1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Landlock LSM - Filesystem management and hooks 4 * 5 * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net> 6 * Copyright © 2018-2020 ANSSI 7 * Copyright © 2021-2022 Microsoft Corporation 8 */ 9 10 #include <linux/atomic.h> 11 #include <linux/bitops.h> 12 #include <linux/bits.h> 13 #include <linux/compiler_types.h> 14 #include <linux/dcache.h> 15 #include <linux/err.h> 16 #include <linux/fs.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/limits.h> 20 #include <linux/list.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/mount.h> 23 #include <linux/namei.h> 24 #include <linux/path.h> 25 #include <linux/rcupdate.h> 26 #include <linux/spinlock.h> 27 #include <linux/stat.h> 28 #include <linux/types.h> 29 #include <linux/wait_bit.h> 30 #include <linux/workqueue.h> 31 #include <uapi/linux/landlock.h> 32 33 #include "common.h" 34 #include "cred.h" 35 #include "fs.h" 36 #include "limits.h" 37 #include "object.h" 38 #include "ruleset.h" 39 #include "setup.h" 40 41 /* Underlying object management */ 42 43 static void release_inode(struct landlock_object *const object) 44 __releases(object->lock) 45 { 46 struct inode *const inode = object->underobj; 47 struct super_block *sb; 48 49 if (!inode) { 50 spin_unlock(&object->lock); 51 return; 52 } 53 54 /* 55 * Protects against concurrent use by hook_sb_delete() of the reference 56 * to the underlying inode. 57 */ 58 object->underobj = NULL; 59 /* 60 * Makes sure that if the filesystem is concurrently unmounted, 61 * hook_sb_delete() will wait for us to finish iput(). 62 */ 63 sb = inode->i_sb; 64 atomic_long_inc(&landlock_superblock(sb)->inode_refs); 65 spin_unlock(&object->lock); 66 /* 67 * Because object->underobj was not NULL, hook_sb_delete() and 68 * get_inode_object() guarantee that it is safe to reset 69 * landlock_inode(inode)->object while it is not NULL. It is therefore 70 * not necessary to lock inode->i_lock. 71 */ 72 rcu_assign_pointer(landlock_inode(inode)->object, NULL); 73 /* 74 * Now, new rules can safely be tied to @inode with get_inode_object(). 75 */ 76 77 iput(inode); 78 if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs)) 79 wake_up_var(&landlock_superblock(sb)->inode_refs); 80 } 81 82 static const struct landlock_object_underops landlock_fs_underops = { 83 .release = release_inode 84 }; 85 86 /* Ruleset management */ 87 88 static struct landlock_object *get_inode_object(struct inode *const inode) 89 { 90 struct landlock_object *object, *new_object; 91 struct landlock_inode_security *inode_sec = landlock_inode(inode); 92 93 rcu_read_lock(); 94 retry: 95 object = rcu_dereference(inode_sec->object); 96 if (object) { 97 if (likely(refcount_inc_not_zero(&object->usage))) { 98 rcu_read_unlock(); 99 return object; 100 } 101 /* 102 * We are racing with release_inode(), the object is going 103 * away. Wait for release_inode(), then retry. 104 */ 105 spin_lock(&object->lock); 106 spin_unlock(&object->lock); 107 goto retry; 108 } 109 rcu_read_unlock(); 110 111 /* 112 * If there is no object tied to @inode, then create a new one (without 113 * holding any locks). 114 */ 115 new_object = landlock_create_object(&landlock_fs_underops, inode); 116 if (IS_ERR(new_object)) 117 return new_object; 118 119 /* 120 * Protects against concurrent calls to get_inode_object() or 121 * hook_sb_delete(). 122 */ 123 spin_lock(&inode->i_lock); 124 if (unlikely(rcu_access_pointer(inode_sec->object))) { 125 /* Someone else just created the object, bail out and retry. */ 126 spin_unlock(&inode->i_lock); 127 kfree(new_object); 128 129 rcu_read_lock(); 130 goto retry; 131 } 132 133 /* 134 * @inode will be released by hook_sb_delete() on its superblock 135 * shutdown, or by release_inode() when no more ruleset references the 136 * related object. 137 */ 138 ihold(inode); 139 rcu_assign_pointer(inode_sec->object, new_object); 140 spin_unlock(&inode->i_lock); 141 return new_object; 142 } 143 144 /* All access rights that can be tied to files. */ 145 /* clang-format off */ 146 #define ACCESS_FILE ( \ 147 LANDLOCK_ACCESS_FS_EXECUTE | \ 148 LANDLOCK_ACCESS_FS_WRITE_FILE | \ 149 LANDLOCK_ACCESS_FS_READ_FILE | \ 150 LANDLOCK_ACCESS_FS_TRUNCATE) 151 /* clang-format on */ 152 153 /* 154 * @path: Should have been checked by get_path_from_fd(). 155 */ 156 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset, 157 const struct path *const path, 158 access_mask_t access_rights) 159 { 160 int err; 161 struct landlock_object *object; 162 163 /* Files only get access rights that make sense. */ 164 if (!d_is_dir(path->dentry) && 165 (access_rights | ACCESS_FILE) != ACCESS_FILE) 166 return -EINVAL; 167 if (WARN_ON_ONCE(ruleset->num_layers != 1)) 168 return -EINVAL; 169 170 /* Transforms relative access rights to absolute ones. */ 171 access_rights |= LANDLOCK_MASK_ACCESS_FS & 172 ~landlock_get_fs_access_mask(ruleset, 0); 173 object = get_inode_object(d_backing_inode(path->dentry)); 174 if (IS_ERR(object)) 175 return PTR_ERR(object); 176 mutex_lock(&ruleset->lock); 177 err = landlock_insert_rule(ruleset, object, access_rights); 178 mutex_unlock(&ruleset->lock); 179 /* 180 * No need to check for an error because landlock_insert_rule() 181 * increments the refcount for the new object if needed. 182 */ 183 landlock_put_object(object); 184 return err; 185 } 186 187 /* Access-control management */ 188 189 /* 190 * The lifetime of the returned rule is tied to @domain. 191 * 192 * Returns NULL if no rule is found or if @dentry is negative. 