1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010 IBM Corporation 4 * Copyright (c) 2019-2021, Linaro Limited 5 * 6 * See Documentation/security/keys/trusted-encrypted.rst 7 */ 8 9 #include <crypto/hash_info.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/parser.h> 13 #include <linux/string.h> 14 #include <linux/err.h> 15 #include <keys/trusted-type.h> 16 #include <linux/key-type.h> 17 #include <linux/crypto.h> 18 #include <crypto/hash.h> 19 #include <crypto/sha1.h> 20 #include <linux/tpm.h> 21 #include <linux/tpm_command.h> 22 23 #include <keys/trusted_tpm.h> 24 25 static const char hmac_alg[] = "hmac(sha1)"; 26 static const char hash_alg[] = "sha1"; 27 static struct tpm_chip *chip; 28 static struct tpm_digest *digests; 29 30 struct sdesc { 31 struct shash_desc shash; 32 char ctx[]; 33 }; 34 35 static struct crypto_shash *hashalg; 36 static struct crypto_shash *hmacalg; 37 38 static struct sdesc *init_sdesc(struct crypto_shash *alg) 39 { 40 struct sdesc *sdesc; 41 int size; 42 43 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); 44 sdesc = kmalloc(size, GFP_KERNEL); 45 if (!sdesc) 46 return ERR_PTR(-ENOMEM); 47 sdesc->shash.tfm = alg; 48 return sdesc; 49 } 50 51 static int TSS_sha1(const unsigned char *data, unsigned int datalen, 52 unsigned char *digest) 53 { 54 struct sdesc *sdesc; 55 int ret; 56 57 sdesc = init_sdesc(hashalg); 58 if (IS_ERR(sdesc)) { 59 pr_info("can't alloc %s\n", hash_alg); 60 return PTR_ERR(sdesc); 61 } 62 63 ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest); 64 kfree_sensitive(sdesc); 65 return ret; 66 } 67 68 static int TSS_rawhmac(unsigned char *digest, const unsigned char *key, 69 unsigned int keylen, ...) 70 { 71 struct sdesc *sdesc; 72 va_list argp; 73 unsigned int dlen; 74 unsigned char *data; 75 int ret; 76 77 sdesc = init_sdesc(hmacalg); 78 if (IS_ERR(sdesc)) { 79 pr_info("can't alloc %s\n", hmac_alg); 80 return PTR_ERR(sdesc); 81 } 82 83 ret = crypto_shash_setkey(hmacalg, key, keylen); 84 if (ret < 0) 85 goto out; 86 ret = crypto_shash_init(&sdesc->shash); 87 if (ret < 0) 88 goto out; 89 90 va_start(argp, keylen); 91 for (;;) { 92 dlen = va_arg(argp, unsigned int); 93 if (dlen == 0) 94 break; 95 data = va_arg(argp, unsigned char *); 96 if (data == NULL) { 97 ret = -EINVAL; 98 break; 99 } 100 ret = crypto_shash_update(&sdesc->shash, data, dlen); 101 if (ret < 0) 102 break; 103 } 104 va_end(argp); 105 if (!ret) 106 ret = crypto_shash_final(&sdesc->shash, digest); 107 out: 108 kfree_sensitive(sdesc); 109 return ret; 110 } 111 112 /* 113 * calculate authorization info fields to send to TPM 114 */ 115 int TSS_authhmac(unsigned char *digest, const unsigned char *key, 116 unsigned int keylen, unsigned char *h1, 117 unsigned char *h2, unsigned int h3, ...) 118 { 119 unsigned char paramdigest[SHA1_DIGEST_SIZE]; 120 struct sdesc *sdesc; 121 unsigned int dlen; 122 unsigned char *data; 123 unsigned char c; 124 int ret; 125 va_list argp; 126 127 if (!chip) 128 return -ENODEV; 129 130 sdesc = init_sdesc(hashalg); 131 if (IS_ERR(sdesc)) { 132 pr_info("can't alloc %s\n", hash_alg); 133 return PTR_ERR(sdesc); 134 } 135 136 c = !!h3; 137 ret = crypto_shash_init(&sdesc->shash); 138 if (ret < 0) 139 goto out; 140 va_start(argp, h3); 141 for (;;) { 142 dlen = va_arg(argp, unsigned int); 143 if (dlen == 0) 144 break; 145 data = va_arg(argp, unsigned char *); 146 if (!data) { 147 ret = -EINVAL; 148 break; 149 } 150 ret = crypto_shash_update(&sdesc->shash, data, dlen); 151 if (ret < 0) 152 break; 153 } 154 