xref: /linux/security/keys/keyring.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 	default:
250 		offset += sizeof(chunk) - 1;
251 		offset += (level - 3) * sizeof(chunk);
252 		if (offset >= desc_len)
253 			return 0;
254 		desc_len -= offset;
255 		if (desc_len > n)
256 			desc_len = n;
257 		offset += desc_len;
258 		do {
259 			chunk <<= 8;
260 			chunk |= ((u8*)index_key->description)[--offset];
261 		} while (--desc_len > 0);
262 
263 		if (level == 2) {
264 			chunk <<= 8;
265 			chunk |= (u8)((unsigned long)index_key->type >>
266 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 		}
268 		return chunk;
269 	}
270 }
271 
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 	const struct key *key = keyring_ptr_to_key(object);
275 	return keyring_get_key_chunk(&key->index_key, level);
276 }
277 
278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 	const struct keyring_index_key *index_key = data;
281 	const struct key *key = keyring_ptr_to_key(object);
282 
283 	return key->index_key.type == index_key->type &&
284 		key->index_key.desc_len == index_key->desc_len &&
285 		memcmp(key->index_key.description, index_key->description,
286 		       index_key->desc_len) == 0;
287 }
288 
289 /*
290  * Compare the index keys of a pair of objects and determine the bit position
291  * at which they differ - if they differ.
292  */
293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 	const struct key *key_a = keyring_ptr_to_key(object);
296 	const struct keyring_index_key *a = &key_a->index_key;
297 	const struct keyring_index_key *b = data;
298 	unsigned long seg_a, seg_b;
299 	int level, i;
300 
301 	level = 0;
302 	seg_a = hash_key_type_and_desc(a);
303 	seg_b = hash_key_type_and_desc(b);
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The number of bits contributed by the hash is controlled by a
308 	 * constant in the assoc_array headers.  Everything else thereafter we
309 	 * can deal with as being machine word-size dependent.
310 	 */
311 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 	seg_a = a->desc_len;
313 	seg_b = b->desc_len;
314 	if ((seg_a ^ seg_b) != 0)
315 		goto differ;
316 
317 	/* The next bit may not work on big endian */
318 	level++;
319 	seg_a = (unsigned long)a->type;
320 	seg_b = (unsigned long)b->type;
321 	if ((seg_a ^ seg_b) != 0)
322 		goto differ;
323 
324 	level += sizeof(unsigned long);
325 	if (a->desc_len == 0)
326 		goto same;
327 
328 	i = 0;
329 	if (((unsigned long)a->description | (unsigned long)b->description) &
330 	    (sizeof(unsigned long) - 1)) {
331 		do {
332 			seg_a = *(unsigned long *)(a->description + i);
333 			seg_b = *(unsigned long *)(b->description + i);
334 			if ((seg_a ^ seg_b) != 0)
335 				goto differ_plus_i;
336 			i += sizeof(unsigned long);
337 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 	}
339 
340 	for (; i < a->desc_len; i++) {
341 		seg_a = *(unsigned char *)(a->description + i);
342 		seg_b = *(unsigned char *)(b->description + i);
343 		if ((seg_a ^ seg_b) != 0)
344 			goto differ_plus_i;
345 	}
346 
347 same:
348 	return -1;
349 
350 differ_plus_i:
351 	level += i;
352 differ:
353 	i = level * 8 + __ffs(seg_a ^ seg_b);
354 	return i;
355 }
356 
357 /*
358  * Free an object after stripping the keyring flag off of the pointer.
359  */
360 static void keyring_free_object(void *object)
361 {
362 	key_put(keyring_ptr_to_key(object));
363 }
364 
365 /*
366  * Operations for keyring management by the index-tree routines.
367  */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 	.get_key_chunk		= keyring_get_key_chunk,
370 	.get_object_key_chunk	= keyring_get_object_key_chunk,
371 	.compare_object		= keyring_compare_object,
372 	.diff_objects		= keyring_diff_objects,
373 	.free_object		= keyring_free_object,
374 };
375 
376 /*
377  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
378  * and dispose of its data.
379  *
380  * The garbage collector detects the final key_put(), removes the keyring from
381  * the serial number tree and then does RCU synchronisation before coming here,
382  * so we shouldn't need to worry about code poking around here with the RCU
383  * readlock held by this time.
384  */
385 static void keyring_destroy(struct key *keyring)
386 {
387 	if (keyring->description) {
388 		write_lock(&keyring_name_lock);
389 
390 		if (keyring->name_link.next != NULL &&
391 		    !list_empty(&keyring->name_link))
392 			list_del(&keyring->name_link);
393 
394 		write_unlock(&keyring_name_lock);
395 	}
396 
397 	if (keyring->restrict_link) {
398 		struct key_restriction *keyres = keyring->restrict_link;
399 
400 		key_put(keyres->key);
401 		kfree(keyres);
402 	}
403 
404 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405 }
406 
407 /*
408  * Describe a keyring for /proc.
