xref: /linux/security/keys/keyring.c (revision ed63b9c873601ca113da5c7b1745e3946493e9f3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Keyring handling
3  *
4  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/security.h>
13 #include <linux/seq_file.h>
14 #include <linux/err.h>
15 #include <linux/user_namespace.h>
16 #include <linux/nsproxy.h>
17 #include <keys/keyring-type.h>
18 #include <keys/user-type.h>
19 #include <linux/assoc_array_priv.h>
20 #include <linux/uaccess.h>
21 #include <net/net_namespace.h>
22 #include "internal.h"
23 
24 /*
25  * When plumbing the depths of the key tree, this sets a hard limit
26  * set on how deep we're willing to go.
27  */
28 #define KEYRING_SEARCH_MAX_DEPTH 6
29 
30 /*
31  * We mark pointers we pass to the associative array with bit 1 set if
32  * they're keyrings and clear otherwise.
33  */
34 #define KEYRING_PTR_SUBTYPE	0x2UL
35 
36 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
37 {
38 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
39 }
40 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
41 {
42 	void *object = assoc_array_ptr_to_leaf(x);
43 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
44 }
45 static inline void *keyring_key_to_ptr(struct key *key)
46 {
47 	if (key->type == &key_type_keyring)
48 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
49 	return key;
50 }
51 
52 static DEFINE_RWLOCK(keyring_name_lock);
53 
54 /*
55  * Clean up the bits of user_namespace that belong to us.
56  */
57 void key_free_user_ns(struct user_namespace *ns)
58 {
59 	write_lock(&keyring_name_lock);
60 	list_del_init(&ns->keyring_name_list);
61 	write_unlock(&keyring_name_lock);
62 
63 	key_put(ns->user_keyring_register);
64 #ifdef CONFIG_PERSISTENT_KEYRINGS
65 	key_put(ns->persistent_keyring_register);
66 #endif
67 }
68 
69 /*
70  * The keyring key type definition.  Keyrings are simply keys of this type and
71  * can be treated as ordinary keys in addition to having their own special
72  * operations.
73  */
74 static int keyring_preparse(struct key_preparsed_payload *prep);
75 static void keyring_free_preparse(struct key_preparsed_payload *prep);
76 static int keyring_instantiate(struct key *keyring,
77 			       struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 			 char __user *buffer, size_t buflen);
83 
84 struct key_type key_type_keyring = {
85 	.name		= "keyring",
86 	.def_datalen	= 0,
87 	.preparse	= keyring_preparse,
88 	.free_preparse	= keyring_free_preparse,
89 	.instantiate	= keyring_instantiate,
90 	.revoke		= keyring_revoke,
91 	.destroy	= keyring_destroy,
92 	.describe	= keyring_describe,
93 	.read		= keyring_read,
94 };
95 EXPORT_SYMBOL(key_type_keyring);
96 
97 /*
98  * Semaphore to serialise link/link calls to prevent two link calls in parallel
99  * introducing a cycle.
100  */
101 static DEFINE_MUTEX(keyring_serialise_link_lock);
102 
103 /*
104  * Publish the name of a keyring so that it can be found by name (if it has
105  * one and it doesn't begin with a dot).
106  */
107 static void keyring_publish_name(struct key *keyring)
108 {
109 	struct user_namespace *ns = current_user_ns();
110 
111 	if (keyring->description &&
112 	    keyring->description[0] &&
113 	    keyring->description[0] != '.') {
114 		write_lock(&keyring_name_lock);
115 		list_add_tail(&keyring->name_link, &ns->keyring_name_list);
116 		write_unlock(&keyring_name_lock);
117 	}
118 }
119 
120 /*
121  * Preparse a keyring payload
122  */
123 static int keyring_preparse(struct key_preparsed_payload *prep)
124 {
125 	return prep->datalen != 0 ? -EINVAL : 0;
126 }
127 
128 /*
129  * Free a preparse of a user defined key payload
130  */
131 static void keyring_free_preparse(struct key_preparsed_payload *prep)
132 {
133 }
134 
135 /*
136  * Initialise a keyring.
137  *
138  * Returns 0 on success, -EINVAL if given any data.
139  */
140 static int keyring_instantiate(struct key *keyring,
141 			       struct key_preparsed_payload *prep)
142 {
143 	assoc_array_init(&keyring->keys);
144 	/* make the keyring available by name if it has one */
145 	keyring_publish_name(keyring);
146 	return 0;
147 }
148 
149 /*
150  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
151  * fold the carry back too, but that requires inline asm.
152  */
153 static u64 mult_64x32_and_fold(u64 x, u32 y)
154 {
155 	u64 hi = (u64)(u32)(x >> 32) * y;
156 	u64 lo = (u64)(u32)(x) * y;
157 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158 }
159 
160 /*
161  * Hash a key type and description.
162  */
163 static void hash_key_type_and_desc(struct keyring_index_key *index_key)
164 {
165 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
166 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
167 	const char *description = index_key->description;
168 	unsigned long hash, type;
169 	u32 piece;
170 	u64 acc;
171 	int n, desc_len = index_key->desc_len;
172 
173 	type = (unsigned long)index_key->type;
174 	acc = mult_64x32_and_fold(type, desc_len + 13);
175 	acc = mult_64x32_and_fold(acc, 9207);
176 	piece = (unsigned long)index_key->domain_tag;
177 	acc = mult_64x32_and_fold(acc, piece);
178 	acc = mult_64x32_and_fold(acc, 9207);
179 
180 	for (;;) {
181 		n = desc_len;
182 		if (n <= 0)
183 			break;
184 		if (n > 4)
185 			n = 4;
186 		piece = 0;
187 		memcpy(&piece, description, n);
188 		description += n;
189 		desc_len -= n;
190 		acc = mult_64x32_and_fold(acc, piece);
191 		acc = mult_64x32_and_fold(acc, 9207);
192 	}
193 
194 	/* Fold the hash down to 32 bits if need be. */
195 	hash = acc;
196 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
197 		hash ^= acc >> 32;
198 
199 	/* Squidge all the keyrings into a separate part of the tree to
200 	 * ordinary keys by making sure the lowest level segment in the hash is
201 	 * zero for keyrings and non-zero otherwise.
202 	 */
203 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
204 		hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
205 	else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
206 		hash = (hash + (hash << level_shift)) & ~fan_mask;
207 	index_key->hash = hash;
208 }
209 
210 /*
211  * Finalise an index key to include a part of the description actually in the
212  * index key, to set the domain tag and to calculate the hash.
213  */
214 void key_set_index_key(struct keyring_index_key *index_key)
215 {
216 	static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
217 	size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
218 
219 	memcpy(index_key->desc, index_key->description, n);
220 
221 	if (!index_key->domain_tag) {
222 		if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
223 			index_key->domain_tag = current->nsproxy->net_ns->key_domain;
224 		else
225 			index_key->domain_tag = &default_domain_tag;
226 	}
227 
228 	hash_key_type_and_desc(index_key);
229 }
230 
231 /**
232  * key_put_tag - Release a ref on a tag.
233  * @tag: The tag to release.
234  *
235  * This releases a reference the given tag and returns true if that ref was the
236  * last one.
