1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Keyring handling 3 * 4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/init.h> 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/security.h> 13 #include <linux/seq_file.h> 14 #include <linux/err.h> 15 #include <keys/keyring-type.h> 16 #include <keys/user-type.h> 17 #include <linux/assoc_array_priv.h> 18 #include <linux/uaccess.h> 19 #include "internal.h" 20 21 /* 22 * When plumbing the depths of the key tree, this sets a hard limit 23 * set on how deep we're willing to go. 24 */ 25 #define KEYRING_SEARCH_MAX_DEPTH 6 26 27 /* 28 * We keep all named keyrings in a hash to speed looking them up. 29 */ 30 #define KEYRING_NAME_HASH_SIZE (1 << 5) 31 32 /* 33 * We mark pointers we pass to the associative array with bit 1 set if 34 * they're keyrings and clear otherwise. 35 */ 36 #define KEYRING_PTR_SUBTYPE 0x2UL 37 38 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 39 { 40 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 41 } 42 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 43 { 44 void *object = assoc_array_ptr_to_leaf(x); 45 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 46 } 47 static inline void *keyring_key_to_ptr(struct key *key) 48 { 49 if (key->type == &key_type_keyring) 50 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 51 return key; 52 } 53 54 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 55 static DEFINE_RWLOCK(keyring_name_lock); 56 57 static inline unsigned keyring_hash(const char *desc) 58 { 59 unsigned bucket = 0; 60 61 for (; *desc; desc++) 62 bucket += (unsigned char)*desc; 63 64 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 65 } 66 67 /* 68 * The keyring key type definition. Keyrings are simply keys of this type and 69 * can be treated as ordinary keys in addition to having their own special 70 * operations. 71 */ 72 static int keyring_preparse(struct key_preparsed_payload *prep); 73 static void keyring_free_preparse(struct key_preparsed_payload *prep); 74 static int keyring_instantiate(struct key *keyring, 75 struct key_preparsed_payload *prep); 76 static void keyring_revoke(struct key *keyring); 77 static void keyring_destroy(struct key *keyring); 78 static void keyring_describe(const struct key *keyring, struct seq_file *m); 79 static long keyring_read(const struct key *keyring, 80 char __user *buffer, size_t buflen); 81 82 struct key_type key_type_keyring = { 83 .name = "keyring", 84 .def_datalen = 0, 85 .preparse = keyring_preparse, 86 .free_preparse = keyring_free_preparse, 87 .instantiate = keyring_instantiate, 88 .revoke = keyring_revoke, 89 .destroy = keyring_destroy, 90 .describe = keyring_describe, 91 .read = keyring_read, 92 }; 93 EXPORT_SYMBOL(key_type_keyring); 94 95 /* 96 * Semaphore to serialise link/link calls to prevent two link calls in parallel 97 * introducing a cycle. 98 */ 99 static DECLARE_RWSEM(keyring_serialise_link_sem); 100 101 /* 102 * Publish the name of a keyring so that it can be found by name (if it has 103 * one). 104 */ 105 static void keyring_publish_name(struct key *keyring) 106 { 107 int bucket; 108 109 if (keyring->description) { 110 bucket = keyring_hash(keyring->description); 111 112 write_lock(&keyring_name_lock); 113 114 if (!keyring_name_hash[bucket].next) 115 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 116 117 list_add_tail(&keyring->name_link, 118 &keyring_name_hash[bucket]); 119 120 write_unlock(&keyring_name_lock); 121 } 122 } 123 124 /* 125 * Preparse a keyring payload 126 */ 127 static int keyring_preparse(struct key_preparsed_payload *prep) 128 { 129 return prep->datalen != 0 ? -EINVAL : 0; 130 } 131 132 /* 133 * Free a preparse of a user defined key payload 134 */ 135 static void keyring_free_preparse(struct key_preparsed_payload *prep) 136 { 137 } 138 139 /* 140 * Initialise a keyring. 141 * 142 * Returns 0 on success, -EINVAL if given any data. 143 */ 144 static int keyring_instantiate(struct key *keyring, 145 struct key_preparsed_payload *prep) 146 { 147 assoc_array_init(&keyring->keys); 148 /* make the keyring available by name if it has one */ 149 keyring_publish_name(keyring); 150 return 0; 151 } 152 153 /* 154 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 155 * fold the carry back too, but that requires inline asm. 156 */ 157 static u64 mult_64x32_and_fold(u64 x, u32 y) 158 { 159 u64 hi = (u64)(u32)(x >> 32) * y; 160 u64 lo = (u64)(u32)(x) * y; 161 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 162 } 163 164 /* 165 * Hash a key type and description. 166 */ 167 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 168 { 169 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 170 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 171 const char *description = index_key->description; 172 unsigned long hash, type; 173 u32 piece; 174 u64 acc; 175 int n, desc_len = index_key->desc_len; 176 177 type = (unsigned long)index_key->type; 178 179 acc = mult_64x32_and_fold(type, desc_len + 13); 180 acc = mult_64x32_and_fold(acc, 9207); 181 for (;;) { 182 n = desc_len; 183 if (n <= 0) 184 break; 185 if (n > 4) 186 n = 4; 187 piece = 0; 188 memcpy(&piece, description, n); 189 description += n; 190 desc_len -= n; 191 acc = mult_64x32_and_fold(acc, piece); 192 acc = mult_64x32_and_fold(acc, 9207); 193 } 194 195 /* Fold the hash down to 32 bits if need be. */ 196 hash = acc; 197 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 198 hash ^= acc >> 32; 199 200 /* Squidge all the keyrings into a separate part of the tree to 201 * ordinary keys by making sure the lowest level segment in the hash is 202 * zero for keyrings and non-zero otherwise. 203 */ 204 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 205 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 206 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 207 return (hash + (hash << level_shift)) & ~fan_mask; 208 return hash; 209 } 210 211 /* 212 * Build the next index key chunk. 