193 */ 194 static inline const struct landlock_rule * 195 find_rule(const struct landlock_ruleset *const domain, 196 const struct dentry *const dentry) 197 { 198 const struct landlock_rule *rule; 199 const struct inode *inode; 200 201 /* Ignores nonexistent leafs. */ 202 if (d_is_negative(dentry)) 203 return NULL; 204 205 inode = d_backing_inode(dentry); 206 rcu_read_lock(); 207 rule = landlock_find_rule( 208 domain, rcu_dereference(landlock_inode(inode)->object)); 209 rcu_read_unlock(); 210 return rule; 211 } 212 213 /* 214 * @layer_masks is read and may be updated according to the access request and 215 * the matching rule. 216 * 217 * Returns true if the request is allowed (i.e. relevant layer masks for the 218 * request are empty). 219 */ 220 static inline bool 221 unmask_layers(const struct landlock_rule *const rule, 222 const access_mask_t access_request, 223 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 224 { 225 size_t layer_level; 226 227 if (!access_request || !layer_masks) 228 return true; 229 if (!rule) 230 return false; 231 232 /* 233 * An access is granted if, for each policy layer, at least one rule 234 * encountered on the pathwalk grants the requested access, 235 * regardless of its position in the layer stack. We must then check 236 * the remaining layers for each inode, from the first added layer to 237 * the last one. When there is multiple requested accesses, for each 238 * policy layer, the full set of requested accesses may not be granted 239 * by only one rule, but by the union (binary OR) of multiple rules. 240 * E.g. /a/b <execute> + /a <read> => /a/b <execute + read> 241 */ 242 for (layer_level = 0; layer_level < rule->num_layers; layer_level++) { 243 const struct landlock_layer *const layer = 244 &rule->layers[layer_level]; 245 const layer_mask_t layer_bit = BIT_ULL(layer->level - 1); 246 const unsigned long access_req = access_request; 247 unsigned long access_bit; 248 bool is_empty; 249 250 /* 251 * Records in @layer_masks which layer grants access to each 252 * requested access. 253 */ 254 is_empty = true; 255 for_each_set_bit(access_bit, &access_req, 256 ARRAY_SIZE(*layer_masks)) { 257 if (layer->access & BIT_ULL(access_bit)) 258 (*layer_masks)[access_bit] &= ~layer_bit; 259 is_empty = is_empty && !(*layer_masks)[access_bit]; 260 } 261 if (is_empty) 262 return true; 263 } 264 return false; 265 } 266 267 /* 268 * Allows access to pseudo filesystems that will never be mountable (e.g. 269 * sockfs, pipefs), but can still be reachable through 270 * /proc/<pid>/fd/<file-descriptor> 271 */ 272 static inline bool is_nouser_or_private(const struct dentry *dentry) 273 { 274 return (dentry->d_sb->s_flags & SB_NOUSER) || 275 (d_is_positive(dentry) && 276 unlikely(IS_PRIVATE(d_backing_inode(dentry)))); 277 } 278 279 static access_mask_t 280 get_raw_handled_fs_accesses(const struct landlock_ruleset *const domain) 281 { 282 access_mask_t access_dom = 0; 283 size_t layer_level; 284 285 for (layer_level = 0; layer_level < domain->num_layers; layer_level++) 286 access_dom |= 287 landlock_get_raw_fs_access_mask(domain, layer_level); 288 return access_dom; 289 } 290 291 /** 292 * init_layer_masks - Initialize layer masks from an access request 293 * 294 * Populates @layer_masks such that for each access right in @access_request, 295 * the bits for all the layers are set where this access right is handled. 296 * 297 * @domain: The domain that defines the current restrictions. 298 * @access_request: The requested access rights to check. 299 * @layer_masks: The layer masks to populate. 300 * 301 * Returns: An access mask where each access right bit is set which is handled 302 * in any of the active layers in @domain. 303 */ 304 static inline access_mask_t 305 init_layer_masks(const struct landlock_ruleset *const domain, 306 const access_mask_t access_request, 307 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 308 { 309 access_mask_t handled_accesses = 0; 310 size_t layer_level; 311 312 memset(layer_masks, 0, sizeof(*layer_masks)); 313 /* An empty access request can happen because of O_WRONLY | O_RDWR. */ 314 if (!access_request) 315 return 0; 316 317 /* Saves all handled accesses per layer. */ 318 for (layer_level = 0; layer_level < domain->num_layers; layer_level++) { 319 const unsigned long access_req = access_request; 320 unsigned long access_bit; 321 322 for_each_set_bit(access_bit, &access_req, 323 ARRAY_SIZE(*layer_masks)) { 324 if (BIT_ULL(access_bit) & 325 landlock_get_fs_access_mask(domain, layer_level)) { 326 (*layer_masks)[access_bit] |= 327 BIT_ULL(layer_level); 328 handled_accesses |= BIT_ULL(access_bit); 329 } 330 } 331 } 332 return handled_accesses; 333 } 334 335 static access_mask_t 336 get_handled_fs_accesses(const struct landlock_ruleset *const domain) 337 { 338 /* Handles all initially denied by default access rights. */ 339 return get_raw_handled_fs_accesses(domain) | 340 LANDLOCK_ACCESS_FS_INITIALLY_DENIED; 341 } 342 343 static const struct landlock_ruleset *get_current_fs_domain(void) 344 { 345 const struct landlock_ruleset *const dom = 346 landlock_get_current_domain(); 347 348 if (!dom || !get_raw_handled_fs_accesses(dom)) 349 return NULL; 350 351 return dom; 352 } 353 354 /* 355 * Check that a destination file hierarchy has more restrictions than a source 356 * file hierarchy. This is only used for link and rename actions. 357 * 358 * @layer_masks_child2: Optional child masks. 359 */ 360 static inline bool no_more_access( 361 const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], 362 const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS], 363 const bool child1_is_directory, 364 const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], 365 const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS], 366 const bool child2_is_directory) 367 { 368 unsigned long access_bit; 369 370 for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2); 371 access_bit++) { 372 /* Ignores accesses that only make sense for directories. */ 373 const bool is_file_access = 374 !!