1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Keyring handling 3 * 4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/init.h> 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/security.h> 13 #include <linux/seq_file.h> 14 #include <linux/err.h> 15 #include <keys/keyring-type.h> 16 #include <keys/user-type.h> 17 #include <linux/assoc_array_priv.h> 18 #include <linux/uaccess.h> 19 #include "internal.h" 20 21 /* 22 * When plumbing the depths of the key tree, this sets a hard limit 23 * set on how deep we're willing to go. 24 */ 25 #define KEYRING_SEARCH_MAX_DEPTH 6 26 27 /* 28 * We keep all named keyrings in a hash to speed looking them up. 29 */ 30 #define KEYRING_NAME_HASH_SIZE (1 << 5) 31 32 /* 33 * We mark pointers we pass to the associative array with bit 1 set if 34 * they're keyrings and clear otherwise. 35 */ 36 #define KEYRING_PTR_SUBTYPE 0x2UL 37 38 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 39 { 40 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 41 } 42 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 43 { 44 void *object = assoc_array_ptr_to_leaf(x); 45 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 46 } 47 static inline void *keyring_key_to_ptr(struct key *key) 48 { 49 if (key->type == &key_type_keyring) 50 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 51 return key; 52 } 53 54 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 55 static DEFINE_RWLOCK(keyring_name_lock); 56 57 static inline unsigned keyring_hash(const char *desc) 58 { 59 unsigned bucket = 0; 60 61 for (; *desc; desc++) 62 bucket += (unsigned char)*desc; 63 64 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 65 } 66 67 /* 68 * The keyring key type definition. Keyrings are simply keys of this type and 69 * can be treated as ordinary keys in addition to having their own special 70 * operations. 71 */ 72 static int keyring_preparse(struct key_preparsed_payload *prep); 73 static void keyring_free_preparse(struct key_preparsed_payload *prep); 74 static int keyring_instantiate(struct key *keyring, 75 struct key_preparsed_payload *prep); 76 static void keyring_revoke(struct key *keyring); 77 static void keyring_destroy(struct key *keyring); 78 static void keyring_describe(const struct key *keyring, struct seq_file *m); 79 static long keyring_read(const struct key *keyring, 80 char __user *buffer, size_t buflen); 81 82 struct key_type key_type_keyring = { 83 .name = "keyring", 84 .def_datalen = 0, 85 .preparse = keyring_preparse, 86 .free_preparse = keyring_free_preparse, 87 .instantiate = keyring_instantiate, 88 .revoke = keyring_revoke, 89 .destroy = keyring_destroy, 90 .describe = keyring_describe, 91 .read = keyring_read, 92 }; 93 EXPORT_SYMBOL(key_type_keyring); 94 95 /* 96 * Semaphore to serialise link/link calls to prevent two link calls in parallel 97 * introducing a cycle. 98 */ 99 static DEFINE_MUTEX(keyring_serialise_link_lock); 100 101 /* 102 * Publish the name of a keyring so that it can be found by name (if it has 103 * one). 104 */ 105 static void keyring_publish_name(struct key *keyring) 106 { 107 int bucket; 108 109 if (keyring->description) { 110 bucket = keyring_hash(keyring->description); 111 112 write_lock(&keyring_name_lock); 113 114 if (!keyring_name_hash[bucket].next) 115 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 116 117 list_add_tail(&keyring->name_link, 118 &keyring_name_hash[bucket]); 119 120 write_unlock(&keyring_name_lock); 121 } 122 } 123 124 /* 125 * Preparse a keyring payload 126 */ 127 static int keyring_preparse(struct key_preparsed_payload *prep) 128 { 129 return prep->datalen != 0 ? -EINVAL : 0; 130 } 131 132 /* 133 * Free a preparse of a user defined key payload 134 */ 135 static void keyring_free_preparse(struct key_preparsed_payload *prep) 136 { 137 } 138 139 /* 140 * Initialise a keyring. 141 * 142 * Returns 0 on success, -EINVAL if given any data. 143 */ 144 static int keyring_instantiate(struct key *keyring, 145 struct key_preparsed_payload *prep) 146 { 147 assoc_array_init(&keyring->keys); 148 /* make the keyring available by name if it has one */ 149 keyring_publish_name(keyring); 150 return 0; 151 } 152 153 /* 154 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 155 * fold the carry back too, but that requires inline asm. 156 */ 157 static u64 mult_64x32_and_fold(u64 x, u32 y) 158 { 159 u64 hi = (u64)(u32)(x >> 32) * y; 160 u64 lo = (u64)(u32)(x) * y; 161 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 162 } 163 164 /* 165 * Hash a key type and description. 166 */ 167 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 168 { 169 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 170 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 171 const char *description = index_key->description; 172 unsigned long hash, type; 173 u32 piece; 174 u64 acc; 175 int n, desc_len = index_key->desc_len; 176 177 type = (unsigned long)index_key->type; 178 179 acc = mult_64x32_and_fold(type, desc_len + 13); 180 acc = mult_64x32_and_fold(acc, 9207); 181 for (;;) { 182 n = desc_len; 183 if (n <= 0) 184 break; 185 if (n > 4) 186 n = 4; 187 piece = 0; 188 memcpy(&piece, description, n); 189 description += n; 190 desc_len -= n; 191 acc = mult_64x32_and_fold(acc, piece); 192 acc = mult_64x32_and_fold(acc, 9207); 193 } 194 195 /* Fold the hash down to 32 bits if need be. */ 196 hash = acc; 197 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 198 hash ^= acc >> 32; 199 200 /* Squidge all the keyrings into a separate part of the tree to 201 * ordinary keys by making sure the lowest level segment in the hash is 202 * zero for keyrings and non-zero otherwise. 