213 * 214 * On 32-bit systems the index key is laid out as: 215 * 216 * 0 4 5 9... 217 * hash desclen typeptr desc[] 218 * 219 * On 64-bit systems: 220 * 221 * 0 8 9 17... 222 * hash desclen typeptr desc[] 223 * 224 * We return it one word-sized chunk at a time. 225 */ 226 static unsigned long keyring_get_key_chunk(const void *data, int level) 227 { 228 const struct keyring_index_key *index_key = data; 229 unsigned long chunk = 0; 230 long offset = 0; 231 int desc_len = index_key->desc_len, n = sizeof(chunk); 232 233 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 234 switch (level) { 235 case 0: 236 return hash_key_type_and_desc(index_key); 237 case 1: 238 return ((unsigned long)index_key->type << 8) | desc_len; 239 case 2: 240 if (desc_len == 0) 241 return (u8)((unsigned long)index_key->type >> 242 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 243 n--; 244 offset = 1; 245 /* fall through */ 246 default: 247 offset += sizeof(chunk) - 1; 248 offset += (level - 3) * sizeof(chunk); 249 if (offset >= desc_len) 250 return 0; 251 desc_len -= offset; 252 if (desc_len > n) 253 desc_len = n; 254 offset += desc_len; 255 do { 256 chunk <<= 8; 257 chunk |= ((u8*)index_key->description)[--offset]; 258 } while (--desc_len > 0); 259 260 if (level == 2) { 261 chunk <<= 8; 262 chunk |= (u8)((unsigned long)index_key->type >> 263 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 264 } 265 return chunk; 266 } 267 } 268 269 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 270 { 271 const struct key *key = keyring_ptr_to_key(object); 272 return keyring_get_key_chunk(&key->index_key, level); 273 } 274 275 static bool keyring_compare_object(const void *object, const void *data) 276 { 277 const struct keyring_index_key *index_key = data; 278 const struct key *key = keyring_ptr_to_key(object); 279 280 return key->index_key.type == index_key->type && 281 key->index_key.desc_len == index_key->desc_len && 282 memcmp(key->index_key.description, index_key->description, 283 index_key->desc_len) == 0; 284 } 285 286 /* 287 * Compare the index keys of a pair of objects and determine the bit position 288 * at which they differ - if they differ. 289 */ 290 static int keyring_diff_objects(const void *object, const void *data) 291 { 292 const struct key *key_a = keyring_ptr_to_key(object); 293 const struct keyring_index_key *a = &key_a->index_key; 294 const struct keyring_index_key *b = data; 295 unsigned long seg_a, seg_b; 296 int level, i; 297 298 level = 0; 299 seg_a = hash_key_type_and_desc(a); 300 seg_b = hash_key_type_and_desc(b); 301 if ((seg_a ^ seg_b) != 0) 302 goto differ; 303 304 /* The number of bits contributed by the hash is controlled by a 305 * constant in the assoc_array headers. Everything else thereafter we 306 * can deal with as being machine word-size dependent. 307 */ 308 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 309 seg_a = a->desc_len; 310 seg_b = b->desc_len; 311 if ((seg_a ^ seg_b) != 0) 312 goto differ; 313 314 /* The next bit may not work on big endian */ 315 level++; 316 seg_a = (unsigned long)a->type; 317 seg_b = (unsigned long)b->type; 318 if ((seg_a ^ seg_b) != 0) 319 goto differ; 320 321 level += sizeof(unsigned long); 322 if (a->desc_len == 0) 323 goto same; 324 325 i = 0; 326 if (((unsigned long)a->description | (unsigned long)b->description) & 327 (sizeof(unsigned long) - 1)) { 328 do { 329 seg_a = *(unsigned long *)(a->description + i); 330 seg_b = *(unsigned long *)(b->description + i); 331 if ((seg_a ^ seg_b) != 0) 332 goto differ_plus_i; 333 i += sizeof(unsigned long); 334 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 335 } 336 337 for (; i < a->desc_len; i++) { 338 seg_a = *(unsigned char *)(a->description + i); 339 seg_b = *(unsigned char *)(b->description + i); 340 if ((seg_a ^ seg_b) != 0) 341 goto differ_plus_i; 342 } 343 344 same: 345 return -1; 346 347 differ_plus_i: 348 level += i; 349 differ: 350 i = level * 8 + __ffs(seg_a ^ seg_b); 351 return i; 352 } 353 354 /* 355 * Free an object after stripping the keyring flag off of the pointer. 356 */ 357 static void keyring_free_object(void *object) 358 { 359 key_put(keyring_ptr_to_key(object)); 360 } 361 362 /* 363 * Operations for keyring management by the index-tree routines. 364 */ 365 static const struct assoc_array_ops keyring_assoc_array_ops = { 366 .get_key_chunk = keyring_get_key_chunk, 367 .get_object_key_chunk = keyring_get_object_key_chunk, 368 .compare_object = keyring_compare_object, 369 .diff_objects = keyring_diff_objects, 370 .free_object = keyring_free_object, 371 }; 372 373 /* 374 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 375 * and dispose of its data. 376 * 377 * The garbage collector detects the final key_put(), removes the keyring from 378 * the serial number tree and then does RCU synchronisation before coming here, 379 * so we shouldn't need to worry about code poking around here with the RCU 380 * readlock held by this time. 381 */ 382 static void keyring_destroy(struct key *keyring) 383 { 384 if (keyring->description) { 385 write_lock(&keyring_name_lock); 386 387 if (keyring->name_link.next != NULL && 388 !list_empty(&keyring->name_link)) 389 list_del(&keyring->name_link); 390 391 write_unlock(&keyring_name_lock); 392 } 393 394 if (keyring->restrict_link) { 395 struct key_restriction *keyres = keyring->restrict_link; 396 397 key_put(keyres->key); 398 kfree(keyres); 399 } 400 401 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 402 } 403 404 /* 405 * Describe a keyring for /proc. 406 */ 407 static void keyring_describe(const struct key *keyring, struct seq_file *m) 408 { 409 if (keyring->description) 