1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Landlock LSM - Filesystem management and hooks 4 * 5 * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net> 6 * Copyright © 2018-2020 ANSSI 7 * Copyright © 2021-2022 Microsoft Corporation 8 * Copyright © 2022 Günther Noack <gnoack3000@gmail.com> 9 * Copyright © 2023-2024 Google LLC 10 */ 11 12 #include <asm/ioctls.h> 13 #include <kunit/test.h> 14 #include <linux/atomic.h> 15 #include <linux/bitops.h> 16 #include <linux/bits.h> 17 #include <linux/compiler_types.h> 18 #include <linux/dcache.h> 19 #include <linux/err.h> 20 #include <linux/falloc.h> 21 #include <linux/fs.h> 22 #include <linux/init.h> 23 #include <linux/kernel.h> 24 #include <linux/limits.h> 25 #include <linux/list.h> 26 #include <linux/lsm_hooks.h> 27 #include <linux/mount.h> 28 #include <linux/namei.h> 29 #include <linux/path.h> 30 #include <linux/rcupdate.h> 31 #include <linux/spinlock.h> 32 #include <linux/stat.h> 33 #include <linux/types.h> 34 #include <linux/wait_bit.h> 35 #include <linux/workqueue.h> 36 #include <uapi/linux/fiemap.h> 37 #include <uapi/linux/landlock.h> 38 39 #include "access.h" 40 #include "common.h" 41 #include "cred.h" 42 #include "fs.h" 43 #include "limits.h" 44 #include "object.h" 45 #include "ruleset.h" 46 #include "setup.h" 47 48 /* Underlying object management */ 49 50 static void release_inode(struct landlock_object *const object) 51 __releases(object->lock) 52 { 53 struct inode *const inode = object->underobj; 54 struct super_block *sb; 55 56 if (!inode) { 57 spin_unlock(&object->lock); 58 return; 59 } 60 61 /* 62 * Protects against concurrent use by hook_sb_delete() of the reference 63 * to the underlying inode. 64 */ 65 object->underobj = NULL; 66 /* 67 * Makes sure that if the filesystem is concurrently unmounted, 68 * hook_sb_delete() will wait for us to finish iput(). 69 */ 70 sb = inode->i_sb; 71 atomic_long_inc(&landlock_superblock(sb)->inode_refs); 72 spin_unlock(&object->lock); 73 /* 74 * Because object->underobj was not NULL, hook_sb_delete() and 75 * get_inode_object() guarantee that it is safe to reset 76 * landlock_inode(inode)->object while it is not NULL. It is therefore 77 * not necessary to lock inode->i_lock. 78 */ 79 rcu_assign_pointer(landlock_inode(inode)->object, NULL); 80 /* 81 * Now, new rules can safely be tied to @inode with get_inode_object(). 82 */ 83 84 iput(inode); 85 if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs)) 86 wake_up_var(&landlock_superblock(sb)->inode_refs); 87 } 88 89 static const struct landlock_object_underops landlock_fs_underops = { 90 .release = release_inode 91 }; 92 93 /* IOCTL helpers */ 94 95 /** 96 * is_masked_device_ioctl - Determine whether an IOCTL command is always 97 * permitted with Landlock for device files. These commands can not be 98 * restricted on device files by enforcing a Landlock policy. 99 * 100 * @cmd: The IOCTL command that is supposed to be run. 101 * 102 * By default, any IOCTL on a device file requires the 103 * LANDLOCK_ACCESS_FS_IOCTL_DEV right. However, we blanket-permit some 104 * commands, if: 105 * 106 * 1. The command is implemented in fs/ioctl.c's do_vfs_ioctl(), 107 * not in f_ops->unlocked_ioctl() or f_ops->compat_ioctl(). 108 * 109 * 2. The command is harmless when invoked on devices. 110 * 111 * We also permit commands that do not make sense for devices, but where the 112 * do_vfs_ioctl() implementation returns a more conventional error code. 113 * 114 * Any new IOCTL commands that are implemented in fs/ioctl.c's do_vfs_ioctl() 115 * should be considered for inclusion here. 116 * 117 * Returns: true if the IOCTL @cmd can not be restricted with Landlock for 118 * device files. 119 */ 120 static __attribute_const__ bool is_masked_device_ioctl(const unsigned int cmd) 121 { 122 switch (cmd) { 123 /* 124 * FIOCLEX, FIONCLEX, FIONBIO and FIOASYNC manipulate the FD's 125 * close-on-exec and the file's buffered-IO and async flags. These 126 * operations are also available through fcntl(2), and are 127 * unconditionally permitted in Landlock. 128 */ 129 case FIOCLEX: 130 case FIONCLEX: 131 case FIONBIO: 132 case FIOASYNC: 133 /* 134 * FIOQSIZE queries the size of a regular file, directory, or link. 135 * 136 * We still permit it, because it always returns -ENOTTY for 137 * other file types. 138 */ 139 case FIOQSIZE: 140 /* 141 * FIFREEZE and FITHAW freeze and thaw the file system which the 142 * given file belongs to. Requires CAP_SYS_ADMIN. 143 * 144 * These commands operate on the file system's superblock rather 145 * than on the file itself. The same operations can also be 146 * done through any other file or directory on the same file 147 * system, so it is safe to permit these. 148 */ 149 case FIFREEZE: 150 case FITHAW: 151 /* 152 * FS_IOC_FIEMAP queries information about the allocation of 153 * blocks within a file. 154 * 155 * This IOCTL command only makes sense for regular files and is 156 * not implemented by devices. It is harmless to permit. 157 */ 158 case FS_IOC_FIEMAP: 159 /* 160 * FIGETBSZ queries the file system's block size for a file or 161 * directory. 162 * 163 * This command operates on the file system's superblock rather 164 * than on the file itself. The same operation can also be done 165 * through any other file or directory on the same file system, 166 * so it is safe to permit it. 167 */ 168 case FIGETBSZ: 169 /* 170 * FICLONE, FICLONERANGE and FIDEDUPERANGE make files share 171 * their underlying storage ("reflink") between source and 172 * destination FDs, on file systems which support that. 173 * 174 * These IOCTL commands only apply to regular files 175 * and are harmless to permit for device files. 176 */ 177 case FICLONE: 178 case FICLONERANGE: 179 case FIDEDUPERANGE: 180 /* 181 * FS_IOC_GETFSUUID and FS_IOC_GETFSSYSFSPATH both operate on 182 * the file system superblock, not on the specific file, so 183 * these operations are available through any other file on the 184 * same file system as well. 185 */ 186 case FS_IOC_GETFSUUID: 187 case FS_IOC_GETFSSYSFSPATH: 188 return true; 189 190 /* 191 * FIONREAD, FS_IOC_GETFLAGS, FS_IOC_SETFLAGS, FS_IOC_FSGETXATTR and 192 * FS_IOC_FSSETXATTR are forwarded to device implementations. 193 */ 194 195 /* 196 * file_ioctl() commands (FIBMAP, FS_IOC_RESVSP, FS_IOC_RESVSP64, 197 * FS_IOC_UNRESVSP, FS_IOC_UNRESVSP64 and FS_IOC_ZERO_RANGE) are 198 * forwarded to device implementations, so not permitted. 199 */ 200 201 /* Other commands are guarded by the access right. */ 202 default: 203 return false; 204 } 205 } 206 207 /* 208 * is_masked_device_ioctl_compat - same as the helper above, but checking the 209 * "compat" IOCTL commands. 210 * 211 * The IOCTL commands with special handling in compat-mode should behave the 212 * same as their non-compat counterparts. 213 */ 214 static __attribute_const__ bool 215 is_masked_device_ioctl_compat(const unsigned int cmd) 216 { 217 switch (cmd) { 218 /* FICLONE is permitted, same as in the non-compat variant. */ 219 case FICLONE: 220 return true; 221 222 #if defined(CONFIG_X86_64) 223 /* 224 * FS_IOC_RESVSP_32, FS_IOC_RESVSP64_32, FS_IOC_UNRESVSP_32, 225 * FS_IOC_UNRESVSP64_32, FS_IOC_ZERO_RANGE_32: not blanket-permitted, 226 * for consistency with their non-compat variants. 227 */ 228 case FS_IOC_RESVSP_32: 229 case FS_IOC_RESVSP64_32: 230 case FS_IOC_UNRESVSP_32: 231 case FS_IOC_UNRESVSP64_32: 232 case FS_IOC_ZERO_RANGE_32: 233 #endif 234 235 /* 236 * FS_IOC32_GETFLAGS, FS_IOC32_SETFLAGS are forwarded to their device 237 * implementations. 