(BIT_ULL(access_bit) & ACCESS_FILE); 375 376 if (child1_is_directory || is_file_access) { 377 /* 378 * Checks if the destination restrictions are a 379 * superset of the source ones (i.e. inherited access 380 * rights without child exceptions): 381 * restrictions(parent2) >= restrictions(child1) 382 */ 383 if ((((*layer_masks_parent1)[access_bit] & 384 (*layer_masks_child1)[access_bit]) | 385 (*layer_masks_parent2)[access_bit]) != 386 (*layer_masks_parent2)[access_bit]) 387 return false; 388 } 389 390 if (!layer_masks_child2) 391 continue; 392 if (child2_is_directory || is_file_access) { 393 /* 394 * Checks inverted restrictions for RENAME_EXCHANGE: 395 * restrictions(parent1) >= restrictions(child2) 396 */ 397 if ((((*layer_masks_parent2)[access_bit] & 398 (*layer_masks_child2)[access_bit]) | 399 (*layer_masks_parent1)[access_bit]) != 400 (*layer_masks_parent1)[access_bit]) 401 return false; 402 } 403 } 404 return true; 405 } 406 407 /* 408 * Removes @layer_masks accesses that are not requested. 409 * 410 * Returns true if the request is allowed, false otherwise. 411 */ 412 static inline bool 413 scope_to_request(const access_mask_t access_request, 414 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 415 { 416 const unsigned long access_req = access_request; 417 unsigned long access_bit; 418 419 if (WARN_ON_ONCE(!layer_masks)) 420 return true; 421 422 for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks)) 423 (*layer_masks)[access_bit] = 0; 424 return !memchr_inv(layer_masks, 0, sizeof(*layer_masks)); 425 } 426 427 /* 428 * Returns true if there is at least one access right different than 429 * LANDLOCK_ACCESS_FS_REFER. 430 */ 431 static inline bool 432 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS], 433 const access_mask_t access_request) 434 { 435 unsigned long access_bit; 436 /* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */ 437 const unsigned long access_check = access_request & 438 ~LANDLOCK_ACCESS_FS_REFER; 439 440 if (!layer_masks) 441 return false; 442 443 for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) { 444 if ((*layer_masks)[access_bit]) 445 return true; 446 } 447 return false; 448 } 449 450 /** 451 * is_access_to_paths_allowed - Check accesses for requests with a common path 452 * 453 * @domain: Domain to check against. 454 * @path: File hierarchy to walk through. 455 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is 456 * equal to @layer_masks_parent2 (if any). This is tied to the unique 457 * requested path for most actions, or the source in case of a refer action 458 * (i.e. rename or link), or the source and destination in case of 459 * RENAME_EXCHANGE. 460 * @layer_masks_parent1: Pointer to a matrix of layer masks per access 461 * masks, identifying the layers that forbid a specific access. Bits from 462 * this matrix can be unset according to the @path walk. An empty matrix 463 * means that @domain allows all possible Landlock accesses (i.e. not only 464 * those identified by @access_request_parent1). This matrix can 465 * initially refer to domain layer masks and, when the accesses for the 466 * destination and source are the same, to requested layer masks. 467 * @dentry_child1: Dentry to the initial child of the parent1 path. This 468 * pointer must be NULL for non-refer actions (i.e. not link nor rename). 469 * @access_request_parent2: Similar to @access_request_parent1 but for a 470 * request involving a source and a destination. This refers to the 471 * destination, except in case of RENAME_EXCHANGE where it also refers to 472 * the source. Must be set to 0 when using a simple path request. 473 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer 474 * action. This must be NULL otherwise. 475 * @dentry_child2: Dentry to the initial child of the parent2 path. This 476 * pointer is only set for RENAME_EXCHANGE actions and must be NULL 477 * otherwise. 478 * 479 * This helper first checks that the destination has a superset of restrictions 480 * compared to the source (if any) for a common path. Because of 481 * RENAME_EXCHANGE actions, source and destinations may be swapped. It then 482 * checks that the collected accesses and the remaining ones are enough to 483 * allow the request. 484 * 485 * Returns: 486 * - true if the access request is granted; 487 * - false otherwise. 488 */ 489 static bool is_access_to_paths_allowed( 490 const struct landlock_ruleset *const domain, 491 const struct path *const path, 492 const access_mask_t access_request_parent1, 493 layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], 494 const struct dentry *const dentry_child1, 495 const access_mask_t access_request_parent2, 496 layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], 497 const struct dentry *const dentry_child2) 498 { 499 bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check, 500 child1_is_directory = true, child2_is_directory = true; 501 struct path walker_path; 502 access_mask_t access_masked_parent1, access_masked_parent2; 503 layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS], 504 _layer_masks_child2[LANDLOCK_NUM_ACCESS_FS]; 505 layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL, 506 (*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL; 507 508 if (!access_request_parent1 && !access_request_parent2) 509 return true; 510 if (WARN_ON_ONCE(!domain || !path)) 511 return true; 512 if (is_nouser_or_private(path->dentry)) 513 return true; 514 if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1)) 515 return false; 516 517 if (unlikely(layer_masks_parent2)) { 518 if (WARN_ON_ONCE(!dentry_child1)) 519 return false; 520 /* 521 * For a double request, first check for potential privilege 522 * escalation by looking at domain handled accesses (which are 523 * a superset of the meaningful requested accesses). 