410 seq_puts(m, keyring->description); 411 else 412 seq_puts(m, "[anon]"); 413 414 if (key_is_positive(keyring)) { 415 if (keyring->keys.nr_leaves_on_tree != 0) 416 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 417 else 418 seq_puts(m, ": empty"); 419 } 420 } 421 422 struct keyring_read_iterator_context { 423 size_t buflen; 424 size_t count; 425 key_serial_t __user *buffer; 426 }; 427 428 static int keyring_read_iterator(const void *object, void *data) 429 { 430 struct keyring_read_iterator_context *ctx = data; 431 const struct key *key = keyring_ptr_to_key(object); 432 int ret; 433 434 kenter("{%s,%d},,{%zu/%zu}", 435 key->type->name, key->serial, ctx->count, ctx->buflen); 436 437 if (ctx->count >= ctx->buflen) 438 return 1; 439 440 ret = put_user(key->serial, ctx->buffer); 441 if (ret < 0) 442 return ret; 443 ctx->buffer++; 444 ctx->count += sizeof(key->serial); 445 return 0; 446 } 447 448 /* 449 * Read a list of key IDs from the keyring's contents in binary form 450 * 451 * The keyring's semaphore is read-locked by the caller. This prevents someone 452 * from modifying it under us - which could cause us to read key IDs multiple 453 * times. 454 */ 455 static long keyring_read(const struct key *keyring, 456 char __user *buffer, size_t buflen) 457 { 458 struct keyring_read_iterator_context ctx; 459 long ret; 460 461 kenter("{%d},,%zu", key_serial(keyring), buflen); 462 463 if (buflen & (sizeof(key_serial_t) - 1)) 464 return -EINVAL; 465 466 /* Copy as many key IDs as fit into the buffer */ 467 if (buffer && buflen) { 468 ctx.buffer = (key_serial_t __user *)buffer; 469 ctx.buflen = buflen; 470 ctx.count = 0; 471 ret = assoc_array_iterate(&keyring->keys, 472 keyring_read_iterator, &ctx); 473 if (ret < 0) { 474 kleave(" = %ld [iterate]", ret); 475 return ret; 476 } 477 } 478 479 /* Return the size of the buffer needed */ 480 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t); 481 if (ret <= buflen) 482 kleave("= %ld [ok]", ret); 483 else 484 kleave("= %ld [buffer too small]", ret); 485 return ret; 486 } 487 488 /* 489 * Allocate a keyring and link into the destination keyring. 490 */ 491 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 492 const struct cred *cred, key_perm_t perm, 493 unsigned long flags, 494 struct key_restriction *restrict_link, 495 struct key *dest) 496 { 497 struct key *keyring; 498 int ret; 499 500 keyring = key_alloc(&key_type_keyring, description, 501 uid, gid, cred, perm, flags, restrict_link); 502 if (!IS_ERR(keyring)) { 503 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 504 if (ret < 0) { 505 key_put(keyring); 506 keyring = ERR_PTR(ret); 507 } 508 } 509 510 return keyring; 511 } 512 EXPORT_SYMBOL(keyring_alloc); 513 514 /** 515 * restrict_link_reject - Give -EPERM to restrict link 516 * @keyring: The keyring being added to. 517 * @type: The type of key being added. 518 * @payload: The payload of the key intended to be added. 519 * @data: Additional data for evaluating restriction. 520 * 521 * Reject the addition of any links to a keyring. It can be overridden by 522 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 523 * adding a key to a keyring. 524 * 525 * This is meant to be stored in a key_restriction structure which is passed 526 * in the restrict_link parameter to keyring_alloc(). 527 */ 528 int restrict_link_reject(struct key *keyring, 529 const struct key_type *type, 530 const union key_payload *payload, 531 struct key *restriction_key) 532 { 533 return -EPERM; 534 } 535 536 /* 537 * By default, we keys found by getting an exact match on their descriptions. 538 */ 539 bool key_default_cmp(const struct key *key, 540 const struct key_match_data *match_data) 541 { 542 return strcmp(key->description, match_data->raw_data) == 0; 543 } 544 545 /* 546 * Iteration function to consider each key found. 547 */ 548 static int keyring_search_iterator(const void *object, void *iterator_data) 549 { 550 struct keyring_search_context *ctx = iterator_data; 551 const struct key *key = keyring_ptr_to_key(object); 552 unsigned long kflags = READ_ONCE(key->flags); 553 short state = READ_ONCE(key->state); 554 555 kenter("{%d}", key->serial); 556 557 /* ignore keys not of this type */ 558 if (key->type != ctx->index_key.type) { 559 kleave(" = 0 [!type]"); 560 return 0; 561 } 562 563 /* skip invalidated, revoked and expired keys */ 564 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 565 time64_t expiry = READ_ONCE(key->expiry); 566 567 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 568 (1 << KEY_FLAG_REVOKED))) { 569 ctx->result = ERR_PTR(-EKEYREVOKED); 570 kleave(" = %d [invrev]", ctx->skipped_ret); 571 goto skipped; 572 } 573 574 if (expiry && ctx->now >= expiry) { 575 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 576 ctx->result = ERR_PTR(-EKEYEXPIRED); 577 kleave(" = %d [expire]", ctx->skipped_ret); 578 goto skipped; 579 } 580 } 581 582 /* keys that don't match */ 583 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 584 kleave(" = 0 [!match]"); 585 return 0; 586 } 587 588 /* key must have search permissions */ 589 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 590 key_task_permission(make_key_ref(key, ctx->possessed), 591 ctx->cred, KEY_NEED_SEARCH) < 0) { 592 ctx->result = ERR_PTR(-EACCES); 593 kleave(" = %d [!perm]", ctx->skipped_ret); 594 goto skipped; 595 } 596 597 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 598 /* we set a different error code if we pass a negative key */ 599 if (state < 0) { 600 ctx->result = ERR_PTR(state); 601 kleave(" = %d [neg]", ctx->skipped_ret); 602 goto skipped; 603 } 604 } 605 606 /* Found */ 607 ctx->result = make_key_ref(key, ctx->possessed); 608 kleave(" = 1 [found]"); 609 return 1; 610 611 skipped: 612 return ctx->skipped_ret; 613 } 614 615 /* 616 * Search inside a keyring for a key. We can search by walking to it 617 * directly based on its index-key or we can iterate over the entire 618 * tree looking for it, based on the match function. 