238 */ 239 case FS_IOC32_GETFLAGS: 240 case FS_IOC32_SETFLAGS: 241 return false; 242 default: 243 return is_masked_device_ioctl(cmd); 244 } 245 } 246 247 /* Ruleset management */ 248 249 static struct landlock_object *get_inode_object(struct inode *const inode) 250 { 251 struct landlock_object *object, *new_object; 252 struct landlock_inode_security *inode_sec = landlock_inode(inode); 253 254 rcu_read_lock(); 255 retry: 256 object = rcu_dereference(inode_sec->object); 257 if (object) { 258 if (likely(refcount_inc_not_zero(&object->usage))) { 259 rcu_read_unlock(); 260 return object; 261 } 262 /* 263 * We are racing with release_inode(), the object is going 264 * away. Wait for release_inode(), then retry. 265 */ 266 spin_lock(&object->lock); 267 spin_unlock(&object->lock); 268 goto retry; 269 } 270 rcu_read_unlock(); 271 272 /* 273 * If there is no object tied to @inode, then create a new one (without 274 * holding any locks). 275 */ 276 new_object = landlock_create_object(&landlock_fs_underops, inode); 277 if (IS_ERR(new_object)) 278 return new_object; 279 280 /* 281 * Protects against concurrent calls to get_inode_object() or 282 * hook_sb_delete(). 283 */ 284 spin_lock(&inode->i_lock); 285 if (unlikely(rcu_access_pointer(inode_sec->object))) { 286 /* Someone else just created the object, bail out and retry. */ 287 spin_unlock(&inode->i_lock); 288 kfree(new_object); 289 290 rcu_read_lock(); 291 goto retry; 292 } 293 294 /* 295 * @inode will be released by hook_sb_delete() on its superblock 296 * shutdown, or by release_inode() when no more ruleset references the 297 * related object. 298 */ 299 ihold(inode); 300 rcu_assign_pointer(inode_sec->object, new_object); 301 spin_unlock(&inode->i_lock); 302 return new_object; 303 } 304 305 /* All access rights that can be tied to files. */ 306 /* clang-format off */ 307 #define ACCESS_FILE ( \ 308 LANDLOCK_ACCESS_FS_EXECUTE | \ 309 LANDLOCK_ACCESS_FS_WRITE_FILE | \ 310 LANDLOCK_ACCESS_FS_READ_FILE | \ 311 LANDLOCK_ACCESS_FS_TRUNCATE | \ 312 LANDLOCK_ACCESS_FS_IOCTL_DEV) 313 /* clang-format on */ 314 315 /* 316 * @path: Should have been checked by get_path_from_fd(). 317 */ 318 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset, 319 const struct path *const path, 320 access_mask_t access_rights) 321 { 322 int err; 323 struct landlock_id id = { 324 .type = LANDLOCK_KEY_INODE, 325 }; 326 327 /* Files only get access rights that make sense. */ 328 if (!d_is_dir(path->dentry) && 329 (access_rights | ACCESS_FILE) != ACCESS_FILE) 330 return -EINVAL; 331 if (WARN_ON_ONCE(ruleset->num_layers != 1)) 332 return -EINVAL; 333 334 /* Transforms relative access rights to absolute ones. */ 335 access_rights |= LANDLOCK_MASK_ACCESS_FS & 336 ~landlock_get_fs_access_mask(ruleset, 0); 337 id.key.object = get_inode_object(d_backing_inode(path->dentry)); 338 if (IS_ERR(id.key.object)) 339 return PTR_ERR(id.key.object); 340 mutex_lock(&ruleset->lock); 341 err = landlock_insert_rule(ruleset, id, access_rights); 342 mutex_unlock(&ruleset->lock); 343 /* 344 * No need to check for an error because landlock_insert_rule() 345 * increments the refcount for the new object if needed. 346 */ 347 landlock_put_object(id.key.object); 348 return err; 349 } 350 351 /* Access-control management */ 352 353 /* 354 * The lifetime of the returned rule is tied to @domain. 355 * 356 * Returns NULL if no rule is found or if @dentry is negative. 357 */ 358 static const struct landlock_rule * 359 find_rule(const struct landlock_ruleset *const domain, 360 const struct dentry *const dentry) 361 { 362 const struct landlock_rule *rule; 363 const struct inode *inode; 364 struct landlock_id id = { 365 .type = LANDLOCK_KEY_INODE, 366 }; 367 368 /* Ignores nonexistent leafs. */ 369 if (d_is_negative(dentry)) 370 return NULL; 371 372 inode = d_backing_inode(dentry); 373 rcu_read_lock(); 374 id.key.object = rcu_dereference(landlock_inode(inode)->object); 375 rule = landlock_find_rule(domain, id); 376 rcu_read_unlock(); 377 return rule; 378 } 379 380 /* 381 * Allows access to pseudo filesystems that will never be mountable (e.g. 382 * sockfs, pipefs), but can still be reachable through 383 * /proc/<pid>/fd/<file-descriptor> 384 */ 385 static bool is_nouser_or_private(const struct dentry *dentry) 386 { 387 return (dentry->d_sb->s_flags & SB_NOUSER) || 388 (d_is_positive(dentry) && 389 unlikely(IS_PRIVATE(d_backing_inode(dentry)))); 390 } 391 392 static const struct access_masks any_fs = { 393 .fs = ~0, 394 }; 395 396 static const struct landlock_ruleset *get_current_fs_domain(void) 397 { 398 return landlock_get_applicable_domain(landlock_get_current_domain(), 399 any_fs); 400 } 401 402 /* 403 * Check that a destination file hierarchy has more restrictions than a source 404 * file hierarchy. This is only used for link and rename actions. 405 * 406 * @layer_masks_child2: Optional child masks. 407 */ 408 static bool no_more_access( 409 const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], 410 const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS], 411 const bool child1_is_directory, 412 const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], 413 const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS], 414 const bool child2_is_directory) 415 { 416 unsigned long access_bit; 417 418 for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2); 419 access_bit++) { 420 /* Ignores accesses that only make sense for directories. */ 421 const bool is_file_access = 422 !!(BIT_ULL(access_bit) & ACCESS_FILE); 423 424 if (child1_is_directory || is_file_access) { 425 /* 426 * Checks if the destination restrictions are a 427 * superset of the source ones (i.e. inherited access 428 * rights without child exceptions): 429 * restrictions(parent2) >= restrictions(child1) 430 */ 431 if ((((*layer_masks_parent1)[access_bit] & 432 (*layer_masks_child1)[access_bit]) | 433 (*layer_masks_parent2)[access_bit]) != 434 (*layer_masks_parent2)[access_bit]) 435 return false; 436 } 437 438 if (!layer_masks_child2) 439 continue; 440 if (child2_is_directory || is_file_access) { 441 /* 442 * Checks inverted restrictions for RENAME_EXCHANGE: 443 * restrictions(parent1) >= restrictions(child2) 444 */ 445 if ((((*layer_masks_parent2)[access_bit] & 446 (*layer_masks_child2)[access_bit]) | 447 (*layer_masks_parent1)[access_bit]) != 448 (*layer_masks_parent1)[access_bit]) 449 return false; 450 } 451 } 452 return true; 453 } 454 455 #define NMA_TRUE(...) KUNIT_EXPECT_TRUE(test, no_more_access(__VA_ARGS__)) 456 #define NMA_FALSE(...) KUNIT_EXPECT_FALSE(test, no_more_access(__VA_ARGS__)) 457 458 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST 459 460 static void test_no_more_access(struct kunit *const test) 461 { 462 const layer_mask_t rx0[LANDLOCK_NUM_ACCESS_FS] = { 463 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), 464 [BIT_INDEX(LANDLOCK_ACCESS_FS_READ_FILE)] = BIT_ULL(0), 465 }; 466 const layer_mask_t mx0[LANDLOCK_NUM_ACCESS_FS] = { 467 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), 468 [BIT_INDEX(LANDLOCK_ACCESS_FS_MAKE_REG)] = BIT_ULL(0), 469 }; 470 const layer_mask_t x0[LANDLOCK_NUM_ACCESS_FS] = { 471 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), 472 }; 473 const layer_mask_t x1[LANDLOCK_NUM_ACCESS_FS] = { 474 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(1), 475 }; 476 const layer_mask_t x01[LANDLOCK_NUM_ACCESS_FS] = { 477 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0) | 478 BIT_ULL(1), 479 }; 480 const layer_mask_t allows_all[LANDLOCK_NUM_ACCESS_FS] = {}; 481 482 /* Checks without restriction. */ 483 NMA_TRUE(&x0, &allows_all, false, &allows_all, NULL, false); 484 NMA_TRUE(&allows_all, &x0, false, &allows_all, NULL, false); 485 NMA_FALSE(&x0, &x0, false, &allows_all, NULL, false); 486 487 /* 488 * Checks that we can only refer a file if no more access could be 489 * inherited. 