203 */ 204 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 205 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 206 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 207 return (hash + (hash << level_shift)) & ~fan_mask; 208 return hash; 209 } 210 211 /* 212 * Build the next index key chunk. 213 * 214 * On 32-bit systems the index key is laid out as: 215 * 216 * 0 4 5 9... 217 * hash desclen typeptr desc[] 218 * 219 * On 64-bit systems: 220 * 221 * 0 8 9 17... 222 * hash desclen typeptr desc[] 223 * 224 * We return it one word-sized chunk at a time. 225 */ 226 static unsigned long keyring_get_key_chunk(const void *data, int level) 227 { 228 const struct keyring_index_key *index_key = data; 229 unsigned long chunk = 0; 230 long offset = 0; 231 int desc_len = index_key->desc_len, n = sizeof(chunk); 232 233 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 234 switch (level) { 235 case 0: 236 return hash_key_type_and_desc(index_key); 237 case 1: 238 return ((unsigned long)index_key->type << 8) | desc_len; 239 case 2: 240 if (desc_len == 0) 241 return (u8)((unsigned long)index_key->type >> 242 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 243 n--; 244 offset = 1; 245 /* fall through */ 246 default: 247 offset += sizeof(chunk) - 1; 248 offset += (level - 3) * sizeof(chunk); 249 if (offset >= desc_len) 250 return 0; 251 desc_len -= offset; 252 if (desc_len > n) 253 desc_len = n; 254 offset += desc_len; 255 do { 256 chunk <<= 8; 257 chunk |= ((u8*)index_key->description)[--offset]; 258 } while (--desc_len > 0); 259 260 if (level == 2) { 261 chunk <<= 8; 262 chunk |= (u8)((unsigned long)index_key->type >> 263 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 264 } 265 return chunk; 266 } 267 } 268 269 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 270 { 271 const struct key *key = keyring_ptr_to_key(object); 272 return keyring_get_key_chunk(&key->index_key, level); 273 } 274 275 static bool keyring_compare_object(const void *object, const void *data) 276 { 277 const struct keyring_index_key *index_key = data; 278 const struct key *key = keyring_ptr_to_key(object); 279 280 return key->index_key.type == index_key->type && 281 key->index_key.desc_len == index_key->desc_len && 282 memcmp(key->index_key.description, index_key->description, 283 index_key->desc_len) == 0; 284 } 285 286 /* 287 * Compare the index keys of a pair of objects and determine the bit position 288 * at which they differ - if they differ. 289 */ 290 static int keyring_diff_objects(const void *object, const void *data) 291 { 292 const struct key *key_a = keyring_ptr_to_key(object); 293 const struct keyring_index_key *a = &key_a->index_key; 294 const struct keyring_index_key *b = data; 295 unsigned long seg_a, seg_b; 296 int level, i; 297 298 level = 0; 299 seg_a = hash_key_type_and_desc(a); 300 seg_b = hash_key_type_and_desc(b); 301 if ((seg_a ^ seg_b) != 0) 302 goto differ; 303 304 /* The number of bits contributed by the hash is controlled by a 305 * constant in the assoc_array headers. Everything else thereafter we 306 * can deal with as being machine word-size dependent. 307 */ 308 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 309 seg_a = a->desc_len; 310 seg_b = b->desc_len; 311 if ((seg_a ^ seg_b) != 0) 312 goto differ; 313 314 /* The next bit may not work on big endian */ 315 level++; 316 seg_a = (unsigned long)a->type; 317 seg_b = (unsigned long)b->type; 318 if ((seg_a ^ seg_b) != 0) 319 goto differ; 320 321 level += sizeof(unsigned long); 322 if (a->desc_len == 0) 323 goto same; 324 325 i = 0; 326 if (((unsigned long)a->description | (unsigned long)b->description) & 327 (sizeof(unsigned long) - 1)) { 328 do { 329 seg_a = *(unsigned long *)(a->description + i); 330 seg_b = *(unsigned long *)(b->description + i); 331 if ((seg_a ^ seg_b) != 0) 332 goto differ_plus_i; 333 i += sizeof(unsigned long); 334 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 335 } 336 337 for (; i < a->desc_len; i++) { 338 seg_a = *(unsigned char *)(a->description + i); 339 seg_b = *(unsigned char *)(b->description + i); 340 if ((seg_a ^ seg_b) != 0) 341 goto differ_plus_i; 342 } 343 344 same: 345 return -1; 346 347 differ_plus_i: 348 level += i; 349 differ: 350 i = level * 8 + __ffs(seg_a ^ seg_b); 351 return i; 352 } 353 354 /* 355 * Free an object after stripping the keyring flag off of the pointer. 356 */ 357 static void keyring_free_object(void *object) 358 { 359 key_put(keyring_ptr_to_key(object)); 360 } 361 362 /* 363 * Operations for keyring management by the index-tree routines. 364 */ 365 static const struct assoc_array_ops keyring_assoc_array_ops = { 366 .get_key_chunk = keyring_get_key_chunk, 367 .get_object_key_chunk = keyring_get_object_key_chunk, 368 .compare_object = keyring_compare_object, 369 .diff_objects = keyring_diff_objects, 370 .free_object = keyring_free_object, 371 }; 372 373 /* 374 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 375 * and dispose of its data. 376 * 377 * The garbage collector detects the final key_put(), removes the keyring from 378 * the serial number tree and then does RCU synchronisation before coming here, 379 * so we shouldn't need to worry about code poking around here with the RCU 380 * readlock held by this time. 381 */ 382 static void keyring_destroy(struct key *keyring) 383 { 384 if (keyring->description) { 385 write_lock(&keyring_name_lock); 386 387 if (keyring->name_link.next != NULL && 388 !list_empty(&keyring->name_link)) 389 list_del(&keyring->name_link); 390 391 