1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <keys/user-type.h> 21 #include <linux/assoc_array_priv.h> 22 #include <linux/uaccess.h> 23 #include "internal.h" 24 25 /* 26 * When plumbing the depths of the key tree, this sets a hard limit 27 * set on how deep we're willing to go. 28 */ 29 #define KEYRING_SEARCH_MAX_DEPTH 6 30 31 /* 32 * We keep all named keyrings in a hash to speed looking them up. 33 */ 34 #define KEYRING_NAME_HASH_SIZE (1 << 5) 35 36 /* 37 * We mark pointers we pass to the associative array with bit 1 set if 38 * they're keyrings and clear otherwise. 39 */ 40 #define KEYRING_PTR_SUBTYPE 0x2UL 41 42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 43 { 44 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 45 } 46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 47 { 48 void *object = assoc_array_ptr_to_leaf(x); 49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 50 } 51 static inline void *keyring_key_to_ptr(struct key *key) 52 { 53 if (key->type == &key_type_keyring) 54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 55 return key; 56 } 57 58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 59 static DEFINE_RWLOCK(keyring_name_lock); 60 61 static inline unsigned keyring_hash(const char *desc) 62 { 63 unsigned bucket = 0; 64 65 for (; *desc; desc++) 66 bucket += (unsigned char)*desc; 67 68 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 69 } 70 71 /* 72 * The keyring key type definition. Keyrings are simply keys of this type and 73 * can be treated as ordinary keys in addition to having their own special 74 * operations. 75 */ 76 static int keyring_instantiate(struct key *keyring, 77 struct key_preparsed_payload *prep); 78 static void keyring_revoke(struct key *keyring); 79 static void keyring_destroy(struct key *keyring); 80 static void keyring_describe(const struct key *keyring, struct seq_file *m); 81 static long keyring_read(const struct key *keyring, 82 char __user *buffer, size_t buflen); 83 84 struct key_type key_type_keyring = { 85 .name = "keyring", 86 .def_datalen = 0, 87 .instantiate = keyring_instantiate, 88 .match = user_match, 89 .revoke = keyring_revoke, 90 .destroy = keyring_destroy, 91 .describe = keyring_describe, 92 .read = keyring_read, 93 }; 94 EXPORT_SYMBOL(key_type_keyring); 95 96 /* 97 * Semaphore to serialise link/link calls to prevent two link calls in parallel 98 * introducing a cycle. 99 */ 100 static DECLARE_RWSEM(keyring_serialise_link_sem); 101 102 /* 103 * Publish the name of a keyring so that it can be found by name (if it has 104 * one). 105 */ 106 static void keyring_publish_name(struct key *keyring) 107 { 108 int bucket; 109 110 if (keyring->description) { 111 bucket = keyring_hash(keyring->description); 112 113 write_lock(&keyring_name_lock); 114 115 if (!keyring_name_hash[bucket].next) 116 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 117 118 list_add_tail(&keyring->type_data.link, 119 &keyring_name_hash[bucket]); 120 121 write_unlock(&keyring_name_lock); 122 } 123 } 124 125 /* 126 * Initialise a keyring. 127 * 128 * Returns 0 on success, -EINVAL if given any data. 129 */ 130 static int keyring_instantiate(struct key *keyring, 131 struct key_preparsed_payload *prep) 132 { 133 int ret; 134 135 ret = -EINVAL; 136 if (prep->datalen == 0) { 137 assoc_array_init(&keyring->keys); 138 /* make the keyring available by name if it has one */ 139 keyring_publish_name(keyring); 140 ret = 0; 141 } 142 143 return ret; 144 } 145 146 /* 147 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 148 * fold the carry back too, but that requires inline asm. 149 */ 150 static u64 mult_64x32_and_fold(u64 x, u32 y) 151 { 152 u64 hi = (u64)(u32)(x >> 32) * y; 153 u64 lo = (u64)(u32)(x) * y; 154 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 155 } 156 157 /* 158 * Hash a key type and description. 159 */ 160 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 161 { 162 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 163 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 164 const char *description = index_key->description; 165 unsigned long hash, type; 166 u32 piece; 167 u64 acc; 168 int n, desc_len = index_key->desc_len; 169 170 type = (unsigned long)index_key->type; 171 172 acc = mult_64x32_and_fold(type, desc_len + 13); 173 acc = mult_64x32_and_fold(acc, 9207); 174 for (;;) { 175 n = desc_len; 176 if (n <= 0) 177 break; 178 if (n > 4) 179 n = 4; 180 piece = 0; 181 memcpy(&piece, description, n); 182 description += n; 183 desc_len -= n; 184 acc = mult_64x32_and_fold(acc, piece); 185 acc = mult_64x32_and_fold(acc, 9207); 186 } 187 188 /* Fold the hash down to 32 bits if need be. */ 189 hash = acc; 190 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 191 hash ^= acc >> 32; 192 193 /* Squidge all the keyrings into a separate part of the tree to 194 * ordinary keys by making sure the lowest level segment in the hash is 195 * zero for keyrings and non-zero otherwise. 