619 */ 620 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 621 { 622 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 623 const void *object; 624 625 object = assoc_array_find(&keyring->keys, 626 &keyring_assoc_array_ops, 627 &ctx->index_key); 628 return object ? ctx->iterator(object, ctx) : 0; 629 } 630 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 631 } 632 633 /* 634 * Search a tree of keyrings that point to other keyrings up to the maximum 635 * depth. 636 */ 637 static bool search_nested_keyrings(struct key *keyring, 638 struct keyring_search_context *ctx) 639 { 640 struct { 641 struct key *keyring; 642 struct assoc_array_node *node; 643 int slot; 644 } stack[KEYRING_SEARCH_MAX_DEPTH]; 645 646 struct assoc_array_shortcut *shortcut; 647 struct assoc_array_node *node; 648 struct assoc_array_ptr *ptr; 649 struct key *key; 650 int sp = 0, slot; 651 652 kenter("{%d},{%s,%s}", 653 keyring->serial, 654 ctx->index_key.type->name, 655 ctx->index_key.description); 656 657 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 658 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 659 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 660 661 /* Check to see if this top-level keyring is what we are looking for 662 * and whether it is valid or not. 663 */ 664 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 665 keyring_compare_object(keyring, &ctx->index_key)) { 666 ctx->skipped_ret = 2; 667 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 668 case 1: 669 goto found; 670 case 2: 671 return false; 672 default: 673 break; 674 } 675 } 676 677 ctx->skipped_ret = 0; 678 679 /* Start processing a new keyring */ 680 descend_to_keyring: 681 kdebug("descend to %d", keyring->serial); 682 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 683 (1 << KEY_FLAG_REVOKED))) 684 goto not_this_keyring; 685 686 /* Search through the keys in this keyring before its searching its 687 * subtrees. 688 */ 689 if (search_keyring(keyring, ctx)) 690 goto found; 691 692 /* Then manually iterate through the keyrings nested in this one. 693 * 694 * Start from the root node of the index tree. Because of the way the 695 * hash function has been set up, keyrings cluster on the leftmost 696 * branch of the root node (root slot 0) or in the root node itself. 697 * Non-keyrings avoid the leftmost branch of the root entirely (root 698 * slots 1-15). 699 */ 700 ptr = READ_ONCE(keyring->keys.root); 701 if (!ptr) 702 goto not_this_keyring; 703 704 if (assoc_array_ptr_is_shortcut(ptr)) { 705 /* If the root is a shortcut, either the keyring only contains 706 * keyring pointers (everything clusters behind root slot 0) or 707 * doesn't contain any keyring pointers. 708 */ 709 shortcut = assoc_array_ptr_to_shortcut(ptr); 710 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 711 goto not_this_keyring; 712 713 ptr = READ_ONCE(shortcut->next_node); 714 node = assoc_array_ptr_to_node(ptr); 715 goto begin_node; 716 } 717 718 node = assoc_array_ptr_to_node(ptr); 719 ptr = node->slots[0]; 720 if (!assoc_array_ptr_is_meta(ptr)) 721 goto begin_node; 722 723 descend_to_node: 724 /* Descend to a more distal node in this keyring's content tree and go 725 * through that. 726 */ 727 kdebug("descend"); 728 if (assoc_array_ptr_is_shortcut(ptr)) { 729 shortcut = assoc_array_ptr_to_shortcut(ptr); 730 ptr = READ_ONCE(shortcut->next_node); 731 BUG_ON(!assoc_array_ptr_is_node(ptr)); 732 } 733 node = assoc_array_ptr_to_node(ptr); 734 735 begin_node: 736 kdebug("begin_node"); 737 slot = 0; 738 ascend_to_node: 739 /* Go through the slots in a node */ 740 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 741 ptr = READ_ONCE(node->slots[slot]); 742 743 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 744 goto descend_to_node; 745 746 if (!keyring_ptr_is_keyring(ptr)) 747 continue; 748 749 key = keyring_ptr_to_key(ptr); 750 751 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 752 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 753 ctx->result = ERR_PTR(-ELOOP); 754 return false; 755 } 756 goto not_this_keyring; 757 } 758 759 /* Search a nested keyring */ 760 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 761 key_task_permission(make_key_ref(key, ctx->possessed), 762 ctx->cred, KEY_NEED_SEARCH) < 0) 763 continue; 764 765 /* stack the current position */ 766 stack[sp].keyring = keyring; 767 stack[sp].node = node; 768 stack[sp].slot = slot; 769 sp++; 770 771 /* begin again with the new keyring */ 772 keyring = key; 773 goto descend_to_keyring; 774 } 775 776 /* We've dealt with all the slots in the current node, so now we need 777 * to ascend to the parent and continue processing there. 778 */ 779 ptr = READ_ONCE(node->back_pointer); 780 slot = node->parent_slot; 781 782 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 783 shortcut = assoc_array_ptr_to_shortcut(ptr); 784 ptr = READ_ONCE(shortcut->back_pointer); 785 slot = shortcut->parent_slot; 786 } 787 if (!ptr) 788 goto not_this_keyring; 789 node = assoc_array_ptr_to_node(ptr); 790 slot++; 791 792 /* If we've ascended to the root (zero backpointer), we must have just 793 * finished processing the leftmost branch rather than the root slots - 794 * so there can't be any more keyrings for us to find. 795 */ 796 if (node->back_pointer) { 797 kdebug("ascend %d", slot); 798 goto ascend_to_node; 799 } 800 801 /* The keyring we're looking at was disqualified or didn't contain a 802 * matching key. 803 */ 804 not_this_keyring: 805 kdebug("not_this_keyring %d", sp); 806 if (sp <= 0) { 807 kleave(" = false"); 808 return false; 809 } 810 811 /* Resume the processing of a keyring higher up in the tree */ 812 sp--; 813 keyring = stack[sp].keyring; 814 node = stack[sp].node; 815 slot = stack[sp].slot + 1; 816 kdebug("ascend to %d [%d]", keyring->serial, slot); 817 goto ascend_to_node; 818 819 /* We found a viable match */ 820 found: 821 key = key_ref_to_ptr(ctx->result); 822 key_check(key); 823 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 824 key->last_used_at = ctx->now; 825 keyring->last_used_at = ctx->now; 826 while (sp > 0) 827 stack[--sp].keyring->last_used_at = ctx->now; 828 } 829 kleave(" = true"); 830 return true; 831 } 832 833 /** 834 * keyring_search_aux - Search a keyring tree for a key matching some criteria 835 * @keyring_ref: A pointer to the keyring with possession indicator. 