write_unlock(&keyring_name_lock); 392 } 393 394 if (keyring->restrict_link) { 395 struct key_restriction *keyres = keyring->restrict_link; 396 397 key_put(keyres->key); 398 kfree(keyres); 399 } 400 401 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 402 } 403 404 /* 405 * Describe a keyring for /proc. 406 */ 407 static void keyring_describe(const struct key *keyring, struct seq_file *m) 408 { 409 if (keyring->description) 410 seq_puts(m, keyring->description); 411 else 412 seq_puts(m, "[anon]"); 413 414 if (key_is_positive(keyring)) { 415 if (keyring->keys.nr_leaves_on_tree != 0) 416 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 417 else 418 seq_puts(m, ": empty"); 419 } 420 } 421 422 struct keyring_read_iterator_context { 423 size_t buflen; 424 size_t count; 425 key_serial_t __user *buffer; 426 }; 427 428 static int keyring_read_iterator(const void *object, void *data) 429 { 430 struct keyring_read_iterator_context *ctx = data; 431 const struct key *key = keyring_ptr_to_key(object); 432 int ret; 433 434 kenter("{%s,%d},,{%zu/%zu}", 435 key->type->name, key->serial, ctx->count, ctx->buflen); 436 437 if (ctx->count >= ctx->buflen) 438 return 1; 439 440 ret = put_user(key->serial, ctx->buffer); 441 if (ret < 0) 442 return ret; 443 ctx->buffer++; 444 ctx->count += sizeof(key->serial); 445 return 0; 446 } 447 448 /* 449 * Read a list of key IDs from the keyring's contents in binary form 450 * 451 * The keyring's semaphore is read-locked by the caller. This prevents someone 452 * from modifying it under us - which could cause us to read key IDs multiple 453 * times. 454 */ 455 static long keyring_read(const struct key *keyring, 456 char __user *buffer, size_t buflen) 457 { 458 struct keyring_read_iterator_context ctx; 459 long ret; 460 461 kenter("{%d},,%zu", key_serial(keyring), buflen); 462 463 if (buflen & (sizeof(key_serial_t) - 1)) 464 return -EINVAL; 465 466 /* Copy as many key IDs as fit into the buffer */ 467 if (buffer && buflen) { 468 ctx.buffer = (key_serial_t __user *)buffer; 469 ctx.buflen = buflen; 470 ctx.count = 0; 471 ret = assoc_array_iterate(&keyring->keys, 472 keyring_read_iterator, &ctx); 473 if (ret < 0) { 474 kleave(" = %ld [iterate]", ret); 475 return ret; 476 } 477 } 478 479 /* Return the size of the buffer needed */ 480 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t); 481 if (ret <= buflen) 482 kleave("= %ld [ok]", ret); 483 else 484 kleave("= %ld [buffer too small]", ret); 485 return ret; 486 } 487 488 /* 489 * Allocate a keyring and link into the destination keyring. 490 */ 491 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 492 const struct cred *cred, key_perm_t perm, 493 unsigned long flags, 494 struct key_restriction *restrict_link, 495 struct key *dest) 496 { 497 struct key *keyring; 498 int ret; 499 500 keyring = key_alloc(&key_type_keyring, description, 501 uid, gid, cred, perm, flags, restrict_link); 502 if (!IS_ERR(keyring)) { 503 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 504 if (ret < 0) { 505 key_put(keyring); 506 keyring = ERR_PTR(ret); 507 } 508 } 509 510 return keyring; 511 } 512 EXPORT_SYMBOL(keyring_alloc); 513 514 /** 515 * restrict_link_reject - Give -EPERM to restrict link 516 * @keyring: The keyring being added to. 517 * @type: The type of key being added. 518 * @payload: The payload of the key intended to be added. 519 * @restriction_key: Keys providing additional data for evaluating restriction. 520 * 521 * Reject the addition of any links to a keyring. It can be overridden by 522 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 523 * adding a key to a keyring. 524 * 525 * This is meant to be stored in a key_restriction structure which is passed 526 * in the restrict_link parameter to keyring_alloc(). 527 */ 528 int restrict_link_reject(struct key *keyring, 529 const struct key_type *type, 530 const union key_payload *payload, 531 struct key *restriction_key) 532 { 533 return -EPERM; 534 } 535 536 /* 537 * By default, we keys found by getting an exact match on their descriptions. 538 */ 539 bool key_default_cmp(const struct key *key, 540 const struct key_match_data *match_data) 541 { 542 return strcmp(key->description, match_data->raw_data) == 0; 543 } 544 545 /* 546 * Iteration function to consider each key found. 547 */ 548 static int keyring_search_iterator(const void *object, void *iterator_data) 549 { 550 struct keyring_search_context *ctx = iterator_data; 551 const struct key *key = keyring_ptr_to_key(object); 552 unsigned long kflags = READ_ONCE(key->flags); 553 short state = READ_ONCE(key->state); 554 555 kenter("{%d}", key->serial); 556 557 /* ignore keys not of this type */ 558 if (key->type != ctx->index_key.type) { 559 kleave(" = 0 [!type]"); 560 return 0; 561 } 562 563 /* skip invalidated, revoked and expired keys */ 564 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 565 time64_t expiry = READ_ONCE(key->expiry); 566 567 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 568 (1 << KEY_FLAG_REVOKED))) { 569 ctx->result = ERR_PTR(-EKEYREVOKED); 570 kleave(" = %d [invrev]", ctx->skipped_ret); 571 goto skipped; 572 } 573 574 if (expiry && ctx->now >= expiry) { 575 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 576 ctx->result = ERR_PTR(-EKEYEXPIRED); 577 kleave(" = %d [expire]", ctx->skipped_ret); 578 goto skipped; 579 } 580 } 581 582 /* keys that don't match */ 583 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 584 kleave(" = 0 [!match]"); 585 return 0; 586 } 587 588 /* key must have search permissions */ 589 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 590 key_task_permission(make_key_ref(key, ctx->possessed), 591 ctx->cred, KEY_NEED_SEARCH) < 0) { 592 ctx->result = ERR_PTR(-EACCES); 593 kleave(" = %d [!perm]", ctx->skipped_ret); 594 goto skipped; 595 } 596 597 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 598 /* we set a different error code if we pass a negative key */ 599 if (state < 0) { 600 ctx->result = ERR_PTR(state); 601 kleave(" = %d [neg]", ctx->skipped_ret); 602 goto skipped; 603 } 604 } 605 606 /* Found */ 607 ctx->result = make_key_ref(key, ctx->possessed); 608 kleave(" = 1 [found]"); 609 return 1; 610 611 skipped: 612 return ctx->skipped_ret; 613 } 614 615 /* 616 * Search inside a keyring for a key. We can search by walking to it 617 * directly based on its index-key or we can iterate over the entire 618 * tree looking for it, based on the match function. 