196 */ 197 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 198 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 199 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 200 return (hash + (hash << level_shift)) & ~fan_mask; 201 return hash; 202 } 203 204 /* 205 * Build the next index key chunk. 206 * 207 * On 32-bit systems the index key is laid out as: 208 * 209 * 0 4 5 9... 210 * hash desclen typeptr desc[] 211 * 212 * On 64-bit systems: 213 * 214 * 0 8 9 17... 215 * hash desclen typeptr desc[] 216 * 217 * We return it one word-sized chunk at a time. 218 */ 219 static unsigned long keyring_get_key_chunk(const void *data, int level) 220 { 221 const struct keyring_index_key *index_key = data; 222 unsigned long chunk = 0; 223 long offset = 0; 224 int desc_len = index_key->desc_len, n = sizeof(chunk); 225 226 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 227 switch (level) { 228 case 0: 229 return hash_key_type_and_desc(index_key); 230 case 1: 231 return ((unsigned long)index_key->type << 8) | desc_len; 232 case 2: 233 if (desc_len == 0) 234 return (u8)((unsigned long)index_key->type >> 235 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 236 n--; 237 offset = 1; 238 default: 239 offset += sizeof(chunk) - 1; 240 offset += (level - 3) * sizeof(chunk); 241 if (offset >= desc_len) 242 return 0; 243 desc_len -= offset; 244 if (desc_len > n) 245 desc_len = n; 246 offset += desc_len; 247 do { 248 chunk <<= 8; 249 chunk |= ((u8*)index_key->description)[--offset]; 250 } while (--desc_len > 0); 251 252 if (level == 2) { 253 chunk <<= 8; 254 chunk |= (u8)((unsigned long)index_key->type >> 255 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 256 } 257 return chunk; 258 } 259 } 260 261 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 262 { 263 const struct key *key = keyring_ptr_to_key(object); 264 return keyring_get_key_chunk(&key->index_key, level); 265 } 266 267 static bool keyring_compare_object(const void *object, const void *data) 268 { 269 const struct keyring_index_key *index_key = data; 270 const struct key *key = keyring_ptr_to_key(object); 271 272 return key->index_key.type == index_key->type && 273 key->index_key.desc_len == index_key->desc_len && 274 memcmp(key->index_key.description, index_key->description, 275 index_key->desc_len) == 0; 276 } 277 278 /* 279 * Compare the index keys of a pair of objects and determine the bit position 280 * at which they differ - if they differ. 281 */ 282 static int keyring_diff_objects(const void *object, const void *data) 283 { 284 const struct key *key_a = keyring_ptr_to_key(object); 285 const struct keyring_index_key *a = &key_a->index_key; 286 const struct keyring_index_key *b = data; 287 unsigned long seg_a, seg_b; 288 int level, i; 289 290 level = 0; 291 seg_a = hash_key_type_and_desc(a); 292 seg_b = hash_key_type_and_desc(b); 293 if ((seg_a ^ seg_b) != 0) 294 goto differ; 295 296 /* The number of bits contributed by the hash is controlled by a 297 * constant in the assoc_array headers. Everything else thereafter we 298 * can deal with as being machine word-size dependent. 299 */ 300 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 301 seg_a = a->desc_len; 302 seg_b = b->desc_len; 303 if ((seg_a ^ seg_b) != 0) 304 goto differ; 305 306 /* The next bit may not work on big endian */ 307 level++; 308 seg_a = (unsigned long)a->type; 309 seg_b = (unsigned long)b->type; 310 if ((seg_a ^ seg_b) != 0) 311 goto differ; 312 313 level += sizeof(unsigned long); 314 if (a->desc_len == 0) 315 goto same; 316 317 i = 0; 318 if (((unsigned long)a->description | (unsigned long)b->description) & 319 (sizeof(unsigned long) - 1)) { 320 do { 321 seg_a = *(unsigned long *)(a->description + i); 322 seg_b = *(unsigned long *)(b->description + i); 323 if ((seg_a ^ seg_b) != 0) 324 goto differ_plus_i; 325 i += sizeof(unsigned long); 326 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 327 } 328 329 for (; i < a->desc_len; i++) { 330 seg_a = *(unsigned char *)(a->description + i); 331 seg_b = *(unsigned char *)(b->description + i); 332 if ((seg_a ^ seg_b) != 0) 333 goto differ_plus_i; 334 } 335 336 same: 337 return -1; 338 339 differ_plus_i: 340 level += i; 341 differ: 342 i = level * 8 + __ffs(seg_a ^ seg_b); 343 return i; 344 } 345 346 /* 347 * Free an object after stripping the keyring flag off of the pointer. 348 */ 349 static void keyring_free_object(void *object) 350 { 351 key_put(keyring_ptr_to_key(object)); 352 } 353 354 /* 355 * Operations for keyring management by the index-tree routines. 