237  */
238 bool key_put_tag(struct key_tag *tag)
239 {
240 	if (refcount_dec_and_test(&tag->usage)) {
241 		kfree_rcu(tag, rcu);
242 		return true;
243 	}
244 
245 	return false;
246 }
247 
248 /**
249  * key_remove_domain - Kill off a key domain and gc its keys
250  * @domain_tag: The domain tag to release.
251  *
252  * This marks a domain tag as being dead and releases a ref on it.  If that
253  * wasn't the last reference, the garbage collector is poked to try and delete
254  * all keys that were in the domain.
255  */
256 void key_remove_domain(struct key_tag *domain_tag)
257 {
258 	domain_tag->removed = true;
259 	if (!key_put_tag(domain_tag))
260 		key_schedule_gc_links();
261 }
262 
263 /*
264  * Build the next index key chunk.
265  *
266  * We return it one word-sized chunk at a time.
267  */
268 static unsigned long keyring_get_key_chunk(const void *data, int level)
269 {
270 	const struct keyring_index_key *index_key = data;
271 	unsigned long chunk = 0;
272 	const u8 *d;
273 	int desc_len = index_key->desc_len, n = sizeof(chunk);
274 
275 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
276 	switch (level) {
277 	case 0:
278 		return index_key->hash;
279 	case 1:
280 		return index_key->x;
281 	case 2:
282 		return (unsigned long)index_key->type;
283 	case 3:
284 		return (unsigned long)index_key->domain_tag;
285 	default:
286 		level -= 4;
287 		if (desc_len <= sizeof(index_key->desc))
288 			return 0;
289 
290 		d = index_key->description + sizeof(index_key->desc);
291 		d += level * sizeof(long);
292 		desc_len -= sizeof(index_key->desc);
293 		if (desc_len > n)
294 			desc_len = n;
295 		do {
296 			chunk <<= 8;
297 			chunk |= *d++;
298 		} while (--desc_len > 0);
299 		return chunk;
300 	}
301 }
302 
303 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
304 {
305 	const struct key *key = keyring_ptr_to_key(object);
306 	return keyring_get_key_chunk(&key->index_key, level);
307 }
308 
309 static bool keyring_compare_object(const void *object, const void *data)
310 {
311 	const struct keyring_index_key *index_key = data;
312 	const struct key *key = keyring_ptr_to_key(object);
313 
314 	return key->index_key.type == index_key->type &&
315 		key->index_key.domain_tag == index_key->domain_tag &&
316 		key->index_key.desc_len == index_key->desc_len &&
317 		memcmp(key->index_key.description, index_key->description,
318 		       index_key->desc_len) == 0;
319 }
320 
321 /*
322  * Compare the index keys of a pair of objects and determine the bit position
323  * at which they differ - if they differ.
324  */
325 static int keyring_diff_objects(const void *object, const void *data)
326 {
327 	const struct key *key_a = keyring_ptr_to_key(object);
328 	const struct keyring_index_key *a = &key_a->index_key;
329 	const struct keyring_index_key *b = data;
330 	unsigned long seg_a, seg_b;
331 	int level, i;
332 
333 	level = 0;
334 	seg_a = a->hash;
335 	seg_b = b->hash;
336 	if ((seg_a ^ seg_b) != 0)
337 		goto differ;
338 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
339 
340 	/* The number of bits contributed by the hash is controlled by a
341 	 * constant in the assoc_array headers.  Everything else thereafter we
342 	 * can deal with as being machine word-size dependent.
343 	 */
344 	seg_a = a->x;
345 	seg_b = b->x;
346 	if ((seg_a ^ seg_b) != 0)
347 		goto differ;
348 	level += sizeof(unsigned long);
349 
350 	/* The next bit may not work on big endian */
351 	seg_a = (unsigned long)a->type;
352 	seg_b = (unsigned long)b->type;
353 	if ((seg_a ^ seg_b) != 0)
354 		goto differ;
355 	level += sizeof(unsigned long);
356 
357 	seg_a = (unsigned long)a->domain_tag;
358 	seg_b = (unsigned long)b->domain_tag;
359 	if ((seg_a ^ seg_b) != 0)
360 		goto differ;
361 	level += sizeof(unsigned long);
362 
363 	i = sizeof(a->desc);
364 	if (a->desc_len <= i)
365 		goto same;
366 
367 	for (; i < a->desc_len; i++) {
368 		seg_a = *(unsigned char *)(a->description + i);
369 		seg_b = *(unsigned char *)(b->description + i);
370 		if ((seg_a ^ seg_b) != 0)
371 			goto differ_plus_i;
372 	}
373 
374 same:
375 	return -1;
376 
377 differ_plus_i:
378 	level += i;
379 differ:
380 	i = level * 8 + __ffs(seg_a ^ seg_b);
381 	return i;
382 }
383 
384 /*
385  * Free an object after stripping the keyring flag off of the pointer.
386  */
387 static void keyring_free_object(void *object)
388 {
389 	key_put(keyring_ptr_to_key(object));
390 }
391 
392 /*
393  * Operations for keyring management by the index-tree routines.
394  */
395 static const struct assoc_array_ops keyring_assoc_array_ops = {
396 	.get_key_chunk		= keyring_get_key_chunk,
397 	.get_object_key_chunk	= keyring_get_object_key_chunk,
398 	.compare_object		= keyring_compare_object,
399 	.diff_objects		= keyring_diff_objects,
400 	.free_object		= keyring_free_object,
401 };
402 
403 /*
404  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
405  * and dispose of its data.
406  *
407  * The garbage collector detects the final key_put(), removes the keyring from
408  * the serial number tree and then does RCU synchronisation before coming here,
409  * so we shouldn't need to worry about code poking around here with the RCU
410  * readlock held by this time.
411  */
412 static void keyring_destroy(struct key *keyring)
413 {
414 	if (keyring->description) {
415 		write_lock(&keyring_name_lock);
416 
417 		if (keyring->name_link.next != NULL &&
418 		    !list_empty(&keyring->name_link))
419 			list_del(&keyring->name_link);
420 
421 		write_unlock(&keyring_name_lock);
422 	}
423 
424 	if (keyring->restrict_link) {
425 		struct key_restriction *keyres = keyring->restrict_link;
426 
427 		key_put(keyres->key);
428 		kfree(keyres);
429 	}
430 
431 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
432 }
433 
434 /*
435  * Describe a keyring for /proc.
436  */
437 static void keyring_describe(const struct key *keyring, struct seq_file *m)
438 {
439 	if (keyring->description)
440 		seq_puts(m, keyring->description);
441 	else
442 		seq_puts(m, "[anon]");
443 
444 	if (key_is_positive(keyring)) {
445 		if (keyring->keys.nr_leaves_on_tree != 0)
446 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
447 		else
448 			seq_puts(m, ": empty");
449 	}
450 }
451 
452 struct keyring_read_iterator_context {
453 	size_t			buflen;
454 	size_t			count;
455 	key_serial_t __user	*buffer;
456 };
457 
458 static int keyring_read_iterator(const void *object, void *data)
459 {
460 	struct keyring_read_iterator_context *ctx = data;
461 	const struct key *key = keyring_ptr_to_key(object);
462 	int ret;
463 
464 	kenter("{%s,%d},,{%zu/%zu}",
465 	       key->type->name, key->serial, ctx->count, ctx->buflen);
466 
467 	if (ctx->count >= ctx->buflen)
468 		return 1;
469 
470 	ret = put_user(key->serial, ctx->buffer);
471 	if (ret < 0)
472 		return ret;
473 	ctx->buffer++;
474 	ctx->count += sizeof(key->serial);
475 	return 0;
476 }
477 
478 /*
479  * Read a list of key IDs from the keyring's contents in binary form
480  *
481  * The keyring's semaphore is read-locked by the caller.  This prevents someone
482  * from modifying it under us - which could cause us to read key IDs multiple
483  * times.