490 */ 491 NMA_TRUE(&x0, &x0, false, &rx0, NULL, false); 492 NMA_TRUE(&rx0, &rx0, false, &rx0, NULL, false); 493 NMA_FALSE(&rx0, &rx0, false, &x0, NULL, false); 494 NMA_FALSE(&rx0, &rx0, false, &x1, NULL, false); 495 496 /* Checks allowed referring with different nested domains. */ 497 NMA_TRUE(&x0, &x1, false, &x0, NULL, false); 498 NMA_TRUE(&x1, &x0, false, &x0, NULL, false); 499 NMA_TRUE(&x0, &x01, false, &x0, NULL, false); 500 NMA_TRUE(&x0, &x01, false, &rx0, NULL, false); 501 NMA_TRUE(&x01, &x0, false, &x0, NULL, false); 502 NMA_TRUE(&x01, &x0, false, &rx0, NULL, false); 503 NMA_FALSE(&x01, &x01, false, &x0, NULL, false); 504 505 /* Checks that file access rights are also enforced for a directory. */ 506 NMA_FALSE(&rx0, &rx0, true, &x0, NULL, false); 507 508 /* Checks that directory access rights don't impact file referring... */ 509 NMA_TRUE(&mx0, &mx0, false, &x0, NULL, false); 510 /* ...but only directory referring. */ 511 NMA_FALSE(&mx0, &mx0, true, &x0, NULL, false); 512 513 /* Checks directory exchange. */ 514 NMA_TRUE(&mx0, &mx0, true, &mx0, &mx0, true); 515 NMA_TRUE(&mx0, &mx0, true, &mx0, &x0, true); 516 NMA_FALSE(&mx0, &mx0, true, &x0, &mx0, true); 517 NMA_FALSE(&mx0, &mx0, true, &x0, &x0, true); 518 NMA_FALSE(&mx0, &mx0, true, &x1, &x1, true); 519 520 /* Checks file exchange with directory access rights... */ 521 NMA_TRUE(&mx0, &mx0, false, &mx0, &mx0, false); 522 NMA_TRUE(&mx0, &mx0, false, &mx0, &x0, false); 523 NMA_TRUE(&mx0, &mx0, false, &x0, &mx0, false); 524 NMA_TRUE(&mx0, &mx0, false, &x0, &x0, false); 525 /* ...and with file access rights. */ 526 NMA_TRUE(&rx0, &rx0, false, &rx0, &rx0, false); 527 NMA_TRUE(&rx0, &rx0, false, &rx0, &x0, false); 528 NMA_FALSE(&rx0, &rx0, false, &x0, &rx0, false); 529 NMA_FALSE(&rx0, &rx0, false, &x0, &x0, false); 530 NMA_FALSE(&rx0, &rx0, false, &x1, &x1, false); 531 532 /* 533 * Allowing the following requests should not be a security risk 534 * because domain 0 denies execute access, and domain 1 is always 535 * nested with domain 0. However, adding an exception for this case 536 * would mean to check all nested domains to make sure none can get 537 * more privileges (e.g. processes only sandboxed by domain 0). 538 * Moreover, this behavior (i.e. composition of N domains) could then 539 * be inconsistent compared to domain 1's ruleset alone (e.g. it might 540 * be denied to link/rename with domain 1's ruleset, whereas it would 541 * be allowed if nested on top of domain 0). Another drawback would be 542 * to create a cover channel that could enable sandboxed processes to 543 * infer most of the filesystem restrictions from their domain. To 544 * make it simple, efficient, safe, and more consistent, this case is 545 * always denied. 546 */ 547 NMA_FALSE(&x1, &x1, false, &x0, NULL, false); 548 NMA_FALSE(&x1, &x1, false, &rx0, NULL, false); 549 NMA_FALSE(&x1, &x1, true, &x0, NULL, false); 550 NMA_FALSE(&x1, &x1, true, &rx0, NULL, false); 551 552 /* Checks the same case of exclusive domains with a file... */ 553 NMA_TRUE(&x1, &x1, false, &x01, NULL, false); 554 NMA_FALSE(&x1, &x1, false, &x01, &x0, false); 555 NMA_FALSE(&x1, &x1, false, &x01, &x01, false); 556 NMA_FALSE(&x1, &x1, false, &x0, &x0, false); 557 /* ...and with a directory. */ 558 NMA_FALSE(&x1, &x1, false, &x0, &x0, true); 559 NMA_FALSE(&x1, &x1, true, &x0, &x0, false); 560 NMA_FALSE(&x1, &x1, true, &x0, &x0, true); 561 } 562 563 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */ 564 565 #undef NMA_TRUE 566 #undef NMA_FALSE 567 568 static bool is_layer_masks_allowed( 569 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 570 { 571 return !memchr_inv(layer_masks, 0, sizeof(*layer_masks)); 572 } 573 574 /* 575 * Removes @layer_masks accesses that are not requested. 576 * 577 * Returns true if the request is allowed, false otherwise. 578 */ 579 static bool 580 scope_to_request(const access_mask_t access_request, 581 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 582 { 583 const unsigned long access_req = access_request; 584 unsigned long access_bit; 585 586 if (WARN_ON_ONCE(!layer_masks)) 587 return true; 588 589 for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks)) 590 (*layer_masks)[access_bit] = 0; 591 592 return is_layer_masks_allowed(layer_masks); 593 } 594 595 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST 596 597 static void test_scope_to_request_with_exec_none(struct kunit *const test) 598 { 599 /* Allows everything. */ 600 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 601 602 /* Checks and scopes with execute. */ 603 KUNIT_EXPECT_TRUE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE, 604 &layer_masks)); 605 KUNIT_EXPECT_EQ(test, 0, 606 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]); 607 KUNIT_EXPECT_EQ(test, 0, 608 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]); 609 } 610 611 static void test_scope_to_request_with_exec_some(struct kunit *const test) 612 { 613 /* Denies execute and write. */ 614 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = { 615 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), 616 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1), 617 }; 618 619 /* Checks and scopes with execute. */ 620 KUNIT_EXPECT_FALSE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE, 621 &layer_masks)); 622 KUNIT_EXPECT_EQ(test, BIT_ULL(0), 623 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]); 624 KUNIT_EXPECT_EQ(test, 0, 625 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]); 626 } 627 628 static void test_scope_to_request_without_access(struct kunit *const test) 629 { 630 /* Denies execute and write. */ 631 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = { 632 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), 633 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1), 634 }; 635 636 /* Checks and scopes without access request. */ 637 KUNIT_EXPECT_TRUE(test, scope_to_request(0, &layer_masks)); 638 KUNIT_EXPECT_EQ(test, 0, 639 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]); 640 KUNIT_EXPECT_EQ(test, 0, 641 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]); 642 } 643 644 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */ 645 646 /* 647 * Returns true if there is at least one access right different than 648 * LANDLOCK_ACCESS_FS_REFER. 