409  */
410 static void keyring_describe(const struct key *keyring, struct seq_file *m)
411 {
412 	if (keyring->description)
413 		seq_puts(m, keyring->description);
414 	else
415 		seq_puts(m, "[anon]");
416 
417 	if (key_is_instantiated(keyring)) {
418 		if (keyring->keys.nr_leaves_on_tree != 0)
419 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 		else
421 			seq_puts(m, ": empty");
422 	}
423 }
424 
425 struct keyring_read_iterator_context {
426 	size_t			qty;
427 	size_t			count;
428 	key_serial_t __user	*buffer;
429 };
430 
431 static int keyring_read_iterator(const void *object, void *data)
432 {
433 	struct keyring_read_iterator_context *ctx = data;
434 	const struct key *key = keyring_ptr_to_key(object);
435 	int ret;
436 
437 	kenter("{%s,%d},,{%zu/%zu}",
438 	       key->type->name, key->serial, ctx->count, ctx->qty);
439 
440 	if (ctx->count >= ctx->qty)
441 		return 1;
442 
443 	ret = put_user(key->serial, ctx->buffer);
444 	if (ret < 0)
445 		return ret;
446 	ctx->buffer++;
447 	ctx->count += sizeof(key->serial);
448 	return 0;
449 }
450 
451 /*
452  * Read a list of key IDs from the keyring's contents in binary form
453  *
454  * The keyring's semaphore is read-locked by the caller.  This prevents someone
455  * from modifying it under us - which could cause us to read key IDs multiple
456  * times.
457  */
458 static long keyring_read(const struct key *keyring,
459 			 char __user *buffer, size_t buflen)
460 {
461 	struct keyring_read_iterator_context ctx;
462 	unsigned long nr_keys;
463 	int ret;
464 
465 	kenter("{%d},,%zu", key_serial(keyring), buflen);
466 
467 	if (buflen & (sizeof(key_serial_t) - 1))
468 		return -EINVAL;
469 
470 	nr_keys = keyring->keys.nr_leaves_on_tree;
471 	if (nr_keys == 0)
472 		return 0;
473 
474 	/* Calculate how much data we could return */
475 	ctx.qty = nr_keys * sizeof(key_serial_t);
476 
477 	if (!buffer || !buflen)
478 		return ctx.qty;
479 
480 	if (buflen > ctx.qty)
481 		ctx.qty = buflen;
482 
483 	/* Copy the IDs of the subscribed keys into the buffer */
484 	ctx.buffer = (key_serial_t __user *)buffer;
485 	ctx.count = 0;
486 	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
487 	if (ret < 0) {
488 		kleave(" = %d [iterate]", ret);
489 		return ret;
490 	}
491 
492 	kleave(" = %zu [ok]", ctx.count);
493 	return ctx.count;
494 }
495 
496 /*
497  * Allocate a keyring and link into the destination keyring.
498  */
499 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
500 			  const struct cred *cred, key_perm_t perm,
501 			  unsigned long flags,
502 			  struct key_restriction *restrict_link,
503 			  struct key *dest)
504 {
505 	struct key *keyring;
506 	int ret;
507 
508 	keyring = key_alloc(&key_type_keyring, description,
509 			    uid, gid, cred, perm, flags, restrict_link);
510 	if (!IS_ERR(keyring)) {
511 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
512 		if (ret < 0) {
513 			key_put(keyring);
514 			keyring = ERR_PTR(ret);
515 		}
516 	}
517 
518 	return keyring;
519 }
520 EXPORT_SYMBOL(keyring_alloc);
521 
522 /**
523  * restrict_link_reject - Give -EPERM to restrict link
524  * @keyring: The keyring being added to.
525  * @type: The type of key being added.
526  * @payload: The payload of the key intended to be added.
527  * @data: Additional data for evaluating restriction.
528  *
529  * Reject the addition of any links to a keyring.  It can be overridden by
530  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
531  * adding a key to a keyring.
532  *
533  * This is meant to be stored in a key_restriction structure which is passed
534  * in the restrict_link parameter to keyring_alloc().
535  */
536 int restrict_link_reject(struct key *keyring,
537 			 const struct key_type *type,
538 			 const union key_payload *payload,
539 			 struct key *restriction_key)
540 {
541 	return -EPERM;
542 }
543 
544 /*
545  * By default, we keys found by getting an exact match on their descriptions.
546  */
547 bool key_default_cmp(const struct key *key,
548 		     const struct key_match_data *match_data)
549 {
550 	return strcmp(key->description, match_data->raw_data) == 0;
551 }
552 
553 /*
554  * Iteration function to consider each key found.
