xref: /linux/security/landlock/fs.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Landlock LSM - Filesystem management and hooks
4  *
5  * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net>
6  * Copyright © 2018-2020 ANSSI
7  * Copyright © 2021-2022 Microsoft Corporation
8  */
9 
10 #include <linux/atomic.h>
11 #include <linux/bitops.h>
12 #include <linux/bits.h>
13 #include <linux/compiler_types.h>
14 #include <linux/dcache.h>
15 #include <linux/err.h>
16 #include <linux/fs.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/limits.h>
20 #include <linux/list.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mount.h>
23 #include <linux/namei.h>
24 #include <linux/path.h>
25 #include <linux/rcupdate.h>
26 #include <linux/spinlock.h>
27 #include <linux/stat.h>
28 #include <linux/types.h>
29 #include <linux/wait_bit.h>
30 #include <linux/workqueue.h>
31 #include <uapi/linux/landlock.h>
32 
33 #include "common.h"
34 #include "cred.h"
35 #include "fs.h"
36 #include "limits.h"
37 #include "object.h"
38 #include "ruleset.h"
39 #include "setup.h"
40 
41 /* Underlying object management */
42 
43 static void release_inode(struct landlock_object *const object)
44 	__releases(object->lock)
45 {
46 	struct inode *const inode = object->underobj;
47 	struct super_block *sb;
48 
49 	if (!inode) {
50 		spin_unlock(&object->lock);
51 		return;
52 	}
53 
54 	/*
55 	 * Protects against concurrent use by hook_sb_delete() of the reference
56 	 * to the underlying inode.
57 	 */
58 	object->underobj = NULL;
59 	/*
60 	 * Makes sure that if the filesystem is concurrently unmounted,
61 	 * hook_sb_delete() will wait for us to finish iput().
62 	 */
63 	sb = inode->i_sb;
64 	atomic_long_inc(&landlock_superblock(sb)->inode_refs);
65 	spin_unlock(&object->lock);
66 	/*
67 	 * Because object->underobj was not NULL, hook_sb_delete() and
68 	 * get_inode_object() guarantee that it is safe to reset
69 	 * landlock_inode(inode)->object while it is not NULL.  It is therefore
70 	 * not necessary to lock inode->i_lock.
71 	 */
72 	rcu_assign_pointer(landlock_inode(inode)->object, NULL);
73 	/*
74 	 * Now, new rules can safely be tied to @inode with get_inode_object().
75 	 */
76 
77 	iput(inode);
78 	if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
79 		wake_up_var(&landlock_superblock(sb)->inode_refs);
80 }
81 
82 static const struct landlock_object_underops landlock_fs_underops = {
83 	.release = release_inode
84 };
85 
86 /* Ruleset management */
87 
88 static struct landlock_object *get_inode_object(struct inode *const inode)
89 {
90 	struct landlock_object *object, *new_object;
91 	struct landlock_inode_security *inode_sec = landlock_inode(inode);
92 
93 	rcu_read_lock();
94 retry:
95 	object = rcu_dereference(inode_sec->object);
96 	if (object) {
97 		if (likely(refcount_inc_not_zero(&object->usage))) {
98 			rcu_read_unlock();
99 			return object;
100 		}
101 		/*
102 		 * We are racing with release_inode(), the object is going
103 		 * away.  Wait for release_inode(), then retry.
104 		 */
105 		spin_lock(&object->lock);
106 		spin_unlock(&object->lock);
107 		goto retry;
108 	}
109 	rcu_read_unlock();
110 
111 	/*
112 	 * If there is no object tied to @inode, then create a new one (without
113 	 * holding any locks).
114 	 */
115 	new_object = landlock_create_object(&landlock_fs_underops, inode);
116 	if (IS_ERR(new_object))
117 		return new_object;
118 
119 	/*
120 	 * Protects against concurrent calls to get_inode_object() or
121 	 * hook_sb_delete().
122 	 */
123 	spin_lock(&inode->i_lock);
124 	if (unlikely(rcu_access_pointer(inode_sec->object))) {
125 		/* Someone else just created the object, bail out and retry. */
126 		spin_unlock(&inode->i_lock);
127 		kfree(new_object);
128 
129 		rcu_read_lock();
130 		goto retry;
131 	}
132 
133 	/*
134 	 * @inode will be released by hook_sb_delete() on its superblock
135 	 * shutdown, or by release_inode() when no more ruleset references the
136 	 * related object.
137 	 */
138 	ihold(inode);
139 	rcu_assign_pointer(inode_sec->object, new_object);
140 	spin_unlock(&inode->i_lock);
141 	return new_object;
142 }
143 
144 /* All access rights that can be tied to files. */
145 /* clang-format off */
146 #define ACCESS_FILE ( \
147 	LANDLOCK_ACCESS_FS_EXECUTE | \
148 	LANDLOCK_ACCESS_FS_WRITE_FILE | \
149 	LANDLOCK_ACCESS_FS_READ_FILE)
150 /* clang-format on */
151 
152 /*
153  * @path: Should have been checked by get_path_from_fd().