649 */ 650 static bool 651 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS], 652 const access_mask_t access_request) 653 { 654 unsigned long access_bit; 655 /* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */ 656 const unsigned long access_check = access_request & 657 ~LANDLOCK_ACCESS_FS_REFER; 658 659 if (!layer_masks) 660 return false; 661 662 for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) { 663 if ((*layer_masks)[access_bit]) 664 return true; 665 } 666 return false; 667 } 668 669 #define IE_TRUE(...) KUNIT_EXPECT_TRUE(test, is_eacces(__VA_ARGS__)) 670 #define IE_FALSE(...) KUNIT_EXPECT_FALSE(test, is_eacces(__VA_ARGS__)) 671 672 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST 673 674 static void test_is_eacces_with_none(struct kunit *const test) 675 { 676 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 677 678 IE_FALSE(&layer_masks, 0); 679 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER); 680 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE); 681 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE); 682 } 683 684 static void test_is_eacces_with_refer(struct kunit *const test) 685 { 686 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = { 687 [BIT_INDEX(LANDLOCK_ACCESS_FS_REFER)] = BIT_ULL(0), 688 }; 689 690 IE_FALSE(&layer_masks, 0); 691 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER); 692 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE); 693 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE); 694 } 695 696 static void test_is_eacces_with_write(struct kunit *const test) 697 { 698 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = { 699 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(0), 700 }; 701 702 IE_FALSE(&layer_masks, 0); 703 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER); 704 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE); 705 706 IE_TRUE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE); 707 } 708 709 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */ 710 711 #undef IE_TRUE 712 #undef IE_FALSE 713 714 /** 715 * is_access_to_paths_allowed - Check accesses for requests with a common path 716 * 717 * @domain: Domain to check against. 718 * @path: File hierarchy to walk through. 719 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is 720 * equal to @layer_masks_parent2 (if any). This is tied to the unique 721 * requested path for most actions, or the source in case of a refer action 722 * (i.e. rename or link), or the source and destination in case of 723 * RENAME_EXCHANGE. 724 * @layer_masks_parent1: Pointer to a matrix of layer masks per access 725 * masks, identifying the layers that forbid a specific access. Bits from 726 * this matrix can be unset according to the @path walk. An empty matrix 727 * means that @domain allows all possible Landlock accesses (i.e. not only 728 * those identified by @access_request_parent1). This matrix can 729 * initially refer to domain layer masks and, when the accesses for the 730 * destination and source are the same, to requested layer masks. 731 * @dentry_child1: Dentry to the initial child of the parent1 path. This 732 * pointer must be NULL for non-refer actions (i.e. not link nor rename). 733 * @access_request_parent2: Similar to @access_request_parent1 but for a 734 * request involving a source and a destination. This refers to the 735 * destination, except in case of RENAME_EXCHANGE where it also refers to 736 * the source. Must be set to 0 when using a simple path request. 737 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer 738 * action. This must be NULL otherwise. 739 * @dentry_child2: Dentry to the initial child of the parent2 path. This 740 * pointer is only set for RENAME_EXCHANGE actions and must be NULL 741 * otherwise. 742 * 743 * This helper first checks that the destination has a superset of restrictions 744 * compared to the source (if any) for a common path. Because of 745 * RENAME_EXCHANGE actions, source and destinations may be swapped. It then 746 * checks that the collected accesses and the remaining ones are enough to 747 * allow the request. 748 * 749 * Returns: 750 * - true if the access request is granted; 751 * - false otherwise. 752 */ 753 static bool is_access_to_paths_allowed( 754 const struct landlock_ruleset *const domain, 755 const struct path *const path, 756 const access_mask_t access_request_parent1, 757 layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], 758 const struct dentry *const dentry_child1, 759 const access_mask_t access_request_parent2, 760 layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], 761 const struct dentry *const dentry_child2) 762 { 763 bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check, 764 child1_is_directory = true, child2_is_directory = true; 765 struct path walker_path; 766 access_mask_t access_masked_parent1, access_masked_parent2; 767 layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS], 768 _layer_masks_child2[LANDLOCK_NUM_ACCESS_FS]; 769 layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL, 770 (*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL; 771 772 if (!access_request_parent1 && !access_request_parent2) 773 return true; 774 if (WARN_ON_ONCE(!domain || !path)) 775 return true; 776 if (is_nouser_or_private(path->dentry)) 777 return true; 778 if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1)) 779 return false; 780 781 allowed_parent1 = is_layer_masks_allowed(layer_masks_parent1); 782 783 if (unlikely(layer_masks_parent2)) { 784 if (WARN_ON_ONCE(!dentry_child1)) 785 return false; 786 787 allowed_parent2 = is_layer_masks_allowed(layer_masks_parent2); 788 789 /* 790 * For a double request, first check for potential privilege 791 * escalation by looking at domain handled accesses (which are 792 * a superset of the meaningful requested accesses). 793 */ 794 access_masked_parent1 = access_masked_parent2 = 795 landlock_union_access_masks(domain).fs; 796 is_dom_check = true; 797 } else { 798 if (WARN_ON_ONCE(dentry_child1 || dentry_child2)) 799 return false; 800 /* For a simple request, only check for requested accesses. */ 801 access_masked_parent1 = access_request_parent1; 802 access_masked_parent2 = access_request_parent2; 803 is_dom_check = false; 804 } 805 806 if (unlikely(dentry_child1)) { 807 landlock_unmask_layers( 808 find_rule(domain, dentry_child1), 809 landlock_init_layer_masks( 810 domain, LANDLOCK_MASK_ACCESS_FS, 811 &_layer_masks_child1, LANDLOCK_KEY_INODE), 812 &_layer_masks_child1, ARRAY_SIZE(_layer_masks_child1)); 813 layer_masks_child1 = &_layer_masks_child1; 814 child1_is_directory = d_is_dir(dentry_child1); 815 } 816 if (unlikely(dentry_child2)) { 817 landlock_unmask_layers( 818 find_rule(domain, dentry_child2), 819 landlock_init_layer_masks( 820 domain, LANDLOCK_MASK_ACCESS_FS, 821 &_layer_masks_child2, LANDLOCK_KEY_INODE), 822 &_layer_masks_child2, ARRAY_SIZE(_layer_masks_child2)); 823 layer_masks_child2 = &_layer_masks_child2; 824 child2_is_directory = d_is_dir(dentry_child2); 825 } 826 827 walker_path = *path; 828 path_get(&walker_path); 829 /* 830 * We need to walk through all the hierarchy to not miss any relevant 831 * restriction. 832 */ 833 while (true) { 834 struct dentry *parent_dentry; 835 const struct landlock_rule *rule; 836 837 /* 838 * If at least all accesses allowed on the destination are 839 * already allowed on the source, respectively if there is at 840 * least as much as restrictions on the destination than on the 841 * source, then we can safely refer files from the source to 842 * the destination without risking a privilege escalation. 843 * This also applies in the case of RENAME_EXCHANGE, which 844 * implies checks on both direction. This is crucial for 845 * standalone multilayered security policies. Furthermore, 846 * this helps avoid policy writers to shoot themselves in the 847 * foot. 848 */ 849 if (unlikely(is_dom_check && 850 no_more_access( 851 layer_masks_parent1, layer_masks_child1, 852 child1_is_directory, layer_masks_parent2, 853 layer_masks_child2, 854 child2_is_directory))) { 855 /* 856 * Now, downgrades the remaining checks from domain 857 * handled accesses to requested accesses. 