524 */ 525 access_masked_parent1 = access_masked_parent2 = 526 get_handled_fs_accesses(domain); 527 is_dom_check = true; 528 } else { 529 if (WARN_ON_ONCE(dentry_child1 || dentry_child2)) 530 return false; 531 /* For a simple request, only check for requested accesses. */ 532 access_masked_parent1 = access_request_parent1; 533 access_masked_parent2 = access_request_parent2; 534 is_dom_check = false; 535 } 536 537 if (unlikely(dentry_child1)) { 538 unmask_layers(find_rule(domain, dentry_child1), 539 init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, 540 &_layer_masks_child1), 541 &_layer_masks_child1); 542 layer_masks_child1 = &_layer_masks_child1; 543 child1_is_directory = d_is_dir(dentry_child1); 544 } 545 if (unlikely(dentry_child2)) { 546 unmask_layers(find_rule(domain, dentry_child2), 547 init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, 548 &_layer_masks_child2), 549 &_layer_masks_child2); 550 layer_masks_child2 = &_layer_masks_child2; 551 child2_is_directory = d_is_dir(dentry_child2); 552 } 553 554 walker_path = *path; 555 path_get(&walker_path); 556 /* 557 * We need to walk through all the hierarchy to not miss any relevant 558 * restriction. 559 */ 560 while (true) { 561 struct dentry *parent_dentry; 562 const struct landlock_rule *rule; 563 564 /* 565 * If at least all accesses allowed on the destination are 566 * already allowed on the source, respectively if there is at 567 * least as much as restrictions on the destination than on the 568 * source, then we can safely refer files from the source to 569 * the destination without risking a privilege escalation. 570 * This also applies in the case of RENAME_EXCHANGE, which 571 * implies checks on both direction. This is crucial for 572 * standalone multilayered security policies. Furthermore, 573 * this helps avoid policy writers to shoot themselves in the 574 * foot. 575 */ 576 if (unlikely(is_dom_check && 577 no_more_access( 578 layer_masks_parent1, layer_masks_child1, 579 child1_is_directory, layer_masks_parent2, 580 layer_masks_child2, 581 child2_is_directory))) { 582 allowed_parent1 = scope_to_request( 583 access_request_parent1, layer_masks_parent1); 584 allowed_parent2 = scope_to_request( 585 access_request_parent2, layer_masks_parent2); 586 587 /* Stops when all accesses are granted. */ 588 if (allowed_parent1 && allowed_parent2) 589 break; 590 591 /* 592 * Now, downgrades the remaining checks from domain 593 * handled accesses to requested accesses. 594 */ 595 is_dom_check = false; 596 access_masked_parent1 = access_request_parent1; 597 access_masked_parent2 = access_request_parent2; 598 } 599 600 rule = find_rule(domain, walker_path.dentry); 601 allowed_parent1 = unmask_layers(rule, access_masked_parent1, 602 layer_masks_parent1); 603 allowed_parent2 = unmask_layers(rule, access_masked_parent2, 604 layer_masks_parent2); 605 606 /* Stops when a rule from each layer grants access. */ 607 if (allowed_parent1 && allowed_parent2) 608 break; 609 610 jump_up: 611 if (walker_path.dentry == walker_path.mnt->mnt_root) { 612 if (follow_up(&walker_path)) { 613 /* Ignores hidden mount points. */ 614 goto jump_up; 615 } else { 616 /* 617 * Stops at the real root. Denies access 618 * because not all layers have granted access. 619 */ 620 break; 621 } 622 } 623 if (unlikely(IS_ROOT(walker_path.dentry))) { 624 /* 625 * Stops at disconnected root directories. Only allows 626 * access to internal filesystems (e.g. nsfs, which is 627 * reachable through /proc/<pid>/ns/<namespace>). 628 */ 629 allowed_parent1 = allowed_parent2 = 630 !!(walker_path.mnt->mnt_flags & MNT_INTERNAL); 631 break; 632 } 633 parent_dentry = dget_parent(walker_path.dentry); 634 dput(walker_path.dentry); 635 walker_path.dentry = parent_dentry; 636 } 637 path_put(&walker_path); 638 639 return allowed_parent1 && allowed_parent2; 640 } 641 642 static inline int check_access_path(const struct landlock_ruleset *const domain, 643 const struct path *const path, 644 access_mask_t access_request) 645 { 646 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 647 648 access_request = init_layer_masks(domain, access_request, &layer_masks); 649 if (is_access_to_paths_allowed(domain, path, access_request, 650 &layer_masks, NULL, 0, NULL, NULL)) 651 return 0; 652 return -EACCES; 653 } 654 655 static inline int current_check_access_path(const struct path *const path, 656 const access_mask_t access_request) 657 { 658 const struct landlock_ruleset *const dom = get_current_fs_domain(); 659 660 if (!dom) 661 return 0; 662 return check_access_path(dom, path, access_request); 663 } 664 665 static inline access_mask_t get_mode_access(const umode_t mode) 666 { 667 switch (mode & S_IFMT) { 668 case S_IFLNK: 669 return LANDLOCK_ACCESS_FS_MAKE_SYM; 670 case 0: 671 /* A zero mode translates to S_IFREG. */ 672 case S_IFREG: 673 return LANDLOCK_ACCESS_FS_MAKE_REG; 674 case S_IFDIR: 675 return LANDLOCK_ACCESS_FS_MAKE_DIR; 676 case S_IFCHR: 677 return LANDLOCK_ACCESS_FS_MAKE_CHAR; 678 case S_IFBLK: 679 return LANDLOCK_ACCESS_FS_MAKE_BLOCK; 680 case S_IFIFO: 681 return LANDLOCK_ACCESS_FS_MAKE_FIFO; 682 case S_IFSOCK: 683 return LANDLOCK_ACCESS_FS_MAKE_SOCK; 684 default: 685 WARN_ON_ONCE(1); 686 return 0; 687 } 688 } 689 690 static inline access_mask_t maybe_remove(const struct dentry *const dentry) 691 { 692 if (d_is_negative(dentry)) 693 return 0; 694 return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR : 695 LANDLOCK_ACCESS_FS_REMOVE_FILE; 696 } 697 698 /** 699 * collect_domain_accesses - Walk through a file path and collect accesses 700 * 701 * @domain: Domain to check against. 