619 */ 620 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 621 { 622 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 623 const void *object; 624 625 object = assoc_array_find(&keyring->keys, 626 &keyring_assoc_array_ops, 627 &ctx->index_key); 628 return object ? ctx->iterator(object, ctx) : 0; 629 } 630 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 631 } 632 633 /* 634 * Search a tree of keyrings that point to other keyrings up to the maximum 635 * depth. 636 */ 637 static bool search_nested_keyrings(struct key *keyring, 638 struct keyring_search_context *ctx) 639 { 640 struct { 641 struct key *keyring; 642 struct assoc_array_node *node; 643 int slot; 644 } stack[KEYRING_SEARCH_MAX_DEPTH]; 645 646 struct assoc_array_shortcut *shortcut; 647 struct assoc_array_node *node; 648 struct assoc_array_ptr *ptr; 649 struct key *key; 650 int sp = 0, slot; 651 652 kenter("{%d},{%s,%s}", 653 keyring->serial, 654 ctx->index_key.type->name, 655 ctx->index_key.description); 656 657 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 658 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 659 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 660 661 /* Check to see if this top-level keyring is what we are looking for 662 * and whether it is valid or not. 663 */ 664 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 665 keyring_compare_object(keyring, &ctx->index_key)) { 666 ctx->skipped_ret = 2; 667 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 668 case 1: 669 goto found; 670 case 2: 671 return false; 672 default: 673 break; 674 } 675 } 676 677 ctx->skipped_ret = 0; 678 679 /* Start processing a new keyring */ 680 descend_to_keyring: 681 kdebug("descend to %d", keyring->serial); 682 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 683 (1 << KEY_FLAG_REVOKED))) 684 goto not_this_keyring; 685 686 /* Search through the keys in this keyring before its searching its 687 * subtrees. 688 */ 689 if (search_keyring(keyring, ctx)) 690 goto found; 691 692 /* Then manually iterate through the keyrings nested in this one. 693 * 694 * Start from the root node of the index tree. Because of the way the 695 * hash function has been set up, keyrings cluster on the leftmost 696 * branch of the root node (root slot 0) or in the root node itself. 697 * Non-keyrings avoid the leftmost branch of the root entirely (root 698 * slots 1-15). 699 */ 700 ptr = READ_ONCE(keyring->keys.root); 701 if (!ptr) 702 goto not_this_keyring; 703 704 if (assoc_array_ptr_is_shortcut(ptr)) { 705 /* If the root is a shortcut, either the keyring only contains 706 * keyring pointers (everything clusters behind root slot 0) or 707 * doesn't contain any keyring pointers. 708 */ 709 shortcut = assoc_array_ptr_to_shortcut(ptr); 710 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 711 goto not_this_keyring; 712 713 ptr = READ_ONCE(shortcut->next_node); 714 node = assoc_array_ptr_to_node(ptr); 715 goto begin_node; 716 } 717 718 node = assoc_array_ptr_to_node(ptr); 719 ptr = node->slots[0]; 720 if (!assoc_array_ptr_is_meta(ptr)) 721 goto begin_node; 722 723 descend_to_node: 724 /* Descend to a more distal node in this keyring's content tree and go 725 * through that. 726 */ 727 kdebug("descend"); 728 if (assoc_array_ptr_is_shortcut(ptr)) { 729 shortcut = assoc_array_ptr_to_shortcut(ptr); 730 ptr = READ_ONCE(shortcut->next_node); 731 BUG_ON(!assoc_array_ptr_is_node(ptr)); 732 } 733 node = assoc_array_ptr_to_node(ptr); 734 735 begin_node: 736 kdebug("begin_node"); 737 slot = 0; 738 ascend_to_node: 739 /* Go through the slots in a node */ 740 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 741 ptr = READ_ONCE(node->slots[slot]); 742 743 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 744 goto descend_to_node; 745 746 if (!keyring_ptr_is_keyring(ptr)) 747 continue; 748 749 key = keyring_ptr_to_key(ptr); 750 751 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 752 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 753 ctx->result = ERR_PTR(-ELOOP); 754 return false; 755 } 756 goto not_this_keyring; 757 } 758 759 /* Search a nested keyring */ 760 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 761 key_task_permission(make_key_ref(key, ctx->possessed), 762 ctx->cred, KEY_NEED_SEARCH) < 0) 763 continue; 764 765 /* stack the current position */ 766 stack[sp].keyring = keyring; 767 stack[sp].node = node; 768 stack[sp].slot = slot; 769 sp++; 770 771 /* begin again with the new keyring */ 772 keyring = key; 773 goto descend_to_keyring; 774 } 775 776 /* We've dealt with all the slots in the current node, so now we need 777 * to ascend to the parent and continue processing there. 