through the file_open hook, for example when using 1116 * memfd_create(2). 1117 */ 1118 landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS; 1119 return 0; 1120 } 1121 1122 static int hook_file_open(struct file *const file) 1123 { 1124 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 1125 access_mask_t open_access_request, full_access_request, allowed_access; 1126 const access_mask_t optional_access = LANDLOCK_ACCESS_FS_TRUNCATE; 1127 const struct landlock_ruleset *const dom = get_current_fs_domain(); 1128 1129 if (!dom) 1130 return 0; 1131 1132 /* 1133 * Because a file may be opened with O_PATH, get_required_file_open_access() 1134 * may return 0. This case will be handled with a future Landlock 1135 * evolution. 1136 */ 1137 open_access_request = get_required_file_open_access(file); 1138 1139 /* 1140 * We look up more access than what we immediately need for open(), so 1141 * that we can later authorize operations on opened files. 1142 */ 1143 full_access_request = open_access_request | optional_access; 1144 1145 if (is_access_to_paths_allowed( 1146 dom, &file->f_path, 1147 landlock_init_layer_masks(dom, full_access_request, 1148 &layer_masks, LANDLOCK_KEY_INODE), 1149 &layer_masks, NULL, 0, NULL, NULL)) { 1150 allowed_access = full_access_request; 1151 } else { 1152 unsigned long access_bit; 1153 const unsigned long access_req = full_access_request; 1154 1155 /* 1156 * Calculate the actual allowed access rights from layer_masks. 1157 * Add each access right to allowed_access which has not been 1158 * vetoed by any layer. 1159 */ 1160 allowed_access = 0; 1161 for_each_set_bit(access_bit, &access_req, 1162 ARRAY_SIZE(layer_masks)) { 1163 if (!layer_masks[access_bit]) 1164 allowed_access |= BIT_ULL(access_bit); 1165 } 1166 } 1167 1168 /* 1169 * For operations on already opened files (i.e. ftruncate()), it is the 1170 * access rights at the time of open() which decide whether the 1171 * operation is permitted. Therefore, we record the relevant subset of 1172 * file access rights in the opened struct file. 1173 */ 1174 landlock_file(file)->allowed_access = allowed_access; 1175 1176 if ((open_access_request & allowed_access) == open_access_request) 1177 return 0; 1178 1179 return -EACCES; 1180 } 1181 1182 static int hook_file_truncate(struct file *const file) 1183 { 1184 /* 1185 * Allows truncation if the truncate right was available at the time of 1186 * opening the file, to get a consistent access check as for read, write 1187 * and execute operations. 1188 * 1189 * Note: For checks done based on the file's Landlock allowed access, we 1190 * enforce them independently of whether the current thread is in a 1191 * Landlock domain, so that open files passed between independent 1192 * processes retain their behaviour. 1193 */ 1194 if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE) 1195 return 0; 1196 return -EACCES; 1197 } 1198 1199 static struct security_hook_list landlock_hooks[] __ro_after_init = { 1200 LSM_HOOK_INIT(inode_free_security, hook_inode_free_security), 1201 1202 LSM_HOOK_INIT(sb_delete, hook_sb_delete), 1203 LSM_HOOK_INIT(sb_mount, hook_sb_mount), 1204 LSM_HOOK_INIT(move_mount, hook_move_mount), 1205 LSM_HOOK_INIT(sb_umount, hook_sb_umount), 1206 LSM_HOOK_INIT(sb_remount, hook_sb_remount), 1207 LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot), 1208 1209 LSM_HOOK_INIT(path_link, hook_path_link), 1210 LSM_HOOK_INIT(path_rename, hook_path_rename), 1211 LSM_HOOK_INIT(path_mkdir, hook_path_mkdir), 1212 LSM_HOOK_INIT(path_mknod, hook_path_mknod), 1213 LSM_HOOK_INIT(path_symlink, hook_path_symlink), 1214 LSM_HOOK_INIT(path_unlink, hook_path_unlink), 1215 LSM_HOOK_INIT(path_rmdir, hook_path_rmdir), 1216 LSM_HOOK_INIT(path_truncate, hook_path_truncate), 1217 1218 LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security), 1219 LSM_HOOK_INIT(file_open, hook_file_open), 1220 LSM_HOOK_INIT(file_truncate, hook_file_truncate), 1221 }; 1222 1223 __init void landlock_add_fs_hooks(void) 1224 { 1225 security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks), 1226 LANDLOCK_NAME); 1227 } 1228