555  */
556 static int keyring_search_iterator(const void *object, void *iterator_data)
557 {
558 	struct keyring_search_context *ctx = iterator_data;
559 	const struct key *key = keyring_ptr_to_key(object);
560 	unsigned long kflags = key->flags;
561 
562 	kenter("{%d}", key->serial);
563 
564 	/* ignore keys not of this type */
565 	if (key->type != ctx->index_key.type) {
566 		kleave(" = 0 [!type]");
567 		return 0;
568 	}
569 
570 	/* skip invalidated, revoked and expired keys */
571 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
572 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
573 			      (1 << KEY_FLAG_REVOKED))) {
574 			ctx->result = ERR_PTR(-EKEYREVOKED);
575 			kleave(" = %d [invrev]", ctx->skipped_ret);
576 			goto skipped;
577 		}
578 
579 		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
580 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
581 				ctx->result = ERR_PTR(-EKEYEXPIRED);
582 			kleave(" = %d [expire]", ctx->skipped_ret);
583 			goto skipped;
584 		}
585 	}
586 
587 	/* keys that don't match */
588 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
589 		kleave(" = 0 [!match]");
590 		return 0;
591 	}
592 
593 	/* key must have search permissions */
594 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
595 	    key_task_permission(make_key_ref(key, ctx->possessed),
596 				ctx->cred, KEY_NEED_SEARCH) < 0) {
597 		ctx->result = ERR_PTR(-EACCES);
598 		kleave(" = %d [!perm]", ctx->skipped_ret);
599 		goto skipped;
600 	}
601 
602 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
603 		/* we set a different error code if we pass a negative key */
604 		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
605 			smp_rmb();
606 			ctx->result = ERR_PTR(key->reject_error);
607 			kleave(" = %d [neg]", ctx->skipped_ret);
608 			goto skipped;
609 		}
610 	}
611 
612 	/* Found */
613 	ctx->result = make_key_ref(key, ctx->possessed);
614 	kleave(" = 1 [found]");
615 	return 1;
616 
617 skipped:
618 	return ctx->skipped_ret;
619 }
620 
621 /*
622  * Search inside a keyring for a key.  We can search by walking to it
623  * directly based on its index-key or we can iterate over the entire
624  * tree looking for it, based on the match function.
625  */
626 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
627 {
628 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
629 		const void *object;
630 
631 		object = assoc_array_find(&keyring->keys,
632 					  &keyring_assoc_array_ops,
633 					  &ctx->index_key);
634 		return object ? ctx->iterator(object, ctx) : 0;
635 	}
636 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
637 }
638 
639 /*
640  * Search a tree of keyrings that point to other keyrings up to the maximum
641  * depth.
642  */
643 static bool search_nested_keyrings(struct key *keyring,
644 				   struct keyring_search_context *ctx)
645 {
646 	struct {
647 		struct key *keyring;
648 		struct assoc_array_node *node;
649 		int slot;
650 	} stack[KEYRING_SEARCH_MAX_DEPTH];
651 
652 	struct assoc_array_shortcut *shortcut;
653 	struct assoc_array_node *node;
654 	struct assoc_array_ptr *ptr;
655 	struct key *key;
656 	int sp = 0, slot;
657 
658 	kenter("{%d},{%s,%s}",
659 	       keyring->serial,
660 	       ctx->index_key.type->name,
661 	       ctx->index_key.description);
662 
663 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
664 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
665 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
666 
667 	if (ctx->index_key.description)
668 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
669 
670 	/* Check to see if this top-level keyring is what we are looking for
671 	 * and whether it is valid or not.
672 	 */
673 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
674 	    keyring_compare_object(keyring, &ctx->index_key)) {
675 		ctx->skipped_ret = 2;
676 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
677 		case 1:
678 			goto found;
679 		case 2:
680 			return false;
681 		default:
682 			break;
683 		}
684 	}
685 
686 	ctx->skipped_ret = 0;
687 
688 	/* Start processing a new keyring */
689 descend_to_keyring:
690 	kdebug("descend to %d", keyring->serial);
691 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
692 			      (1 << KEY_FLAG_REVOKED)))
693 		goto not_this_keyring;
694 
695 	/* Search through the keys in this keyring before its searching its
696 	 * subtrees.
697 	 */
698 	if (search_keyring(keyring, ctx))
699 		goto found;
700 
701 	/* Then manually iterate through the keyrings nested in this one.
702 	 *
703 	 * Start from the root node of the index tree.  Because of the way the
704 	 * hash function has been set up, keyrings cluster on the leftmost
705 	 * branch of the root node (root slot 0) or in the root node itself.
706 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
707 	 * slots 1-15).
708 	 */
709 	ptr = ACCESS_ONCE(keyring->keys.root);
710 	if (!ptr)
711 		goto not_this_keyring;
712 
713 	if (assoc_array_ptr_is_shortcut(ptr)) {
714 		/* If the root is a shortcut, either the keyring only contains
715 		 * keyring pointers (everything clusters behind root slot 0) or
716 		 * doesn't contain any keyring pointers.
717 		 */
718 		shortcut = assoc_array_ptr_to_shortcut(ptr);
719 		smp_read_barrier_depends();
720 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
721 			goto not_this_keyring;
722 
723 		ptr = ACCESS_ONCE(shortcut->next_node);
724 		node = assoc_array_ptr_to_node(ptr);
725 		goto begin_node;
726 	}
727 
728 	node = assoc_array_ptr_to_node(ptr);
729 	smp_read_barrier_depends();
730 
731 	ptr = node->slots[0];
732 	if (!assoc_array_ptr_is_meta(ptr))
733 		goto begin_node;
734 
735 descend_to_node:
736 	/* Descend to a more distal node in this keyring's content tree and go
737 	 * through that.