778 */ 779 ptr = READ_ONCE(node->back_pointer); 780 slot = node->parent_slot; 781 782 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 783 shortcut = assoc_array_ptr_to_shortcut(ptr); 784 ptr = READ_ONCE(shortcut->back_pointer); 785 slot = shortcut->parent_slot; 786 } 787 if (!ptr) 788 goto not_this_keyring; 789 node = assoc_array_ptr_to_node(ptr); 790 slot++; 791 792 /* If we've ascended to the root (zero backpointer), we must have just 793 * finished processing the leftmost branch rather than the root slots - 794 * so there can't be any more keyrings for us to find. 795 */ 796 if (node->back_pointer) { 797 kdebug("ascend %d", slot); 798 goto ascend_to_node; 799 } 800 801 /* The keyring we're looking at was disqualified or didn't contain a 802 * matching key. 803 */ 804 not_this_keyring: 805 kdebug("not_this_keyring %d", sp); 806 if (sp <= 0) { 807 kleave(" = false"); 808 return false; 809 } 810 811 /* Resume the processing of a keyring higher up in the tree */ 812 sp--; 813 keyring = stack[sp].keyring; 814 node = stack[sp].node; 815 slot = stack[sp].slot + 1; 816 kdebug("ascend to %d [%d]", keyring->serial, slot); 817 goto ascend_to_node; 818 819 /* We found a viable match */ 820 found: 821 key = key_ref_to_ptr(ctx->result); 822 key_check(key); 823 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 824 key->last_used_at = ctx->now; 825 keyring->last_used_at = ctx->now; 826 while (sp > 0) 827 stack[--sp].keyring->last_used_at = ctx->now; 828 } 829 kleave(" = true"); 830 return true; 831 } 832 833 /** 834 * keyring_search_rcu - Search a keyring tree for a matching key under RCU 835 * @keyring_ref: A pointer to the keyring with possession indicator. 836 * @ctx: The keyring search context. 837 * 838 * Search the supplied keyring tree for a key that matches the criteria given. 839 * The root keyring and any linked keyrings must grant Search permission to the 840 * caller to be searchable and keys can only be found if they too grant Search 841 * to the caller. The possession flag on the root keyring pointer controls use 842 * of the possessor bits in permissions checking of the entire tree. In 843 * addition, the LSM gets to forbid keyring searches and key matches. 844 * 845 * The search is performed as a breadth-then-depth search up to the prescribed 846 * limit (KEYRING_SEARCH_MAX_DEPTH). The caller must hold the RCU read lock to 847 * prevent keyrings from being destroyed or rearranged whilst they are being 848 * searched. 849 * 850 * Keys are matched to the type provided and are then filtered by the match 851 * function, which is given the description to use in any way it sees fit. The 852 * match function may use any attributes of a key that it wishes to to 853 * determine the match. Normally the match function from the key type would be 854 * used. 855 * 856 * RCU can be used to prevent the keyring key lists from disappearing without 857 * the need to take lots of locks. 858 * 859 * Returns a pointer to the found key and increments the key usage count if 860 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 861 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 862 * specified keyring wasn't a keyring. 863 * 864 * In the case of a successful return, the possession attribute from 865 * @keyring_ref is propagated to the returned key reference. 866 */ 867 key_ref_t keyring_search_rcu(key_ref_t keyring_ref, 868 struct keyring_search_context *ctx) 869 { 870 struct key *keyring; 871 long err; 872 873 ctx->iterator = keyring_search_iterator; 874 ctx->possessed = is_key_possessed(keyring_ref); 875 ctx->result = ERR_PTR(-EAGAIN); 876 877 keyring = key_ref_to_ptr(keyring_ref); 878 key_check(keyring); 879 880 if (keyring->type != &key_type_keyring) 881 return ERR_PTR(-ENOTDIR); 882 883 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 884 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 885 if (err < 0) 886 return ERR_PTR(err); 887 } 888 889 ctx->now = ktime_get_real_seconds(); 890 if (search_nested_keyrings(keyring, ctx)) 891 __key_get(key_ref_to_ptr(ctx->result)); 892 return ctx->result; 893 } 894 895 /** 896 * keyring_search - Search the supplied keyring tree for a matching key 897 * @keyring: The root of the keyring tree to be searched. 898 * @type: The type of keyring we want to find. 899 * @description: The name of the keyring we want to find. 900 * 901 * As keyring_search_rcu() above, but using the current task's credentials and 902 * type's default matching function and preferred search method. 903 */ 904 key_ref_t keyring_search(key_ref_t keyring, 905 struct key_type *type, 906 const char *description) 907 { 908 struct keyring_search_context ctx = { 909 .index_key.type = type, 910 .index_key.description = description, 911 .index_key.desc_len = strlen(description), 912 .cred = current_cred(), 913 .match_data.cmp = key_default_cmp, 914 .match_data.raw_data = description, 915 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 916 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 917 }; 918 key_ref_t key; 919 int ret; 920 921 if (type->match_preparse) { 922 ret = type->match_preparse(&ctx.match_data); 923 if (ret < 0) 924 return ERR_PTR(ret); 925 } 926 927 rcu_read_lock(); 928 key = keyring_search_rcu(keyring, &ctx); 929 rcu_read_unlock(); 930 931 if (type->match_free) 932 type->match_free(&ctx.match_data); 933 return key; 934 } 935 EXPORT_SYMBOL(keyring_search); 936 937 static struct key_restriction *keyring_restriction_alloc( 938 key_restrict_link_func_t check) 939 { 940 struct key_restriction *keyres = 941 kzalloc(sizeof(struct key_restriction), GFP_KERNEL); 942 943 if (!keyres) 944 return ERR_PTR(-ENOMEM); 945 946 keyres->check = check; 947 948 return keyres; 949 } 950 951 /* 952 * Semaphore to serialise restriction setup to prevent reference count 953 * cycles through restriction key pointers. 