154  */
155 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
156 			    const struct path *const path,
157 			    access_mask_t access_rights)
158 {
159 	int err;
160 	struct landlock_object *object;
161 
162 	/* Files only get access rights that make sense. */
163 	if (!d_is_dir(path->dentry) &&
164 	    (access_rights | ACCESS_FILE) != ACCESS_FILE)
165 		return -EINVAL;
166 	if (WARN_ON_ONCE(ruleset->num_layers != 1))
167 		return -EINVAL;
168 
169 	/* Transforms relative access rights to absolute ones. */
170 	access_rights |= LANDLOCK_MASK_ACCESS_FS & ~ruleset->fs_access_masks[0];
171 	object = get_inode_object(d_backing_inode(path->dentry));
172 	if (IS_ERR(object))
173 		return PTR_ERR(object);
174 	mutex_lock(&ruleset->lock);
175 	err = landlock_insert_rule(ruleset, object, access_rights);
176 	mutex_unlock(&ruleset->lock);
177 	/*
178 	 * No need to check for an error because landlock_insert_rule()
179 	 * increments the refcount for the new object if needed.
180 	 */
181 	landlock_put_object(object);
182 	return err;
183 }
184 
185 /* Access-control management */
186 
187 /*
188  * The lifetime of the returned rule is tied to @domain.
189  *
190  * Returns NULL if no rule is found or if @dentry is negative.
191  */
192 static inline const struct landlock_rule *
193 find_rule(const struct landlock_ruleset *const domain,
194 	  const struct dentry *const dentry)
195 {
196 	const struct landlock_rule *rule;
197 	const struct inode *inode;
198 
199 	/* Ignores nonexistent leafs. */
200 	if (d_is_negative(dentry))
201 		return NULL;
202 
203 	inode = d_backing_inode(dentry);
204 	rcu_read_lock();
205 	rule = landlock_find_rule(
206 		domain, rcu_dereference(landlock_inode(inode)->object));
207 	rcu_read_unlock();
208 	return rule;
209 }
210 
211 /*
212  * @layer_masks is read and may be updated according to the access request and
213  * the matching rule.
214  *
215  * Returns true if the request is allowed (i.e. relevant layer masks for the
216  * request are empty).
217  */
218 static inline bool
219 unmask_layers(const struct landlock_rule *const rule,
220 	      const access_mask_t access_request,
221 	      layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
222 {
223 	size_t layer_level;
224 
225 	if (!access_request || !layer_masks)
226 		return true;
227 	if (!rule)
228 		return false;
229 
230 	/*
231 	 * An access is granted if, for each policy layer, at least one rule
232 	 * encountered on the pathwalk grants the requested access,
233 	 * regardless of its position in the layer stack.  We must then check
234 	 * the remaining layers for each inode, from the first added layer to
235 	 * the last one.  When there is multiple requested accesses, for each
236 	 * policy layer, the full set of requested accesses may not be granted
237 	 * by only one rule, but by the union (binary OR) of multiple rules.
238 	 * E.g. /a/b <execute> + /a <read> => /a/b <execute + read>
239 	 */
240 	for (layer_level = 0; layer_level < rule->num_layers; layer_level++) {
241 		const struct landlock_layer *const layer =
242 			&rule->layers[layer_level];
243 		const layer_mask_t layer_bit = BIT_ULL(layer->level - 1);
244 		const unsigned long access_req = access_request;
245 		unsigned long access_bit;
246 		bool is_empty;
247 
248 		/*
249 		 * Records in @layer_masks which layer grants access to each
250 		 * requested access.
251 		 */
252 		is_empty = true;
253 		for_each_set_bit(access_bit, &access_req,
254 				 ARRAY_SIZE(*layer_masks)) {
255 			if (layer->access & BIT_ULL(access_bit))
256 				(*layer_masks)[access_bit] &= ~layer_bit;
257 			is_empty = is_empty && !(*layer_masks)[access_bit];
258 		}
259 		if (is_empty)
260 			return true;
261 	}
262 	return false;
263 }
264 
265 /*
266  * Allows access to pseudo filesystems that will never be mountable (e.g.
267  * sockfs, pipefs), but can still be reachable through
268  * /proc/<pid>/fd/<file-descriptor>
269  */
270 static inline bool is_nouser_or_private(const struct dentry *dentry)
271 {
272 	return (dentry->d_sb->s_flags & SB_NOUSER) ||
273 	       (d_is_positive(dentry) &&
274 		unlikely(IS_PRIVATE(d_backing_inode(dentry))));
275 }
276 
277 static inline access_mask_t
278 get_handled_accesses(const struct landlock_ruleset *const domain)
279 {
280 	access_mask_t access_dom = 0;
281 	unsigned long access_bit;
282 
283 	for (access_bit = 0; access_bit < LANDLOCK_NUM_ACCESS_FS;
284 	     access_bit++) {
285 		size_t layer_level;
286 
287 		for (layer_level = 0; layer_level < domain->num_layers;
288 		     layer_level++) {
289 			if (domain->fs_access_masks[layer_level] &
290 			    BIT_ULL(access_bit)) {
291 				access_dom |= BIT_ULL(access_bit);
292 				break;
293 			}
294 		}
295 	}
296 	return access_dom;
297 }
298 
299 static inline access_mask_t
300 init_layer_masks(const struct landlock_ruleset *const domain,
301 		 const access_mask_t access_request,
302 		 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
303 {
304 	access_mask_t handled_accesses = 0;
305 	size_t layer_level;
306 
307 	memset(layer_masks, 0, sizeof(*layer_masks));
308 	/* An empty access request can happen because of O_WRONLY | O_RDWR. */
309 	if (!access_request)
310 		return 0;
311 
312 	/* Saves all handled accesses per layer. */
313 	for (layer_level = 0; layer_level < domain->num_layers; layer_level++) {
314 		const unsigned long access_req = access_request;
315 		unsigned long access_bit;
316 
317 		for_each_set_bit(access_bit, &access_req,
318 				 ARRAY_SIZE(*layer_masks)) {
319 			if (domain->fs_access_masks[layer_level] &
320 			    BIT_ULL(access_bit)) {
321 				(*layer_masks)[access_bit] |=
322 					BIT_ULL(layer_level);
323 				handled_accesses |= BIT_ULL(access_bit);
324 			}
325 		}
326 	}
327 	return handled_accesses;
328 }
329 
330 /*
331  * Check that a destination file hierarchy has more restrictions than a source
332  * file hierarchy.  This is only used for link and rename actions.