738 	 */
739 	kdebug("descend");
740 	if (assoc_array_ptr_is_shortcut(ptr)) {
741 		shortcut = assoc_array_ptr_to_shortcut(ptr);
742 		smp_read_barrier_depends();
743 		ptr = ACCESS_ONCE(shortcut->next_node);
744 		BUG_ON(!assoc_array_ptr_is_node(ptr));
745 	}
746 	node = assoc_array_ptr_to_node(ptr);
747 
748 begin_node:
749 	kdebug("begin_node");
750 	smp_read_barrier_depends();
751 	slot = 0;
752 ascend_to_node:
753 	/* Go through the slots in a node */
754 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
755 		ptr = ACCESS_ONCE(node->slots[slot]);
756 
757 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
758 			goto descend_to_node;
759 
760 		if (!keyring_ptr_is_keyring(ptr))
761 			continue;
762 
763 		key = keyring_ptr_to_key(ptr);
764 
765 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
766 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
767 				ctx->result = ERR_PTR(-ELOOP);
768 				return false;
769 			}
770 			goto not_this_keyring;
771 		}
772 
773 		/* Search a nested keyring */
774 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
775 		    key_task_permission(make_key_ref(key, ctx->possessed),
776 					ctx->cred, KEY_NEED_SEARCH) < 0)
777 			continue;
778 
779 		/* stack the current position */
780 		stack[sp].keyring = keyring;
781 		stack[sp].node = node;
782 		stack[sp].slot = slot;
783 		sp++;
784 
785 		/* begin again with the new keyring */
786 		keyring = key;
787 		goto descend_to_keyring;
788 	}
789 
790 	/* We've dealt with all the slots in the current node, so now we need
791 	 * to ascend to the parent and continue processing there.
792 	 */
793 	ptr = ACCESS_ONCE(node->back_pointer);
794 	slot = node->parent_slot;
795 
796 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
797 		shortcut = assoc_array_ptr_to_shortcut(ptr);
798 		smp_read_barrier_depends();
799 		ptr = ACCESS_ONCE(shortcut->back_pointer);
800 		slot = shortcut->parent_slot;
801 	}
802 	if (!ptr)
803 		goto not_this_keyring;
804 	node = assoc_array_ptr_to_node(ptr);
805 	smp_read_barrier_depends();
806 	slot++;
807 
808 	/* If we've ascended to the root (zero backpointer), we must have just
809 	 * finished processing the leftmost branch rather than the root slots -
810 	 * so there can't be any more keyrings for us to find.
811 	 */
812 	if (node->back_pointer) {
813 		kdebug("ascend %d", slot);
814 		goto ascend_to_node;
815 	}
816 
817 	/* The keyring we're looking at was disqualified or didn't contain a
818 	 * matching key.
819 	 */
820 not_this_keyring:
821 	kdebug("not_this_keyring %d", sp);
822 	if (sp <= 0) {
823 		kleave(" = false");
824 		return false;
825 	}
826 
827 	/* Resume the processing of a keyring higher up in the tree */
828 	sp--;
829 	keyring = stack[sp].keyring;
830 	node = stack[sp].node;
831 	slot = stack[sp].slot + 1;
832 	kdebug("ascend to %d [%d]", keyring->serial, slot);
833 	goto ascend_to_node;
834 
835 	/* We found a viable match */
836 found:
837 	key = key_ref_to_ptr(ctx->result);
838 	key_check(key);
839 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
840 		key->last_used_at = ctx->now.tv_sec;
841 		keyring->last_used_at = ctx->now.tv_sec;
842 		while (sp > 0)
843 			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
844 	}
845 	kleave(" = true");
846 	return true;
847 }
848 
849 /**
850  * keyring_search_aux - Search a keyring tree for a key matching some criteria
851  * @keyring_ref: A pointer to the keyring with possession indicator.
852  * @ctx: The keyring search context.
853  *
854  * Search the supplied keyring tree for a key that matches the criteria given.
855  * The root keyring and any linked keyrings must grant Search permission to the
856  * caller to be searchable and keys can only be found if they too grant Search
857  * to the caller. The possession flag on the root keyring pointer controls use
858  * of the possessor bits in permissions checking of the entire tree.  In
859  * addition, the LSM gets to forbid keyring searches and key matches.
860  *
861  * The search is performed as a breadth-then-depth search up to the prescribed
862  * limit (KEYRING_SEARCH_MAX_DEPTH).
863  *
864  * Keys are matched to the type provided and are then filtered by the match
865  * function, which is given the description to use in any way it sees fit.  The
866  * match function may use any attributes of a key that it wishes to to
867  * determine the match.  Normally the match function from the key type would be
868  * used.
869  *
870  * RCU can be used to prevent the keyring key lists from disappearing without
871  * the need to take lots of locks.
872  *
873  * Returns a pointer to the found key and increments the key usage count if
874  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
875  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
876  * specified keyring wasn't a keyring.
877  *
878  * In the case of a successful return, the possession attribute from
879  * @keyring_ref is propagated to the returned key reference.
880  */
881 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
882 			     struct keyring_search_context *ctx)
883 {
884 	struct key *keyring;
885 	long err;
886 
887 	ctx->iterator = keyring_search_iterator;
888 	ctx->possessed = is_key_possessed(keyring_ref);
889 	ctx->result = ERR_PTR(-EAGAIN);
890 
891 	keyring = key_ref_to_ptr(keyring_ref);
892 	key_check(keyring);
893 
894 	if (keyring->type != &key_type_keyring)
895 		return ERR_PTR(-ENOTDIR);
896 
897 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
898 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
899 		if (err < 0)
900 			return ERR_PTR(err);
901 	}
902 
903 	rcu_read_lock();
904 	ctx->now = current_kernel_time();
905 	if (search_nested_keyrings(keyring, ctx))
906 		__key_get(key_ref_to_ptr(ctx->result));
907 	rcu_read_unlock();
908 	return ctx->result;
909 }
910 
911 /**
912  * keyring_search - Search the supplied keyring tree for a matching key
913  * @keyring: The root of the keyring tree to be searched.