484  */
485 static long keyring_read(const struct key *keyring,
486 			 char __user *buffer, size_t buflen)
487 {
488 	struct keyring_read_iterator_context ctx;
489 	long ret;
490 
491 	kenter("{%d},,%zu", key_serial(keyring), buflen);
492 
493 	if (buflen & (sizeof(key_serial_t) - 1))
494 		return -EINVAL;
495 
496 	/* Copy as many key IDs as fit into the buffer */
497 	if (buffer && buflen) {
498 		ctx.buffer = (key_serial_t __user *)buffer;
499 		ctx.buflen = buflen;
500 		ctx.count = 0;
501 		ret = assoc_array_iterate(&keyring->keys,
502 					  keyring_read_iterator, &ctx);
503 		if (ret < 0) {
504 			kleave(" = %ld [iterate]", ret);
505 			return ret;
506 		}
507 	}
508 
509 	/* Return the size of the buffer needed */
510 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
511 	if (ret <= buflen)
512 		kleave("= %ld [ok]", ret);
513 	else
514 		kleave("= %ld [buffer too small]", ret);
515 	return ret;
516 }
517 
518 /**
519  * keyring_alloc - Allocate a keyring and link into the destination
520  * @description: The key description to allow the key to be searched out.
521  * @uid: The owner of the new key.
522  * @gid: The group ID for the new key's group permissions.
523  * @cred: The credentials specifying UID namespace.
524  * @acl: The ACL to attach to the new key.
525  * @flags: Flags specifying quota properties.
526  * @restrict_link: Optional link restriction for new keyrings.
527  * @dest: Destination keyring.
528  */
529 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
530 			  const struct cred *cred, struct key_acl *acl,
531 			  unsigned long flags,
532 			  struct key_restriction *restrict_link,
533 			  struct key *dest)
534 {
535 	struct key *keyring;
536 	int ret;
537 
538 	keyring = key_alloc(&key_type_keyring, description,
539 			    uid, gid, cred, acl, flags, restrict_link);
540 	if (!IS_ERR(keyring)) {
541 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
542 		if (ret < 0) {
543 			key_put(keyring);
544 			keyring = ERR_PTR(ret);
545 		}
546 	}
547 
548 	return keyring;
549 }
550 EXPORT_SYMBOL(keyring_alloc);
551 
552 /**
553  * restrict_link_reject - Give -EPERM to restrict link
554  * @keyring: The keyring being added to.
555  * @type: The type of key being added.
556  * @payload: The payload of the key intended to be added.
557  * @restriction_key: Keys providing additional data for evaluating restriction.
558  *
559  * Reject the addition of any links to a keyring.  It can be overridden by
560  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
561  * adding a key to a keyring.
562  *
563  * This is meant to be stored in a key_restriction structure which is passed
564  * in the restrict_link parameter to keyring_alloc().
565  */
566 int restrict_link_reject(struct key *keyring,
567 			 const struct key_type *type,
568 			 const union key_payload *payload,
569 			 struct key *restriction_key)
570 {
571 	return -EPERM;
572 }
573 
574 /*
575  * By default, we keys found by getting an exact match on their descriptions.
576  */
577 bool key_default_cmp(const struct key *key,
578 		     const struct key_match_data *match_data)
579 {
580 	return strcmp(key->description, match_data->raw_data) == 0;
581 }
582 
583 /*
584  * Iteration function to consider each key found.
585  */
586 static int keyring_search_iterator(const void *object, void *iterator_data)
587 {
588 	struct keyring_search_context *ctx = iterator_data;
589 	const struct key *key = keyring_ptr_to_key(object);
590 	unsigned long kflags = READ_ONCE(key->flags);
591 	short state = READ_ONCE(key->state);
592 
593 	kenter("{%d}", key->serial);
594 
595 	/* ignore keys not of this type */
596 	if (key->type != ctx->index_key.type) {
597 		kleave(" = 0 [!type]");
598 		return 0;
599 	}
600 
601 	/* skip invalidated, revoked and expired keys */
602 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
603 		time64_t expiry = READ_ONCE(key->expiry);
604 
605 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
606 			      (1 << KEY_FLAG_REVOKED))) {
607 			ctx->result = ERR_PTR(-EKEYREVOKED);
608 			kleave(" = %d [invrev]", ctx->skipped_ret);
609 			goto skipped;
610 		}
611 
612 		if (expiry && ctx->now >= expiry) {
613 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
614 				ctx->result = ERR_PTR(-EKEYEXPIRED);
615 			kleave(" = %d [expire]", ctx->skipped_ret);
616 			goto skipped;
617 		}
618 	}
619 
620 	/* keys that don't match */
621 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
622 		kleave(" = 0 [!match]");
623 		return 0;
624 	}
625 
626 	/* key must have search permissions */
627 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
628 	    key_task_permission(make_key_ref(key, ctx->possessed),
629 				ctx->cred, KEY_NEED_SEARCH) < 0) {
630 		ctx->result = ERR_PTR(-EACCES);
631 		kleave(" = %d [!perm]", ctx->skipped_ret);
632 		goto skipped;
633 	}
634 
635 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
636 		/* we set a different error code if we pass a negative key */
637 		if (state < 0) {
638 			ctx->result = ERR_PTR(state);
639 			kleave(" = %d [neg]", ctx->skipped_ret);
640 			goto skipped;
641 		}
642 	}
643 
644 	/* Found */
645 	ctx->result = make_key_ref(key, ctx->possessed);
646 	kleave(" = 1 [found]");
647 	return 1;
648 
649 skipped:
650 	return ctx->skipped_ret;
651 }
652 
653 /*
654  * Search inside a keyring for a key.  We can search by walking to it
655  * directly based on its index-key or we can iterate over the entire
656  * tree looking for it, based on the match function.
657  */
658 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
659 {
660 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
661 		const void *object;
662 
663 		object = assoc_array_find(&keyring->keys,
664 					  &keyring_assoc_array_ops,
665 					  &ctx->index_key);
666 		return object ? ctx->iterator(object, ctx) : 0;
667 	}
668 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
669 }
670 
671 /*
672  * Search a tree of keyrings that point to other keyrings up to the maximum
673  * depth.