702 * @mnt_root: Last directory to check. 703 * @dir: Directory to start the walk from. 704 * @layer_masks_dom: Where to store the collected accesses. 705 * 706 * This helper is useful to begin a path walk from the @dir directory to a 707 * @mnt_root directory used as a mount point. This mount point is the common 708 * ancestor between the source and the destination of a renamed and linked 709 * file. While walking from @dir to @mnt_root, we record all the domain's 710 * allowed accesses in @layer_masks_dom. 711 * 712 * This is similar to is_access_to_paths_allowed() but much simpler because it 713 * only handles walking on the same mount point and only checks one set of 714 * accesses. 715 * 716 * Returns: 717 * - true if all the domain access rights are allowed for @dir; 718 * - false if the walk reached @mnt_root. 719 */ 720 static bool collect_domain_accesses( 721 const struct landlock_ruleset *const domain, 722 const struct dentry *const mnt_root, struct dentry *dir, 723 layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS]) 724 { 725 unsigned long access_dom; 726 bool ret = false; 727 728 if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom)) 729 return true; 730 if (is_nouser_or_private(dir)) 731 return true; 732 733 access_dom = init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, 734 layer_masks_dom); 735 736 dget(dir); 737 while (true) { 738 struct dentry *parent_dentry; 739 740 /* Gets all layers allowing all domain accesses. */ 741 if (unmask_layers(find_rule(domain, dir), access_dom, 742 layer_masks_dom)) { 743 /* 744 * Stops when all handled accesses are allowed by at 745 * least one rule in each layer. 746 */ 747 ret = true; 748 break; 749 } 750 751 /* We should not reach a root other than @mnt_root. */ 752 if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir))) 753 break; 754 755 parent_dentry = dget_parent(dir); 756 dput(dir); 757 dir = parent_dentry; 758 } 759 dput(dir); 760 return ret; 761 } 762 763 /** 764 * current_check_refer_path - Check if a rename or link action is allowed 765 * 766 * @old_dentry: File or directory requested to be moved or linked. 767 * @new_dir: Destination parent directory. 768 * @new_dentry: Destination file or directory. 769 * @removable: Sets to true if it is a rename operation. 770 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE. 771 * 772 * Because of its unprivileged constraints, Landlock relies on file hierarchies 773 * (and not only inodes) to tie access rights to files. Being able to link or 774 * rename a file hierarchy brings some challenges. Indeed, moving or linking a 775 * file (i.e. creating a new reference to an inode) can have an impact on the 776 * actions allowed for a set of files if it would change its parent directory 777 * (i.e. reparenting). 778 * 779 * To avoid trivial access right bypasses, Landlock first checks if the file or 780 * directory requested to be moved would gain new access rights inherited from 781 * its new hierarchy. Before returning any error, Landlock then checks that 782 * the parent source hierarchy and the destination hierarchy would allow the 783 * link or rename action. If it is not the case, an error with EACCES is 784 * returned to inform user space that there is no way to remove or create the 785 * requested source file type. If it should be allowed but the new inherited 786 * access rights would be greater than the source access rights, then the 787 * kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables 788 * user space to abort the whole operation if there is no way to do it, or to 789 * manually copy the source to the destination if this remains allowed, e.g. 790 * because file creation is allowed on the destination directory but not direct 791 * linking. 792 * 793 * To achieve this goal, the kernel needs to compare two file hierarchies: the 794 * one identifying the source file or directory (including itself), and the 795 * destination one. This can be seen as a multilayer partial ordering problem. 796 * The kernel walks through these paths and collects in a matrix the access 797 * rights that are denied per layer. These matrices are then compared to see 798 * if the destination one has more (or the same) restrictions as the source 799 * one. If this is the case, the requested action will not return EXDEV, which 800 * doesn't mean the action is allowed. The parent hierarchy of the source 801 * (i.e. parent directory), and the destination hierarchy must also be checked 802 * to verify that they explicitly allow such action (i.e. referencing, 803 * creation and potentially removal rights). The kernel implementation is then 804 * required to rely on potentially four matrices of access rights: one for the 805 * source file or directory (i.e. the child), a potentially other one for the 806 * other source/destination (in case of RENAME_EXCHANGE), one for the source 807 * parent hierarchy and a last one for the destination hierarchy. These 808 * ephemeral matrices take some space on the stack, which limits the number of 809 * layers to a deemed reasonable number: 16. 810 * 811 * Returns: 812 * - 0 if access is allowed; 813 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir; 814 * - -EACCES if file removal or creation is denied. 