836 * @ctx: The keyring search context. 837 * 838 * Search the supplied keyring tree for a key that matches the criteria given. 839 * The root keyring and any linked keyrings must grant Search permission to the 840 * caller to be searchable and keys can only be found if they too grant Search 841 * to the caller. The possession flag on the root keyring pointer controls use 842 * of the possessor bits in permissions checking of the entire tree. In 843 * addition, the LSM gets to forbid keyring searches and key matches. 844 * 845 * The search is performed as a breadth-then-depth search up to the prescribed 846 * limit (KEYRING_SEARCH_MAX_DEPTH). 847 * 848 * Keys are matched to the type provided and are then filtered by the match 849 * function, which is given the description to use in any way it sees fit. The 850 * match function may use any attributes of a key that it wishes to to 851 * determine the match. Normally the match function from the key type would be 852 * used. 853 * 854 * RCU can be used to prevent the keyring key lists from disappearing without 855 * the need to take lots of locks. 856 * 857 * Returns a pointer to the found key and increments the key usage count if 858 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 859 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 860 * specified keyring wasn't a keyring. 861 * 862 * In the case of a successful return, the possession attribute from 863 * @keyring_ref is propagated to the returned key reference. 864 */ 865 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 866 struct keyring_search_context *ctx) 867 { 868 struct key *keyring; 869 long err; 870 871 ctx->iterator = keyring_search_iterator; 872 ctx->possessed = is_key_possessed(keyring_ref); 873 ctx->result = ERR_PTR(-EAGAIN); 874 875 keyring = key_ref_to_ptr(keyring_ref); 876 key_check(keyring); 877 878 if (keyring->type != &key_type_keyring) 879 return ERR_PTR(-ENOTDIR); 880 881 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 882 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 883 if (err < 0) 884 return ERR_PTR(err); 885 } 886 887 rcu_read_lock(); 888 ctx->now = ktime_get_real_seconds(); 889 if (search_nested_keyrings(keyring, ctx)) 890 __key_get(key_ref_to_ptr(ctx->result)); 891 rcu_read_unlock(); 892 return ctx->result; 893 } 894 895 /** 896 * keyring_search - Search the supplied keyring tree for a matching key 897 * @keyring: The root of the keyring tree to be searched. 898 * @type: The type of keyring we want to find. 899 * @description: The name of the keyring we want to find. 900 * 901 * As keyring_search_aux() above, but using the current task's credentials and 902 * type's default matching function and preferred search method. 903 */ 904 key_ref_t keyring_search(key_ref_t keyring, 905 struct key_type *type, 906 const char *description) 907 { 908 struct keyring_search_context ctx = { 909 .index_key.type = type, 910 .index_key.description = description, 911 .index_key.desc_len = strlen(description), 912 .cred = current_cred(), 913 .match_data.cmp = key_default_cmp, 914 .match_data.raw_data = description, 915 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 916 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 917 }; 918 key_ref_t key; 919 int ret; 920 921 if (type->match_preparse) { 922 ret = type->match_preparse(&ctx.match_data); 923 if (ret < 0) 924 return ERR_PTR(ret); 925 } 926 927 key = keyring_search_aux(keyring, &ctx); 928 929 if (type->match_free) 930 type->match_free(&ctx.match_data); 931 return key; 932 } 933 EXPORT_SYMBOL(keyring_search); 934 935 static struct key_restriction *keyring_restriction_alloc( 936 key_restrict_link_func_t check) 937 { 938 struct key_restriction *keyres = 939 kzalloc(sizeof(struct key_restriction), GFP_KERNEL); 940 941 if (!keyres) 942 return ERR_PTR(-ENOMEM); 943 944 keyres->check = check; 945 946 return keyres; 947 } 948 949 /* 950 * Semaphore to serialise restriction setup to prevent reference count 951 * cycles through restriction key pointers. 952 */ 953 static DECLARE_RWSEM(keyring_serialise_restrict_sem); 954 955 /* 956 * Check for restriction cycles that would prevent keyring garbage collection. 957 * keyring_serialise_restrict_sem must be held. 958 */ 959 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, 960 struct key_restriction *keyres) 961 { 962 while (keyres && keyres->key && 963 keyres->key->type == &key_type_keyring) { 964 if (keyres->key == dest_keyring) 965 return true; 966 967 keyres = keyres->key->restrict_link; 968 } 969 970 return false; 971 } 972 973 /** 974 * keyring_restrict - Look up and apply a restriction to a keyring 975 * 976 * @keyring: The keyring to be restricted 977 * @restriction: The restriction options to apply to the keyring 978 */ 979 int keyring_restrict(key_ref_t keyring_ref, const char *type, 980 const char *restriction) 981 { 982 struct key *keyring; 983 struct key_type *restrict_type = NULL; 984 struct key_restriction *restrict_link; 985 int ret = 0; 986 987 keyring = key_ref_to_ptr(keyring_ref); 988 key_check(keyring); 989 990 if (keyring->type != &key_type_keyring) 991 return -ENOTDIR; 992 993 if (!type) { 994 restrict_link = keyring_restriction_alloc(restrict_link_reject); 995 } else { 996 restrict_type = key_type_lookup(type); 997 998 if (IS_ERR(restrict_type)) 999 return PTR_ERR(restrict_type); 1000 1001 if (!restrict_type->lookup_restriction) { 1002 ret = -ENOENT; 1003 goto error; 1004 } 1005 1006 restrict_link = restrict_type->lookup_restriction(restriction); 1007 } 1008 1009 if (IS_ERR(restrict_link)) { 1010 ret = PTR_ERR(restrict_link); 1011 goto error; 1012 } 1013 1014 down_write(&keyring->sem); 1015 down_write(&keyring_serialise_restrict_sem); 1016 1017 if (keyring->restrict_link) 1018 ret = -EEXIST; 1019 else if (keyring_detect_restriction_cycle(keyring, restrict_link)) 1020 ret = -EDEADLK; 1021 else 1022 keyring->restrict_link = restrict_link; 1023 1024 up_write(&keyring_serialise_restrict_sem); 1025 up_write(&keyring->sem); 1026 1027 if (ret < 0) { 1028 key_put(restrict_link->key); 1029 kfree(restrict_link); 1030 } 1031 1032 error: 1033 if (restrict_type) 1034 key_type_put(restrict_type); 1035 1036 return ret; 1037 } 1038 EXPORT_SYMBOL(keyring_restrict); 1039 1040 /* 1041 * Search the given keyring for a key that might be updated. 1042 * 1043 * The caller must guarantee that the keyring is a keyring and that the 1044 * permission is granted to modify the keyring as no check is made here. The 1045 * caller must also hold a lock on the keyring semaphore. 1046 * 1047 * Returns a pointer to the found key with usage count incremented if 1048 * successful and returns NULL if not found. Revoked and invalidated keys are 1049 * skipped over. 1050 * 1051 * If successful, the possession indicator is propagated from the keyring ref 1052 * to the returned key reference. 1053 */ 1054 key_ref_t find_key_to_update(key_ref_t keyring_ref, 1055 const struct keyring_index_key *index_key) 1056 { 1057 struct key *keyring, *key; 1058 const void *object; 1059 1060 keyring = key_ref_to_ptr(keyring_ref); 1061 1062 kenter("{%d},{%s,%s}", 1063 keyring->serial, index_key->type->name, index_key->description); 1064 1065 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 1066 index_key); 1067 1068 if (object) 1069 goto found; 1070 1071 kleave(" = NULL"); 1072 return NULL; 1073 1074 found: 1075 key = keyring_ptr_to_key(object); 1076 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 1077 (1 << KEY_FLAG_REVOKED))) { 1078 kleave(" = NULL [x]"); 1079 return NULL; 1080 } 1081 __key_get(key); 1082 kleave(" = {%d}", key->serial); 1083 return make_key_ref(key, is_key_possessed(keyring_ref)); 1084 } 1085 1086 /* 1087 * Find a keyring with the specified name. 1088 * 1089 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a 1090 * user in the current user namespace are considered. If @uid_keyring is %true, 1091 * the keyring additionally must have been allocated as a user or user session 1092 * keyring; otherwise, it must grant Search permission directly to the caller. 1093 * 1094 * Returns a pointer to the keyring with the keyring's refcount having being 1095 * incremented on success. -ENOKEY is returned if a key could not be found. 1096 */ 1097 struct key *find_keyring_by_name(const char *name, bool uid_keyring) 1098 { 1099 struct key *keyring; 1100 int bucket; 1101 1102 if (!name) 1103 return ERR_PTR(-EINVAL); 1104 1105 bucket = keyring_hash(name); 1106 1107 read_lock(&keyring_name_lock); 1108 1109 if (keyring_name_hash[bucket].next) { 1110 /* search this hash bucket for a keyring with a matching name 1111 * that's readable and that hasn't been revoked */ 1112 list_for_each_entry(keyring, 1113 &keyring_name_hash[bucket], 1114 name_link 1115 ) { 1116 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 1117 continue; 1118 1119 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1120 continue; 1121 1122 if (strcmp(keyring->description, name) != 0) 1123 continue; 1124 1125 if (uid_keyring) { 1126 if (!test_bit(KEY_FLAG_UID_KEYRING, 1127 &keyring->flags)) 1128 continue; 1129 } else { 1130 if (key_permission(make_key_ref(keyring, 0), 1131 KEY_NEED_SEARCH) < 0) 1132 continue; 1133 } 1134 1135 /* we've got a match but we might end up racing with 1136 * key_cleanup() if the keyring is currently 'dead' 1137 * (ie. it has a zero usage count) */ 1138 if (!refcount_inc_not_zero(&keyring->usage)) 1139 continue; 1140 keyring->last_used_at = ktime_get_real_seconds(); 1141 goto out; 1142 } 1143 } 1144 1145 keyring = ERR_PTR(-ENOKEY); 1146 out: 1147 read_unlock(&keyring_name_lock); 1148 return keyring; 1149 } 1150 1151 static int keyring_detect_cycle_iterator(const void *object, 1152 void *iterator_data) 1153 { 1154 struct keyring_search_context *ctx = iterator_data; 1155 const struct key *key = keyring_ptr_to_key(object); 1156 1157 kenter("{%d}", key->serial); 1158 1159 /* We might get a keyring with matching index-key that is nonetheless a 1160 * different keyring. */ 1161 if (key != ctx->match_data.raw_data) 1162 return 0; 1163 1164 ctx->result = ERR_PTR(-EDEADLK); 1165 return 1; 1166 } 1167 1168 /* 1169 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1170 * tree A at the topmost level (ie: as a direct child of A). 1171 * 1172 * Since we are adding B to A at the top level, checking for cycles should just 1173 * be a matter of seeing if node A is somewhere in tree B. 1174 */ 1175 static int keyring_detect_cycle(struct key *A, struct key *B) 1176 { 1177 struct keyring_search_context ctx = { 1178 .index_key = A->index_key, 1179 .match_data.raw_data = A, 1180 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1181 .iterator = keyring_detect_cycle_iterator, 1182 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1183 KEYRING_SEARCH_NO_UPDATE_TIME | 1184 KEYRING_SEARCH_NO_CHECK_PERM | 1185 KEYRING_SEARCH_DETECT_TOO_DEEP), 1186 }; 1187 1188 rcu_read_lock(); 1189 search_nested_keyrings(B, &ctx); 1190 rcu_read_unlock(); 1191 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1192 } 1193 1194 /* 1195 * Preallocate memory so that a key can be linked into to a keyring. 