914  * @type: The type of keyring we want to find.
915  * @description: The name of the keyring we want to find.
916  *
917  * As keyring_search_aux() above, but using the current task's credentials and
918  * type's default matching function and preferred search method.
919  */
920 key_ref_t keyring_search(key_ref_t keyring,
921 			 struct key_type *type,
922 			 const char *description)
923 {
924 	struct keyring_search_context ctx = {
925 		.index_key.type		= type,
926 		.index_key.description	= description,
927 		.cred			= current_cred(),
928 		.match_data.cmp		= key_default_cmp,
929 		.match_data.raw_data	= description,
930 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
931 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
932 	};
933 	key_ref_t key;
934 	int ret;
935 
936 	if (type->match_preparse) {
937 		ret = type->match_preparse(&ctx.match_data);
938 		if (ret < 0)
939 			return ERR_PTR(ret);
940 	}
941 
942 	key = keyring_search_aux(keyring, &ctx);
943 
944 	if (type->match_free)
945 		type->match_free(&ctx.match_data);
946 	return key;
947 }
948 EXPORT_SYMBOL(keyring_search);
949 
950 static struct key_restriction *keyring_restriction_alloc(
951 	key_restrict_link_func_t check)
952 {
953 	struct key_restriction *keyres =
954 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
955 
956 	if (!keyres)
957 		return ERR_PTR(-ENOMEM);
958 
959 	keyres->check = check;
960 
961 	return keyres;
962 }
963 
964 /*
965  * Semaphore to serialise restriction setup to prevent reference count
966  * cycles through restriction key pointers.
967  */
968 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
969 
970 /*
971  * Check for restriction cycles that would prevent keyring garbage collection.
972  * keyring_serialise_restrict_sem must be held.
973  */
974 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
975 					     struct key_restriction *keyres)
976 {
977 	while (keyres && keyres->key &&
978 	       keyres->key->type == &key_type_keyring) {
979 		if (keyres->key == dest_keyring)
980 			return true;
981 
982 		keyres = keyres->key->restrict_link;
983 	}
984 
985 	return false;
986 }
987 
988 /**
989  * keyring_restrict - Look up and apply a restriction to a keyring
990  *
991  * @keyring: The keyring to be restricted
992  * @restriction: The restriction options to apply to the keyring
993  */
994 int keyring_restrict(key_ref_t keyring_ref, const char *type,
995 		     const char *restriction)
996 {
997 	struct key *keyring;
998 	struct key_type *restrict_type = NULL;
999 	struct key_restriction *restrict_link;
1000 	int ret = 0;
1001 
1002 	keyring = key_ref_to_ptr(keyring_ref);
1003 	key_check(keyring);
1004 
1005 	if (keyring->type != &key_type_keyring)
1006 		return -ENOTDIR;
1007 
1008 	if (!type) {
1009 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1010 	} else {
1011 		restrict_type = key_type_lookup(type);
1012 
1013 		if (IS_ERR(restrict_type))
1014 			return PTR_ERR(restrict_type);
1015 
1016 		if (!restrict_type->lookup_restriction) {
1017 			ret = -ENOENT;
1018 			goto error;
1019 		}
1020 
1021 		restrict_link = restrict_type->lookup_restriction(restriction);
1022 	}
1023 
1024 	if (IS_ERR(restrict_link)) {
1025 		ret = PTR_ERR(restrict_link);
1026 		goto error;
1027 	}
1028 
1029 	down_write(&keyring->sem);
1030 	down_write(&keyring_serialise_restrict_sem);
1031 
1032 	if (keyring->restrict_link)
1033 		ret = -EEXIST;
1034 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1035 		ret = -EDEADLK;
1036 	else
1037 		keyring->restrict_link = restrict_link;
1038 
1039 	up_write(&keyring_serialise_restrict_sem);
1040 	up_write(&keyring->sem);
1041 
1042 	if (ret < 0) {
1043 		key_put(restrict_link->key);
1044 		kfree(restrict_link);
1045 	}
1046 
1047 error:
1048 	if (restrict_type)
1049 		key_type_put(restrict_type);
1050 
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL(keyring_restrict);
1054 
1055 /*
1056  * Search the given keyring for a key that might be updated.
1057  *
1058  * The caller must guarantee that the keyring is a keyring and that the
1059  * permission is granted to modify the keyring as no check is made here.  The
1060  * caller must also hold a lock on the keyring semaphore.
1061  *
1062  * Returns a pointer to the found key with usage count incremented if
1063  * successful and returns NULL if not found.  Revoked and invalidated keys are
1064  * skipped over.
1065  *
1066  * If successful, the possession indicator is propagated from the keyring ref
1067  * to the returned key reference.
1068  */
1069 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1070 			     const struct keyring_index_key *index_key)
1071 {
1072 	struct key *keyring, *key;
1073 	const void *object;
1074 
1075 	keyring = key_ref_to_ptr(keyring_ref);
1076 
1077 	kenter("{%d},{%s,%s}",
1078 	       keyring->serial, index_key->type->name, index_key->description);
1079 
1080 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1081 				  index_key);
1082 
1083 	if (object)
1084 		goto found;
1085 
1086 	kleave(" = NULL");
1087 	return NULL;
1088 
1089 found:
1090 	key = keyring_ptr_to_key(object);
1091 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1092 			  (1 << KEY_FLAG_REVOKED))) {
1093 		kleave(" = NULL [x]");
1094 		return NULL;
1095 	}
1096 	__key_get(key);
1097 	kleave(" = {%d}", key->serial);
1098 	return make_key_ref(key, is_key_possessed(keyring_ref));
1099 }
1100 
1101 /*
1102  * Find a keyring with the specified name.