va_end(argp); 155 if (!ret) 156 ret = crypto_shash_final(&sdesc->shash, paramdigest); 157 if (!ret) 158 ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE, 159 paramdigest, TPM_NONCE_SIZE, h1, 160 TPM_NONCE_SIZE, h2, 1, &c, 0, 0); 161 out: 162 kfree_sensitive(sdesc); 163 return ret; 164 } 165 EXPORT_SYMBOL_GPL(TSS_authhmac); 166 167 /* 168 * verify the AUTH1_COMMAND (Seal) result from TPM 169 */ 170 int TSS_checkhmac1(unsigned char *buffer, 171 const uint32_t command, 172 const unsigned char *ononce, 173 const unsigned char *key, 174 unsigned int keylen, ...) 175 { 176 uint32_t bufsize; 177 uint16_t tag; 178 uint32_t ordinal; 179 uint32_t result; 180 unsigned char *enonce; 181 unsigned char *continueflag; 182 unsigned char *authdata; 183 unsigned char testhmac[SHA1_DIGEST_SIZE]; 184 unsigned char paramdigest[SHA1_DIGEST_SIZE]; 185 struct sdesc *sdesc; 186 unsigned int dlen; 187 unsigned int dpos; 188 va_list argp; 189 int ret; 190 191 if (!chip) 192 return -ENODEV; 193 194 bufsize = LOAD32(buffer, TPM_SIZE_OFFSET); 195 tag = LOAD16(buffer, 0); 196 ordinal = command; 197 result = LOAD32N(buffer, TPM_RETURN_OFFSET); 198 if (tag == TPM_TAG_RSP_COMMAND) 199 return 0; 200 if (tag != TPM_TAG_RSP_AUTH1_COMMAND) 201 return -EINVAL; 202 authdata = buffer + bufsize - SHA1_DIGEST_SIZE; 203 continueflag = authdata - 1; 204 enonce = continueflag - TPM_NONCE_SIZE; 205 206 sdesc = init_sdesc(hashalg); 207 if (IS_ERR(sdesc)) { 208 pr_info("can't alloc %s\n", hash_alg); 209 return PTR_ERR(sdesc); 210 } 211 ret = crypto_shash_init(&sdesc->shash); 212 if (ret < 0) 213 goto out; 214 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result, 215 sizeof result); 216 if (ret < 0) 217 goto out; 218 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal, 219 sizeof ordinal); 220 if (ret < 0) 221 goto out; 222 va_start(argp, keylen); 223 for (;;) { 224 dlen = va_arg(argp, unsigned int); 225 if (dlen == 0) 226 break; 227 dpos = va_arg(argp, unsigned int); 228 ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen); 229 if (ret < 0) 230 break; 231 } 232 va_end(argp); 233 if (!ret) 234 ret = crypto_shash_final(&sdesc->shash, paramdigest); 235 if (ret < 0) 236 goto out; 237 238 ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest, 239 TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce, 240 1, continueflag, 0, 0); 241 if (ret < 0) 242 goto out; 243 244 if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE)) 245 ret = -EINVAL; 246 out: 247 kfree_sensitive(sdesc); 248 return ret; 249 } 250 EXPORT_SYMBOL_GPL(TSS_checkhmac1); 251 252 /* 253 * verify the AUTH2_COMMAND (unseal) result from TPM 254 */ 255 static int TSS_checkhmac2(unsigned char *buffer, 256 const uint32_t command, 257 const unsigned char *ononce, 258 const unsigned char *key1, 259 unsigned int keylen1, 260 const unsigned char *key2, 261 unsigned int keylen2, ...) 262 { 263 uint32_t bufsize; 264 uint16_t tag; 265 uint32_t ordinal; 266 uint32_t result; 267 unsigned char *enonce1; 268 unsigned char *continueflag1; 269 unsigned char *authdata1; 270 unsigned char *enonce2; 271 unsigned char *continueflag2; 272 unsigned char *authdata2; 273 unsigned char testhmac1[SHA1_DIGEST_SIZE]; 274 unsigned char testhmac2[SHA1_DIGEST_SIZE]; 275 unsigned char paramdigest[SHA1_DIGEST_SIZE]; 276 struct sdesc *sdesc; 277 unsigned int dlen; 278 unsigned int dpos; 279 va_list argp; 280 int ret; 281 282 bufsize = LOAD32(buffer, TPM_SIZE_OFFSET); 283 tag = LOAD16(buffer, 0); 284 ordinal = command; 285 result = LOAD32N(buffer, TPM_RETURN_OFFSET); 286 287 if (tag == TPM_TAG_RSP_COMMAND) 288 return 0; 289 if (tag != TPM_TAG_RSP_AUTH2_COMMAND) 290 return -EINVAL; 291 authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1 292 + SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE); 293 authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE); 294 continueflag1 = authdata1 - 1; 295 continueflag2 = authdata2 - 1; 296 enonce1 = continueflag1 - TPM_NONCE_SIZE; 297 enonce2 = continueflag2 - TPM_NONCE_SIZE; 298 299 sdesc = init_sdesc(hashalg); 300 if (IS_ERR(sdesc)) { 301 pr_info("can't alloc %s\n", hash_alg); 302 return PTR_ERR(sdesc); 303 } 304 ret = crypto_shash_init(&sdesc->shash); 305 if (ret < 0) 306 goto out; 307 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result, 308 sizeof result); 309 if (ret < 0) 310 goto out; 311 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal, 312 sizeof ordinal); 313 if (ret < 0) 314 goto out; 315 316 va_start(argp, keylen2); 317 for (;;) { 318 dlen = va_arg(argp, unsigned int); 319 if (dlen == 0) 320 break; 321 dpos = va_arg(argp, unsigned int); 322 ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen); 323 if (ret < 0) 324 break; 325 } 326 va_end(argp); 327 if (!ret) 328 ret = crypto_shash_final(&sdesc->shash, paramdigest); 329 if (ret < 0) 330 goto out; 331 332 ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE, 333 paramdigest, TPM_NONCE_SIZE, enonce1, 334 TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0); 335 if (ret < 0) 336 goto out; 337 if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) { 338 ret = -EINVAL; 339 goto out; 340 } 341 ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE, 342 paramdigest, TPM_NONCE_SIZE, enonce2, 343 TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0); 344 if (ret < 0) 345 goto out; 346 if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE)) 347 ret = -EINVAL; 348 out: 349 kfree_sensitive(sdesc); 350 return ret; 351 } 352 353 /* 354 * For key specific tpm requests, we will generate and send our 355 * own TPM command packets using the drivers send function. 356 */ 357 int trusted_tpm_send(unsigned char *cmd, size_t buflen) 358 { 359 struct tpm_buf buf; 360 int rc; 361 362 if (!chip) 363 return -ENODEV; 364 365 rc = tpm_try_get_ops(chip); 366 if (rc) 367 return rc; 368 369 buf.flags = 0; 370 buf.length = buflen; 371 buf.data = cmd; 372 dump_tpm_buf(cmd); 373 rc = tpm_transmit_cmd(chip, &buf, 4, "sending data"); 374 dump_tpm_buf(cmd); 375 376 if (rc > 0) 377 /* TPM error */ 378 rc = -EPERM; 379 380 tpm_put_ops(chip); 381 return rc; 382 } 383 EXPORT_SYMBOL_GPL(trusted_tpm_send); 384 385 /* 386 * Lock a trusted key, by extending a selected PCR. 387 * 388 * Prevents a trusted key that is sealed to PCRs from being accessed. 389 * This uses the tpm driver's extend function. 390 */ 391 static int pcrlock(const int pcrnum) 392 { 393 if (!capable(CAP_SYS_ADMIN)) 394 return -EPERM; 395 396 return tpm_pcr_extend(chip, pcrnum, digests) ? -EINVAL : 0; 397 } 398 399 /* 400 * Create an object specific authorisation protocol (OSAP) session 401 */ 402 static int osap(struct tpm_buf *tb, struct osapsess *s, 403 const unsigned char *key, uint16_t type, uint32_t handle) 404 { 405 unsigned char enonce[TPM_NONCE_SIZE]; 406 unsigned char ononce[TPM_NONCE_SIZE]; 407 int ret; 408 409 ret = tpm_get_random(chip, ononce, TPM_NONCE_SIZE); 410 if (ret < 0) 411 return ret; 412 413 if (ret != TPM_NONCE_SIZE) 414 return -EIO; 415 416 tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OSAP); 