954 */ 955 static DECLARE_RWSEM(keyring_serialise_restrict_sem); 956 957 /* 958 * Check for restriction cycles that would prevent keyring garbage collection. 959 * keyring_serialise_restrict_sem must be held. 960 */ 961 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, 962 struct key_restriction *keyres) 963 { 964 while (keyres && keyres->key && 965 keyres->key->type == &key_type_keyring) { 966 if (keyres->key == dest_keyring) 967 return true; 968 969 keyres = keyres->key->restrict_link; 970 } 971 972 return false; 973 } 974 975 /** 976 * keyring_restrict - Look up and apply a restriction to a keyring 977 * @keyring_ref: The keyring to be restricted 978 * @type: The key type that will provide the restriction checker. 979 * @restriction: The restriction options to apply to the keyring 980 * 981 * Look up a keyring and apply a restriction to it. The restriction is managed 982 * by the specific key type, but can be configured by the options specified in 983 * the restriction string. 984 */ 985 int keyring_restrict(key_ref_t keyring_ref, const char *type, 986 const char *restriction) 987 { 988 struct key *keyring; 989 struct key_type *restrict_type = NULL; 990 struct key_restriction *restrict_link; 991 int ret = 0; 992 993 keyring = key_ref_to_ptr(keyring_ref); 994 key_check(keyring); 995 996 if (keyring->type != &key_type_keyring) 997 return -ENOTDIR; 998 999 if (!type) { 1000 restrict_link = keyring_restriction_alloc(restrict_link_reject); 1001 } else { 1002 restrict_type = key_type_lookup(type); 1003 1004 if (IS_ERR(restrict_type)) 1005 return PTR_ERR(restrict_type); 1006 1007 if (!restrict_type->lookup_restriction) { 1008 ret = -ENOENT; 1009 goto error; 1010 } 1011 1012 restrict_link = restrict_type->lookup_restriction(restriction); 1013 } 1014 1015 if (IS_ERR(restrict_link)) { 1016 ret = PTR_ERR(restrict_link); 1017 goto error; 1018 } 1019 1020 down_write(&keyring->sem); 1021 down_write(&keyring_serialise_restrict_sem); 1022 1023 if (keyring->restrict_link) 1024 ret = -EEXIST; 1025 else if (keyring_detect_restriction_cycle(keyring, restrict_link)) 1026 ret = -EDEADLK; 1027 else 1028 keyring->restrict_link = restrict_link; 1029 1030 up_write(&keyring_serialise_restrict_sem); 1031 up_write(&keyring->sem); 1032 1033 if (ret < 0) { 1034 key_put(restrict_link->key); 1035 kfree(restrict_link); 1036 } 1037 1038 error: 1039 if (restrict_type) 1040 key_type_put(restrict_type); 1041 1042 return ret; 1043 } 1044 EXPORT_SYMBOL(keyring_restrict); 1045 1046 /* 1047 * Search the given keyring for a key that might be updated. 1048 * 1049 * The caller must guarantee that the keyring is a keyring and that the 1050 * permission is granted to modify the keyring as no check is made here. The 1051 * caller must also hold a lock on the keyring semaphore. 1052 * 1053 * Returns a pointer to the found key with usage count incremented if 1054 * successful and returns NULL if not found. Revoked and invalidated keys are 1055 * skipped over. 1056 * 1057 * If successful, the possession indicator is propagated from the keyring ref 1058 * to the returned key reference. 1059 */ 1060 key_ref_t find_key_to_update(key_ref_t keyring_ref, 1061 const struct keyring_index_key *index_key) 1062 { 1063 struct key *keyring, *key; 1064 const void *object; 1065 1066 keyring = key_ref_to_ptr(keyring_ref); 1067 1068 kenter("{%d},{%s,%s}", 1069 keyring->serial, index_key->type->name, index_key->description); 1070 1071 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 1072 index_key); 1073 1074 if (object) 1075 goto found; 1076 1077 kleave(" = NULL"); 1078 return NULL; 1079 1080 found: 1081 key = keyring_ptr_to_key(object); 1082 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 1083 (1 << KEY_FLAG_REVOKED))) { 1084 kleave(" = NULL [x]"); 1085 return NULL; 1086 } 1087 __key_get(key); 1088 kleave(" = {%d}", key->serial); 1089 return make_key_ref(key, is_key_possessed(keyring_ref)); 1090 } 1091 1092 /* 1093 * Find a keyring with the specified name. 1094 * 1095 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a 1096 * user in the current user namespace are considered. If @uid_keyring is %true, 1097 * the keyring additionally must have been allocated as a user or user session 1098 * keyring; otherwise, it must grant Search permission directly to the caller. 1099 * 1100 * Returns a pointer to the keyring with the keyring's refcount having being 1101 * incremented on success. -ENOKEY is returned if a key could not be found. 1102 */ 1103 struct key *find_keyring_by_name(const char *name, bool uid_keyring) 1104 { 1105 struct key *keyring; 1106 int bucket; 1107 1108 if (!name) 1109 return ERR_PTR(-EINVAL); 1110 1111 bucket = keyring_hash(name); 1112 1113 read_lock(&keyring_name_lock); 1114 1115 if (keyring_name_hash[bucket].next) { 1116 /* search this hash bucket for a keyring with a matching name 1117 * that's readable and that hasn't been revoked */ 1118 list_for_each_entry(keyring, 1119 &keyring_name_hash[bucket], 1120 name_link 1121 ) { 1122 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 1123 continue; 1124 1125 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1126 continue; 1127 1128 if (strcmp(keyring->description, name) != 0) 1129 continue; 1130 1131 if (uid_keyring) { 1132 if (!test_bit(KEY_FLAG_UID_KEYRING, 1133 &keyring->flags)) 1134 continue; 1135 } else { 1136 if (key_permission(make_key_ref(keyring, 0), 1137 KEY_NEED_SEARCH) < 0) 1138 continue; 