858 */ 859 is_dom_check = false; 860 access_masked_parent1 = access_request_parent1; 861 access_masked_parent2 = access_request_parent2; 862 863 allowed_parent1 = 864 allowed_parent1 || 865 scope_to_request(access_masked_parent1, 866 layer_masks_parent1); 867 allowed_parent2 = 868 allowed_parent2 || 869 scope_to_request(access_masked_parent2, 870 layer_masks_parent2); 871 872 /* Stops when all accesses are granted. */ 873 if (allowed_parent1 && allowed_parent2) 874 break; 875 } 876 877 rule = find_rule(domain, walker_path.dentry); 878 allowed_parent1 = allowed_parent1 || 879 landlock_unmask_layers( 880 rule, access_masked_parent1, 881 layer_masks_parent1, 882 ARRAY_SIZE(*layer_masks_parent1)); 883 allowed_parent2 = allowed_parent2 || 884 landlock_unmask_layers( 885 rule, access_masked_parent2, 886 layer_masks_parent2, 887 ARRAY_SIZE(*layer_masks_parent2)); 888 889 /* Stops when a rule from each layer grants access. */ 890 if (allowed_parent1 && allowed_parent2) 891 break; 892 jump_up: 893 if (walker_path.dentry == walker_path.mnt->mnt_root) { 894 if (follow_up(&walker_path)) { 895 /* Ignores hidden mount points. */ 896 goto jump_up; 897 } else { 898 /* 899 * Stops at the real root. Denies access 900 * because not all layers have granted access. 901 */ 902 break; 903 } 904 } 905 if (unlikely(IS_ROOT(walker_path.dentry))) { 906 /* 907 * Stops at disconnected root directories. Only allows 908 * access to internal filesystems (e.g. nsfs, which is 909 * reachable through /proc/<pid>/ns/<namespace>). 910 */ 911 if (walker_path.mnt->mnt_flags & MNT_INTERNAL) { 912 allowed_parent1 = true; 913 allowed_parent2 = true; 914 } 915 break; 916 } 917 parent_dentry = dget_parent(walker_path.dentry); 918 dput(walker_path.dentry); 919 walker_path.dentry = parent_dentry; 920 } 921 path_put(&walker_path); 922 923 return allowed_parent1 && allowed_parent2; 924 } 925 926 static int current_check_access_path(const struct path *const path, 927 access_mask_t access_request) 928 { 929 const struct landlock_ruleset *const dom = get_current_fs_domain(); 930 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 931 932 if (!dom) 933 return 0; 934 935 access_request = landlock_init_layer_masks( 936 dom, access_request, &layer_masks, LANDLOCK_KEY_INODE); 937 if (is_access_to_paths_allowed(dom, path, access_request, &layer_masks, 938 NULL, 0, NULL, NULL)) 939 return 0; 940 941 return -EACCES; 942 } 943 944 static __attribute_const__ access_mask_t get_mode_access(const umode_t mode) 945 { 946 switch (mode & S_IFMT) { 947 case S_IFLNK: 948 return LANDLOCK_ACCESS_FS_MAKE_SYM; 949 case S_IFDIR: 950 return LANDLOCK_ACCESS_FS_MAKE_DIR; 951 case S_IFCHR: 952 return LANDLOCK_ACCESS_FS_MAKE_CHAR; 953 case S_IFBLK: 954 return LANDLOCK_ACCESS_FS_MAKE_BLOCK; 955 case S_IFIFO: 956 return LANDLOCK_ACCESS_FS_MAKE_FIFO; 957 case S_IFSOCK: 958 return LANDLOCK_ACCESS_FS_MAKE_SOCK; 959 case S_IFREG: 960 case 0: 961 /* A zero mode translates to S_IFREG. */ 962 default: 963 /* Treats weird files as regular files. */ 964 return LANDLOCK_ACCESS_FS_MAKE_REG; 965 } 966 } 967 968 static access_mask_t maybe_remove(const struct dentry *const dentry) 969 { 970 if (d_is_negative(dentry)) 971 return 0; 972 return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR : 973 LANDLOCK_ACCESS_FS_REMOVE_FILE; 974 } 975 976 /** 977 * collect_domain_accesses - Walk through a file path and collect accesses 978 * 979 * @domain: Domain to check against. 980 * @mnt_root: Last directory to check. 981 * @dir: Directory to start the walk from. 982 * @layer_masks_dom: Where to store the collected accesses. 983 * 984 * This helper is useful to begin a path walk from the @dir directory to a 985 * @mnt_root directory used as a mount point. This mount point is the common 986 * ancestor between the source and the destination of a renamed and linked 987 * file. While walking from @dir to @mnt_root, we record all the domain's 988 * allowed accesses in @layer_masks_dom. 989 * 990 * This is similar to is_access_to_paths_allowed() but much simpler because it 991 * only handles walking on the same mount point and only checks one set of 992 * accesses. 993 * 994 * Returns: 995 * - true if all the domain access rights are allowed for @dir; 996 * - false if the walk reached @mnt_root. 997 */ 998 static bool collect_domain_accesses( 999 const struct landlock_ruleset *const domain, 1000 const struct dentry *const mnt_root, struct dentry *dir, 1001 layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS]) 1002 { 1003 unsigned long access_dom; 1004 bool ret = false; 1005 1006 if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom)) 1007 return true; 1008 if (is_nouser_or_private(dir)) 1009 return true; 1010 1011 access_dom = landlock_init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, 1012 layer_masks_dom, 1013 LANDLOCK_KEY_INODE); 1014 1015 dget(dir); 1016 while (true) { 1017 struct dentry *parent_dentry; 1018 1019 /* Gets all layers allowing all domain accesses. */ 1020 if (landlock_unmask_layers(find_rule(domain, dir), access_dom, 1021 layer_masks_dom, 1022 ARRAY_SIZE(*layer_masks_dom))) { 1023 /* 1024 * Stops when all handled accesses are allowed by at 1025 * least one rule in each layer. 1026 */ 1027 ret = true; 1028 break; 1029 } 1030 1031 /* We should not reach a root other than @mnt_root. */ 1032 if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir))) 1033 break; 1034 1035 parent_dentry = dget_parent(dir); 1036 dput(dir); 1037 dir = parent_dentry; 1038 } 1039 dput(dir); 1040 return ret; 1041 } 1042 1043 /** 1044 * current_check_refer_path - Check if a rename or link action is allowed 1045 * 1046 * @old_dentry: File or directory requested to be moved or linked. 1047 * @new_dir: Destination parent directory. 1048 * @new_dentry: Destination file or directory. 1049 * @removable: Sets to true if it is a rename operation. 1050 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE. 1051 * 1052 * Because of its unprivileged constraints, Landlock relies on file hierarchies 1053 * (and not only inodes) to tie access rights to files. Being able to link or 1054 * rename a file hierarchy brings some challenges. Indeed, moving or linking a 1055 * file (i.e. creating a new reference to an inode) can have an impact on the 1056 * actions allowed for a set of files if it would change its parent directory 1057 * (i.e. reparenting). 1058 * 1059 * To avoid trivial access right bypasses, Landlock first checks if the file or 1060 * directory requested to be moved would gain new access rights inherited from 1061 * its new hierarchy. Before returning any error, Landlock then checks that 1062 * the parent source hierarchy and the destination hierarchy would allow the 1063 * link or rename action. If it is not the case, an error with EACCES is 1064 * returned to inform user space that there is no way to remove or create the 1065 * requested source file type. If it should be allowed but the new inherited 1066 * access rights would be greater than the source access rights, then the 1067 * kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables 1068 * user space to abort the whole operation if there is no way to do it, or to 1069 * manually copy the source to the destination if this remains allowed, e.g. 1070 * because file creation is allowed on the destination directory but not direct 1071 * linking. 