1196 */ 1197 int __key_link_begin(struct key *keyring, 1198 const struct keyring_index_key *index_key, 1199 struct assoc_array_edit **_edit) 1200 __acquires(&keyring->sem) 1201 __acquires(&keyring_serialise_link_sem) 1202 { 1203 struct assoc_array_edit *edit; 1204 int ret; 1205 1206 kenter("%d,%s,%s,", 1207 keyring->serial, index_key->type->name, index_key->description); 1208 1209 BUG_ON(index_key->desc_len == 0); 1210 1211 if (keyring->type != &key_type_keyring) 1212 return -ENOTDIR; 1213 1214 down_write(&keyring->sem); 1215 1216 ret = -EKEYREVOKED; 1217 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1218 goto error_krsem; 1219 1220 /* serialise link/link calls to prevent parallel calls causing a cycle 1221 * when linking two keyring in opposite orders */ 1222 if (index_key->type == &key_type_keyring) 1223 down_write(&keyring_serialise_link_sem); 1224 1225 /* Create an edit script that will insert/replace the key in the 1226 * keyring tree. 1227 */ 1228 edit = assoc_array_insert(&keyring->keys, 1229 &keyring_assoc_array_ops, 1230 index_key, 1231 NULL); 1232 if (IS_ERR(edit)) { 1233 ret = PTR_ERR(edit); 1234 goto error_sem; 1235 } 1236 1237 /* If we're not replacing a link in-place then we're going to need some 1238 * extra quota. 1239 */ 1240 if (!edit->dead_leaf) { 1241 ret = key_payload_reserve(keyring, 1242 keyring->datalen + KEYQUOTA_LINK_BYTES); 1243 if (ret < 0) 1244 goto error_cancel; 1245 } 1246 1247 *_edit = edit; 1248 kleave(" = 0"); 1249 return 0; 1250 1251 error_cancel: 1252 assoc_array_cancel_edit(edit); 1253 error_sem: 1254 if (index_key->type == &key_type_keyring) 1255 up_write(&keyring_serialise_link_sem); 1256 error_krsem: 1257 up_write(&keyring->sem); 1258 kleave(" = %d", ret); 1259 return ret; 1260 } 1261 1262 /* 1263 * Check already instantiated keys aren't going to be a problem. 1264 * 1265 * The caller must have called __key_link_begin(). Don't need to call this for 1266 * keys that were created since __key_link_begin() was called. 1267 */ 1268 int __key_link_check_live_key(struct key *keyring, struct key *key) 1269 { 1270 if (key->type == &key_type_keyring) 1271 /* check that we aren't going to create a cycle by linking one 1272 * keyring to another */ 1273 return keyring_detect_cycle(keyring, key); 1274 return 0; 1275 } 1276 1277 /* 1278 * Link a key into to a keyring. 1279 * 1280 * Must be called with __key_link_begin() having being called. Discards any 1281 * already extant link to matching key if there is one, so that each keyring 1282 * holds at most one link to any given key of a particular type+description 1283 * combination. 1284 */ 1285 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1286 { 1287 __key_get(key); 1288 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1289 assoc_array_apply_edit(*_edit); 1290 *_edit = NULL; 1291 } 1292 1293 /* 1294 * Finish linking a key into to a keyring. 1295 * 1296 * Must be called with __key_link_begin() having being called. 1297 */ 1298 void __key_link_end(struct key *keyring, 1299 const struct keyring_index_key *index_key, 1300 struct assoc_array_edit *edit) 1301 __releases(&keyring->sem) 1302 __releases(&keyring_serialise_link_sem) 1303 { 1304 BUG_ON(index_key->type == NULL); 1305 kenter("%d,%s,", keyring->serial, index_key->type->name); 1306 1307 if (index_key->type == &key_type_keyring) 1308 up_write(&keyring_serialise_link_sem); 1309 1310 if (edit) { 1311 if (!edit->dead_leaf) { 1312 key_payload_reserve(keyring, 1313 keyring->datalen - KEYQUOTA_LINK_BYTES); 1314 } 1315 assoc_array_cancel_edit(edit); 1316 } 1317 up_write(&keyring->sem); 1318 } 1319 1320 /* 1321 * Check addition of keys to restricted keyrings. 1322 */ 1323 static int __key_link_check_restriction(struct key *keyring, struct key *key) 1324 { 1325 if (!keyring->restrict_link || !keyring->restrict_link->check) 1326 return 0; 1327 return keyring->restrict_link->check(keyring, key->type, &key->payload, 1328 keyring->restrict_link->key); 1329 } 1330 1331 /** 1332 * key_link - Link a key to a keyring 1333 * @keyring: The keyring to make the link in. 1334 * @key: The key to link to. 1335 * 1336 * Make a link in a keyring to a key, such that the keyring holds a reference 1337 * on that key and the key can potentially be found by searching that keyring. 1338 * 1339 * This function will write-lock the keyring's semaphore and will consume some 1340 * of the user's key data quota to hold the link. 1341 * 1342 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1343 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1344 * full, -EDQUOT if there is insufficient key data quota remaining to add 1345 * another link or -ENOMEM if there's insufficient memory. 1346 * 1347 * It is assumed that the caller has checked that it is permitted for a link to 1348 * be made (the keyring should have Write permission and the key Link 1349 * permission). 1350 */ 1351 int key_link(struct key *keyring, struct key *key) 1352 { 1353 struct assoc_array_edit *edit; 1354 int ret; 1355 1356 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1357 1358 key_check(keyring); 1359 key_check(key); 1360 1361 ret = __key_link_begin(keyring, &key->index_key, &edit); 1362 if (ret == 0) { 1363 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1364 ret = __key_link_check_restriction(keyring, key); 1365 if (ret == 0) 1366 ret = __key_link_check_live_key(keyring, key); 1367 if (ret == 0) 1368 __key_link(key, &edit); 1369 __key_link_end(keyring, &key->index_key, edit); 1370 } 1371 1372 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); 1373 return ret; 1374 } 1375 EXPORT_SYMBOL(key_link); 1376 1377 /** 1378 * key_unlink - Unlink the first link to a key from a keyring. 