333  *
334  * @layer_masks_child2: Optional child masks.
335  */
336 static inline bool no_more_access(
337 	const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
338 	const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
339 	const bool child1_is_directory,
340 	const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
341 	const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
342 	const bool child2_is_directory)
343 {
344 	unsigned long access_bit;
345 
346 	for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
347 	     access_bit++) {
348 		/* Ignores accesses that only make sense for directories. */
349 		const bool is_file_access =
350 			!!(BIT_ULL(access_bit) & ACCESS_FILE);
351 
352 		if (child1_is_directory || is_file_access) {
353 			/*
354 			 * Checks if the destination restrictions are a
355 			 * superset of the source ones (i.e. inherited access
356 			 * rights without child exceptions):
357 			 * restrictions(parent2) >= restrictions(child1)
358 			 */
359 			if ((((*layer_masks_parent1)[access_bit] &
360 			      (*layer_masks_child1)[access_bit]) |
361 			     (*layer_masks_parent2)[access_bit]) !=
362 			    (*layer_masks_parent2)[access_bit])
363 				return false;
364 		}
365 
366 		if (!layer_masks_child2)
367 			continue;
368 		if (child2_is_directory || is_file_access) {
369 			/*
370 			 * Checks inverted restrictions for RENAME_EXCHANGE:
371 			 * restrictions(parent1) >= restrictions(child2)
372 			 */
373 			if ((((*layer_masks_parent2)[access_bit] &
374 			      (*layer_masks_child2)[access_bit]) |
375 			     (*layer_masks_parent1)[access_bit]) !=
376 			    (*layer_masks_parent1)[access_bit])
377 				return false;
378 		}
379 	}
380 	return true;
381 }
382 
383 /*
384  * Removes @layer_masks accesses that are not requested.
385  *
386  * Returns true if the request is allowed, false otherwise.
387  */
388 static inline bool
389 scope_to_request(const access_mask_t access_request,
390 		 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
391 {
392 	const unsigned long access_req = access_request;
393 	unsigned long access_bit;
394 
395 	if (WARN_ON_ONCE(!layer_masks))
396 		return true;
397 
398 	for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
399 		(*layer_masks)[access_bit] = 0;
400 	return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
401 }
402 
403 /*
404  * Returns true if there is at least one access right different than
405  * LANDLOCK_ACCESS_FS_REFER.
406  */
407 static inline bool
408 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
409 	  const access_mask_t access_request)
410 {
411 	unsigned long access_bit;
412 	/* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
413 	const unsigned long access_check = access_request &
414 					   ~LANDLOCK_ACCESS_FS_REFER;
415 
416 	if (!layer_masks)
417 		return false;
418 
419 	for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
420 		if ((*layer_masks)[access_bit])
421 			return true;
422 	}
423 	return false;
424 }
425 
426 /**
427  * check_access_path_dual - Check accesses for requests with a common path
428  *
429  * @domain: Domain to check against.
430  * @path: File hierarchy to walk through.
431  * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
432  *     equal to @layer_masks_parent2 (if any).  This is tied to the unique
433  *     requested path for most actions, or the source in case of a refer action
434  *     (i.e. rename or link), or the source and destination in case of
435  *     RENAME_EXCHANGE.
436  * @layer_masks_parent1: Pointer to a matrix of layer masks per access
437  *     masks, identifying the layers that forbid a specific access.  Bits from
438  *     this matrix can be unset according to the @path walk.  An empty matrix
439  *     means that @domain allows all possible Landlock accesses (i.e. not only
440  *     those identified by @access_request_parent1).  This matrix can
441  *     initially refer to domain layer masks and, when the accesses for the
442  *     destination and source are the same, to requested layer masks.
443  * @dentry_child1: Dentry to the initial child of the parent1 path.  This
444  *     pointer must be NULL for non-refer actions (i.e. not link nor rename).
445  * @access_request_parent2: Similar to @access_request_parent1 but for a
446  *     request involving a source and a destination.  This refers to the
447  *     destination, except in case of RENAME_EXCHANGE where it also refers to
448  *     the source.  Must be set to 0 when using a simple path request.
449  * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
450  *     action.  This must be NULL otherwise.
451  * @dentry_child2: Dentry to the initial child of the parent2 path.  This
452  *     pointer is only set for RENAME_EXCHANGE actions and must be NULL
453  *     otherwise.
454  *
455  * This helper first checks that the destination has a superset of restrictions
456  * compared to the source (if any) for a common path.  Because of
457  * RENAME_EXCHANGE actions, source and destinations may be swapped.  It then
458  * checks that the collected accesses and the remaining ones are enough to
459  * allow the request.
460  *
461  * Returns:
462  * - 0 if the access request is granted;
463  * - -EACCES if it is denied because of access right other than
464  *   LANDLOCK_ACCESS_FS_REFER;
465  * - -EXDEV if the renaming or linking would be a privileged escalation
466  *   (according to each layered policies), or if LANDLOCK_ACCESS_FS_REFER is
467  *   not allowed by the source or the destination.