417 tpm_buf_append_u16(tb, type); 418 tpm_buf_append_u32(tb, handle); 419 tpm_buf_append(tb, ononce, TPM_NONCE_SIZE); 420 421 ret = trusted_tpm_send(tb->data, tb->length); 422 if (ret < 0) 423 return ret; 424 425 s->handle = LOAD32(tb->data, TPM_DATA_OFFSET); 426 memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]), 427 TPM_NONCE_SIZE); 428 memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) + 429 TPM_NONCE_SIZE]), TPM_NONCE_SIZE); 430 return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE, 431 enonce, TPM_NONCE_SIZE, ononce, 0, 0); 432 } 433 434 /* 435 * Create an object independent authorisation protocol (oiap) session 436 */ 437 int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce) 438 { 439 int ret; 440 441 if (!chip) 442 return -ENODEV; 443 444 tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OIAP); 445 ret = trusted_tpm_send(tb->data, tb->length); 446 if (ret < 0) 447 return ret; 448 449 *handle = LOAD32(tb->data, TPM_DATA_OFFSET); 450 memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)], 451 TPM_NONCE_SIZE); 452 return 0; 453 } 454 EXPORT_SYMBOL_GPL(oiap); 455 456 struct tpm_digests { 457 unsigned char encauth[SHA1_DIGEST_SIZE]; 458 unsigned char pubauth[SHA1_DIGEST_SIZE]; 459 unsigned char xorwork[SHA1_DIGEST_SIZE * 2]; 460 unsigned char xorhash[SHA1_DIGEST_SIZE]; 461 unsigned char nonceodd[TPM_NONCE_SIZE]; 462 }; 463 464 /* 465 * Have the TPM seal(encrypt) the trusted key, possibly based on 466 * Platform Configuration Registers (PCRs). AUTH1 for sealing key. 467 */ 468 static int tpm_seal(struct tpm_buf *tb, uint16_t keytype, 469 uint32_t keyhandle, const unsigned char *keyauth, 470 const unsigned char *data, uint32_t datalen, 471 unsigned char *blob, uint32_t *bloblen, 472 const unsigned char *blobauth, 473 const unsigned char *pcrinfo, uint32_t pcrinfosize) 474 { 475 struct osapsess sess; 476 struct tpm_digests *td; 477 unsigned char cont; 478 uint32_t ordinal; 479 uint32_t pcrsize; 480 uint32_t datsize; 481 int sealinfosize; 482 int encdatasize; 483 int storedsize; 484 int ret; 485 int i; 486 487 /* alloc some work space for all the hashes */ 488 td = kmalloc(sizeof *td, GFP_KERNEL); 489 if (!td) 490 return -ENOMEM; 491 492 /* get session for sealing key */ 493 ret = osap(tb, &sess, keyauth, keytype, keyhandle); 494 if (ret < 0) 495 goto out; 496 dump_sess(&sess); 497 498 /* calculate encrypted authorization value */ 499 memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE); 500 memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE); 501 ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash); 502 if (ret < 0) 503 goto out; 504 505 ret = tpm_get_random(chip, td->nonceodd, TPM_NONCE_SIZE); 506 if (ret < 0) 507 goto out; 508 509 if (ret != TPM_NONCE_SIZE) { 510 ret = -EIO; 511 goto out; 512 } 513 514 ordinal = htonl(TPM_ORD_SEAL); 515 datsize = htonl(datalen); 516 pcrsize = htonl(pcrinfosize); 517 cont = 0; 518 519 /* encrypt data authorization key */ 520 for (i = 0; i < SHA1_DIGEST_SIZE; ++i) 521 td->encauth[i] = td->xorhash[i] ^ blobauth[i]; 522 523 /* calculate authorization HMAC value */ 524 if (pcrinfosize == 0) { 525 /* no pcr info specified */ 526 ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE, 527 sess.enonce, td->nonceodd, cont, 528 sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE, 529 td->encauth, sizeof(uint32_t), &pcrsize, 530 sizeof(uint32_t), &datsize, datalen, data, 0, 531 0); 532 } else { 533 /* pcr info specified */ 534 ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE, 