1103  *
1104  * All named keyrings in the current user namespace are searched, provided they
1105  * grant Search permission directly to the caller (unless this check is
1106  * skipped).  Keyrings whose usage points have reached zero or who have been
1107  * revoked are skipped.
1108  *
1109  * Returns a pointer to the keyring with the keyring's refcount having being
1110  * incremented on success.  -ENOKEY is returned if a key could not be found.
1111  */
1112 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
1113 {
1114 	struct key *keyring;
1115 	int bucket;
1116 
1117 	if (!name)
1118 		return ERR_PTR(-EINVAL);
1119 
1120 	bucket = keyring_hash(name);
1121 
1122 	read_lock(&keyring_name_lock);
1123 
1124 	if (keyring_name_hash[bucket].next) {
1125 		/* search this hash bucket for a keyring with a matching name
1126 		 * that's readable and that hasn't been revoked */
1127 		list_for_each_entry(keyring,
1128 				    &keyring_name_hash[bucket],
1129 				    name_link
1130 				    ) {
1131 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1132 				continue;
1133 
1134 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1135 				continue;
1136 
1137 			if (strcmp(keyring->description, name) != 0)
1138 				continue;
1139 
1140 			if (!skip_perm_check &&
1141 			    key_permission(make_key_ref(keyring, 0),
1142 					   KEY_NEED_SEARCH) < 0)
1143 				continue;
1144 
1145 			/* we've got a match but we might end up racing with
1146 			 * key_cleanup() if the keyring is currently 'dead'
1147 			 * (ie. it has a zero usage count) */
1148 			if (!refcount_inc_not_zero(&keyring->usage))
1149 				continue;
1150 			keyring->last_used_at = current_kernel_time().tv_sec;
1151 			goto out;
1152 		}
1153 	}
1154 
1155 	keyring = ERR_PTR(-ENOKEY);
1156 out:
1157 	read_unlock(&keyring_name_lock);
1158 	return keyring;
1159 }
1160 
1161 static int keyring_detect_cycle_iterator(const void *object,
1162 					 void *iterator_data)
1163 {
1164 	struct keyring_search_context *ctx = iterator_data;
1165 	const struct key *key = keyring_ptr_to_key(object);
1166 
1167 	kenter("{%d}", key->serial);
1168 
1169 	/* We might get a keyring with matching index-key that is nonetheless a
1170 	 * different keyring. */
1171 	if (key != ctx->match_data.raw_data)
1172 		return 0;
1173 
1174 	ctx->result = ERR_PTR(-EDEADLK);
1175 	return 1;
1176 }
1177 
1178 /*
1179  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1180  * tree A at the topmost level (ie: as a direct child of A).
1181  *
1182  * Since we are adding B to A at the top level, checking for cycles should just
1183  * be a matter of seeing if node A is somewhere in tree B.
1184  */
1185 static int keyring_detect_cycle(struct key *A, struct key *B)
1186 {
1187 	struct keyring_search_context ctx = {
1188 		.index_key		= A->index_key,
1189 		.match_data.raw_data	= A,
1190 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1191 		.iterator		= keyring_detect_cycle_iterator,
1192 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1193 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1194 					   KEYRING_SEARCH_NO_CHECK_PERM |
1195 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1196 	};
1197 
1198 	rcu_read_lock();
1199 	search_nested_keyrings(B, &ctx);
1200 	rcu_read_unlock();
1201 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1202 }
1203 
1204 /*
1205  * Preallocate memory so that a key can be linked into to a keyring.
1206  */
1207 int __key_link_begin(struct key *keyring,
1208 		     const struct keyring_index_key *index_key,
1209 		     struct assoc_array_edit **_edit)
1210 	__acquires(&keyring->sem)
1211 	__acquires(&keyring_serialise_link_sem)
1212 {
1213 	struct assoc_array_edit *edit;
1214 	int ret;
1215 
1216 	kenter("%d,%s,%s,",
1217 	       keyring->serial, index_key->type->name, index_key->description);
1218 
1219 	BUG_ON(index_key->desc_len == 0);
1220 
1221 	if (keyring->type != &key_type_keyring)
1222 		return -ENOTDIR;
1223 
1224 	down_write(&keyring->sem);
1225 
1226 	ret = -EKEYREVOKED;
1227 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1228 		goto error_krsem;
1229 
1230 	/* serialise link/link calls to prevent parallel calls causing a cycle
1231 	 * when linking two keyring in opposite orders */
1232 	if (index_key->type == &key_type_keyring)
1233 		down_write(&keyring_serialise_link_sem);
1234 
1235 	/* Create an edit script that will insert/replace the key in the
1236 	 * keyring tree.