468  */
469 static int check_access_path_dual(
470 	const struct landlock_ruleset *const domain,
471 	const struct path *const path,
472 	const access_mask_t access_request_parent1,
473 	layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
474 	const struct dentry *const dentry_child1,
475 	const access_mask_t access_request_parent2,
476 	layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
477 	const struct dentry *const dentry_child2)
478 {
479 	bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
480 	     child1_is_directory = true, child2_is_directory = true;
481 	struct path walker_path;
482 	access_mask_t access_masked_parent1, access_masked_parent2;
483 	layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
484 		_layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
485 	layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
486 	(*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
487 
488 	if (!access_request_parent1 && !access_request_parent2)
489 		return 0;
490 	if (WARN_ON_ONCE(!domain || !path))
491 		return 0;
492 	if (is_nouser_or_private(path->dentry))
493 		return 0;
494 	if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
495 		return -EACCES;
496 
497 	if (unlikely(layer_masks_parent2)) {
498 		if (WARN_ON_ONCE(!dentry_child1))
499 			return -EACCES;
500 		/*
501 		 * For a double request, first check for potential privilege
502 		 * escalation by looking at domain handled accesses (which are
503 		 * a superset of the meaningful requested accesses).
504 		 */
505 		access_masked_parent1 = access_masked_parent2 =
506 			get_handled_accesses(domain);
507 		is_dom_check = true;
508 	} else {
509 		if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
510 			return -EACCES;
511 		/* For a simple request, only check for requested accesses. */
512 		access_masked_parent1 = access_request_parent1;
513 		access_masked_parent2 = access_request_parent2;
514 		is_dom_check = false;
515 	}
516 
517 	if (unlikely(dentry_child1)) {
518 		unmask_layers(find_rule(domain, dentry_child1),
519 			      init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
520 					       &_layer_masks_child1),
521 			      &_layer_masks_child1);
522 		layer_masks_child1 = &_layer_masks_child1;
523 		child1_is_directory = d_is_dir(dentry_child1);
524 	}
525 	if (unlikely(dentry_child2)) {
526 		unmask_layers(find_rule(domain, dentry_child2),
527 			      init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
528 					       &_layer_masks_child2),
529 			      &_layer_masks_child2);
530 		layer_masks_child2 = &_layer_masks_child2;
531 		child2_is_directory = d_is_dir(dentry_child2);
532 	}
533 
534 	walker_path = *path;
535 	path_get(&walker_path);
536 	/*
537 	 * We need to walk through all the hierarchy to not miss any relevant
538 	 * restriction.
539 	 */
540 	while (true) {
541 		struct dentry *parent_dentry;
542 		const struct landlock_rule *rule;
543 
544 		/*
545 		 * If at least all accesses allowed on the destination are
546 		 * already allowed on the source, respectively if there is at
547 		 * least as much as restrictions on the destination than on the
548 		 * source, then we can safely refer files from the source to
549 		 * the destination without risking a privilege escalation.
550 		 * This also applies in the case of RENAME_EXCHANGE, which
551 		 * implies checks on both direction.  This is crucial for
552 		 * standalone multilayered security policies.  Furthermore,
553 		 * this helps avoid policy writers to shoot themselves in the
554 		 * foot.
555 		 */
556 		if (unlikely(is_dom_check &&
557 			     no_more_access(
558 				     layer_masks_parent1, layer_masks_child1,
559 				     child1_is_directory, layer_masks_parent2,
560 				     layer_masks_child2,
561 				     child2_is_directory))) {
562 			allowed_parent1 = scope_to_request(
563 				access_request_parent1, layer_masks_parent1);
564 			allowed_parent2 = scope_to_request(
565 				access_request_parent2, layer_masks_parent2);
566 
567 			/* Stops when all accesses are granted. */
568 			if (allowed_parent1 && allowed_parent2)
569 				break;
570 
571 			/*
572 			 * Now, downgrades the remaining checks from domain
573 			 * handled accesses to requested accesses.
574 			 */
575 			is_dom_check = false;
576 			access_masked_parent1 = access_request_parent1;
577 			access_masked_parent2 = access_request_parent2;
578 		}
579 
580 		rule = find_rule(domain, walker_path.dentry);
581 		allowed_parent1 = unmask_layers(rule, access_masked_parent1,
582 						layer_masks_parent1);
583 		allowed_parent2 = unmask_layers(rule, access_masked_parent2,
584 						layer_masks_parent2);
585 
586 		/* Stops when a rule from each layer grants access. */
587 		if (allowed_parent1 && allowed_parent2)
588 			break;
589 
590 jump_up:
591 		if (walker_path.dentry == walker_path.mnt->mnt_root) {
592 			if (follow_up(&walker_path)) {
593 				/* Ignores hidden mount points. */
594 				goto jump_up;
595 			} else {
596 				/*
597 				 * Stops at the real root.  Denies access
598 				 * because not all layers have granted access.
599 				 */
600 				break;
601 			}
602 		}
603 		if (unlikely(IS_ROOT(walker_path.dentry))) {
604 			/*
605 			 * Stops at disconnected root directories.  Only allows
606 			 * access to internal filesystems (e.g. nsfs, which is
607 			 * reachable through /proc/<pid>/ns/<namespace>).