356 */ 357 static const struct assoc_array_ops keyring_assoc_array_ops = { 358 .get_key_chunk = keyring_get_key_chunk, 359 .get_object_key_chunk = keyring_get_object_key_chunk, 360 .compare_object = keyring_compare_object, 361 .diff_objects = keyring_diff_objects, 362 .free_object = keyring_free_object, 363 }; 364 365 /* 366 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 367 * and dispose of its data. 368 * 369 * The garbage collector detects the final key_put(), removes the keyring from 370 * the serial number tree and then does RCU synchronisation before coming here, 371 * so we shouldn't need to worry about code poking around here with the RCU 372 * readlock held by this time. 373 */ 374 static void keyring_destroy(struct key *keyring) 375 { 376 if (keyring->description) { 377 write_lock(&keyring_name_lock); 378 379 if (keyring->type_data.link.next != NULL && 380 !list_empty(&keyring->type_data.link)) 381 list_del(&keyring->type_data.link); 382 383 write_unlock(&keyring_name_lock); 384 } 385 386 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 387 } 388 389 /* 390 * Describe a keyring for /proc. 391 */ 392 static void keyring_describe(const struct key *keyring, struct seq_file *m) 393 { 394 if (keyring->description) 395 seq_puts(m, keyring->description); 396 else 397 seq_puts(m, "[anon]"); 398 399 if (key_is_instantiated(keyring)) { 400 if (keyring->keys.nr_leaves_on_tree != 0) 401 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 402 else 403 seq_puts(m, ": empty"); 404 } 405 } 406 407 struct keyring_read_iterator_context { 408 size_t qty; 409 size_t count; 410 key_serial_t __user *buffer; 411 }; 412 413 static int keyring_read_iterator(const void *object, void *data) 414 { 415 struct keyring_read_iterator_context *ctx = data; 416 const struct key *key = keyring_ptr_to_key(object); 417 int ret; 418 419 kenter("{%s,%d},,{%zu/%zu}", 420 key->type->name, key->serial, ctx->count, ctx->qty); 421 422 if (ctx->count >= ctx->qty) 423 return 1; 424 425 ret = put_user(key->serial, ctx->buffer); 426 if (ret < 0) 427 return ret; 428 ctx->buffer++; 429 ctx->count += sizeof(key->serial); 430 return 0; 431 } 432 433 /* 434 * Read a list of key IDs from the keyring's contents in binary form 435 * 436 * The keyring's semaphore is read-locked by the caller. This prevents someone 437 * from modifying it under us - which could cause us to read key IDs multiple 438 * times. 439 */ 440 static long keyring_read(const struct key *keyring, 441 char __user *buffer, size_t buflen) 442 { 443 struct keyring_read_iterator_context ctx; 444 unsigned long nr_keys; 445 int ret; 446 447 kenter("{%d},,%zu", key_serial(keyring), buflen); 448 449 if (buflen & (sizeof(key_serial_t) - 1)) 450 return -EINVAL; 451 452 nr_keys = keyring->keys.nr_leaves_on_tree; 453 if (nr_keys == 0) 454 return 0; 455 456 /* Calculate how much data we could return */ 457 ctx.qty = nr_keys * sizeof(key_serial_t); 458 459 if (!buffer || !buflen) 460 return ctx.qty; 461 462 if (buflen > ctx.qty) 463 ctx.qty = buflen; 464 465 /* Copy the IDs of the subscribed keys into the buffer */ 466 ctx.buffer = (key_serial_t __user *)buffer; 467 ctx.count = 0; 468 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx); 469 if (ret < 0) { 470 kleave(" = %d [iterate]", ret); 471 return ret; 472 } 473 474 kleave(" = %zu [ok]", ctx.count); 475 return ctx.count; 476 } 477 478 /* 479 * Allocate a keyring and link into the destination keyring. 480 */ 481 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 482 const struct cred *cred, key_perm_t perm, 483 unsigned long flags, struct key *dest) 484 { 485 struct key *keyring; 486 int ret; 487 488 keyring = key_alloc(&key_type_keyring, description, 489 uid, gid, cred, perm, flags); 490 if (!IS_ERR(keyring)) { 491 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 492 if (ret < 0) { 493 key_put(keyring); 494 keyring = ERR_PTR(ret); 495 } 496 } 497 498 return keyring; 499 } 500 EXPORT_SYMBOL(keyring_alloc); 501 502 /* 503 * Iteration function to consider each key found. 504 */ 505 static int keyring_search_iterator(const void *object, void *iterator_data) 506 { 507 struct keyring_search_context *ctx = iterator_data; 508 const struct key *key = keyring_ptr_to_key(object); 509 unsigned long kflags = key->flags; 510 511 kenter("{%d}", key->serial); 512 513 /* ignore keys not of this type */ 514 if (key->type != ctx->index_key.type) { 515 kleave(" = 0 [!type]"); 516 return 0; 517 } 518 519 /* skip invalidated, revoked and expired keys */ 520 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 521 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 522 (1 << KEY_FLAG_REVOKED))) { 523 ctx->result = ERR_PTR(-EKEYREVOKED); 524 kleave(" = %d [invrev]", ctx->skipped_ret); 525 goto skipped; 526 } 527 528 if (key->expiry && ctx->now.tv_sec >= key->expiry) { 529 ctx->result = ERR_PTR(-EKEYEXPIRED); 530 kleave(" = %d [expire]", ctx->skipped_ret); 531 goto skipped; 532 } 533 } 534 535 /* keys that don't match */ 536 if (!ctx->match(key, ctx->match_data)) { 537 kleave(" = 0 [!match]"); 538 return 0; 539 } 540 541 /* key must have search permissions */ 542 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 543 key_task_permission(make_key_ref(key, ctx->possessed), 544 ctx->cred, KEY_NEED_SEARCH) < 0) { 545 ctx->result = ERR_PTR(-EACCES); 546 kleave(" = %d [!perm]", ctx->skipped_ret); 547 goto skipped; 548 } 549 550 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 551 /* we set a different error code if we pass a negative key */ 552 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 553 smp_rmb(); 554 ctx->result = ERR_PTR(key->type_data.reject_error); 555 kleave(" = %d [neg]", ctx->skipped_ret); 556 goto skipped; 557 } 558 } 559 560 /* Found */ 561 ctx->result = make_key_ref(key, ctx->possessed); 562 kleave(" = 1 [found]"); 563 return 1; 564 565 skipped: 566 return ctx->skipped_ret; 567 } 568 569 /* 570 * Search inside a keyring for a key. We can search by walking to it 571 * directly based on its index-key or we can iterate over the entire 572 * tree looking for it, based on the match function. 573 */ 574 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 575 { 576 if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) == 577 KEYRING_SEARCH_LOOKUP_DIRECT) { 578 const void *object; 579 580 object = assoc_array_find(&keyring->keys, 581 &keyring_assoc_array_ops, 582 &ctx->index_key); 583 return object ? ctx->iterator(object, ctx) : 0; 584 } 585 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 586 } 587 588 /* 589 * Search a tree of keyrings that point to other keyrings up to the maximum 590 * depth. 591 */ 592 static bool search_nested_keyrings(struct key *keyring, 593 struct keyring_search_context *ctx) 594 { 595 struct { 596 struct key *keyring; 597 struct assoc_array_node *node; 598 int slot; 599 } stack[KEYRING_SEARCH_MAX_DEPTH]; 600 601 struct assoc_array_shortcut *shortcut; 602 struct assoc_array_node *node; 603 struct assoc_array_ptr *ptr; 604 struct key *key; 605 int sp = 0, slot; 606 607 kenter("{%d},{%s,%s}", 608 keyring->serial, 609 ctx->index_key.type->name, 610 ctx->index_key.description); 611 612 if (ctx->index_key.description) 613 ctx->index_key.desc_len = strlen(ctx->index_key.description); 614 615 /* Check to see if this top-level keyring is what we are looking for 616 * and whether it is valid or not. 617 */ 618 if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE || 619 keyring_compare_object(keyring, &ctx->index_key)) { 620 ctx->skipped_ret = 2; 621 ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK; 622 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 623 case 1: 624 goto found; 625 case 2: 626 return false; 627 default: 628 break; 629 } 630 } 631 632 ctx->skipped_ret = 0; 633 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK) 634 ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK; 635 636 /* Start processing a new keyring */ 637 descend_to_keyring: 638 kdebug("descend to %d", keyring->serial); 639 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 640 (1 << KEY_FLAG_REVOKED))) 641 goto not_this_keyring; 642 643 /* Search through the keys in this keyring before its searching its 644 * subtrees. 645 */ 646 if (search_keyring(keyring, ctx)) 647 goto found; 648 649 /* Then manually iterate through the keyrings nested in this one. 650 * 651 * Start from the root node of the index tree. Because of the way the 652 * hash function has been set up, keyrings cluster on the leftmost 653 * branch of the root node (root slot 0) or in the root node itself. 654 * Non-keyrings avoid the leftmost branch of the root entirely (root 655 * slots 1-15). 656 */ 657 ptr = ACCESS_ONCE(keyring->keys.root); 658 if (!ptr) 659 goto not_this_keyring; 660 661 if (assoc_array_ptr_is_shortcut(ptr)) { 662 /* If the root is a shortcut, either the keyring only contains 663 * keyring pointers (everything clusters behind root slot 0) or 664 * doesn't contain any keyring pointers. 665 */ 666 shortcut = assoc_array_ptr_to_shortcut(ptr); 667 smp_read_barrier_depends(); 668 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 669 goto not_this_keyring; 670 671 ptr = ACCESS_ONCE(shortcut->next_node); 672 node = assoc_array_ptr_to_node(ptr); 673 goto begin_node; 674 } 675 676 node = assoc_array_ptr_to_node(ptr); 677 smp_read_barrier_depends(); 678 679 ptr = node->slots[0]; 680 if (!assoc_array_ptr_is_meta(ptr)) 681 goto begin_node; 682 683 descend_to_node: 684 /* Descend to a more distal node in this keyring's content tree and go 685 * through that. 686 */ 687 kdebug("descend"); 688 if (assoc_array_ptr_is_shortcut(ptr)) { 689 shortcut = assoc_array_ptr_to_shortcut(ptr); 690 smp_read_barrier_depends(); 691 ptr = ACCESS_ONCE(shortcut->next_node); 692 BUG_ON(!assoc_array_ptr_is_node(ptr)); 693 } 694 node = assoc_array_ptr_to_node(ptr); 695 696 begin_node: 697 kdebug("begin_node"); 698 smp_read_barrier_depends(); 699 slot = 0; 700 ascend_to_node: 701 /* Go through the slots in a node */ 702 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 703 ptr = ACCESS_ONCE(node->slots[slot]); 704 705 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 706 goto descend_to_node; 707 708 if (!keyring_ptr_is_keyring(ptr)) 709 continue; 710 711 key = keyring_ptr_to_key(ptr); 712 713 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 714 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 715 ctx->result = ERR_PTR(-ELOOP); 716 return false; 717 } 718 goto not_this_keyring; 719 } 720 721 /* Search a nested keyring */ 722 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 723 key_task_permission(make_key_ref(key, ctx->possessed), 724 ctx->cred, KEY_NEED_SEARCH) < 0) 725 continue; 726 727 /* stack the current position */ 728 stack[sp].keyring = keyring; 729 stack[sp].node = node; 730 stack[sp].slot = slot; 731 sp++; 732 733 /* begin again with the new keyring */ 734 keyring = key; 735 goto descend_to_keyring; 736 } 737 738 /* We've dealt with all the slots in the current node, so now we need 739 * to ascend to the parent and continue processing there. 740 */ 741 ptr = ACCESS_ONCE(node->back_pointer); 742 slot = node->parent_slot; 743 744 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 745 shortcut = assoc_array_ptr_to_shortcut(ptr); 746 smp_read_barrier_depends(); 747 ptr = ACCESS_ONCE(shortcut->back_pointer); 748 slot = shortcut->parent_slot; 749 } 750 if (!ptr) 751 goto not_this_keyring; 752 node = assoc_array_ptr_to_node(ptr); 753 smp_read_barrier_depends(); 754 slot++; 755 756 /* If we've ascended to the root (zero backpointer), we must have just 757 * finished processing the leftmost branch rather than the root slots - 758 * so there can't be any more keyrings for us to find. 759 */ 760 if (node->back_pointer) { 761 kdebug("ascend %d", slot); 762 goto ascend_to_node; 763 } 764 765 /* The keyring we're looking at was disqualified or didn't contain a 766 * matching key. 767 */ 768 not_this_keyring: 769 kdebug("not_this_keyring %d", sp); 770 if (sp <= 0) { 771 kleave(" = false"); 772 return false; 773 } 774 775 /* Resume the processing of a keyring higher up in the tree */ 776 sp--; 777 keyring = stack[sp].keyring; 778 node = stack[sp].node; 779 slot = stack[sp].slot + 1; 780 kdebug("ascend to %d [%d]", keyring->serial, slot); 781 goto ascend_to_node; 782 783 /* We found a viable match */ 784 found: 785 key = key_ref_to_ptr(ctx->result); 786 key_check(key); 787 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 788 key->last_used_at = ctx->now.tv_sec; 789 keyring->last_used_at = ctx->now.tv_sec; 790 while (sp > 0) 791 stack[--sp].keyring->last_used_at = ctx->now.tv_sec; 792 } 793 kleave(" = true"); 794 return true; 795 } 796 797 /** 798 * keyring_search_aux - Search a keyring tree for a key matching some criteria 799 * @keyring_ref: A pointer to the keyring with possession indicator. 800 * @ctx: The keyring search context. 801 * 802 * Search the supplied keyring tree for a key that matches the criteria given. 803 * The root keyring and any linked keyrings must grant Search permission to the 804 * caller to be searchable and keys can only be found if they too grant Search 805 * to the caller. The possession flag on the root keyring pointer controls use 806 * of the possessor bits in permissions checking of the entire tree. In 807 * addition, the LSM gets to forbid keyring searches and key matches. 808 * 809 * The search is performed as a breadth-then-depth search up to the prescribed 810 * limit (KEYRING_SEARCH_MAX_DEPTH). 811 * 812 * Keys are matched to the type provided and are then filtered by the match 813 * function, which is given the description to use in any way it sees fit. The 814 * match function may use any attributes of a key that it wishes to to 815 * determine the match. Normally the match function from the key type would be 816 * used. 817 * 818 * RCU can be used to prevent the keyring key lists from disappearing without 819 * the need to take lots of locks. 820 * 821 * Returns a pointer to the found key and increments the key usage count if 822 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 823 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 824 * specified keyring wasn't a keyring. 825 * 826 * In the case of a successful return, the possession attribute from 827 * @keyring_ref is propagated to the returned key reference. 828 */ 829 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 830 struct keyring_search_context *ctx) 831 { 832 struct key *keyring; 833 long err; 834 835 ctx->iterator = keyring_search_iterator; 836 ctx->possessed = is_key_possessed(keyring_ref); 837 ctx->result = ERR_PTR(-EAGAIN); 838 839 keyring = key_ref_to_ptr(keyring_ref); 840 key_check(keyring); 841 842 if (keyring->type != &key_type_keyring) 843 return ERR_PTR(-ENOTDIR); 844 845 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 846 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 847 if (err < 0) 848 return ERR_PTR(err); 849 } 850 851 rcu_read_lock(); 852 ctx->now = current_kernel_time(); 853 if (search_nested_keyrings(keyring, ctx)) 854 __key_get(key_ref_to_ptr(ctx->result)); 855 rcu_read_unlock(); 856 return ctx->result; 857 } 858 859 /** 860 * keyring_search - Search the supplied keyring tree for a matching key 861 * @keyring: The root of the keyring tree to be searched. 