815 */ 816 static int current_check_refer_path(struct dentry *const old_dentry, 817 const struct path *const new_dir, 818 struct dentry *const new_dentry, 819 const bool removable, const bool exchange) 820 { 821 const struct landlock_ruleset *const dom = get_current_fs_domain(); 822 bool allow_parent1, allow_parent2; 823 access_mask_t access_request_parent1, access_request_parent2; 824 struct path mnt_dir; 825 layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS], 826 layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS]; 827 828 if (!dom) 829 return 0; 830 if (WARN_ON_ONCE(dom->num_layers < 1)) 831 return -EACCES; 832 if (unlikely(d_is_negative(old_dentry))) 833 return -ENOENT; 834 if (exchange) { 835 if (unlikely(d_is_negative(new_dentry))) 836 return -ENOENT; 837 access_request_parent1 = 838 get_mode_access(d_backing_inode(new_dentry)->i_mode); 839 } else { 840 access_request_parent1 = 0; 841 } 842 access_request_parent2 = 843 get_mode_access(d_backing_inode(old_dentry)->i_mode); 844 if (removable) { 845 access_request_parent1 |= maybe_remove(old_dentry); 846 access_request_parent2 |= maybe_remove(new_dentry); 847 } 848 849 /* The mount points are the same for old and new paths, cf. EXDEV. */ 850 if (old_dentry->d_parent == new_dir->dentry) { 851 /* 852 * The LANDLOCK_ACCESS_FS_REFER access right is not required 853 * for same-directory referer (i.e. no reparenting). 854 */ 855 access_request_parent1 = init_layer_masks( 856 dom, access_request_parent1 | access_request_parent2, 857 &layer_masks_parent1); 858 if (is_access_to_paths_allowed( 859 dom, new_dir, access_request_parent1, 860 &layer_masks_parent1, NULL, 0, NULL, NULL)) 861 return 0; 862 return -EACCES; 863 } 864 865 access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER; 866 access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER; 867 868 /* Saves the common mount point. */ 869 mnt_dir.mnt = new_dir->mnt; 870 mnt_dir.dentry = new_dir->mnt->mnt_root; 871 872 /* new_dir->dentry is equal to new_dentry->d_parent */ 873 allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, 874 old_dentry->d_parent, 875 &layer_masks_parent1); 876 allow_parent2 = collect_domain_accesses( 877 dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2); 878 879 if (allow_parent1 && allow_parent2) 880 return 0; 881 882 /* 883 * To be able to compare source and destination domain access rights, 884 * take into account the @old_dentry access rights aggregated with its 885 * parent access rights. This will be useful to compare with the 886 * destination parent access rights. 887 */ 888 if (is_access_to_paths_allowed( 889 dom, &mnt_dir, access_request_parent1, &layer_masks_parent1, 890 old_dentry, access_request_parent2, &layer_masks_parent2, 891 exchange ? new_dentry : NULL)) 892 return 0; 893 894 /* 895 * This prioritizes EACCES over EXDEV for all actions, including 896 * renames with RENAME_EXCHANGE. 897 */ 898 if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) || 899 is_eacces(&layer_masks_parent2, access_request_parent2))) 900 return -EACCES; 901 902 /* 903 * Gracefully forbids reparenting if the destination directory 904 * hierarchy is not a superset of restrictions of the source directory 905 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the 906 * source or the destination. 907 */ 908 return -EXDEV; 909 } 910 911 /* Inode hooks */ 912 913 static void hook_inode_free_security(struct inode *const inode) 914 { 915 /* 916 * All inodes must already have been untied from their object by 917 * release_inode() or hook_sb_delete(). 918 */ 919 WARN_ON_ONCE(landlock_inode(inode)->object); 920 } 921 922 /* Super-block hooks */ 923 924 /* 925 * Release the inodes used in a security policy. 926 * 927 * Cf. fsnotify_unmount_inodes() and invalidate_inodes() 928 */ 929 static void hook_sb_delete(struct super_block *const sb) 930 { 931 struct inode *inode, *prev_inode = NULL; 932 933 if (!landlock_initialized) 934 return; 935 936 spin_lock(&sb->s_inode_list_lock); 937 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 938 struct landlock_object *object; 939 940 /* Only handles referenced inodes. */ 941 if (!atomic_read(&inode->i_count)) 942 continue; 943 944 /* 945 * Protects against concurrent modification of inode (e.g. 946 * from get_inode_object()). 947 */ 948 spin_lock(&inode->i_lock); 949 /* 950 * Checks I_FREEING and I_WILL_FREE to protect against a race 951 * condition when release_inode() just called iput(), which 952 * could lead to a NULL dereference of inode->security or a 953 * second call to iput() for the same Landlock object. Also 954 * checks I_NEW because such inode cannot be tied to an object. 955 */ 956 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 957 spin_unlock(&inode->i_lock); 958 continue; 959 } 960 961 rcu_read_lock(); 962 object = rcu_dereference(landlock_inode(inode)->object); 963 if (!object) { 964 rcu_read_unlock(); 965 spin_unlock(&inode->i_lock); 966 continue; 967 } 968 /* Keeps a reference to this inode until the next loop walk. */ 969 __iget(inode); 970 spin_unlock(&inode->i_lock); 971 972 /* 973 * If there is no concurrent release_inode() ongoing, then we 974 * are in charge of calling iput() on this inode, otherwise we 975 * will just wait for it to finish. 