674  */
675 static bool search_nested_keyrings(struct key *keyring,
676 				   struct keyring_search_context *ctx)
677 {
678 	struct {
679 		struct key *keyring;
680 		struct assoc_array_node *node;
681 		int slot;
682 	} stack[KEYRING_SEARCH_MAX_DEPTH];
683 
684 	struct assoc_array_shortcut *shortcut;
685 	struct assoc_array_node *node;
686 	struct assoc_array_ptr *ptr;
687 	struct key *key;
688 	int sp = 0, slot;
689 
690 	kenter("{%d},{%s,%s}",
691 	       keyring->serial,
692 	       ctx->index_key.type->name,
693 	       ctx->index_key.description);
694 
695 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
696 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
697 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
698 
699 	if (ctx->index_key.description)
700 		key_set_index_key(&ctx->index_key);
701 
702 	/* Check to see if this top-level keyring is what we are looking for
703 	 * and whether it is valid or not.
704 	 */
705 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
706 	    keyring_compare_object(keyring, &ctx->index_key)) {
707 		ctx->skipped_ret = 2;
708 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
709 		case 1:
710 			goto found;
711 		case 2:
712 			return false;
713 		default:
714 			break;
715 		}
716 	}
717 
718 	ctx->skipped_ret = 0;
719 
720 	/* Start processing a new keyring */
721 descend_to_keyring:
722 	kdebug("descend to %d", keyring->serial);
723 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
724 			      (1 << KEY_FLAG_REVOKED)))
725 		goto not_this_keyring;
726 
727 	/* Search through the keys in this keyring before its searching its
728 	 * subtrees.
729 	 */
730 	if (search_keyring(keyring, ctx))
731 		goto found;
732 
733 	/* Then manually iterate through the keyrings nested in this one.
734 	 *
735 	 * Start from the root node of the index tree.  Because of the way the
736 	 * hash function has been set up, keyrings cluster on the leftmost
737 	 * branch of the root node (root slot 0) or in the root node itself.
738 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
739 	 * slots 1-15).
740 	 */
741 	if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
742 		goto not_this_keyring;
743 
744 	ptr = READ_ONCE(keyring->keys.root);
745 	if (!ptr)
746 		goto not_this_keyring;
747 
748 	if (assoc_array_ptr_is_shortcut(ptr)) {
749 		/* If the root is a shortcut, either the keyring only contains
750 		 * keyring pointers (everything clusters behind root slot 0) or
751 		 * doesn't contain any keyring pointers.
752 		 */
753 		shortcut = assoc_array_ptr_to_shortcut(ptr);
754 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
755 			goto not_this_keyring;
756 
757 		ptr = READ_ONCE(shortcut->next_node);
758 		node = assoc_array_ptr_to_node(ptr);
759 		goto begin_node;
760 	}
761 
762 	node = assoc_array_ptr_to_node(ptr);
763 	ptr = node->slots[0];
764 	if (!assoc_array_ptr_is_meta(ptr))
765 		goto begin_node;
766 
767 descend_to_node:
768 	/* Descend to a more distal node in this keyring's content tree and go
769 	 * through that.
770 	 */
771 	kdebug("descend");
772 	if (assoc_array_ptr_is_shortcut(ptr)) {
773 		shortcut = assoc_array_ptr_to_shortcut(ptr);
774 		ptr = READ_ONCE(shortcut->next_node);
775 		BUG_ON(!assoc_array_ptr_is_node(ptr));
776 	}
777 	node = assoc_array_ptr_to_node(ptr);
778 
779 begin_node:
780 	kdebug("begin_node");
781 	slot = 0;
782 ascend_to_node:
783 	/* Go through the slots in a node */
784 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
785 		ptr = READ_ONCE(node->slots[slot]);
786 
787 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
788 			goto descend_to_node;
789 
790 		if (!keyring_ptr_is_keyring(ptr))
791 			continue;
792 
793 		key = keyring_ptr_to_key(ptr);
794 
795 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
796 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
797 				ctx->result = ERR_PTR(-ELOOP);
798 				return false;
799 			}
800 			goto not_this_keyring;
801 		}
802 
803 		/* Search a nested keyring */
804 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
805 		    key_task_permission(make_key_ref(key, ctx->possessed),
806 					ctx->cred, KEY_NEED_SEARCH) < 0)
807 			continue;
808 
809 		/* stack the current position */
810 		stack[sp].keyring = keyring;
811 		stack[sp].node = node;
812 		stack[sp].slot = slot;
813 		sp++;
814 
815 		/* begin again with the new keyring */
816 		keyring = key;
817 		goto descend_to_keyring;
818 	}
819 
820 	/* We've dealt with all the slots in the current node, so now we need
821 	 * to ascend to the parent and continue processing there.
822 	 */
823 	ptr = READ_ONCE(node->back_pointer);
824 	slot = node->parent_slot;
825 
826 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
827 		shortcut = assoc_array_ptr_to_shortcut(ptr);
828 		ptr = READ_ONCE(shortcut->back_pointer);
829 		slot = shortcut->parent_slot;
830 	}
831 	if (!ptr)
832 		goto not_this_keyring;
833 	node = assoc_array_ptr_to_node(ptr);
834 	slot++;
835 
836 	/* If we've ascended to the root (zero backpointer), we must have just
837 	 * finished processing the leftmost branch rather than the root slots -
838 	 * so there can't be any more keyrings for us to find.
839 	 */
840 	if (node->back_pointer) {
841 		kdebug("ascend %d", slot);
842 		goto ascend_to_node;
843 	}
844 
845 	/* The keyring we're looking at was disqualified or didn't contain a
846 	 * matching key.
847 	 */
848 not_this_keyring:
849 	kdebug("not_this_keyring %d", sp);
850 	if (sp <= 0) {
851 		kleave(" = false");
852 		return false;
853 	}
854 
855 	/* Resume the processing of a keyring higher up in the tree */
856 	sp--;
857 	keyring = stack[sp].keyring;
858 	node = stack[sp].node;
859 	slot = stack[sp].slot + 1;
860 	kdebug("ascend to %d [%d]", keyring->serial, slot);
861 	goto ascend_to_node;
862 
863 	/* We found a viable match */
864 found:
865 	key = key_ref_to_ptr(ctx->result);
866 	key_check(key);
867 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
868 		key->last_used_at = ctx->now;
869 		keyring->last_used_at = ctx->now;
870 		while (sp > 0)
871 			stack[--sp].keyring->last_used_at = ctx->now;
872 	}
873 	kleave(" = true");
874 	return true;
875 }
876 
877 /**
878  * keyring_search_rcu - Search a keyring tree for a matching key under RCU
879  * @keyring_ref: A pointer to the keyring with possession indicator.
880  * @ctx: The keyring search context.
881  *
882  * Search the supplied keyring tree for a key that matches the criteria given.
883  * The root keyring and any linked keyrings must grant Search permission to the
884  * caller to be searchable and keys can only be found if they too grant Search
885  * to the caller. The possession flag on the root keyring pointer controls use
886  * of the possessor bits in permissions checking of the entire tree.  In
887  * addition, the LSM gets to forbid keyring searches and key matches.
888  *
889  * The search is performed as a breadth-then-depth search up to the prescribed
890  * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
891  * prevent keyrings from being destroyed or rearranged whilst they are being
892  * searched.
893  *
894  * Keys are matched to the type provided and are then filtered by the match
895  * function, which is given the description to use in any way it sees fit.  The
896  * match function may use any attributes of a key that it wishes to to
897  * determine the match.  Normally the match function from the key type would be
898  * used.