608 			 */
609 			allowed_parent1 = allowed_parent2 =
610 				!!(walker_path.mnt->mnt_flags & MNT_INTERNAL);
611 			break;
612 		}
613 		parent_dentry = dget_parent(walker_path.dentry);
614 		dput(walker_path.dentry);
615 		walker_path.dentry = parent_dentry;
616 	}
617 	path_put(&walker_path);
618 
619 	if (allowed_parent1 && allowed_parent2)
620 		return 0;
621 
622 	/*
623 	 * This prioritizes EACCES over EXDEV for all actions, including
624 	 * renames with RENAME_EXCHANGE.
625 	 */
626 	if (likely(is_eacces(layer_masks_parent1, access_request_parent1) ||
627 		   is_eacces(layer_masks_parent2, access_request_parent2)))
628 		return -EACCES;
629 
630 	/*
631 	 * Gracefully forbids reparenting if the destination directory
632 	 * hierarchy is not a superset of restrictions of the source directory
633 	 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
634 	 * source or the destination.
635 	 */
636 	return -EXDEV;
637 }
638 
639 static inline int check_access_path(const struct landlock_ruleset *const domain,
640 				    const struct path *const path,
641 				    access_mask_t access_request)
642 {
643 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
644 
645 	access_request = init_layer_masks(domain, access_request, &layer_masks);
646 	return check_access_path_dual(domain, path, access_request,
647 				      &layer_masks, NULL, 0, NULL, NULL);
648 }
649 
650 static inline int current_check_access_path(const struct path *const path,
651 					    const access_mask_t access_request)
652 {
653 	const struct landlock_ruleset *const dom =
654 		landlock_get_current_domain();
655 
656 	if (!dom)
657 		return 0;
658 	return check_access_path(dom, path, access_request);
659 }
660 
661 static inline access_mask_t get_mode_access(const umode_t mode)
662 {
663 	switch (mode & S_IFMT) {
664 	case S_IFLNK:
665 		return LANDLOCK_ACCESS_FS_MAKE_SYM;
666 	case 0:
667 		/* A zero mode translates to S_IFREG. */
668 	case S_IFREG:
669 		return LANDLOCK_ACCESS_FS_MAKE_REG;
670 	case S_IFDIR:
671 		return LANDLOCK_ACCESS_FS_MAKE_DIR;
672 	case S_IFCHR:
673 		return LANDLOCK_ACCESS_FS_MAKE_CHAR;
674 	case S_IFBLK:
675 		return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
676 	case S_IFIFO:
677 		return LANDLOCK_ACCESS_FS_MAKE_FIFO;
678 	case S_IFSOCK:
679 		return LANDLOCK_ACCESS_FS_MAKE_SOCK;
680 	default:
681 		WARN_ON_ONCE(1);
682 		return 0;
683 	}
684 }
685 
686 static inline access_mask_t maybe_remove(const struct dentry *const dentry)
687 {
688 	if (d_is_negative(dentry))
689 		return 0;
690 	return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
691 				  LANDLOCK_ACCESS_FS_REMOVE_FILE;
692 }
693 
694 /**
695  * collect_domain_accesses - Walk through a file path and collect accesses
696  *
697  * @domain: Domain to check against.
698  * @mnt_root: Last directory to check.
699  * @dir: Directory to start the walk from.
700  * @layer_masks_dom: Where to store the collected accesses.
701  *
702  * This helper is useful to begin a path walk from the @dir directory to a
703  * @mnt_root directory used as a mount point.  This mount point is the common
704  * ancestor between the source and the destination of a renamed and linked
705  * file.  While walking from @dir to @mnt_root, we record all the domain's
706  * allowed accesses in @layer_masks_dom.
707  *
708  * This is similar to check_access_path_dual() but much simpler because it only
709  * handles walking on the same mount point and only check one set of accesses.
710  *
711  * Returns:
712  * - true if all the domain access rights are allowed for @dir;
713  * - false if the walk reached @mnt_root.
714  */
715 static bool collect_domain_accesses(
716 	const struct landlock_ruleset *const domain,
717 	const struct dentry *const mnt_root, struct dentry *dir,
718 	layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
719 {
720 	unsigned long access_dom;
721 	bool ret = false;
722 
723 	if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
724 		return true;
725 	if (is_nouser_or_private(dir))
726 		return true;
727 
728 	access_dom = init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
729 				      layer_masks_dom);
730 
731 	dget(dir);
732 	while (true) {
733 		struct dentry *parent_dentry;
734 
735 		/* Gets all layers allowing all domain accesses. */
736 		if (unmask_layers(find_rule(domain, dir), access_dom,
737 				  layer_masks_dom)) {
738 			/*
739 			 * Stops when all handled accesses are allowed by at
740 			 * least one rule in each layer.
741 			 */
742 			ret = true;
743 			break;
744 		}
745 
746 		/* We should not reach a root other than @mnt_root. */
747 		if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
748 			break;
749 
750 		parent_dentry = dget_parent(dir);
751 		dput(dir);
752 		dir = parent_dentry;
753 	}
754 	dput(dir);
755 	return ret;
756 }
757 
758 /**
759  * current_check_refer_path - Check if a rename or link action is allowed
760  *
761  * @old_dentry: File or directory requested to be moved or linked.
762  * @new_dir: Destination parent directory.
763  * @new_dentry: Destination file or directory.
764  * @removable: Sets to true if it is a rename operation.
765  * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
766  *
767  * Because of its unprivileged constraints, Landlock relies on file hierarchies
768  * (and not only inodes) to tie access rights to files.  Being able to link or
769  * rename a file hierarchy brings some challenges.  Indeed, moving or linking a
770  * file (i.e. creating a new reference to an inode) can have an impact on the
771  * actions allowed for a set of files if it would change its parent directory
772  * (i.e. reparenting).