862 * @type: The type of keyring we want to find. 863 * @description: The name of the keyring we want to find. 864 * 865 * As keyring_search_aux() above, but using the current task's credentials and 866 * type's default matching function and preferred search method. 867 */ 868 key_ref_t keyring_search(key_ref_t keyring, 869 struct key_type *type, 870 const char *description) 871 { 872 struct keyring_search_context ctx = { 873 .index_key.type = type, 874 .index_key.description = description, 875 .cred = current_cred(), 876 .match = type->match, 877 .match_data = description, 878 .flags = (type->def_lookup_type | 879 KEYRING_SEARCH_DO_STATE_CHECK), 880 }; 881 882 if (!ctx.match) 883 return ERR_PTR(-ENOKEY); 884 885 return keyring_search_aux(keyring, &ctx); 886 } 887 EXPORT_SYMBOL(keyring_search); 888 889 /* 890 * Search the given keyring for a key that might be updated. 891 * 892 * The caller must guarantee that the keyring is a keyring and that the 893 * permission is granted to modify the keyring as no check is made here. The 894 * caller must also hold a lock on the keyring semaphore. 895 * 896 * Returns a pointer to the found key with usage count incremented if 897 * successful and returns NULL if not found. Revoked and invalidated keys are 898 * skipped over. 899 * 900 * If successful, the possession indicator is propagated from the keyring ref 901 * to the returned key reference. 902 */ 903 key_ref_t find_key_to_update(key_ref_t keyring_ref, 904 const struct keyring_index_key *index_key) 905 { 906 struct key *keyring, *key; 907 const void *object; 908 909 keyring = key_ref_to_ptr(keyring_ref); 910 911 kenter("{%d},{%s,%s}", 912 keyring->serial, index_key->type->name, index_key->description); 913 914 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 915 index_key); 916 917 if (object) 918 goto found; 919 920 kleave(" = NULL"); 921 return NULL; 922 923 found: 924 key = keyring_ptr_to_key(object); 925 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 926 (1 << KEY_FLAG_REVOKED))) { 927 kleave(" = NULL [x]"); 928 return NULL; 929 } 930 __key_get(key); 931 kleave(" = {%d}", key->serial); 932 return make_key_ref(key, is_key_possessed(keyring_ref)); 933 } 934 935 /* 936 * Find a keyring with the specified name. 937 * 938 * All named keyrings in the current user namespace are searched, provided they 939 * grant Search permission directly to the caller (unless this check is 940 * skipped). Keyrings whose usage points have reached zero or who have been 941 * revoked are skipped. 942 * 943 * Returns a pointer to the keyring with the keyring's refcount having being 944 * incremented on success. -ENOKEY is returned if a key could not be found. 945 */ 946 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 947 { 948 struct key *keyring; 949 int bucket; 950 951 if (!name) 952 return ERR_PTR(-EINVAL); 953 954 bucket = keyring_hash(name); 955 956 read_lock(&keyring_name_lock); 957 958 if (keyring_name_hash[bucket].next) { 959 /* search this hash bucket for a keyring with a matching name 960 * that's readable and that hasn't been revoked */ 961 list_for_each_entry(keyring, 962 &keyring_name_hash[bucket], 963 type_data.link 964 ) { 965 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 966 continue; 967 968 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 969 continue; 970 971 if (strcmp(keyring->description, name) != 0) 972 continue; 973 974 if (!skip_perm_check && 975 key_permission(make_key_ref(keyring, 0), 976 KEY_NEED_SEARCH) < 0) 977 continue; 978 979 /* we've got a match but we might end up racing with 980 * key_cleanup() if the keyring is currently 'dead' 981 * (ie. it has a zero usage count) */ 982 if (!atomic_inc_not_zero(&keyring->usage)) 983 continue; 984 keyring->last_used_at = current_kernel_time().tv_sec; 985 goto out; 986 } 987 } 988 989 keyring = ERR_PTR(-ENOKEY); 990 out: 991 read_unlock(&keyring_name_lock); 992 return keyring; 993 } 994 995 static int keyring_detect_cycle_iterator(const void *object, 996 void *iterator_data) 997 { 998 struct keyring_search_context *ctx = iterator_data; 999 const struct key *key = keyring_ptr_to_key(object); 1000 1001 kenter("{%d}", key->serial); 1002 1003 /* We might get a keyring with matching index-key that is nonetheless a 1004 * different keyring. */ 1005 if (key != ctx->match_data) 1006 return 0; 1007 1008 ctx->result = ERR_PTR(-EDEADLK); 1009 return 1; 1010 } 1011 1012 /* 1013 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1014 * tree A at the topmost level (ie: as a direct child of A). 