1379 * @keyring: The keyring to remove the link from. 1380 * @key: The key the link is to. 1381 * 1382 * Remove a link from a keyring to a key. 1383 * 1384 * This function will write-lock the keyring's semaphore. 1385 * 1386 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1387 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1388 * memory. 1389 * 1390 * It is assumed that the caller has checked that it is permitted for a link to 1391 * be removed (the keyring should have Write permission; no permissions are 1392 * required on the key). 1393 */ 1394 int key_unlink(struct key *keyring, struct key *key) 1395 { 1396 struct assoc_array_edit *edit; 1397 int ret; 1398 1399 key_check(keyring); 1400 key_check(key); 1401 1402 if (keyring->type != &key_type_keyring) 1403 return -ENOTDIR; 1404 1405 down_write(&keyring->sem); 1406 1407 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1408 &key->index_key); 1409 if (IS_ERR(edit)) { 1410 ret = PTR_ERR(edit); 1411 goto error; 1412 } 1413 ret = -ENOENT; 1414 if (edit == NULL) 1415 goto error; 1416 1417 assoc_array_apply_edit(edit); 1418 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1419 ret = 0; 1420 1421 error: 1422 up_write(&keyring->sem); 1423 return ret; 1424 } 1425 EXPORT_SYMBOL(key_unlink); 1426 1427 /** 1428 * keyring_clear - Clear a keyring 1429 * @keyring: The keyring to clear. 1430 * 1431 * Clear the contents of the specified keyring. 1432 * 1433 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1434 */ 1435 int keyring_clear(struct key *keyring) 1436 { 1437 struct assoc_array_edit *edit; 1438 int ret; 1439 1440 if (keyring->type != &key_type_keyring) 1441 return -ENOTDIR; 1442 1443 down_write(&keyring->sem); 1444 1445 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1446 if (IS_ERR(edit)) { 1447 ret = PTR_ERR(edit); 1448 } else { 1449 if (edit) 1450 assoc_array_apply_edit(edit); 1451 key_payload_reserve(keyring, 0); 1452 ret = 0; 1453 } 1454 1455 up_write(&keyring->sem); 1456 return ret; 1457 } 1458 EXPORT_SYMBOL(keyring_clear); 1459 1460 /* 1461 * Dispose of the links from a revoked keyring. 1462 * 1463 * This is called with the key sem write-locked. 1464 */ 1465 static void keyring_revoke(struct key *keyring) 1466 { 1467 struct assoc_array_edit *edit; 1468 1469 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1470 if (!IS_ERR(edit)) { 1471 if (edit) 1472 assoc_array_apply_edit(edit); 1473 key_payload_reserve(keyring, 0); 1474 } 1475 } 1476 1477 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1478 { 1479 struct key *key = keyring_ptr_to_key(object); 1480 time64_t *limit = iterator_data; 1481 1482 if (key_is_dead(key, *limit)) 1483 return false; 1484 key_get(key); 1485 return true; 1486 } 1487 1488 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1489 { 1490 const struct key *key = keyring_ptr_to_key(object); 1491 time64_t *limit = iterator_data; 1492 1493 key_check(key); 1494 return key_is_dead(key, *limit); 1495 } 1496 1497 /* 1498 * Garbage collect pointers from a keyring. 1499 * 1500 * Not called with any locks held. The keyring's key struct will not be 1501 * deallocated under us as only our caller may deallocate it. 1502 */ 1503 void keyring_gc(struct key *keyring, time64_t limit) 1504 { 1505 int result; 1506 1507 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1508 1509 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1510 (1 << KEY_FLAG_REVOKED))) 1511 goto dont_gc; 1512 1513 /* scan the keyring looking for dead keys */ 1514 rcu_read_lock(); 1515 result = assoc_array_iterate(&keyring->keys, 1516 keyring_gc_check_iterator, &limit); 1517 rcu_read_unlock(); 1518 if (result == true) 1519 goto do_gc; 1520 1521 dont_gc: 1522 kleave(" [no gc]"); 1523 return; 1524 1525 do_gc: 1526 down_write(&keyring->sem); 1527 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1528 keyring_gc_select_iterator, &limit); 1529 up_write(&keyring->sem); 1530 kleave(" [gc]"); 1531 } 1532 1533 /* 1534 * Garbage collect restriction pointers from a keyring. 1535 * 1536 * Keyring restrictions are associated with a key type, and must be cleaned 1537 * up if the key type is unregistered. The restriction is altered to always 1538 * reject additional keys so a keyring cannot be opened up by unregistering 1539 * a key type. 1540 * 1541 * Not called with any keyring locks held. The keyring's key struct will not 1542 * be deallocated under us as only our caller may deallocate it. 1543 * 1544 * The caller is required to hold key_types_sem and dead_type->sem. This is 1545 * fulfilled by key_gc_keytype() holding the locks on behalf of 1546 * key_garbage_collector(), which it invokes on a workqueue. 1547 */ 1548 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) 1549 { 1550 struct key_restriction *keyres; 1551 1552 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1553 1554 /* 1555 * keyring->restrict_link is only assigned at key allocation time 1556 * or with the key type locked, so the only values that could be 1557 * concurrently assigned to keyring->restrict_link are for key 1558 * types other than dead_type. Given this, it's ok to check 1559 * the key type before acquiring keyring->sem. 1560 */ 1561 if (!dead_type || !keyring->restrict_link || 1562 keyring->restrict_link->keytype != dead_type) { 1563 kleave(" [no restriction gc]"); 1564 return; 1565 } 1566 1567 /* Lock the keyring to ensure that a link is not in progress */ 1568 down_write(&keyring->sem); 1569 1570 keyres = keyring->restrict_link; 1571 1572 keyres->check = restrict_link_reject; 1573 1574 key_put(keyres->key); 1575 keyres->key = NULL; 1576 keyres->keytype = NULL; 1577 1578 up_write(&keyring->sem); 1579 1580 kleave(" [restriction gc]"); 1581 } 1582