773  *
774  * To avoid trivial access right bypasses, Landlock first checks if the file or
775  * directory requested to be moved would gain new access rights inherited from
776  * its new hierarchy.  Before returning any error, Landlock then checks that
777  * the parent source hierarchy and the destination hierarchy would allow the
778  * link or rename action.  If it is not the case, an error with EACCES is
779  * returned to inform user space that there is no way to remove or create the
780  * requested source file type.  If it should be allowed but the new inherited
781  * access rights would be greater than the source access rights, then the
782  * kernel returns an error with EXDEV.  Prioritizing EACCES over EXDEV enables
783  * user space to abort the whole operation if there is no way to do it, or to
784  * manually copy the source to the destination if this remains allowed, e.g.
785  * because file creation is allowed on the destination directory but not direct
786  * linking.
787  *
788  * To achieve this goal, the kernel needs to compare two file hierarchies: the
789  * one identifying the source file or directory (including itself), and the
790  * destination one.  This can be seen as a multilayer partial ordering problem.
791  * The kernel walks through these paths and collects in a matrix the access
792  * rights that are denied per layer.  These matrices are then compared to see
793  * if the destination one has more (or the same) restrictions as the source
794  * one.  If this is the case, the requested action will not return EXDEV, which
795  * doesn't mean the action is allowed.  The parent hierarchy of the source
796  * (i.e. parent directory), and the destination hierarchy must also be checked
797  * to verify that they explicitly allow such action (i.e.  referencing,
798  * creation and potentially removal rights).  The kernel implementation is then
799  * required to rely on potentially four matrices of access rights: one for the
800  * source file or directory (i.e. the child), a potentially other one for the
801  * other source/destination (in case of RENAME_EXCHANGE), one for the source
802  * parent hierarchy and a last one for the destination hierarchy.  These
803  * ephemeral matrices take some space on the stack, which limits the number of
804  * layers to a deemed reasonable number: 16.
805  *
806  * Returns:
807  * - 0 if access is allowed;
808  * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
809  * - -EACCES if file removal or creation is denied.
810  */
811 static int current_check_refer_path(struct dentry *const old_dentry,
812 				    const struct path *const new_dir,
813 				    struct dentry *const new_dentry,
814 				    const bool removable, const bool exchange)
815 {
816 	const struct landlock_ruleset *const dom =
817 		landlock_get_current_domain();
818 	bool allow_parent1, allow_parent2;
819 	access_mask_t access_request_parent1, access_request_parent2;
820 	struct path mnt_dir;
821 	layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS],
822 		layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS];
823 
824 	if (!dom)
825 		return 0;
826 	if (WARN_ON_ONCE(dom->num_layers < 1))
827 		return -EACCES;
828 	if (unlikely(d_is_negative(old_dentry)))
829 		return -ENOENT;
830 	if (exchange) {
831 		if (unlikely(d_is_negative(new_dentry)))
832 			return -ENOENT;
833 		access_request_parent1 =
834 			get_mode_access(d_backing_inode(new_dentry)->i_mode);
835 	} else {
836 		access_request_parent1 = 0;
837 	}
838 	access_request_parent2 =
839 		get_mode_access(d_backing_inode(old_dentry)->i_mode);
840 	if (removable) {
841 		access_request_parent1 |= maybe_remove(old_dentry);
842 		access_request_parent2 |= maybe_remove(new_dentry);
843 	}
844 
845 	/* The mount points are the same for old and new paths, cf. EXDEV. */
846 	if (old_dentry->d_parent == new_dir->dentry) {
847 		/*
848 		 * The LANDLOCK_ACCESS_FS_REFER access right is not required
849 		 * for same-directory referer (i.e. no reparenting).
850 		 */
851 		access_request_parent1 = init_layer_masks(
852 			dom, access_request_parent1 | access_request_parent2,
853 			&layer_masks_parent1);
854 		return check_access_path_dual(dom, new_dir,
855 					      access_request_parent1,
856 					      &layer_masks_parent1, NULL, 0,
857 					      NULL, NULL);
858 	}
859 
860 	/* Backward compatibility: no reparenting support. */
861 	if (!(get_handled_accesses(dom) & LANDLOCK_ACCESS_FS_REFER))
862 		return -EXDEV;
863 
864 	access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
865 	access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
866 
867 	/* Saves the common mount point. */
868 	mnt_dir.mnt = new_dir->mnt;
869 	mnt_dir.dentry = new_dir->mnt->mnt_root;
870 
871 	/* new_dir->dentry is equal to new_dentry->d_parent */
872 	allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry,
873 						old_dentry->d_parent,
874 						&layer_masks_parent1);
875 	allow_parent2 = collect_domain_accesses(
876 		dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
877 
878 	if (allow_parent1 && allow_parent2)
879 		return 0;
880 
881 	/*
882 	 * To be able to compare source and destination domain access rights,
883 	 * take into account the @old_dentry access rights aggregated with its
884 	 * parent access rights.  This will be useful to compare with the
885 	 * destination parent access rights.
886 	 */
887 	return check_access_path_dual(dom, &mnt_dir, access_request_parent1,
888 				      &layer_masks_parent1, old_dentry,
889 				      access_request_parent2,
890 				      &layer_masks_parent2,
891 				      exchange ? new_dentry : NULL);
892 }
893 
894 /* Inode hooks */
895 
896 static void hook_inode_free_security(struct inode *const inode)
897 {
898 	/*
899 	 * All inodes must already have been untied from their object by
900 	 * release_inode() or hook_sb_delete().