976 */ 977 spin_lock(&object->lock); 978 if (object->underobj == inode) { 979 object->underobj = NULL; 980 spin_unlock(&object->lock); 981 rcu_read_unlock(); 982 983 /* 984 * Because object->underobj was not NULL, 985 * release_inode() and get_inode_object() guarantee 986 * that it is safe to reset 987 * landlock_inode(inode)->object while it is not NULL. 988 * It is therefore not necessary to lock inode->i_lock. 989 */ 990 rcu_assign_pointer(landlock_inode(inode)->object, NULL); 991 /* 992 * At this point, we own the ihold() reference that was 993 * originally set up by get_inode_object() and the 994 * __iget() reference that we just set in this loop 995 * walk. Therefore the following call to iput() will 996 * not sleep nor drop the inode because there is now at 997 * least two references to it. 998 */ 999 iput(inode); 1000 } else { 1001 spin_unlock(&object->lock); 1002 rcu_read_unlock(); 1003 } 1004 1005 if (prev_inode) { 1006 /* 1007 * At this point, we still own the __iget() reference 1008 * that we just set in this loop walk. Therefore we 1009 * can drop the list lock and know that the inode won't 1010 * disappear from under us until the next loop walk. 1011 */ 1012 spin_unlock(&sb->s_inode_list_lock); 1013 /* 1014 * We can now actually put the inode reference from the 1015 * previous loop walk, which is not needed anymore. 1016 */ 1017 iput(prev_inode); 1018 cond_resched(); 1019 spin_lock(&sb->s_inode_list_lock); 1020 } 1021 prev_inode = inode; 1022 } 1023 spin_unlock(&sb->s_inode_list_lock); 1024 1025 /* Puts the inode reference from the last loop walk, if any. */ 1026 if (prev_inode) 1027 iput(prev_inode); 1028 /* Waits for pending iput() in release_inode(). */ 1029 wait_var_event(&landlock_superblock(sb)->inode_refs, 1030 !atomic_long_read(&landlock_superblock(sb)->inode_refs)); 1031 } 1032 1033 /* 1034 * Because a Landlock security policy is defined according to the filesystem 1035 * topology (i.e. the mount namespace), changing it may grant access to files 1036 * not previously allowed. 1037 * 1038 * To make it simple, deny any filesystem topology modification by landlocked 1039 * processes. Non-landlocked processes may still change the namespace of a 1040 * landlocked process, but this kind of threat must be handled by a system-wide 1041 * access-control security policy. 1042 * 1043 * This could be lifted in the future if Landlock can safely handle mount 1044 * namespace updates requested by a landlocked process. Indeed, we could 1045 * update the current domain (which is currently read-only) by taking into 1046 * account the accesses of the source and the destination of a new mount point. 1047 * However, it would also require to make all the child domains dynamically 1048 * inherit these new constraints. Anyway, for backward compatibility reasons, 1049 * a dedicated user space option would be required (e.g. as a ruleset flag). 1050 */ 1051 static int hook_sb_mount(const char *const dev_name, 1052 const struct path *const path, const char *const type, 1053 const unsigned long flags, void *const data) 1054 { 1055 if (!get_current_fs_domain()) 1056 return 0; 1057 return -EPERM; 1058 } 1059 1060 static int hook_move_mount(const struct path *const from_path, 1061 const struct path *const to_path) 1062 { 1063 if (!get_current_fs_domain()) 1064 return 0; 1065 return -EPERM; 1066 } 1067 1068 /* 1069 * Removing a mount point may reveal a previously hidden file hierarchy, which 1070 * may then grant access to files, which may have previously been forbidden. 1071 */ 1072 static int hook_sb_umount(struct vfsmount *const mnt, const int flags) 1073 { 1074 if (!get_current_fs_domain()) 1075 return 0; 1076 return -EPERM; 1077 } 1078 1079 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts) 1080 { 1081 if (!get_current_fs_domain()) 1082 return 0; 1083 return -EPERM; 1084 } 1085 1086 /* 1087 * pivot_root(2), like mount(2), changes the current mount namespace. It must 1088 * then be forbidden for a landlocked process. 1089 * 1090 * However, chroot(2) may be allowed because it only changes the relative root 1091 * directory of the current process. Moreover, it can be used to restrict the 1092 * view of the filesystem. 1093 */ 1094 static int hook_sb_pivotroot(const struct path *const old_path, 1095 const struct path *const new_path) 1096 { 1097 if (!get_current_fs_domain()) 1098 return 0; 1099 return -EPERM; 1100 } 1101 1102 /* Path hooks */ 1103 1104 static int hook_path_link(struct dentry *const old_dentry, 1105 const struct path *const new_dir, 1106 struct dentry *const new_dentry) 1107 { 1108 return current_check_refer_path(old_dentry, new_dir, new_dentry, false, 1109 false); 1110 } 1111 1112 static int hook_path_rename(const struct path *const old_dir, 1113 struct dentry *const old_dentry, 1114 const struct path *const new_dir, 1115 struct dentry *const new_dentry, 1116 const unsigned int flags) 1117 { 1118 /* old_dir refers to old_dentry->d_parent and new_dir->mnt */ 1119 return current_check_refer_path(old_dentry, new_dir, new_dentry, true, 1120 !!(flags & RENAME_EXCHANGE)); 1121 } 1122 1123 static int hook_path_mkdir(const struct path *const dir, 1124 struct dentry *const dentry, const umode_t mode) 1125 { 1126 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR); 1127 } 1128 1129 static int hook_path_mknod(const struct path *const dir, 1130 struct dentry *const dentry, const umode_t mode, 1131 const unsigned int dev) 1132 { 1133 const struct landlock_ruleset *const dom = get_current_fs_domain(); 1134 1135 if (!dom) 1136 return 0; 1137 return check_access_path(dom, dir, get_mode_access(mode)); 1138 } 1139 1140 static int hook_path_symlink(const struct path *const dir, 1141 struct dentry *const dentry, 1142 const char *const old_name) 1143 { 1144 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM); 1145 } 1146 1147 static int hook_path_unlink(const struct path *const dir, 1148 struct dentry *const dentry) 1149 { 1150 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE); 1151 } 1152 1153 static int hook_path_rmdir(const struct path *const dir, 1154 struct dentry *const dentry) 1155 { 1156 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR); 1157 } 1158 1159 static int hook_path_truncate(const struct path *const path) 1160 { 1161 return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE); 1162 } 1163 1164 /* File hooks */ 1165 1166 /** 1167 * get_required_file_open_access - Get access needed to open a file 1168 * 1169 * @file: File being opened. 