1237 	 */
1238 	edit = assoc_array_insert(&keyring->keys,
1239 				  &keyring_assoc_array_ops,
1240 				  index_key,
1241 				  NULL);
1242 	if (IS_ERR(edit)) {
1243 		ret = PTR_ERR(edit);
1244 		goto error_sem;
1245 	}
1246 
1247 	/* If we're not replacing a link in-place then we're going to need some
1248 	 * extra quota.
1249 	 */
1250 	if (!edit->dead_leaf) {
1251 		ret = key_payload_reserve(keyring,
1252 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1253 		if (ret < 0)
1254 			goto error_cancel;
1255 	}
1256 
1257 	*_edit = edit;
1258 	kleave(" = 0");
1259 	return 0;
1260 
1261 error_cancel:
1262 	assoc_array_cancel_edit(edit);
1263 error_sem:
1264 	if (index_key->type == &key_type_keyring)
1265 		up_write(&keyring_serialise_link_sem);
1266 error_krsem:
1267 	up_write(&keyring->sem);
1268 	kleave(" = %d", ret);
1269 	return ret;
1270 }
1271 
1272 /*
1273  * Check already instantiated keys aren't going to be a problem.
1274  *
1275  * The caller must have called __key_link_begin(). Don't need to call this for
1276  * keys that were created since __key_link_begin() was called.
1277  */
1278 int __key_link_check_live_key(struct key *keyring, struct key *key)
1279 {
1280 	if (key->type == &key_type_keyring)
1281 		/* check that we aren't going to create a cycle by linking one
1282 		 * keyring to another */
1283 		return keyring_detect_cycle(keyring, key);
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Link a key into to a keyring.
1289  *
1290  * Must be called with __key_link_begin() having being called.  Discards any
1291  * already extant link to matching key if there is one, so that each keyring
1292  * holds at most one link to any given key of a particular type+description
1293  * combination.
1294  */
1295 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1296 {
1297 	__key_get(key);
1298 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1299 	assoc_array_apply_edit(*_edit);
1300 	*_edit = NULL;
1301 }
1302 
1303 /*
1304  * Finish linking a key into to a keyring.
1305  *
1306  * Must be called with __key_link_begin() having being called.
1307  */
1308 void __key_link_end(struct key *keyring,
1309 		    const struct keyring_index_key *index_key,
1310 		    struct assoc_array_edit *edit)
1311 	__releases(&keyring->sem)
1312 	__releases(&keyring_serialise_link_sem)
1313 {
1314 	BUG_ON(index_key->type == NULL);
1315 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1316 
1317 	if (index_key->type == &key_type_keyring)
1318 		up_write(&keyring_serialise_link_sem);
1319 
1320 	if (edit) {
1321 		if (!edit->dead_leaf) {
1322 			key_payload_reserve(keyring,
1323 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1324 		}
1325 		assoc_array_cancel_edit(edit);
1326 	}
1327 	up_write(&keyring->sem);
1328 }
1329 
1330 /*
1331  * Check addition of keys to restricted keyrings.
1332  */
1333 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1334 {
1335 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1336 		return 0;
1337 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1338 					     keyring->restrict_link->key);
1339 }
1340 
1341 /**
1342  * key_link - Link a key to a keyring
1343  * @keyring: The keyring to make the link in.
1344  * @key: The key to link to.
1345  *
1346  * Make a link in a keyring to a key, such that the keyring holds a reference
1347  * on that key and the key can potentially be found by searching that keyring.
1348  *
1349  * This function will write-lock the keyring's semaphore and will consume some
1350  * of the user's key data quota to hold the link.
1351  *
1352  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1353  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1354  * full, -EDQUOT if there is insufficient key data quota remaining to add
1355  * another link or -ENOMEM if there's insufficient memory.
1356  *
1357  * It is assumed that the caller has checked that it is permitted for a link to
1358  * be made (the keyring should have Write permission and the key Link
1359  * permission).
1360  */
1361 int key_link(struct key *keyring, struct key *key)
1362 {
1363 	struct assoc_array_edit *edit;
1364 	int ret;
1365 
1366 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1367 
1368 	key_check(keyring);
1369 	key_check(key);
1370 
1371 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1372 	if (ret == 0) {
1373 		kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1374 		ret = __key_link_check_restriction(keyring, key);
1375 		if (ret == 0)
1376 			ret = __key_link_check_live_key(keyring, key);
1377 		if (ret == 0)
1378 			__key_link(key, &edit);
1379 		__key_link_end(keyring, &key->index_key, edit);
1380 	}
1381 
1382 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL(key_link);
1386 
1387 /**
1388  * key_unlink - Unlink the first link to a key from a keyring.
1389  * @keyring: The keyring to remove the link from.
1390  * @key: The key the link is to.
1391  *
1392  * Remove a link from a keyring to a key.
1393  *
1394  * This function will write-lock the keyring's semaphore.
1395  *
1396  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1397  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1398  * memory.
1399  *
1400  * It is assumed that the caller has checked that it is permitted for a link to
1401  * be removed (the keyring should have Write permission; no permissions are
1402  * required on the key).