901 	 */
902 	WARN_ON_ONCE(landlock_inode(inode)->object);
903 }
904 
905 /* Super-block hooks */
906 
907 /*
908  * Release the inodes used in a security policy.
909  *
910  * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
911  */
912 static void hook_sb_delete(struct super_block *const sb)
913 {
914 	struct inode *inode, *prev_inode = NULL;
915 
916 	if (!landlock_initialized)
917 		return;
918 
919 	spin_lock(&sb->s_inode_list_lock);
920 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
921 		struct landlock_object *object;
922 
923 		/* Only handles referenced inodes. */
924 		if (!atomic_read(&inode->i_count))
925 			continue;
926 
927 		/*
928 		 * Protects against concurrent modification of inode (e.g.
929 		 * from get_inode_object()).
930 		 */
931 		spin_lock(&inode->i_lock);
932 		/*
933 		 * Checks I_FREEING and I_WILL_FREE  to protect against a race
934 		 * condition when release_inode() just called iput(), which
935 		 * could lead to a NULL dereference of inode->security or a
936 		 * second call to iput() for the same Landlock object.  Also
937 		 * checks I_NEW because such inode cannot be tied to an object.
938 		 */
939 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
940 			spin_unlock(&inode->i_lock);
941 			continue;
942 		}
943 
944 		rcu_read_lock();
945 		object = rcu_dereference(landlock_inode(inode)->object);
946 		if (!object) {
947 			rcu_read_unlock();
948 			spin_unlock(&inode->i_lock);
949 			continue;
950 		}
951 		/* Keeps a reference to this inode until the next loop walk. */
952 		__iget(inode);
953 		spin_unlock(&inode->i_lock);
954 
955 		/*
956 		 * If there is no concurrent release_inode() ongoing, then we
957 		 * are in charge of calling iput() on this inode, otherwise we
958 		 * will just wait for it to finish.
959 		 */
960 		spin_lock(&object->lock);
961 		if (object->underobj == inode) {
962 			object->underobj = NULL;
963 			spin_unlock(&object->lock);
964 			rcu_read_unlock();
965 
966 			/*
967 			 * Because object->underobj was not NULL,
968 			 * release_inode() and get_inode_object() guarantee
969 			 * that it is safe to reset
970 			 * landlock_inode(inode)->object while it is not NULL.
971 			 * It is therefore not necessary to lock inode->i_lock.
972 			 */
973 			rcu_assign_pointer(landlock_inode(inode)->object, NULL);
974 			/*
975 			 * At this point, we own the ihold() reference that was
976 			 * originally set up by get_inode_object() and the
977 			 * __iget() reference that we just set in this loop
978 			 * walk.  Therefore the following call to iput() will
979 			 * not sleep nor drop the inode because there is now at
980 			 * least two references to it.
981 			 */
982 			iput(inode);
983 		} else {
984 			spin_unlock(&object->lock);
985 			rcu_read_unlock();
986 		}
987 
988 		if (prev_inode) {
989 			/*
990 			 * At this point, we still own the __iget() reference
991 			 * that we just set in this loop walk.  Therefore we
992 			 * can drop the list lock and know that the inode won't
993 			 * disappear from under us until the next loop walk.
994 			 */
995 			spin_unlock(&sb->s_inode_list_lock);
996 			/*
997 			 * We can now actually put the inode reference from the
998 			 * previous loop walk, which is not needed anymore.
999 			 */
1000 			iput(prev_inode);
1001 			cond_resched();
1002 			spin_lock(&sb->s_inode_list_lock);
1003 		}
1004 		prev_inode = inode;
1005 	}
1006 	spin_unlock(&sb->s_inode_list_lock);
1007 
1008 	/* Puts the inode reference from the last loop walk, if any. */
1009 	if (prev_inode)
1010 		iput(prev_inode);
1011 	/* Waits for pending iput() in release_inode(). */
1012 	wait_var_event(&landlock_superblock(sb)->inode_refs,
1013 		       !atomic_long_read(&landlock_superblock(sb)->inode_refs));
1014 }
1015 
1016 /*
1017  * Because a Landlock security policy is defined according to the filesystem
1018  * topology (i.e. the mount namespace), changing it may grant access to files
1019  * not previously allowed.
1020  *
1021  * To make it simple, deny any filesystem topology modification by landlocked
1022  * processes.  Non-landlocked processes may still change the namespace of a
1023  * landlocked process, but this kind of threat must be handled by a system-wide
1024  * access-control security policy.
1025  *
1026  * This could be lifted in the future if Landlock can safely handle mount
1027  * namespace updates requested by a landlocked process.  Indeed, we could
1028  * update the current domain (which is currently read-only) by taking into
1029  * account the accesses of the source and the destination of a new mount point.
1030  * However, it would also require to make all the child domains dynamically
1031  * inherit these new constraints.  Anyway, for backward compatibility reasons,
1032  * a dedicated user space option would be required (e.g. as a ruleset flag).
1033  */
1034 static int hook_sb_mount(const char *const dev_name,
1035 			 const struct path *const path, const char *const type,
1036 			 const unsigned long flags, void *const data)
1037 {
1038 	if (!landlock_get_current_domain())
1039 		return 0;
1040 	return -EPERM;
1041 }
1042 
1043 static int hook_move_mount(const struct path *const from_path,
1044 			   const struct path *const to_path)
1045 {
1046 	if (!landlock_get_current_domain())
1047 		return 0;
1048 	return -EPERM;
1049 }
1050 
1051 /*
1052  * Removing a mount point may reveal a previously hidden file hierarchy, which
1053  * may then grant access to files, which may have previously been forbidden.