535 sess.enonce, td->nonceodd, cont, 536 sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE, 537 td->encauth, sizeof(uint32_t), &pcrsize, 538 pcrinfosize, pcrinfo, sizeof(uint32_t), 539 &datsize, datalen, data, 0, 0); 540 } 541 if (ret < 0) 542 goto out; 543 544 /* build and send the TPM request packet */ 545 tpm_buf_reset(tb, TPM_TAG_RQU_AUTH1_COMMAND, TPM_ORD_SEAL); 546 tpm_buf_append_u32(tb, keyhandle); 547 tpm_buf_append(tb, td->encauth, SHA1_DIGEST_SIZE); 548 tpm_buf_append_u32(tb, pcrinfosize); 549 tpm_buf_append(tb, pcrinfo, pcrinfosize); 550 tpm_buf_append_u32(tb, datalen); 551 tpm_buf_append(tb, data, datalen); 552 tpm_buf_append_u32(tb, sess.handle); 553 tpm_buf_append(tb, td->nonceodd, TPM_NONCE_SIZE); 554 tpm_buf_append_u8(tb, cont); 555 tpm_buf_append(tb, td->pubauth, SHA1_DIGEST_SIZE); 556 557 ret = trusted_tpm_send(tb->data, tb->length); 558 if (ret < 0) 559 goto out; 560 561 /* calculate the size of the returned Blob */ 562 sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t)); 563 encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) + 564 sizeof(uint32_t) + sealinfosize); 565 storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize + 566 sizeof(uint32_t) + encdatasize; 567 568 /* check the HMAC in the response */ 569 ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret, 570 SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0, 571 0); 572 573 /* copy the returned blob to caller */ 574 if (!ret) { 575 memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize); 576 *bloblen = storedsize; 577 } 578 out: 579 kfree_sensitive(td); 580 return ret; 581 } 582 583 /* 584 * use the AUTH2_COMMAND form of unseal, to authorize both key and blob 585 */ 586 static int tpm_unseal(struct tpm_buf *tb, 587 uint32_t keyhandle, const unsigned char *keyauth, 588 const unsigned char *blob, int bloblen, 589 const unsigned char *blobauth, 590 unsigned char *data, unsigned int *datalen) 591 { 592 unsigned char nonceodd[TPM_NONCE_SIZE]; 593 unsigned char enonce1[TPM_NONCE_SIZE]; 594 unsigned char enonce2[TPM_NONCE_SIZE]; 595 unsigned char authdata1[SHA1_DIGEST_SIZE]; 596 unsigned char authdata2[SHA1_DIGEST_SIZE]; 597 uint32_t authhandle1 = 0; 598 uint32_t authhandle2 = 0; 599 unsigned char cont = 0; 600 uint32_t ordinal; 601 int ret; 602 603 /* sessions for unsealing key and data */ 604 ret = oiap(tb, &authhandle1, enonce1); 605 if (ret < 0) { 606 pr_info("oiap failed (%d)\n", ret); 607 return ret; 608 } 609 ret = oiap(tb, &authhandle2, enonce2); 610 if (ret < 0) { 611 pr_info("oiap failed (%d)\n", ret); 612 return ret; 613 } 614 615 ordinal = htonl(TPM_ORD_UNSEAL); 616 ret = tpm_get_random(chip, nonceodd, TPM_NONCE_SIZE); 617 if (ret < 0) 618 return ret; 619 620 if (ret != TPM_NONCE_SIZE) { 621 pr_info("tpm_get_random failed (%d)\n", ret); 622 return -EIO; 623 } 624 ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE, 625 enonce1, nonceodd, cont, sizeof(uint32_t), 626 &ordinal, bloblen, blob, 0, 0); 627 if (ret < 0) 628 return ret; 629 ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE, 630 enonce2, nonceodd, cont, sizeof(uint32_t), 631 &ordinal, bloblen, blob, 0, 0); 632 if (ret < 0) 633 return ret; 634 635 /* build and send TPM request packet */ 636 tpm_buf_reset(tb, TPM_TAG_RQU_AUTH2_COMMAND, TPM_ORD_UNSEAL); 637 tpm_buf_append_u32(tb, keyhandle); 638 tpm_buf_append(tb, blob, bloblen); 639 tpm_buf_append_u32(tb, authhandle1); 640 tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE); 641 