1015 * 1016 * Since we are adding B to A at the top level, checking for cycles should just 1017 * be a matter of seeing if node A is somewhere in tree B. 1018 */ 1019 static int keyring_detect_cycle(struct key *A, struct key *B) 1020 { 1021 struct keyring_search_context ctx = { 1022 .index_key = A->index_key, 1023 .match_data = A, 1024 .iterator = keyring_detect_cycle_iterator, 1025 .flags = (KEYRING_SEARCH_LOOKUP_DIRECT | 1026 KEYRING_SEARCH_NO_STATE_CHECK | 1027 KEYRING_SEARCH_NO_UPDATE_TIME | 1028 KEYRING_SEARCH_NO_CHECK_PERM | 1029 KEYRING_SEARCH_DETECT_TOO_DEEP), 1030 }; 1031 1032 rcu_read_lock(); 1033 search_nested_keyrings(B, &ctx); 1034 rcu_read_unlock(); 1035 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1036 } 1037 1038 /* 1039 * Preallocate memory so that a key can be linked into to a keyring. 1040 */ 1041 int __key_link_begin(struct key *keyring, 1042 const struct keyring_index_key *index_key, 1043 struct assoc_array_edit **_edit) 1044 __acquires(&keyring->sem) 1045 __acquires(&keyring_serialise_link_sem) 1046 { 1047 struct assoc_array_edit *edit; 1048 int ret; 1049 1050 kenter("%d,%s,%s,", 1051 keyring->serial, index_key->type->name, index_key->description); 1052 1053 BUG_ON(index_key->desc_len == 0); 1054 1055 if (keyring->type != &key_type_keyring) 1056 return -ENOTDIR; 1057 1058 down_write(&keyring->sem); 1059 1060 ret = -EKEYREVOKED; 1061 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1062 goto error_krsem; 1063 1064 /* serialise link/link calls to prevent parallel calls causing a cycle 1065 * when linking two keyring in opposite orders */ 1066 if (index_key->type == &key_type_keyring) 1067 down_write(&keyring_serialise_link_sem); 1068 1069 /* Create an edit script that will insert/replace the key in the 1070 * keyring tree. 1071 */ 1072 edit = assoc_array_insert(&keyring->keys, 1073 &keyring_assoc_array_ops, 1074 index_key, 1075 NULL); 1076 if (IS_ERR(edit)) { 1077 ret = PTR_ERR(edit); 1078 goto error_sem; 1079 } 1080 1081 /* If we're not replacing a link in-place then we're going to need some 1082 * extra quota. 1083 */ 1084 if (!edit->dead_leaf) { 1085 ret = key_payload_reserve(keyring, 1086 keyring->datalen + KEYQUOTA_LINK_BYTES); 1087 if (ret < 0) 1088 goto error_cancel; 1089 } 1090 1091 *_edit = edit; 1092 kleave(" = 0"); 1093 return 0; 1094 1095 error_cancel: 1096 assoc_array_cancel_edit(edit); 1097 error_sem: 1098 if (index_key->type == &key_type_keyring) 1099 up_write(&keyring_serialise_link_sem); 1100 error_krsem: 1101 up_write(&keyring->sem); 1102 kleave(" = %d", ret); 1103 return ret; 1104 } 1105 1106 /* 1107 * Check already instantiated keys aren't going to be a problem. 1108 * 1109 * The caller must have called __key_link_begin(). Don't need to call this for 1110 * keys that were created since __key_link_begin() was called. 1111 */ 1112 int __key_link_check_live_key(struct key *keyring, struct key *key) 1113 { 1114 if (key->type == &key_type_keyring) 1115 /* check that we aren't going to create a cycle by linking one 1116 * keyring to another */ 1117 return keyring_detect_cycle(keyring, key); 1118 return 0; 1119 } 1120 1121 /* 1122 * Link a key into to a keyring. 1123 * 1124 * Must be called with __key_link_begin() having being called. Discards any 1125 * already extant link to matching key if there is one, so that each keyring 1126 * holds at most one link to any given key of a particular type+description 1127 * combination. 1128 */ 1129 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1130 { 1131 __key_get(key); 1132 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1133 assoc_array_apply_edit(*_edit); 1134 *_edit = NULL; 1135 } 1136 1137 /* 1138 * Finish linking a key into to a keyring. 1139 * 1140 * Must be called with __key_link_begin() having being called. 1141 */ 1142 void __key_link_end(struct key *keyring, 1143 const struct keyring_index_key *index_key, 1144 struct assoc_array_edit *edit) 1145 __releases(&keyring->sem) 1146 __releases(&keyring_serialise_link_sem) 1147 { 1148 BUG_ON(index_key->type == NULL); 1149 kenter("%d,%s,", keyring->serial, index_key->type->name); 1150 1151 if (index_key->type == &key_type_keyring) 1152 up_write(&keyring_serialise_link_sem); 1153 1154 if (edit && !edit->dead_leaf) { 1155 key_payload_reserve(keyring, 1156 keyring->datalen - KEYQUOTA_LINK_BYTES); 1157 assoc_array_cancel_edit(edit); 1158 } 1159 up_write(&keyring->sem); 1160 } 1161 1162 /** 1163 * key_link - Link a key to a keyring 1164 * @keyring: The keyring to make the link in. 1165 * @key: The key to link to. 1166 * 1167 * Make a link in a keyring to a key, such that the keyring holds a reference 1168 * on that key and the key can potentially be found by searching that keyring. 1169 * 1170 * This function will write-lock the keyring's semaphore and will consume some 1171 * of the user's key data quota to hold the link. 1172 * 1173 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1174 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1175 * full, -EDQUOT if there is insufficient key data quota remaining to add 1176 * another link or -ENOMEM if there's insufficient memory. 