1054  */
1055 static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
1056 {
1057 	if (!landlock_get_current_domain())
1058 		return 0;
1059 	return -EPERM;
1060 }
1061 
1062 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
1063 {
1064 	if (!landlock_get_current_domain())
1065 		return 0;
1066 	return -EPERM;
1067 }
1068 
1069 /*
1070  * pivot_root(2), like mount(2), changes the current mount namespace.  It must
1071  * then be forbidden for a landlocked process.
1072  *
1073  * However, chroot(2) may be allowed because it only changes the relative root
1074  * directory of the current process.  Moreover, it can be used to restrict the
1075  * view of the filesystem.
1076  */
1077 static int hook_sb_pivotroot(const struct path *const old_path,
1078 			     const struct path *const new_path)
1079 {
1080 	if (!landlock_get_current_domain())
1081 		return 0;
1082 	return -EPERM;
1083 }
1084 
1085 /* Path hooks */
1086 
1087 static int hook_path_link(struct dentry *const old_dentry,
1088 			  const struct path *const new_dir,
1089 			  struct dentry *const new_dentry)
1090 {
1091 	return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
1092 					false);
1093 }
1094 
1095 static int hook_path_rename(const struct path *const old_dir,
1096 			    struct dentry *const old_dentry,
1097 			    const struct path *const new_dir,
1098 			    struct dentry *const new_dentry,
1099 			    const unsigned int flags)
1100 {
1101 	/* old_dir refers to old_dentry->d_parent and new_dir->mnt */
1102 	return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
1103 					!!(flags & RENAME_EXCHANGE));
1104 }
1105 
1106 static int hook_path_mkdir(const struct path *const dir,
1107 			   struct dentry *const dentry, const umode_t mode)
1108 {
1109 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
1110 }
1111 
1112 static int hook_path_mknod(const struct path *const dir,
1113 			   struct dentry *const dentry, const umode_t mode,
1114 			   const unsigned int dev)
1115 {
1116 	const struct landlock_ruleset *const dom =
1117 		landlock_get_current_domain();
1118 
1119 	if (!dom)
1120 		return 0;
1121 	return check_access_path(dom, dir, get_mode_access(mode));
1122 }
1123 
1124 static int hook_path_symlink(const struct path *const dir,
1125 			     struct dentry *const dentry,
1126 			     const char *const old_name)
1127 {
1128 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
1129 }
1130 
1131 static int hook_path_unlink(const struct path *const dir,
1132 			    struct dentry *const dentry)
1133 {
1134 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
1135 }
1136 
1137 static int hook_path_rmdir(const struct path *const dir,
1138 			   struct dentry *const dentry)
1139 {
1140 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
1141 }
1142 
1143 /* File hooks */
1144 
1145 static inline access_mask_t get_file_access(const struct file *const file)
1146 {
1147 	access_mask_t access = 0;
1148 
1149 	if (file->f_mode & FMODE_READ) {
1150 		/* A directory can only be opened in read mode. */
1151 		if (S_ISDIR(file_inode(file)->i_mode))
1152 			return LANDLOCK_ACCESS_FS_READ_DIR;
1153 		access = LANDLOCK_ACCESS_FS_READ_FILE;
1154 	}
1155 	if (file->f_mode & FMODE_WRITE)
1156 		access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
1157 	/* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
1158 	if (file->f_flags & __FMODE_EXEC)
1159 		access |= LANDLOCK_ACCESS_FS_EXECUTE;
1160 	return access;
1161 }
1162 
1163 static int hook_file_open(struct file *const file)
1164 {
1165 	const struct landlock_ruleset *const dom =
1166 		landlock_get_current_domain();
1167 
1168 	if (!dom)
1169 		return 0;
1170 	/*
1171 	 * Because a file may be opened with O_PATH, get_file_access() may
1172 	 * return 0.  This case will be handled with a future Landlock
1173 	 * evolution.
1174 	 */
1175 	return check_access_path(dom, &file->f_path, get_file_access(file));
1176 }
1177 
1178 static struct security_hook_list landlock_hooks[] __lsm_ro_after_init = {
1179 	LSM_HOOK_INIT(inode_free_security, hook_inode_free_security),
1180 
1181 	LSM_HOOK_INIT(sb_delete, hook_sb_delete),
1182 	LSM_HOOK_INIT(sb_mount, hook_sb_mount),
1183 	LSM_HOOK_INIT(move_mount, hook_move_mount),
1184 	LSM_HOOK_INIT(sb_umount, hook_sb_umount),
1185 	LSM_HOOK_INIT(sb_remount, hook_sb_remount),
1186 	LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
1187 
1188 	LSM_HOOK_INIT(path_link, hook_path_link),
1189 	LSM_HOOK_INIT(path_rename, hook_path_rename),
1190 	LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
1191 	LSM_HOOK_INIT(path_mknod, hook_path_mknod),
1192 	LSM_HOOK_INIT(path_symlink, hook_path_symlink),
1193 	LSM_HOOK_INIT(path_unlink, hook_path_unlink),
1194 	LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
1195 
1196 	LSM_HOOK_INIT(file_open, hook_file_open),
1197 };
1198 
1199 __init void landlock_add_fs_hooks(void)
1200 {
1201 	security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
1202 			   LANDLOCK_NAME);
1203 }
1204