1139 } 1140 1141 /* we've got a match but we might end up racing with 1142 * key_cleanup() if the keyring is currently 'dead' 1143 * (ie. it has a zero usage count) */ 1144 if (!refcount_inc_not_zero(&keyring->usage)) 1145 continue; 1146 keyring->last_used_at = ktime_get_real_seconds(); 1147 goto out; 1148 } 1149 } 1150 1151 keyring = ERR_PTR(-ENOKEY); 1152 out: 1153 read_unlock(&keyring_name_lock); 1154 return keyring; 1155 } 1156 1157 static int keyring_detect_cycle_iterator(const void *object, 1158 void *iterator_data) 1159 { 1160 struct keyring_search_context *ctx = iterator_data; 1161 const struct key *key = keyring_ptr_to_key(object); 1162 1163 kenter("{%d}", key->serial); 1164 1165 /* We might get a keyring with matching index-key that is nonetheless a 1166 * different keyring. */ 1167 if (key != ctx->match_data.raw_data) 1168 return 0; 1169 1170 ctx->result = ERR_PTR(-EDEADLK); 1171 return 1; 1172 } 1173 1174 /* 1175 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1176 * tree A at the topmost level (ie: as a direct child of A). 1177 * 1178 * Since we are adding B to A at the top level, checking for cycles should just 1179 * be a matter of seeing if node A is somewhere in tree B. 1180 */ 1181 static int keyring_detect_cycle(struct key *A, struct key *B) 1182 { 1183 struct keyring_search_context ctx = { 1184 .index_key = A->index_key, 1185 .match_data.raw_data = A, 1186 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1187 .iterator = keyring_detect_cycle_iterator, 1188 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1189 KEYRING_SEARCH_NO_UPDATE_TIME | 1190 KEYRING_SEARCH_NO_CHECK_PERM | 1191 KEYRING_SEARCH_DETECT_TOO_DEEP), 1192 }; 1193 1194 rcu_read_lock(); 1195 search_nested_keyrings(B, &ctx); 1196 rcu_read_unlock(); 1197 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1198 } 1199 1200 /* 1201 * Lock keyring for link. 1202 */ 1203 int __key_link_lock(struct key *keyring, 1204 const struct keyring_index_key *index_key) 1205 __acquires(&keyring->sem) 1206 __acquires(&keyring_serialise_link_lock) 1207 { 1208 if (keyring->type != &key_type_keyring) 1209 return -ENOTDIR; 1210 1211 down_write(&keyring->sem); 1212 1213 /* Serialise link/link calls to prevent parallel calls causing a cycle 1214 * when linking two keyring in opposite orders. 1215 */ 1216 if (index_key->type == &key_type_keyring) 1217 mutex_lock(&keyring_serialise_link_lock); 1218 1219 return 0; 1220 } 1221 1222 /* 1223 * Lock keyrings for move (link/unlink combination). 1224 */ 1225 int __key_move_lock(struct key *l_keyring, struct key *u_keyring, 1226 const struct keyring_index_key *index_key) 1227 __acquires(&l_keyring->sem) 1228 __acquires(&u_keyring->sem) 1229 __acquires(&keyring_serialise_link_lock) 1230 { 1231 if (l_keyring->type != &key_type_keyring || 1232 u_keyring->type != &key_type_keyring) 1233 return -ENOTDIR; 1234 1235 /* We have to be very careful here to take the keyring locks in the 1236 * right order, lest we open ourselves to deadlocking against another 1237 * move operation. 1238 */ 1239 if (l_keyring < u_keyring) { 1240 down_write(&l_keyring->sem); 1241 down_write_nested(&u_keyring->sem, 1); 1242 } else { 1243 down_write(&u_keyring->sem); 1244 down_write_nested(&l_keyring->sem, 1); 1245 } 1246 1247 /* Serialise link/link calls to prevent parallel calls causing a cycle 1248 * when linking two keyring in opposite orders. 1249 */ 1250 if (index_key->type == &key_type_keyring) 1251 mutex_lock(&keyring_serialise_link_lock); 1252 1253 return 0; 1254 } 1255 1256 /* 1257 * Preallocate memory so that a key can be linked into to a keyring. 1258 */ 1259 int __key_link_begin(struct key *keyring, 1260 const struct keyring_index_key *index_key, 1261 struct assoc_array_edit **_edit) 1262 { 1263 struct assoc_array_edit *edit; 1264 int ret; 1265 1266 kenter("%d,%s,%s,", 1267 keyring->serial, index_key->type->name, index_key->description); 1268 1269 BUG_ON(index_key->desc_len == 0); 1270 BUG_ON(*_edit != NULL); 1271 1272 *_edit = NULL; 1273 1274 ret = -EKEYREVOKED; 1275 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1276 goto error; 1277 1278 /* Create an edit script that will insert/replace the key in the 1279 * keyring tree. 1280 */ 1281 edit = assoc_array_insert(&keyring->keys, 1282 &keyring_assoc_array_ops, 1283 index_key, 1284 NULL); 1285 if (IS_ERR(edit)) { 1286 ret = PTR_ERR(edit); 1287 goto error; 1288 } 1289 1290 /* If we're not replacing a link in-place then we're going to need some 1291 * extra quota. 1292 */ 1293 if (!edit->dead_leaf) { 1294 ret = key_payload_reserve(keyring, 1295 keyring->datalen + KEYQUOTA_LINK_BYTES); 1296 if (ret < 0) 1297 goto error_cancel; 1298 } 1299 1300 *_edit = edit; 1301 kleave(" = 0"); 1302 return 0; 1303 1304 error_cancel: 1305 assoc_array_cancel_edit(edit); 1306 error: 1307 kleave(" = %d", ret); 1308 return ret; 1309 } 1310 1311 /* 1312 * Check already instantiated keys aren't going to be a problem. 1313 * 1314 * The caller must have called __key_link_begin(). Don't need to call this for 1315 * keys that were created since __key_link_begin() was called. 1316 */ 1317 int __key_link_check_live_key(struct key *keyring, struct key *key) 1318 { 1319 if (key->type == &key_type_keyring) 1320 /* check that we aren't going to create a cycle by linking one 1321 * keyring to another */ 1322 return keyring_detect_cycle(keyring, key); 1323 return 0; 1324 } 1325 1326 /* 1327 * Link a key into to a keyring. 1328 * 1329 * Must be called with __key_link_begin() having being called. Discards any 1330 * already extant link to matching key if there is one, so that each keyring 1331 * holds at most one link to any given key of a particular type+description 1332 * combination. 