899  *
900  * RCU can be used to prevent the keyring key lists from disappearing without
901  * the need to take lots of locks.
902  *
903  * Returns a pointer to the found key and increments the key usage count if
904  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
905  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
906  * specified keyring wasn't a keyring.
907  *
908  * In the case of a successful return, the possession attribute from
909  * @keyring_ref is propagated to the returned key reference.
910  */
911 key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
912 			     struct keyring_search_context *ctx)
913 {
914 	struct key *keyring;
915 	long err;
916 
917 	ctx->iterator = keyring_search_iterator;
918 	ctx->possessed = is_key_possessed(keyring_ref);
919 	ctx->result = ERR_PTR(-EAGAIN);
920 
921 	keyring = key_ref_to_ptr(keyring_ref);
922 	key_check(keyring);
923 
924 	if (keyring->type != &key_type_keyring)
925 		return ERR_PTR(-ENOTDIR);
926 
927 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
928 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
929 		if (err < 0)
930 			return ERR_PTR(err);
931 	}
932 
933 	ctx->now = ktime_get_real_seconds();
934 	if (search_nested_keyrings(keyring, ctx))
935 		__key_get(key_ref_to_ptr(ctx->result));
936 	return ctx->result;
937 }
938 
939 /**
940  * keyring_search - Search the supplied keyring tree for a matching key
941  * @keyring: The root of the keyring tree to be searched.
942  * @type: The type of keyring we want to find.
943  * @description: The name of the keyring we want to find.
944  * @recurse: True to search the children of @keyring also
945  *
946  * As keyring_search_rcu() above, but using the current task's credentials and
947  * type's default matching function and preferred search method.
948  */
949 key_ref_t keyring_search(key_ref_t keyring,
950 			 struct key_type *type,
951 			 const char *description,
952 			 bool recurse)
953 {
954 	struct keyring_search_context ctx = {
955 		.index_key.type		= type,
956 		.index_key.description	= description,
957 		.index_key.desc_len	= strlen(description),
958 		.cred			= current_cred(),
959 		.match_data.cmp		= key_default_cmp,
960 		.match_data.raw_data	= description,
961 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
962 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
963 	};
964 	key_ref_t key;
965 	int ret;
966 
967 	if (recurse)
968 		ctx.flags |= KEYRING_SEARCH_RECURSE;
969 	if (type->match_preparse) {
970 		ret = type->match_preparse(&ctx.match_data);
971 		if (ret < 0)
972 			return ERR_PTR(ret);
973 	}
974 
975 	rcu_read_lock();
976 	key = keyring_search_rcu(keyring, &ctx);
977 	rcu_read_unlock();
978 
979 	if (type->match_free)
980 		type->match_free(&ctx.match_data);
981 	return key;
982 }
983 EXPORT_SYMBOL(keyring_search);
984 
985 static struct key_restriction *keyring_restriction_alloc(
986 	key_restrict_link_func_t check)
987 {
988 	struct key_restriction *keyres =
989 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
990 
991 	if (!keyres)
992 		return ERR_PTR(-ENOMEM);
993 
994 	keyres->check = check;
995 
996 	return keyres;
997 }
998 
999 /*
1000  * Semaphore to serialise restriction setup to prevent reference count
1001  * cycles through restriction key pointers.
1002  */
1003 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
1004 
1005 /*
1006  * Check for restriction cycles that would prevent keyring garbage collection.
1007  * keyring_serialise_restrict_sem must be held.
1008  */
1009 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
1010 					     struct key_restriction *keyres)
1011 {
1012 	while (keyres && keyres->key &&
1013 	       keyres->key->type == &key_type_keyring) {
1014 		if (keyres->key == dest_keyring)
1015 			return true;
1016 
1017 		keyres = keyres->key->restrict_link;
1018 	}
1019 
1020 	return false;
1021 }
1022 
1023 /**
1024  * keyring_restrict - Look up and apply a restriction to a keyring
1025  * @keyring_ref: The keyring to be restricted
1026  * @type: The key type that will provide the restriction checker.
1027  * @restriction: The restriction options to apply to the keyring
1028  *
1029  * Look up a keyring and apply a restriction to it.  The restriction is managed
1030  * by the specific key type, but can be configured by the options specified in
1031  * the restriction string.
1032  */
1033 int keyring_restrict(key_ref_t keyring_ref, const char *type,
1034 		     const char *restriction)
1035 {
1036 	struct key *keyring;
1037 	struct key_type *restrict_type = NULL;
1038 	struct key_restriction *restrict_link;
1039 	int ret = 0;
1040 
1041 	keyring = key_ref_to_ptr(keyring_ref);
1042 	key_check(keyring);
1043 
1044 	if (keyring->type != &key_type_keyring)
1045 		return -ENOTDIR;
1046 
1047 	if (!type) {
1048 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1049 	} else {
1050 		restrict_type = key_type_lookup(type);
1051 
1052 		if (IS_ERR(restrict_type))
1053 			return PTR_ERR(restrict_type);
1054 
1055 		if (!restrict_type->lookup_restriction) {
1056 			ret = -ENOENT;
1057 			goto error;
1058 		}
1059 
1060 		restrict_link = restrict_type->lookup_restriction(restriction);
1061 	}
1062 
1063 	if (IS_ERR(restrict_link)) {
1064 		ret = PTR_ERR(restrict_link);
1065 		goto error;
1066 	}
1067 
1068 	down_write(&keyring->sem);
1069 	down_write(&keyring_serialise_restrict_sem);
1070 
1071 	if (keyring->restrict_link)
1072 		ret = -EEXIST;
1073 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1074 		ret = -EDEADLK;
1075 	else
1076 		keyring->restrict_link = restrict_link;
1077 
1078 	up_write(&keyring_serialise_restrict_sem);
1079 	up_write(&keyring->sem);
1080 
1081 	if (ret < 0) {
1082 		key_put(restrict_link->key);
1083 		kfree(restrict_link);
1084 	}
1085 
1086 error:
1087 	if (restrict_type)
1088 		key_type_put(restrict_type);
1089 
1090 	return ret;
1091 }
1092 EXPORT_SYMBOL(keyring_restrict);
1093 
1094 /*
1095  * Search the given keyring for a key that might be updated.
1096  *
1097  * The caller must guarantee that the keyring is a keyring and that the
1098  * permission is granted to modify the keyring as no check is made here.  The
1099  * caller must also hold a lock on the keyring semaphore.
1100  *
1101  * Returns a pointer to the found key with usage count incremented if
1102  * successful and returns NULL if not found.  Revoked and invalidated keys are
1103  * skipped over.
1104  *
1105  * If successful, the possession indicator is propagated from the keyring ref
1106  * to the returned key reference.
1107  */
1108 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1109 			     const struct keyring_index_key *index_key)
1110 {
1111 	struct key *keyring, *key;
1112 	const void *object;
1113 
1114 	keyring = key_ref_to_ptr(keyring_ref);
1115 
1116 	kenter("{%d},{%s,%s}",
1117 	       keyring->serial, index_key->type->name, index_key->description);
1118 
1119 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1120 				  index_key);
1121 
1122 	if (object)
1123 		goto found;
1124 
1125 	kleave(" = NULL");
1126 	return NULL;
1127 
1128 found:
1129 	key = keyring_ptr_to_key(object);
1130 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1131 			  (1 << KEY_FLAG_REVOKED))) {
1132 		kleave(" = NULL [x]");
1133 		return NULL;
1134 	}
1135 	__key_get(key);
1136 	kleave(" = {%d}", key->serial);
1137 	return make_key_ref(key, is_key_possessed(keyring_ref));
1138 }
1139 
1140 /*
1141  * Find a keyring with the specified name.