tpm_buf_append_u8(tb, cont); 642 tpm_buf_append(tb, authdata1, SHA1_DIGEST_SIZE); 643 tpm_buf_append_u32(tb, authhandle2); 644 tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE); 645 tpm_buf_append_u8(tb, cont); 646 tpm_buf_append(tb, authdata2, SHA1_DIGEST_SIZE); 647 648 ret = trusted_tpm_send(tb->data, tb->length); 649 if (ret < 0) { 650 pr_info("authhmac failed (%d)\n", ret); 651 return ret; 652 } 653 654 *datalen = LOAD32(tb->data, TPM_DATA_OFFSET); 655 ret = TSS_checkhmac2(tb->data, ordinal, nonceodd, 656 keyauth, SHA1_DIGEST_SIZE, 657 blobauth, SHA1_DIGEST_SIZE, 658 sizeof(uint32_t), TPM_DATA_OFFSET, 659 *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0, 660 0); 661 if (ret < 0) { 662 pr_info("TSS_checkhmac2 failed (%d)\n", ret); 663 return ret; 664 } 665 memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen); 666 return 0; 667 } 668 669 /* 670 * Have the TPM seal(encrypt) the symmetric key 671 */ 672 static int key_seal(struct trusted_key_payload *p, 673 struct trusted_key_options *o) 674 { 675 struct tpm_buf tb; 676 int ret; 677 678 ret = tpm_buf_init(&tb, 0, 0); 679 if (ret) 680 return ret; 681 682 /* include migratable flag at end of sealed key */ 683 p->key[p->key_len] = p->migratable; 684 685 ret = tpm_seal(&tb, o->keytype, o->keyhandle, o->keyauth, 686 p->key, p->key_len + 1, p->blob, &p->blob_len, 687 o->blobauth, o->pcrinfo, o->pcrinfo_len); 688 if (ret < 0) 689 pr_info("srkseal failed (%d)\n", ret); 690 691 tpm_buf_destroy(&tb); 692 return ret; 693 } 694 695 /* 696 * Have the TPM unseal(decrypt) the symmetric key 697 */ 698 static int key_unseal(struct trusted_key_payload *p, 699 struct trusted_key_options *o) 700 { 701 struct tpm_buf tb; 702 int ret; 703 704 ret = tpm_buf_init(&tb, 0, 0); 705 if (ret) 706 return ret; 707 708 ret = tpm_unseal(&tb, o->keyhandle, o->keyauth, p->blob, p->blob_len, 709 o->blobauth, p->key, &p->key_len); 710 if (ret < 0) 711 pr_info("srkunseal failed (%d)\n", ret); 712 else 713 /* pull migratable flag out of sealed key */ 714 p->migratable = p->key[--p->key_len]; 715 716 tpm_buf_destroy(&tb); 717 return ret; 718 } 719 720 enum { 721 Opt_err, 722 Opt_keyhandle, Opt_keyauth, Opt_blobauth, 723 Opt_pcrinfo, Opt_pcrlock, Opt_migratable, 724 Opt_hash, 725 Opt_policydigest, 726 Opt_policyhandle, 727 }; 728 729 static const match_table_t key_tokens = { 730 {Opt_keyhandle, "keyhandle=%s"}, 731 {Opt_keyauth, "keyauth=%s"}, 732 {Opt_blobauth, "blobauth=%s"}, 733 {Opt_pcrinfo, "pcrinfo=%s"}, 734 {Opt_pcrlock, "pcrlock=%s"}, 735 {Opt_migratable, "migratable=%s"}, 736 {Opt_hash, "hash=%s"}, 737 {Opt_policydigest, "policydigest=%s"}, 738 {Opt_policyhandle, "policyhandle=%s"}, 739 {Opt_err, NULL} 740 }; 741 742 /* can have zero or more token= options */ 743 static int getoptions(char *c, struct trusted_key_payload *pay, 744 struct trusted_key_options *opt) 745 { 746 substring_t args[MAX_OPT_ARGS]; 747 char *p = c; 748 int token; 749 int res; 750 unsigned long handle; 751 unsigned long lock; 752 unsigned long token_mask = 0; 753 unsigned int digest_len; 754 int i; 755 int tpm2; 756 757 tpm2 = tpm_is_tpm2(chip); 758 if (tpm2 < 0) 759 return tpm2; 760 761 opt->hash = tpm2 ? HASH_ALGO_SHA256 : HASH_ALGO_SHA1; 762 763 if (!c) 764 return 0; 765 766 while ((p = strsep(&c, " \t"))) { 767 if (*p == '\0' || *p == ' ' || *p == '\t') 768 continue; 769 token = match_token(p, key_tokens, args); 770 if (test_and_set_bit(token, &token_mask)) 771 return -EINVAL; 772 773 switch (token) { 774 case Opt_pcrinfo: 775 opt->pcrinfo_len = strlen(args[0].from) / 2; 776 if (opt->pcrinfo_len > MAX_PCRINFO_SIZE) 777 return -EINVAL; 778 res = hex2bin(opt->pcrinfo, args[0].from, 779 opt->pcrinfo_len); 780 if (res < 0) 781 return -EINVAL; 782 break; 783 case Opt_keyhandle: 784 res = kstrtoul(args[0].from, 16, &handle); 785 if (res < 0) 786 return -EINVAL; 787 opt->keytype = SEAL_keytype; 788 opt->keyhandle = handle; 789 break; 790 case Opt_keyauth: 791 if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE) 792 return -EINVAL; 793 res = hex2bin(opt->keyauth, args[0].from, 794 SHA1_DIGEST_SIZE); 795 if (res < 0) 796 return -EINVAL; 797 break; 798 case Opt_blobauth: 799 /* 800 * TPM 1.2 authorizations are sha1 hashes passed in as 801 * hex strings. TPM 2.0 authorizations are simple 802 * passwords (although it can take a hash as well) 803 */ 804 opt->blobauth_len = strlen(args[0].from); 805 806 if (opt->blobauth_len == 2 * TPM_DIGEST_SIZE) { 807 res = hex2bin(opt->blobauth, args[0].from, 808 TPM_DIGEST_SIZE); 809 if (res < 0) 810 return -EINVAL; 811 812 opt->blobauth_len = TPM_DIGEST_SIZE; 813 break; 814 } 815 816 if (tpm2 && opt->blobauth_len <= sizeof(opt->blobauth)) { 817 memcpy(opt->blobauth, args[0].from, 818 opt->blobauth_len); 819 break; 820 } 821 822 return -EINVAL; 823 824 break; 825 826 case Opt_migratable: 827 if (*args[0].from == '0') 828 pay->migratable = 0; 829 else if (*args[0].from != '1') 830 return -EINVAL; 831 break; 832 case Opt_pcrlock: 833 res = kstrtoul(args[0].from, 10, &lock); 834 if (res < 0) 835 return -EINVAL; 836 opt->pcrlock = lock; 837 break; 838 case Opt_hash: 839 if (test_bit(Opt_policydigest, &token_mask)) 840 return -EINVAL; 841 for (i = 0; i < HASH_ALGO__LAST; i++) { 842 if (!strcmp(args[0].from, hash_algo_name[i])) { 843 opt->hash = i; 844 break; 845 } 846 } 847 if (i == HASH_ALGO__LAST) 848 return -EINVAL; 849 if (!tpm2 && i != HASH_ALGO_SHA1) { 850 pr_info("TPM 1.x only supports SHA-1.\n"); 851 return -EINVAL; 852 } 853 break; 854 case Opt_policydigest: 855 digest_len = hash_digest_size[opt->hash]; 856 if (!tpm2 || strlen(args[0].from) != (2 * digest_len)) 857 return -EINVAL; 858 res = hex2bin(opt->policydigest, args[0].from, 859 digest_len); 860 if (res < 0) 861 return -EINVAL; 862 opt->policydigest_len = digest_len; 863 break; 864 case Opt_policyhandle: 865 if (!tpm2) 866 return -EINVAL; 867 res = kstrtoul(args[0].from, 16, &handle); 868 if (res < 0) 869 return -EINVAL; 870 opt->policyhandle = handle; 871 break; 872 default: 873 return -EINVAL; 874 } 875 } 876 return 0; 877 } 878 879 static struct trusted_key_options *trusted_options_alloc(void) 880 { 881 struct trusted_key_options *options; 882 int tpm2; 883 884 tpm2 = tpm_is_tpm2(chip); 885 if (tpm2 < 0) 886 return NULL; 887 888 options = kzalloc(sizeof *options, GFP_KERNEL); 889 if (options) { 890 /* set any non-zero defaults */ 891 options->keytype = SRK_keytype; 892 893 if (!tpm2) 894 options->keyhandle = SRKHANDLE; 895 } 896 return options; 897 } 898 899 static int trusted_tpm_seal(struct trusted_key_payload *p, char *datablob) 900 { 901 struct trusted_key_options *options = NULL; 902 int ret = 0; 903 int tpm2; 904 905 tpm2 = tpm_is_tpm2(chip); 906 if (tpm2 < 0) 907 return tpm2; 908 909 options = trusted_options_alloc(); 910 if (!options) 911 return -ENOMEM; 912 913 ret = getoptions(datablob, p, options); 914 if (ret < 0) 915 goto out; 916 dump_options(options); 917 918 if (!options->keyhandle && !tpm2) { 919 ret = -EINVAL; 920 goto out; 921 } 922 923 if (tpm2) 924 ret = tpm2_seal_trusted(chip, p, options); 925 else 926 ret = key_seal(p, options); 927 if (ret < 0) { 928 pr_info("key_seal failed (%d)\n", ret); 929 goto out; 930 } 931 932 if (options->pcrlock) { 933 ret = pcrlock(options->pcrlock); 934 if (ret < 0) { 935 pr_info("pcrlock failed (%d)\n", ret); 936 goto out; 937 } 938 } 939 out: 940 kfree_sensitive(options); 941 return ret; 942 } 943 944 static int trusted_tpm_unseal(struct trusted_key_payload *p, char *datablob) 945 { 946 struct trusted_key_options *options = NULL; 947 int ret = 0; 948 int tpm2; 949 950 tpm2 = tpm_is_tpm2(chip); 951 if (tpm2 < 0) 952 return tpm2; 953 954 options = trusted_options_alloc(); 955 if (!options) 956 return -ENOMEM; 957 958 ret = getoptions(datablob, p, options); 959 if (ret < 0) 960 goto out; 961 dump_options(options); 962 963 if (!options->keyhandle && !tpm2) { 964 ret = -EINVAL; 965 goto out; 966 } 967 968 if (tpm2) 969 ret = tpm2_unseal_trusted(chip, p, options); 970 else 971 ret = key_unseal(p, options); 972 if (ret < 0) 973 pr_info("key_unseal failed (%d)\n", ret); 974 975 if (options->pcrlock) { 976 ret = pcrlock(options->pcrlock); 977 if (ret < 0) { 978 pr_info("pcrlock failed (%d)\n", ret); 979 goto out; 980 } 981 } 982 out: 983 kfree_sensitive(options); 984 return ret; 985 } 986 987 static int trusted_tpm_get_random(unsigned char *key, size_t key_len) 988 { 989 return tpm_get_random(chip, key, key_len); 990 } 991 992 static void trusted_shash_release(void) 993 { 994 if (hashalg) 995 crypto_free_shash(hashalg); 996 if (hmacalg) 997 crypto_free_shash(hmacalg); 998 } 999 1000 static int __init trusted_shash_alloc(void) 1001 { 1002 int ret; 1003 1004 hmacalg = crypto_alloc_shash(hmac_alg, 0, 0); 1005 if (IS_ERR(hmacalg)) { 1006 pr_info("could not allocate crypto %s\n", 1007 hmac_alg); 1008 return PTR_ERR(hmacalg); 1009 } 1010 1011 hashalg = crypto_alloc_shash(hash_alg, 0, 0); 1012 if (IS_ERR(hashalg)) { 1013 pr_info("could not allocate crypto %s\n", 1014 hash_alg); 1015 ret = PTR_ERR(hashalg); 1016 goto hashalg_fail; 1017 } 1018 1019 return 0; 1020 1021 hashalg_fail: 1022 crypto_free_shash(hmacalg); 1023 return ret; 1024 } 1025 1026 static int __init init_digests(void) 1027 { 1028 int i; 1029 1030 digests = kcalloc(chip->nr_allocated_banks, sizeof(*digests), 1031 GFP_KERNEL); 1032 if (!digests) 1033 return -ENOMEM; 1034 1035 for (i = 0; i < chip->nr_allocated_banks; i++) 1036 digests[i].alg_id = chip->allocated_banks[i].alg_id; 1037 1038 return 0; 1039 } 1040 1041 static int __init trusted_tpm_init(void) 1042 { 1043 int ret; 1044 1045 chip = tpm_default_chip(); 1046 if (!chip) 1047 return -ENODEV; 1048 1049 ret = init_digests(); 1050 if (ret < 0) 1051 goto err_put; 1052 ret = trusted_shash_alloc(); 1053 if (ret < 0) 1054 goto err_free; 1055 ret = register_key_type(&key_type_trusted); 1056 if (ret < 0) 1057 goto err_release; 1058 return 0; 1059 err_release: 1060 trusted_shash_release(); 1061 err_free: 1062 kfree(digests); 1063 err_put: 1064 put_device(&chip->dev); 1065 return ret; 1066 } 1067 1068 static void trusted_tpm_exit(void) 1069 { 1070 if (chip) { 1071 put_device(&chip->dev); 1072 kfree(digests); 1073 trusted_shash_release(); 1074 unregister_key_type(&key_type_trusted); 1075 } 1076 } 1077 1078 struct trusted_key_ops trusted_key_tpm_ops = { 1079 .migratable = 1, /* migratable by default */ 1080 .init = trusted_tpm_init, 1081 .seal = trusted_tpm_seal, 1082 .unseal = trusted_tpm_unseal, 1083 .get_random = trusted_tpm_get_random, 1084 .exit = trusted_tpm_exit, 1085 }; 1086