1170 * 1171 * Returns the access rights that are required for opening the given file, 1172 * depending on the file type and open mode. 1173 */ 1174 static inline access_mask_t 1175 get_required_file_open_access(const struct file *const file) 1176 { 1177 access_mask_t access = 0; 1178 1179 if (file->f_mode & FMODE_READ) { 1180 /* A directory can only be opened in read mode. */ 1181 if (S_ISDIR(file_inode(file)->i_mode)) 1182 return LANDLOCK_ACCESS_FS_READ_DIR; 1183 access = LANDLOCK_ACCESS_FS_READ_FILE; 1184 } 1185 if (file->f_mode & FMODE_WRITE) 1186 access |= LANDLOCK_ACCESS_FS_WRITE_FILE; 1187 /* __FMODE_EXEC is indeed part of f_flags, not f_mode. */ 1188 if (file->f_flags & __FMODE_EXEC) 1189 access |= LANDLOCK_ACCESS_FS_EXECUTE; 1190 return access; 1191 } 1192 1193 static int hook_file_alloc_security(struct file *const file) 1194 { 1195 /* 1196 * Grants all access rights, even if most of them are not checked later 1197 * on. It is more consistent. 1198 * 1199 * Notably, file descriptors for regular files can also be acquired 1200 * without going through the file_open hook, for example when using 1201 * memfd_create(2). 1202 */ 1203 landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS; 1204 return 0; 1205 } 1206 1207 static int hook_file_open(struct file *const file) 1208 { 1209 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 1210 access_mask_t open_access_request, full_access_request, allowed_access; 1211 const access_mask_t optional_access = LANDLOCK_ACCESS_FS_TRUNCATE; 1212 const struct landlock_ruleset *const dom = get_current_fs_domain(); 1213 1214 if (!dom) 1215 return 0; 1216 1217 /* 1218 * Because a file may be opened with O_PATH, get_required_file_open_access() 1219 * may return 0. This case will be handled with a future Landlock 1220 * evolution. 1221 */ 1222 open_access_request = get_required_file_open_access(file); 1223 1224 /* 1225 * We look up more access than what we immediately need for open(), so 1226 * that we can later authorize operations on opened files. 1227 */ 1228 full_access_request = open_access_request | optional_access; 1229 1230 if (is_access_to_paths_allowed( 1231 dom, &file->f_path, 1232 init_layer_masks(dom, full_access_request, &layer_masks), 1233 &layer_masks, NULL, 0, NULL, NULL)) { 1234 allowed_access = full_access_request; 1235 } else { 1236 unsigned long access_bit; 1237 const unsigned long access_req = full_access_request; 1238 1239 /* 1240 * Calculate the actual allowed access rights from layer_masks. 1241 * Add each access right to allowed_access which has not been 1242 * vetoed by any layer. 1243 */ 1244 allowed_access = 0; 1245 for_each_set_bit(access_bit, &access_req, 1246 ARRAY_SIZE(layer_masks)) { 1247 if (!layer_masks[access_bit]) 1248 allowed_access |= BIT_ULL(access_bit); 1249 } 1250 } 1251 1252 /* 1253 * For operations on already opened files (i.e. ftruncate()), it is the 1254 * access rights at the time of open() which decide whether the 1255 * operation is permitted. Therefore, we record the relevant subset of 1256 * file access rights in the opened struct file. 1257 */ 1258 landlock_file(file)->allowed_access = allowed_access; 1259 1260 if ((open_access_request & allowed_access) == open_access_request) 1261 return 0; 1262 1263 return -EACCES; 1264 } 1265 1266 static int hook_file_truncate(struct file *const file) 1267 { 1268 /* 1269 * Allows truncation if the truncate right was available at the time of 1270 * opening the file, to get a consistent access check as for read, write 1271 * and execute operations. 1272 * 1273 * Note: For checks done based on the file's Landlock allowed access, we 1274 * enforce them independently of whether the current thread is in a 1275 * Landlock domain, so that open files passed between independent 1276 * processes retain their behaviour. 1277 */ 1278 if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE) 1279 return 0; 1280 return -EACCES; 1281 } 1282 1283 static struct security_hook_list landlock_hooks[] __ro_after_init = { 1284 LSM_HOOK_INIT(inode_free_security, hook_inode_free_security), 1285 1286 LSM_HOOK_INIT(sb_delete, hook_sb_delete), 1287 LSM_HOOK_INIT(sb_mount, hook_sb_mount), 1288 LSM_HOOK_INIT(move_mount, hook_move_mount), 1289 LSM_HOOK_INIT(sb_umount, hook_sb_umount), 1290 LSM_HOOK_INIT(sb_remount, hook_sb_remount), 1291 LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot), 1292 1293 LSM_HOOK_INIT(path_link, hook_path_link), 1294 LSM_HOOK_INIT(path_rename, hook_path_rename), 1295 LSM_HOOK_INIT(path_mkdir, hook_path_mkdir), 1296 LSM_HOOK_INIT(path_mknod, hook_path_mknod), 1297 LSM_HOOK_INIT(path_symlink, hook_path_symlink), 1298 LSM_HOOK_INIT(path_unlink, hook_path_unlink), 1299 LSM_HOOK_INIT(path_rmdir, hook_path_rmdir), 1300 LSM_HOOK_INIT(path_truncate, hook_path_truncate), 1301 1302 LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security), 1303 LSM_HOOK_INIT(file_open, hook_file_open), 1304 LSM_HOOK_INIT(file_truncate, hook_file_truncate), 1305 }; 1306 1307 __init void landlock_add_fs_hooks(void) 1308 { 1309 security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks), 1310 LANDLOCK_NAME); 1311 } 1312