1142  *
1143  * Only keyrings that have nonzero refcount, are not revoked, and are owned by
1144  * a user in the current user namespace are considered.  If @uid_keyring is
1145  * %true, the keyring additionally must have been allocated as a user or user
1146  * session keyring; otherwise, it must grant JOIN permission directly to the
1147  * caller (ie. not through possession).
1148  *
1149  * Returns a pointer to the keyring with the keyring's refcount having being
1150  * incremented on success.  -ENOKEY is returned if a key could not be found.
1151  */
1152 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1153 {
1154 	struct user_namespace *ns = current_user_ns();
1155 	struct key *keyring;
1156 
1157 	if (!name)
1158 		return ERR_PTR(-EINVAL);
1159 
1160 	read_lock(&keyring_name_lock);
1161 
1162 	/* Search this hash bucket for a keyring with a matching name that
1163 	 * grants Search permission and that hasn't been revoked
1164 	 */
1165 	list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1166 		if (!kuid_has_mapping(ns, keyring->user->uid))
1167 			continue;
1168 
1169 		if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1170 			continue;
1171 
1172 		if (strcmp(keyring->description, name) != 0)
1173 			continue;
1174 
1175 		if (uid_keyring) {
1176 			if (!test_bit(KEY_FLAG_UID_KEYRING,
1177 				      &keyring->flags))
1178 				continue;
1179 		} else {
1180 			if (key_permission(make_key_ref(keyring, 0),
1181 					   KEY_NEED_JOIN) < 0)
1182 				continue;
1183 		}
1184 
1185 		/* we've got a match but we might end up racing with
1186 		 * key_cleanup() if the keyring is currently 'dead'
1187 		 * (ie. it has a zero usage count) */
1188 		if (!refcount_inc_not_zero(&keyring->usage))
1189 			continue;
1190 		keyring->last_used_at = ktime_get_real_seconds();
1191 		goto out;
1192 	}
1193 
1194 	keyring = ERR_PTR(-ENOKEY);
1195 out:
1196 	read_unlock(&keyring_name_lock);
1197 	return keyring;
1198 }
1199 
1200 static int keyring_detect_cycle_iterator(const void *object,
1201 					 void *iterator_data)
1202 {
1203 	struct keyring_search_context *ctx = iterator_data;
1204 	const struct key *key = keyring_ptr_to_key(object);
1205 
1206 	kenter("{%d}", key->serial);
1207 
1208 	/* We might get a keyring with matching index-key that is nonetheless a
1209 	 * different keyring. */
1210 	if (key != ctx->match_data.raw_data)
1211 		return 0;
1212 
1213 	ctx->result = ERR_PTR(-EDEADLK);
1214 	return 1;
1215 }
1216 
1217 /*
1218  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1219  * tree A at the topmost level (ie: as a direct child of A).
1220  *
1221  * Since we are adding B to A at the top level, checking for cycles should just
1222  * be a matter of seeing if node A is somewhere in tree B.
1223  */
1224 static int keyring_detect_cycle(struct key *A, struct key *B)
1225 {
1226 	struct keyring_search_context ctx = {
1227 		.index_key		= A->index_key,
1228 		.match_data.raw_data	= A,
1229 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1230 		.iterator		= keyring_detect_cycle_iterator,
1231 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1232 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1233 					   KEYRING_SEARCH_NO_CHECK_PERM |
1234 					   KEYRING_SEARCH_DETECT_TOO_DEEP |
1235 					   KEYRING_SEARCH_RECURSE),
1236 	};
1237 
1238 	rcu_read_lock();
1239 	search_nested_keyrings(B, &ctx);
1240 	rcu_read_unlock();
1241 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1242 }
1243 
1244 /*
1245  * Lock keyring for link.
1246  */
1247 int __key_link_lock(struct key *keyring,
1248 		    const struct keyring_index_key *index_key)
1249 	__acquires(&keyring->sem)
1250 	__acquires(&keyring_serialise_link_lock)
1251 {
1252 	if (keyring->type != &key_type_keyring)
1253 		return -ENOTDIR;
1254 
1255 	down_write(&keyring->sem);
1256 
1257 	/* Serialise link/link calls to prevent parallel calls causing a cycle
1258 	 * when linking two keyring in opposite orders.
1259 	 */
1260 	if (index_key->type == &key_type_keyring)
1261 		mutex_lock(&keyring_serialise_link_lock);
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Lock keyrings for move (link/unlink combination).
1268  */
1269 int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1270 		    const struct keyring_index_key *index_key)
1271 	__acquires(&l_keyring->sem)
1272 	__acquires(&u_keyring->sem)
1273 	__acquires(&keyring_serialise_link_lock)
1274 {
1275 	if (l_keyring->type != &key_type_keyring ||
1276 	    u_keyring->type != &key_type_keyring)
1277 		return -ENOTDIR;
1278 
1279 	/* We have to be very careful here to take the keyring locks in the
1280 	 * right order, lest we open ourselves to deadlocking against another
1281 	 * move operation.
1282 	 */
1283 	if (l_keyring < u_keyring) {
1284 		down_write(&l_keyring->sem);
1285 		down_write_nested(&u_keyring->sem, 1);
1286 	} else {
1287 		down_write(&u_keyring->sem);
1288 		down_write_nested(&l_keyring->sem, 1);
1289 	}
1290 
1291 	/* Serialise link/link calls to prevent parallel calls causing a cycle
1292 	 * when linking two keyring in opposite orders.
1293 	 */
1294 	if (index_key->type == &key_type_keyring)
1295 		mutex_lock(&keyring_serialise_link_lock);
1296 
1297 	return 0;
1298 }
1299 
1300 /*
1301  * Preallocate memory so that a key can be linked into to a keyring.
1302  */
1303 int __key_link_begin(struct key *keyring,
1304 		     const struct keyring_index_key *index_key,
1305 		     struct assoc_array_edit **_edit)
1306 {
1307 	struct assoc_array_edit *edit;
1308 	int ret;
1309 
1310 	kenter("%d,%s,%s,",
1311 	       keyring->serial, index_key->type->name, index_key->description);
1312 
1313 	BUG_ON(index_key->desc_len == 0);
1314 	BUG_ON(*_edit != NULL);
1315 
1316 	*_edit = NULL;
1317 
1318 	ret = -EKEYREVOKED;
1319 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1320 		goto error;
1321 
1322 	/* Create an edit script that will insert/replace the key in the
1323 	 * keyring tree.
1324 	 */
1325 	edit = assoc_array_insert(&keyring->keys,
1326 				  &keyring_assoc_array_ops,
1327 				  index_key,
1328 				  NULL);
1329 	if (IS_ERR(edit)) {
1330 		ret = PTR_ERR(edit);
1331 		goto error;
1332 	}
1333 
1334 	/* If we're not replacing a link in-place then we're going to need some
1335 	 * extra quota.