1072 * 1073 * To achieve this goal, the kernel needs to compare two file hierarchies: the 1074 * one identifying the source file or directory (including itself), and the 1075 * destination one. This can be seen as a multilayer partial ordering problem. 1076 * The kernel walks through these paths and collects in a matrix the access 1077 * rights that are denied per layer. These matrices are then compared to see 1078 * if the destination one has more (or the same) restrictions as the source 1079 * one. If this is the case, the requested action will not return EXDEV, which 1080 * doesn't mean the action is allowed. The parent hierarchy of the source 1081 * (i.e. parent directory), and the destination hierarchy must also be checked 1082 * to verify that they explicitly allow such action (i.e. referencing, 1083 * creation and potentially removal rights). The kernel implementation is then 1084 * required to rely on potentially four matrices of access rights: one for the 1085 * source file or directory (i.e. the child), a potentially other one for the 1086 * other source/destination (in case of RENAME_EXCHANGE), one for the source 1087 * parent hierarchy and a last one for the destination hierarchy. These 1088 * ephemeral matrices take some space on the stack, which limits the number of 1089 * layers to a deemed reasonable number: 16. 1090 * 1091 * Returns: 1092 * - 0 if access is allowed; 1093 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir; 1094 * - -EACCES if file removal or creation is denied. 1095 */ 1096 static int current_check_refer_path(struct dentry *const old_dentry, 1097 const struct path *const new_dir, 1098 struct dentry *const new_dentry, 1099 const bool removable, const bool exchange) 1100 { 1101 const struct landlock_ruleset *const dom = get_current_fs_domain(); 1102 bool allow_parent1, allow_parent2; 1103 access_mask_t access_request_parent1, access_request_parent2; 1104 struct path mnt_dir; 1105 struct dentry *old_parent; 1106 layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {}, 1107 layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {}; 1108 1109 if (!dom) 1110 return 0; 1111 if (WARN_ON_ONCE(dom->num_layers < 1)) 1112 return -EACCES; 1113 if (unlikely(d_is_negative(old_dentry))) 1114 return -ENOENT; 1115 if (exchange) { 1116 if (unlikely(d_is_negative(new_dentry))) 1117 return -ENOENT; 1118 access_request_parent1 = 1119 get_mode_access(d_backing_inode(new_dentry)->i_mode); 1120 } else { 1121 access_request_parent1 = 0; 1122 } 1123 access_request_parent2 = 1124 get_mode_access(d_backing_inode(old_dentry)->i_mode); 1125 if (removable) { 1126 access_request_parent1 |= maybe_remove(old_dentry); 1127 access_request_parent2 |= maybe_remove(new_dentry); 1128 } 1129 1130 /* The mount points are the same for old and new paths, cf. EXDEV. */ 1131 if (old_dentry->d_parent == new_dir->dentry) { 1132 /* 1133 * The LANDLOCK_ACCESS_FS_REFER access right is not required 1134 * for same-directory referer (i.e. no reparenting). 1135 */ 1136 access_request_parent1 = landlock_init_layer_masks( 1137 dom, access_request_parent1 | access_request_parent2, 1138 &layer_masks_parent1, LANDLOCK_KEY_INODE); 1139 if (is_access_to_paths_allowed( 1140 dom, new_dir, access_request_parent1, 1141 &layer_masks_parent1, NULL, 0, NULL, NULL)) 1142 return 0; 1143 return -EACCES; 1144 } 1145 1146 access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER; 1147 access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER; 1148 1149 /* Saves the common mount point. */ 1150 mnt_dir.mnt = new_dir->mnt; 1151 mnt_dir.dentry = new_dir->mnt->mnt_root; 1152 1153 /* 1154 * old_dentry may be the root of the common mount point and 1155 * !IS_ROOT(old_dentry) at the same time (e.g. with open_tree() and 1156 * OPEN_TREE_CLONE). We do not need to call dget(old_parent) because 1157 * we keep a reference to old_dentry. 1158 */ 1159 old_parent = (old_dentry == mnt_dir.dentry) ? old_dentry : 1160 old_dentry->d_parent; 1161 1162 /* new_dir->dentry is equal to new_dentry->d_parent */ 1163 allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, old_parent, 1164 &layer_masks_parent1); 1165 allow_parent2 = collect_domain_accesses( 1166 dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2); 1167 1168 if (allow_parent1 && allow_parent2) 1169 return 0; 1170 1171 /* 1172 * To be able to compare source and destination domain access rights, 1173 * take into account the @old_dentry access rights aggregated with its 1174 * parent access rights. This will be useful to compare with the 1175 * destination parent access rights. 1176 */ 1177 if (is_access_to_paths_allowed( 1178 dom, &mnt_dir, access_request_parent1, &layer_masks_parent1, 1179 old_dentry, access_request_parent2, &layer_masks_parent2, 1180 exchange ? new_dentry : NULL)) 1181 return 0; 1182 1183 /* 1184 * This prioritizes EACCES over EXDEV for all actions, including 1185 * renames with RENAME_EXCHANGE. 1186 */ 1187 if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) || 1188 is_eacces(&layer_masks_parent2, access_request_parent2))) 1189 return -EACCES; 1190 1191 /* 1192 * Gracefully forbids reparenting if the destination directory 1193 * hierarchy is not a superset of restrictions of the source directory 1194 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the 1195 * source or the destination. 1196 */ 1197 return -EXDEV; 1198 } 1199 1200 /* Inode hooks */ 1201 1202 static void hook_inode_free_security_rcu(void *inode_security) 1203 { 1204 struct landlock_inode_security *inode_sec; 1205 1206 /* 1207 * All inodes must already have been untied from their object by 1208 * release_inode() or hook_sb_delete(). 1209 */ 1210 inode_sec = inode_security + landlock_blob_sizes.lbs_inode; 1211 WARN_ON_ONCE(inode_sec->object); 1212 } 1213 1214 /* Super-block hooks */ 1215 1216 /* 1217 * Release the inodes used in a security policy. 1218 * 1219 * Cf. fsnotify_unmount_inodes() and invalidate_inodes() 1220 */ 1221 static void hook_sb_delete(struct super_block *const sb) 1222 { 1223 struct inode *inode, *prev_inode = NULL; 1224 1225 if (!landlock_initialized) 1226 return; 1227 1228 spin_lock(&sb->s_inode_list_lock); 1229 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1230 struct landlock_object *object; 1231 1232 /* Only handles referenced inodes. */ 1233 if (!atomic_read(&inode->i_count)) 1234 continue; 1235 1236 /* 1237 * Protects against concurrent modification of inode (e.g. 1238 * from get_inode_object()). 1239 */ 1240 spin_lock(&inode->i_lock); 1241 /* 1242 * Checks I_FREEING and I_WILL_FREE to protect against a race 1243 * condition when release_inode() just called iput(), which 1244 * could lead to a NULL dereference of inode->security or a 1245 * second call to iput() for the same Landlock object. Also 1246 * checks I_NEW because such inode cannot be tied to an object. 1247 */ 1248 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 1249 spin_unlock(&inode->i_lock); 1250 continue; 1251 } 1252 1253 rcu_read_lock(); 1254 object = rcu_dereference(landlock_inode(inode)->object); 1255 if (!object) { 1256 rcu_read_unlock(); 1257 spin_unlock(&inode->i_lock); 1258 continue; 1259 } 1260 /* Keeps a reference to this inode until the next loop walk. */ 1261 __iget(inode); 1262 spin_unlock(&inode->i_lock); 1263 1264 /* 1265 * If there is no concurrent release_inode() ongoing, then we 1266 * are in charge of calling iput() on this inode, otherwise we 1267 * will just wait for it to finish. 