1403  */
1404 int key_unlink(struct key *keyring, struct key *key)
1405 {
1406 	struct assoc_array_edit *edit;
1407 	int ret;
1408 
1409 	key_check(keyring);
1410 	key_check(key);
1411 
1412 	if (keyring->type != &key_type_keyring)
1413 		return -ENOTDIR;
1414 
1415 	down_write(&keyring->sem);
1416 
1417 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1418 				  &key->index_key);
1419 	if (IS_ERR(edit)) {
1420 		ret = PTR_ERR(edit);
1421 		goto error;
1422 	}
1423 	ret = -ENOENT;
1424 	if (edit == NULL)
1425 		goto error;
1426 
1427 	assoc_array_apply_edit(edit);
1428 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1429 	ret = 0;
1430 
1431 error:
1432 	up_write(&keyring->sem);
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL(key_unlink);
1436 
1437 /**
1438  * keyring_clear - Clear a keyring
1439  * @keyring: The keyring to clear.
1440  *
1441  * Clear the contents of the specified keyring.
1442  *
1443  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1444  */
1445 int keyring_clear(struct key *keyring)
1446 {
1447 	struct assoc_array_edit *edit;
1448 	int ret;
1449 
1450 	if (keyring->type != &key_type_keyring)
1451 		return -ENOTDIR;
1452 
1453 	down_write(&keyring->sem);
1454 
1455 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1456 	if (IS_ERR(edit)) {
1457 		ret = PTR_ERR(edit);
1458 	} else {
1459 		if (edit)
1460 			assoc_array_apply_edit(edit);
1461 		key_payload_reserve(keyring, 0);
1462 		ret = 0;
1463 	}
1464 
1465 	up_write(&keyring->sem);
1466 	return ret;
1467 }
1468 EXPORT_SYMBOL(keyring_clear);
1469 
1470 /*
1471  * Dispose of the links from a revoked keyring.
1472  *
1473  * This is called with the key sem write-locked.
1474  */
1475 static void keyring_revoke(struct key *keyring)
1476 {
1477 	struct assoc_array_edit *edit;
1478 
1479 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1480 	if (!IS_ERR(edit)) {
1481 		if (edit)
1482 			assoc_array_apply_edit(edit);
1483 		key_payload_reserve(keyring, 0);
1484 	}
1485 }
1486 
1487 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1488 {
1489 	struct key *key = keyring_ptr_to_key(object);
1490 	time_t *limit = iterator_data;
1491 
1492 	if (key_is_dead(key, *limit))
1493 		return false;
1494 	key_get(key);
1495 	return true;
1496 }
1497 
1498 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1499 {
1500 	const struct key *key = keyring_ptr_to_key(object);
1501 	time_t *limit = iterator_data;
1502 
1503 	key_check(key);
1504 	return key_is_dead(key, *limit);
1505 }
1506 
1507 /*
1508  * Garbage collect pointers from a keyring.
1509  *
1510  * Not called with any locks held.  The keyring's key struct will not be
1511  * deallocated under us as only our caller may deallocate it.
1512  */
1513 void keyring_gc(struct key *keyring, time_t limit)
1514 {
1515 	int result;
1516 
1517 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1518 
1519 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1520 			      (1 << KEY_FLAG_REVOKED)))
1521 		goto dont_gc;
1522 
1523 	/* scan the keyring looking for dead keys */
1524 	rcu_read_lock();
1525 	result = assoc_array_iterate(&keyring->keys,
1526 				     keyring_gc_check_iterator, &limit);
1527 	rcu_read_unlock();
1528 	if (result == true)
1529 		goto do_gc;
1530 
1531 dont_gc:
1532 	kleave(" [no gc]");
1533 	return;
1534 
1535 do_gc:
1536 	down_write(&keyring->sem);
1537 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1538 		       keyring_gc_select_iterator, &limit);
1539 	up_write(&keyring->sem);
1540 	kleave(" [gc]");
1541 }
1542 
1543 /*
1544  * Garbage collect restriction pointers from a keyring.
1545  *
1546  * Keyring restrictions are associated with a key type, and must be cleaned
1547  * up if the key type is unregistered. The restriction is altered to always
1548  * reject additional keys so a keyring cannot be opened up by unregistering
1549  * a key type.
1550  *
1551  * Not called with any keyring locks held. The keyring's key struct will not
1552  * be deallocated under us as only our caller may deallocate it.
1553  *
1554  * The caller is required to hold key_types_sem and dead_type->sem. This is
1555  * fulfilled by key_gc_keytype() holding the locks on behalf of
1556  * key_garbage_collector(), which it invokes on a workqueue.
1557  */
1558 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1559 {
1560 	struct key_restriction *keyres;
1561 
1562 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1563 
1564 	/*
1565 	 * keyring->restrict_link is only assigned at key allocation time
1566 	 * or with the key type locked, so the only values that could be
1567 	 * concurrently assigned to keyring->restrict_link are for key
1568 	 * types other than dead_type. Given this, it's ok to check
1569 	 * the key type before acquiring keyring->sem.
1570 	 */
1571 	if (!dead_type || !keyring->restrict_link ||
1572 	    keyring->restrict_link->keytype != dead_type) {
1573 		kleave(" [no restriction gc]");
1574 		return;
1575 	}
1576 
1577 	/* Lock the keyring to ensure that a link is not in progress */
1578 	down_write(&keyring->sem);
1579 
1580 	keyres = keyring->restrict_link;
1581 
1582 	keyres->check = restrict_link_reject;
1583 
1584 	key_put(keyres->key);
1585 	keyres->key = NULL;
1586 	keyres->keytype = NULL;
1587 
1588 	up_write(&keyring->sem);
1589 
1590 	kleave(" [restriction gc]");
1591 }
1592