1336 	 */
1337 	if (!edit->dead_leaf) {
1338 		ret = key_payload_reserve(keyring,
1339 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1340 		if (ret < 0)
1341 			goto error_cancel;
1342 	}
1343 
1344 	*_edit = edit;
1345 	kleave(" = 0");
1346 	return 0;
1347 
1348 error_cancel:
1349 	assoc_array_cancel_edit(edit);
1350 error:
1351 	kleave(" = %d", ret);
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Check already instantiated keys aren't going to be a problem.
1357  *
1358  * The caller must have called __key_link_begin(). Don't need to call this for
1359  * keys that were created since __key_link_begin() was called.
1360  */
1361 int __key_link_check_live_key(struct key *keyring, struct key *key)
1362 {
1363 	if (key->type == &key_type_keyring)
1364 		/* check that we aren't going to create a cycle by linking one
1365 		 * keyring to another */
1366 		return keyring_detect_cycle(keyring, key);
1367 	return 0;
1368 }
1369 
1370 /*
1371  * Link a key into to a keyring.
1372  *
1373  * Must be called with __key_link_begin() having being called.  Discards any
1374  * already extant link to matching key if there is one, so that each keyring
1375  * holds at most one link to any given key of a particular type+description
1376  * combination.
1377  */
1378 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1379 {
1380 	__key_get(key);
1381 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1382 	assoc_array_apply_edit(*_edit);
1383 	*_edit = NULL;
1384 }
1385 
1386 /*
1387  * Finish linking a key into to a keyring.
1388  *
1389  * Must be called with __key_link_begin() having being called.
1390  */
1391 void __key_link_end(struct key *keyring,
1392 		    const struct keyring_index_key *index_key,
1393 		    struct assoc_array_edit *edit)
1394 	__releases(&keyring->sem)
1395 	__releases(&keyring_serialise_link_lock)
1396 {
1397 	BUG_ON(index_key->type == NULL);
1398 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1399 
1400 	if (edit) {
1401 		if (!edit->dead_leaf) {
1402 			key_payload_reserve(keyring,
1403 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1404 		}
1405 		assoc_array_cancel_edit(edit);
1406 	}
1407 	up_write(&keyring->sem);
1408 
1409 	if (index_key->type == &key_type_keyring)
1410 		mutex_unlock(&keyring_serialise_link_lock);
1411 }
1412 
1413 /*
1414  * Check addition of keys to restricted keyrings.
1415  */
1416 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1417 {
1418 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1419 		return 0;
1420 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1421 					     keyring->restrict_link->key);
1422 }
1423 
1424 /**
1425  * key_link - Link a key to a keyring
1426  * @keyring: The keyring to make the link in.
1427  * @key: The key to link to.
1428  *
1429  * Make a link in a keyring to a key, such that the keyring holds a reference
1430  * on that key and the key can potentially be found by searching that keyring.
1431  *
1432  * This function will write-lock the keyring's semaphore and will consume some
1433  * of the user's key data quota to hold the link.
1434  *
1435  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1436  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1437  * full, -EDQUOT if there is insufficient key data quota remaining to add
1438  * another link or -ENOMEM if there's insufficient memory.
1439  *
1440  * It is assumed that the caller has checked that it is permitted for a link to
1441  * be made (the keyring should have Write permission and the key Link
1442  * permission).
1443  */
1444 int key_link(struct key *keyring, struct key *key)
1445 {
1446 	struct assoc_array_edit *edit = NULL;
1447 	int ret;
1448 
1449 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1450 
1451 	key_check(keyring);
1452 	key_check(key);
1453 
1454 	ret = __key_link_lock(keyring, &key->index_key);
1455 	if (ret < 0)
1456 		goto error;
1457 
1458 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1459 	if (ret < 0)
1460 		goto error_end;
1461 
1462 	kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1463 	ret = __key_link_check_restriction(keyring, key);
1464 	if (ret == 0)
1465 		ret = __key_link_check_live_key(keyring, key);
1466 	if (ret == 0)
1467 		__key_link(key, &edit);
1468 
1469 error_end:
1470 	__key_link_end(keyring, &key->index_key, edit);
1471 error:
1472 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL(key_link);
1476 
1477 /*
1478  * Lock a keyring for unlink.
1479  */
1480 static int __key_unlink_lock(struct key *keyring)
1481 	__acquires(&keyring->sem)
1482 {
1483 	if (keyring->type != &key_type_keyring)
1484 		return -ENOTDIR;
1485 
1486 	down_write(&keyring->sem);
1487 	return 0;
1488 }
1489 
1490 /*
1491  * Begin the process of unlinking a key from a keyring.
1492  */
1493 static int __key_unlink_begin(struct key *keyring, struct key *key,
1494 			      struct assoc_array_edit **_edit)
1495 {
1496 	struct assoc_array_edit *edit;
1497 
1498 	BUG_ON(*_edit != NULL);
1499 
1500 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1501 				  &key->index_key);
1502 	if (IS_ERR(edit))
1503 		return PTR_ERR(edit);
1504 
1505 	if (!edit)
1506 		return -ENOENT;
1507 
1508 	*_edit = edit;
1509 	return 0;
1510 }
1511 
1512 /*
1513  * Apply an unlink change.
1514  */
1515 static void __key_unlink(struct key *keyring, struct key *key,
1516 			 struct assoc_array_edit **_edit)
1517 {
1518 	assoc_array_apply_edit(*_edit);
1519 	*_edit = NULL;
1520 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1521 }
1522 
1523 /*
1524  * Finish unlinking a key from to a keyring.
1525  */
1526 static void __key_unlink_end(struct key *keyring,
1527 			     struct key *key,
1528 			     struct assoc_array_edit *edit)
1529 	__releases(&keyring->sem)
1530 {
1531 	if (edit)
1532 		assoc_array_cancel_edit(edit);
1533 	up_write(&keyring->sem);
1534 }
1535 
1536 /**
1537  * key_unlink - Unlink the first link to a key from a keyring.
1538  * @keyring: The keyring to remove the link from.
1539  * @key: The key the link is to.
1540  *
1541  * Remove a link from a keyring to a key.
1542  *
1543  * This function will write-lock the keyring's semaphore.
1544  *
1545  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1546  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1547  * memory.
1548  *
1549  * It is assumed that the caller has checked that it is permitted for a link to
1550  * be removed (the keyring should have Write permission; no permissions are
1551  * required on the key).
1552  */
1553 int key_unlink(struct key *keyring, struct key *key)
1554 {
1555 	struct assoc_array_edit *edit = NULL;
1556 	int ret;
1557 
1558 	key_check(keyring);
1559 	key_check(key);
1560 
1561 	ret = __key_unlink_lock(keyring);
1562 	if (ret < 0)
1563 		return ret;
1564 
1565 	ret = __key_unlink_begin(keyring, key, &edit);
1566 	if (ret == 0)
1567 		__key_unlink(keyring, key, &edit);
1568 	__key_unlink_end(keyring, key, edit);
1569 	return ret;
1570 }
1571 EXPORT_SYMBOL(key_unlink);
1572 
1573 /**
1574  * key_move - Move a key from one keyring to another
1575  * @key: The key to move
1576  * @from_keyring: The keyring to remove the link from.