1268 */ 1269 spin_lock(&object->lock); 1270 if (object->underobj == inode) { 1271 object->underobj = NULL; 1272 spin_unlock(&object->lock); 1273 rcu_read_unlock(); 1274 1275 /* 1276 * Because object->underobj was not NULL, 1277 * release_inode() and get_inode_object() guarantee 1278 * that it is safe to reset 1279 * landlock_inode(inode)->object while it is not NULL. 1280 * It is therefore not necessary to lock inode->i_lock. 1281 */ 1282 rcu_assign_pointer(landlock_inode(inode)->object, NULL); 1283 /* 1284 * At this point, we own the ihold() reference that was 1285 * originally set up by get_inode_object() and the 1286 * __iget() reference that we just set in this loop 1287 * walk. Therefore the following call to iput() will 1288 * not sleep nor drop the inode because there is now at 1289 * least two references to it. 1290 */ 1291 iput(inode); 1292 } else { 1293 spin_unlock(&object->lock); 1294 rcu_read_unlock(); 1295 } 1296 1297 if (prev_inode) { 1298 /* 1299 * At this point, we still own the __iget() reference 1300 * that we just set in this loop walk. Therefore we 1301 * can drop the list lock and know that the inode won't 1302 * disappear from under us until the next loop walk. 1303 */ 1304 spin_unlock(&sb->s_inode_list_lock); 1305 /* 1306 * We can now actually put the inode reference from the 1307 * previous loop walk, which is not needed anymore. 1308 */ 1309 iput(prev_inode); 1310 cond_resched(); 1311 spin_lock(&sb->s_inode_list_lock); 1312 } 1313 prev_inode = inode; 1314 } 1315 spin_unlock(&sb->s_inode_list_lock); 1316 1317 /* Puts the inode reference from the last loop walk, if any. */ 1318 if (prev_inode) 1319 iput(prev_inode); 1320 /* Waits for pending iput() in release_inode(). */ 1321 wait_var_event(&landlock_superblock(sb)->inode_refs, 1322 !atomic_long_read(&landlock_superblock(sb)->inode_refs)); 1323 } 1324 1325 /* 1326 * Because a Landlock security policy is defined according to the filesystem 1327 * topology (i.e. the mount namespace), changing it may grant access to files 1328 * not previously allowed. 1329 * 1330 * To make it simple, deny any filesystem topology modification by landlocked 1331 * processes. Non-landlocked processes may still change the namespace of a 1332 * landlocked process, but this kind of threat must be handled by a system-wide 1333 * access-control security policy. 1334 * 1335 * This could be lifted in the future if Landlock can safely handle mount 1336 * namespace updates requested by a landlocked process. Indeed, we could 1337 * update the current domain (which is currently read-only) by taking into 1338 * account the accesses of the source and the destination of a new mount point. 1339 * However, it would also require to make all the child domains dynamically 1340 * inherit these new constraints. Anyway, for backward compatibility reasons, 1341 * a dedicated user space option would be required (e.g. as a ruleset flag). 1342 */ 1343 static int hook_sb_mount(const char *const dev_name, 1344 const struct path *const path, const char *const type, 1345 const unsigned long flags, void *const data) 1346 { 1347 if (!get_current_fs_domain()) 1348 return 0; 1349 return -EPERM; 1350 } 1351 1352 static int hook_move_mount(const struct path *const from_path, 1353 const struct path *const to_path) 1354 { 1355 if (!get_current_fs_domain()) 1356 return 0; 1357 return -EPERM; 1358 } 1359 1360 /* 1361 * Removing a mount point may reveal a previously hidden file hierarchy, which 1362 * may then grant access to files, which may have previously been forbidden. 1363 */ 1364 static int hook_sb_umount(struct vfsmount *const mnt, const int flags) 1365 { 1366 if (!get_current_fs_domain()) 1367 return 0; 1368 return -EPERM; 1369 } 1370 1371 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts) 1372 { 1373 if (!get_current_fs_domain()) 1374 return 0; 1375 return -EPERM; 1376 } 1377 1378 /* 1379 * pivot_root(2), like mount(2), changes the current mount namespace. It must 1380 * then be forbidden for a landlocked process. 1381 * 1382 * However, chroot(2) may be allowed because it only changes the relative root 1383 * directory of the current process. Moreover, it can be used to restrict the 1384 * view of the filesystem. 1385 */ 1386 static int hook_sb_pivotroot(const struct path *const old_path, 1387 const struct path *const new_path) 1388 { 1389 if (!get_current_fs_domain()) 1390 return 0; 1391 return -EPERM; 1392 } 1393 1394 /* Path hooks */ 1395 1396 static int hook_path_link(struct dentry *const old_dentry, 1397 const struct path *const new_dir, 1398 struct dentry *const new_dentry) 1399 { 1400 return current_check_refer_path(old_dentry, new_dir, new_dentry, false, 1401 false); 1402 } 1403 1404 static int hook_path_rename(const struct path *const old_dir, 1405 struct dentry *const old_dentry, 1406 const struct path *const new_dir, 1407 struct dentry *const new_dentry, 1408 const unsigned int flags) 1409 { 1410 /* old_dir refers to old_dentry->d_parent and new_dir->mnt */ 1411 return current_check_refer_path(old_dentry, new_dir, new_dentry, true, 1412 !!(flags & RENAME_EXCHANGE)); 1413 } 1414 1415 static int hook_path_mkdir(const struct path *const dir, 1416 struct dentry *const dentry, const umode_t mode) 1417 { 1418 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR); 1419 } 1420 1421 static int hook_path_mknod(const struct path *const dir, 1422 struct dentry *const dentry, const umode_t mode, 1423 const unsigned int dev) 1424 { 1425 return current_check_access_path(dir, get_mode_access(mode)); 1426 } 1427 1428 static int hook_path_symlink(const struct path *const dir, 1429 struct dentry *const dentry, 1430 const char *const old_name) 1431 { 1432 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM); 1433 } 1434 1435 static int hook_path_unlink(const struct path *const dir, 1436 struct dentry *const dentry) 1437 { 1438 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE); 1439 } 1440 1441 static int hook_path_rmdir(const struct path *const dir, 1442 struct dentry *const dentry) 1443 { 1444 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR); 1445 } 1446 1447 static int hook_path_truncate(const struct path *const path) 1448 { 1449 return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE); 1450 } 1451 1452 /* File hooks */ 1453 1454 /** 1455 * get_required_file_open_access - Get access needed to open a file 1456 * 1457 * @file: File being opened. 1458 * 1459 * Returns the access rights that are required for opening the given file, 1460 * depending on the file type and open mode. 1461 */ 1462 static access_mask_t 1463 get_required_file_open_access(const struct file *const file) 1464 { 1465 access_mask_t access = 0; 1466 1467 if (file->f_mode & FMODE_READ) { 1468 /* A directory can only be opened in read mode. */ 1469 if (S_ISDIR(file_inode(file)->i_mode)) 1470 return LANDLOCK_ACCESS_FS_READ_DIR; 1471 access = LANDLOCK_ACCESS_FS_READ_FILE; 1472 } 1473 if (file->f_mode & FMODE_WRITE) 1474 access |= LANDLOCK_ACCESS_FS_WRITE_FILE; 1475 /* __FMODE_EXEC is indeed part of f_flags, not f_mode. */ 1476 if (file->f_flags & __FMODE_EXEC) 1477 access |= LANDLOCK_ACCESS_FS_EXECUTE; 1478 return access; 1479 } 1480 1481 static int hook_file_alloc_security(struct file *const file) 1482 { 1483 /* 1484 * Grants all access rights, even if most of them are not checked later 1485 * on. It is more consistent. 1486 * 1487 * Notably, file descriptors for regular files can also be acquired 1488 * without going through the file_open hook, for example when using 1489 * memfd_create(2). 