1177 * 1178 * It is assumed that the caller has checked that it is permitted for a link to 1179 * be made (the keyring should have Write permission and the key Link 1180 * permission). 1181 */ 1182 int key_link(struct key *keyring, struct key *key) 1183 { 1184 struct assoc_array_edit *edit; 1185 int ret; 1186 1187 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage)); 1188 1189 key_check(keyring); 1190 key_check(key); 1191 1192 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) && 1193 !test_bit(KEY_FLAG_TRUSTED, &key->flags)) 1194 return -EPERM; 1195 1196 ret = __key_link_begin(keyring, &key->index_key, &edit); 1197 if (ret == 0) { 1198 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage)); 1199 ret = __key_link_check_live_key(keyring, key); 1200 if (ret == 0) 1201 __key_link(key, &edit); 1202 __key_link_end(keyring, &key->index_key, edit); 1203 } 1204 1205 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage)); 1206 return ret; 1207 } 1208 EXPORT_SYMBOL(key_link); 1209 1210 /** 1211 * key_unlink - Unlink the first link to a key from a keyring. 1212 * @keyring: The keyring to remove the link from. 1213 * @key: The key the link is to. 1214 * 1215 * Remove a link from a keyring to a key. 1216 * 1217 * This function will write-lock the keyring's semaphore. 1218 * 1219 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1220 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1221 * memory. 1222 * 1223 * It is assumed that the caller has checked that it is permitted for a link to 1224 * be removed (the keyring should have Write permission; no permissions are 1225 * required on the key). 1226 */ 1227 int key_unlink(struct key *keyring, struct key *key) 1228 { 1229 struct assoc_array_edit *edit; 1230 int ret; 1231 1232 key_check(keyring); 1233 key_check(key); 1234 1235 if (keyring->type != &key_type_keyring) 1236 return -ENOTDIR; 1237 1238 down_write(&keyring->sem); 1239 1240 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1241 &key->index_key); 1242 if (IS_ERR(edit)) { 1243 ret = PTR_ERR(edit); 1244 goto error; 1245 } 1246 ret = -ENOENT; 1247 if (edit == NULL) 1248 goto error; 1249 1250 assoc_array_apply_edit(edit); 1251 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1252 ret = 0; 1253 1254 error: 1255 up_write(&keyring->sem); 1256 return ret; 1257 } 1258 EXPORT_SYMBOL(key_unlink); 1259 1260 /** 1261 * keyring_clear - Clear a keyring 1262 * @keyring: The keyring to clear. 1263 * 1264 * Clear the contents of the specified keyring. 1265 * 1266 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1267 */ 1268 int keyring_clear(struct key *keyring) 1269 { 1270 struct assoc_array_edit *edit; 1271 int ret; 1272 1273 if (keyring->type != &key_type_keyring) 1274 return -ENOTDIR; 1275 1276 down_write(&keyring->sem); 1277 1278 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1279 if (IS_ERR(edit)) { 1280 ret = PTR_ERR(edit); 1281 } else { 1282 if (edit) 1283 assoc_array_apply_edit(edit); 1284 key_payload_reserve(keyring, 0); 1285 ret = 0; 1286 } 1287 1288 up_write(&keyring->sem); 1289 return ret; 1290 } 1291 EXPORT_SYMBOL(keyring_clear); 1292 1293 /* 1294 * Dispose of the links from a revoked keyring. 1295 * 1296 * This is called with the key sem write-locked. 1297 */ 1298 static void keyring_revoke(struct key *keyring) 1299 { 1300 struct assoc_array_edit *edit; 1301 1302 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1303 if (!IS_ERR(edit)) { 1304 if (edit) 1305 assoc_array_apply_edit(edit); 1306 key_payload_reserve(keyring, 0); 1307 } 1308 } 1309 1310 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1311 { 1312 struct key *key = keyring_ptr_to_key(object); 1313 time_t *limit = iterator_data; 1314 1315 if (key_is_dead(key, *limit)) 1316 return false; 1317 key_get(key); 1318 return true; 1319 } 1320 1321 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1322 { 1323 const struct key *key = keyring_ptr_to_key(object); 1324 time_t *limit = iterator_data; 1325 1326 key_check(key); 1327 return key_is_dead(key, *limit); 1328 } 1329 1330 /* 1331 * Garbage collect pointers from a keyring. 1332 * 1333 * Not called with any locks held. The keyring's key struct will not be 1334 * deallocated under us as only our caller may deallocate it. 1335 */ 1336 void keyring_gc(struct key *keyring, time_t limit) 1337 { 1338 int result; 1339 1340 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1341 1342 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1343 (1 << KEY_FLAG_REVOKED))) 1344 goto dont_gc; 1345 1346 /* scan the keyring looking for dead keys */ 1347 rcu_read_lock(); 1348 result = assoc_array_iterate(&keyring->keys, 1349 keyring_gc_check_iterator, &limit); 1350 rcu_read_unlock(); 1351 if (result == true) 1352 goto do_gc; 1353 1354 dont_gc: 1355 kleave(" [no gc]"); 1356 return; 1357 1358 do_gc: 1359 down_write(&keyring->sem); 1360 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1361 keyring_gc_select_iterator, &limit); 1362 up_write(&keyring->sem); 1363 kleave(" [gc]"); 1364 } 1365