1577  * @to_keyring: The keyring to make the link in.
1578  * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1579  *
1580  * Make a link in @to_keyring to a key, such that the keyring holds a reference
1581  * on that key and the key can potentially be found by searching that keyring
1582  * whilst simultaneously removing a link to the key from @from_keyring.
1583  *
1584  * This function will write-lock both keyring's semaphores and will consume
1585  * some of the user's key data quota to hold the link on @to_keyring.
1586  *
1587  * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1588  * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1589  * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1590  * to add another link or -ENOMEM if there's insufficient memory.  If
1591  * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1592  * matching key in @to_keyring.
1593  *
1594  * It is assumed that the caller has checked that it is permitted for a link to
1595  * be made (the keyring should have Write permission and the key Link
1596  * permission).
1597  */
1598 int key_move(struct key *key,
1599 	     struct key *from_keyring,
1600 	     struct key *to_keyring,
1601 	     unsigned int flags)
1602 {
1603 	struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1604 	int ret;
1605 
1606 	kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1607 
1608 	if (from_keyring == to_keyring)
1609 		return 0;
1610 
1611 	key_check(key);
1612 	key_check(from_keyring);
1613 	key_check(to_keyring);
1614 
1615 	ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1616 	if (ret < 0)
1617 		goto out;
1618 	ret = __key_unlink_begin(from_keyring, key, &from_edit);
1619 	if (ret < 0)
1620 		goto error;
1621 	ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1622 	if (ret < 0)
1623 		goto error;
1624 
1625 	ret = -EEXIST;
1626 	if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1627 		goto error;
1628 
1629 	ret = __key_link_check_restriction(to_keyring, key);
1630 	if (ret < 0)
1631 		goto error;
1632 	ret = __key_link_check_live_key(to_keyring, key);
1633 	if (ret < 0)
1634 		goto error;
1635 
1636 	__key_unlink(from_keyring, key, &from_edit);
1637 	__key_link(key, &to_edit);
1638 error:
1639 	__key_link_end(to_keyring, &key->index_key, to_edit);
1640 	__key_unlink_end(from_keyring, key, from_edit);
1641 out:
1642 	kleave(" = %d", ret);
1643 	return ret;
1644 }
1645 EXPORT_SYMBOL(key_move);
1646 
1647 /**
1648  * keyring_clear - Clear a keyring
1649  * @keyring: The keyring to clear.
1650  *
1651  * Clear the contents of the specified keyring.
1652  *
1653  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1654  */
1655 int keyring_clear(struct key *keyring)
1656 {
1657 	struct assoc_array_edit *edit;
1658 	int ret;
1659 
1660 	if (keyring->type != &key_type_keyring)
1661 		return -ENOTDIR;
1662 
1663 	down_write(&keyring->sem);
1664 
1665 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1666 	if (IS_ERR(edit)) {
1667 		ret = PTR_ERR(edit);
1668 	} else {
1669 		if (edit)
1670 			assoc_array_apply_edit(edit);
1671 		key_payload_reserve(keyring, 0);
1672 		ret = 0;
1673 	}
1674 
1675 	up_write(&keyring->sem);
1676 	return ret;
1677 }
1678 EXPORT_SYMBOL(keyring_clear);
1679 
1680 /*
1681  * Dispose of the links from a revoked keyring.
1682  *
1683  * This is called with the key sem write-locked.
1684  */
1685 static void keyring_revoke(struct key *keyring)
1686 {
1687 	struct assoc_array_edit *edit;
1688 
1689 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1690 	if (!IS_ERR(edit)) {
1691 		if (edit)
1692 			assoc_array_apply_edit(edit);
1693 		key_payload_reserve(keyring, 0);
1694 	}
1695 }
1696 
1697 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1698 {
1699 	struct key *key = keyring_ptr_to_key(object);
1700 	time64_t *limit = iterator_data;
1701 
1702 	if (key_is_dead(key, *limit))
1703 		return false;
1704 	key_get(key);
1705 	return true;
1706 }
1707 
1708 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1709 {
1710 	const struct key *key = keyring_ptr_to_key(object);
1711 	time64_t *limit = iterator_data;
1712 
1713 	key_check(key);
1714 	return key_is_dead(key, *limit);
1715 }
1716 
1717 /*
1718  * Garbage collect pointers from a keyring.
1719  *
1720  * Not called with any locks held.  The keyring's key struct will not be
1721  * deallocated under us as only our caller may deallocate it.
1722  */
1723 void keyring_gc(struct key *keyring, time64_t limit)
1724 {
1725 	int result;
1726 
1727 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1728 
1729 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1730 			      (1 << KEY_FLAG_REVOKED)))
1731 		goto dont_gc;
1732 
1733 	/* scan the keyring looking for dead keys */
1734 	rcu_read_lock();
1735 	result = assoc_array_iterate(&keyring->keys,
1736 				     keyring_gc_check_iterator, &limit);
1737 	rcu_read_unlock();
1738 	if (result == true)
1739 		goto do_gc;
1740 
1741 dont_gc:
1742 	kleave(" [no gc]");
1743 	return;
1744 
1745 do_gc:
1746 	down_write(&keyring->sem);
1747 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1748 		       keyring_gc_select_iterator, &limit);
1749 	up_write(&keyring->sem);
1750 	kleave(" [gc]");
1751 }
1752 
1753 /*
1754  * Garbage collect restriction pointers from a keyring.
1755  *
1756  * Keyring restrictions are associated with a key type, and must be cleaned
1757  * up if the key type is unregistered. The restriction is altered to always
1758  * reject additional keys so a keyring cannot be opened up by unregistering
1759  * a key type.
1760  *
1761  * Not called with any keyring locks held. The keyring's key struct will not
1762  * be deallocated under us as only our caller may deallocate it.
1763  *
1764  * The caller is required to hold key_types_sem and dead_type->sem. This is
1765  * fulfilled by key_gc_keytype() holding the locks on behalf of
1766  * key_garbage_collector(), which it invokes on a workqueue.
1767  */
1768 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1769 {
1770 	struct key_restriction *keyres;
1771 
1772 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1773 
1774 	/*
1775 	 * keyring->restrict_link is only assigned at key allocation time
1776 	 * or with the key type locked, so the only values that could be
1777 	 * concurrently assigned to keyring->restrict_link are for key
1778 	 * types other than dead_type. Given this, it's ok to check
1779 	 * the key type before acquiring keyring->sem.
1780 	 */
1781 	if (!dead_type || !keyring->restrict_link ||
1782 	    keyring->restrict_link->keytype != dead_type) {
1783 		kleave(" [no restriction gc]");
1784 		return;
1785 	}
1786 
1787 	/* Lock the keyring to ensure that a link is not in progress */
1788 	down_write(&keyring->sem);
1789 
1790 	keyres = keyring->restrict_link;
1791 
1792 	keyres->check = restrict_link_reject;
1793 
1794 	key_put(keyres->key);
1795 	keyres->key = NULL;
1796 	keyres->keytype = NULL;
1797 
1798 	up_write(&keyring->sem);
1799 
1800 	kleave(" [restriction gc]");
1801 }
1802