1490 */ 1491 landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS; 1492 return 0; 1493 } 1494 1495 static bool is_device(const struct file *const file) 1496 { 1497 const struct inode *inode = file_inode(file); 1498 1499 return S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode); 1500 } 1501 1502 static int hook_file_open(struct file *const file) 1503 { 1504 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 1505 access_mask_t open_access_request, full_access_request, allowed_access, 1506 optional_access; 1507 const struct landlock_ruleset *const dom = 1508 landlock_get_applicable_domain( 1509 landlock_cred(file->f_cred)->domain, any_fs); 1510 1511 if (!dom) 1512 return 0; 1513 1514 /* 1515 * Because a file may be opened with O_PATH, get_required_file_open_access() 1516 * may return 0. This case will be handled with a future Landlock 1517 * evolution. 1518 */ 1519 open_access_request = get_required_file_open_access(file); 1520 1521 /* 1522 * We look up more access than what we immediately need for open(), so 1523 * that we can later authorize operations on opened files. 1524 */ 1525 optional_access = LANDLOCK_ACCESS_FS_TRUNCATE; 1526 if (is_device(file)) 1527 optional_access |= LANDLOCK_ACCESS_FS_IOCTL_DEV; 1528 1529 full_access_request = open_access_request | optional_access; 1530 1531 if (is_access_to_paths_allowed( 1532 dom, &file->f_path, 1533 landlock_init_layer_masks(dom, full_access_request, 1534 &layer_masks, LANDLOCK_KEY_INODE), 1535 &layer_masks, NULL, 0, NULL, NULL)) { 1536 allowed_access = full_access_request; 1537 } else { 1538 unsigned long access_bit; 1539 const unsigned long access_req = full_access_request; 1540 1541 /* 1542 * Calculate the actual allowed access rights from layer_masks. 1543 * Add each access right to allowed_access which has not been 1544 * vetoed by any layer. 1545 */ 1546 allowed_access = 0; 1547 for_each_set_bit(access_bit, &access_req, 1548 ARRAY_SIZE(layer_masks)) { 1549 if (!layer_masks[access_bit]) 1550 allowed_access |= BIT_ULL(access_bit); 1551 } 1552 } 1553 1554 /* 1555 * For operations on already opened files (i.e. ftruncate()), it is the 1556 * access rights at the time of open() which decide whether the 1557 * operation is permitted. Therefore, we record the relevant subset of 1558 * file access rights in the opened struct file. 1559 */ 1560 landlock_file(file)->allowed_access = allowed_access; 1561 1562 if ((open_access_request & allowed_access) == open_access_request) 1563 return 0; 1564 1565 return -EACCES; 1566 } 1567 1568 static int hook_file_truncate(struct file *const file) 1569 { 1570 /* 1571 * Allows truncation if the truncate right was available at the time of 1572 * opening the file, to get a consistent access check as for read, write 1573 * and execute operations. 1574 * 1575 * Note: For checks done based on the file's Landlock allowed access, we 1576 * enforce them independently of whether the current thread is in a 1577 * Landlock domain, so that open files passed between independent 1578 * processes retain their behaviour. 1579 */ 1580 if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE) 1581 return 0; 1582 return -EACCES; 1583 } 1584 1585 static int hook_file_ioctl(struct file *file, unsigned int cmd, 1586 unsigned long arg) 1587 { 1588 access_mask_t allowed_access = landlock_file(file)->allowed_access; 1589 1590 /* 1591 * It is the access rights at the time of opening the file which 1592 * determine whether IOCTL can be used on the opened file later. 1593 * 1594 * The access right is attached to the opened file in hook_file_open(). 1595 */ 1596 if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV) 1597 return 0; 1598 1599 if (!is_device(file)) 1600 return 0; 1601 1602 if (is_masked_device_ioctl(cmd)) 1603 return 0; 1604 1605 return -EACCES; 1606 } 1607 1608 static int hook_file_ioctl_compat(struct file *file, unsigned int cmd, 1609 unsigned long arg) 1610 { 1611 access_mask_t allowed_access = landlock_file(file)->allowed_access; 1612 1613 /* 1614 * It is the access rights at the time of opening the file which 1615 * determine whether IOCTL can be used on the opened file later. 1616 * 1617 * The access right is attached to the opened file in hook_file_open(). 1618 */ 1619 if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV) 1620 return 0; 1621 1622 if (!is_device(file)) 1623 return 0; 1624 1625 if (is_masked_device_ioctl_compat(cmd)) 1626 return 0; 1627 1628 return -EACCES; 1629 } 1630 1631 static void hook_file_set_fowner(struct file *file) 1632 { 1633 struct landlock_ruleset *new_dom, *prev_dom; 1634 1635 /* 1636 * Lock already held by __f_setown(), see commit 26f204380a3c ("fs: Fix 1637 * file_set_fowner LSM hook inconsistencies"). 1638 */ 1639 lockdep_assert_held(&file_f_owner(file)->lock); 1640 new_dom = landlock_get_current_domain(); 1641 landlock_get_ruleset(new_dom); 1642 prev_dom = landlock_file(file)->fown_domain; 1643 landlock_file(file)->fown_domain = new_dom; 1644 1645 /* Called in an RCU read-side critical section. */ 1646 landlock_put_ruleset_deferred(prev_dom); 1647 } 1648 1649 static void hook_file_free_security(struct file *file) 1650 { 1651 landlock_put_ruleset_deferred(landlock_file(file)->fown_domain); 1652 } 1653 1654 static struct security_hook_list landlock_hooks[] __ro_after_init = { 1655 LSM_HOOK_INIT(inode_free_security_rcu, hook_inode_free_security_rcu), 1656 1657 LSM_HOOK_INIT(sb_delete, hook_sb_delete), 1658 LSM_HOOK_INIT(sb_mount, hook_sb_mount), 1659 LSM_HOOK_INIT(move_mount, hook_move_mount), 1660 LSM_HOOK_INIT(sb_umount, hook_sb_umount), 1661 LSM_HOOK_INIT(sb_remount, hook_sb_remount), 1662 LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot), 1663 1664 LSM_HOOK_INIT(path_link, hook_path_link), 1665 LSM_HOOK_INIT(path_rename, hook_path_rename), 1666 LSM_HOOK_INIT(path_mkdir, hook_path_mkdir), 1667 LSM_HOOK_INIT(path_mknod, hook_path_mknod), 1668 LSM_HOOK_INIT(path_symlink, hook_path_symlink), 1669 LSM_HOOK_INIT(path_unlink, hook_path_unlink), 1670 LSM_HOOK_INIT(path_rmdir, hook_path_rmdir), 1671 LSM_HOOK_INIT(path_truncate, hook_path_truncate), 1672 1673 LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security), 1674 LSM_HOOK_INIT(file_open, hook_file_open), 1675 LSM_HOOK_INIT(file_truncate, hook_file_truncate), 1676 LSM_HOOK_INIT(file_ioctl, hook_file_ioctl), 1677 LSM_HOOK_INIT(file_ioctl_compat, hook_file_ioctl_compat), 1678 LSM_HOOK_INIT(file_set_fowner, hook_file_set_fowner), 1679 LSM_HOOK_INIT(file_free_security, hook_file_free_security), 1680 }; 1681 1682 __init void landlock_add_fs_hooks(void) 1683 { 1684 security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks), 1685 &landlock_lsmid); 1686 } 1687 1688 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST 1689 1690 /* clang-format off */ 1691 static struct kunit_case test_cases[] = { 1692 KUNIT_CASE(test_no_more_access), 1693 KUNIT_CASE(test_scope_to_request_with_exec_none), 1694 KUNIT_CASE(test_scope_to_request_with_exec_some), 1695 KUNIT_CASE(test_scope_to_request_without_access), 1696 KUNIT_CASE(test_is_eacces_with_none), 1697 KUNIT_CASE(test_is_eacces_with_refer), 1698 KUNIT_CASE(test_is_eacces_with_write), 1699 {} 1700 }; 1701 /* clang-format on */ 1702 1703 static struct kunit_suite test_suite = { 1704 .name = "landlock_fs", 1705 .test_cases = test_cases, 1706 }; 1707 1708 kunit_test_suite(test_suite); 1709 1710 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */ 1711