1333 */ 1334 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1335 { 1336 __key_get(key); 1337 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1338 assoc_array_apply_edit(*_edit); 1339 *_edit = NULL; 1340 } 1341 1342 /* 1343 * Finish linking a key into to a keyring. 1344 * 1345 * Must be called with __key_link_begin() having being called. 1346 */ 1347 void __key_link_end(struct key *keyring, 1348 const struct keyring_index_key *index_key, 1349 struct assoc_array_edit *edit) 1350 __releases(&keyring->sem) 1351 __releases(&keyring_serialise_link_lock) 1352 { 1353 BUG_ON(index_key->type == NULL); 1354 kenter("%d,%s,", keyring->serial, index_key->type->name); 1355 1356 if (edit) { 1357 if (!edit->dead_leaf) { 1358 key_payload_reserve(keyring, 1359 keyring->datalen - KEYQUOTA_LINK_BYTES); 1360 } 1361 assoc_array_cancel_edit(edit); 1362 } 1363 up_write(&keyring->sem); 1364 1365 if (index_key->type == &key_type_keyring) 1366 mutex_unlock(&keyring_serialise_link_lock); 1367 } 1368 1369 /* 1370 * Check addition of keys to restricted keyrings. 1371 */ 1372 static int __key_link_check_restriction(struct key *keyring, struct key *key) 1373 { 1374 if (!keyring->restrict_link || !keyring->restrict_link->check) 1375 return 0; 1376 return keyring->restrict_link->check(keyring, key->type, &key->payload, 1377 keyring->restrict_link->key); 1378 } 1379 1380 /** 1381 * key_link - Link a key to a keyring 1382 * @keyring: The keyring to make the link in. 1383 * @key: The key to link to. 1384 * 1385 * Make a link in a keyring to a key, such that the keyring holds a reference 1386 * on that key and the key can potentially be found by searching that keyring. 1387 * 1388 * This function will write-lock the keyring's semaphore and will consume some 1389 * of the user's key data quota to hold the link. 1390 * 1391 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1392 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1393 * full, -EDQUOT if there is insufficient key data quota remaining to add 1394 * another link or -ENOMEM if there's insufficient memory. 1395 * 1396 * It is assumed that the caller has checked that it is permitted for a link to 1397 * be made (the keyring should have Write permission and the key Link 1398 * permission). 1399 */ 1400 int key_link(struct key *keyring, struct key *key) 1401 { 1402 struct assoc_array_edit *edit = NULL; 1403 int ret; 1404 1405 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1406 1407 key_check(keyring); 1408 key_check(key); 1409 1410 ret = __key_link_lock(keyring, &key->index_key); 1411 if (ret < 0) 1412 goto error; 1413 1414 ret = __key_link_begin(keyring, &key->index_key, &edit); 1415 if (ret < 0) 1416 goto error_end; 1417 1418 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1419 ret = __key_link_check_restriction(keyring, key); 1420 if (ret == 0) 1421 ret = __key_link_check_live_key(keyring, key); 1422 if (ret == 0) 1423 __key_link(key, &edit); 1424 1425 error_end: 1426 __key_link_end(keyring, &key->index_key, edit); 1427 error: 1428 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); 1429 return ret; 1430 } 1431 EXPORT_SYMBOL(key_link); 1432 1433 /* 1434 * Lock a keyring for unlink. 1435 */ 1436 static int __key_unlink_lock(struct key *keyring) 1437 __acquires(&keyring->sem) 1438 { 1439 if (keyring->type != &key_type_keyring) 1440 return -ENOTDIR; 1441 1442 down_write(&keyring->sem); 1443 return 0; 1444 } 1445 1446 /* 1447 * Begin the process of unlinking a key from a keyring. 1448 */ 1449 static int __key_unlink_begin(struct key *keyring, struct key *key, 1450 struct assoc_array_edit **_edit) 1451 { 1452 struct assoc_array_edit *edit; 1453 1454 BUG_ON(*_edit != NULL); 1455 1456 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1457 &key->index_key); 1458 if (IS_ERR(edit)) 1459 return PTR_ERR(edit); 1460 1461 if (!edit) 1462 return -ENOENT; 1463 1464 *_edit = edit; 1465 return 0; 1466 } 1467 1468 /* 1469 * Apply an unlink change. 1470 */ 1471 static void __key_unlink(struct key *keyring, struct key *key, 1472 struct assoc_array_edit **_edit) 1473 { 1474 assoc_array_apply_edit(*_edit); 1475 *_edit = NULL; 1476 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1477 } 1478 1479 /* 1480 * Finish unlinking a key from to a keyring. 1481 */ 1482 static void __key_unlink_end(struct key *keyring, 1483 struct key *key, 1484 struct assoc_array_edit *edit) 1485 __releases(&keyring->sem) 1486 { 1487 if (edit) 1488 assoc_array_cancel_edit(edit); 1489 up_write(&keyring->sem); 1490 } 1491 1492 /** 1493 * key_unlink - Unlink the first link to a key from a keyring. 1494 * @keyring: The keyring to remove the link from. 1495 * @key: The key the link is to. 1496 * 1497 * Remove a link from a keyring to a key. 1498 * 1499 * This function will write-lock the keyring's semaphore. 1500 * 1501 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1502 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1503 * memory. 1504 * 1505 * It is assumed that the caller has checked that it is permitted for a link to 1506 * be removed (the keyring should have Write permission; no permissions are 1507 * required on the key). 1508 */ 1509 int key_unlink(struct key *keyring, struct key *key) 1510 { 1511 struct assoc_array_edit *edit = NULL; 1512 int ret; 1513 1514 key_check(keyring); 1515 key_check(key); 1516 1517 ret = __key_unlink_lock(keyring); 1518 if (ret < 0) 1519 return ret; 1520 1521 ret = __key_unlink_begin(keyring, key, &edit); 1522 if (ret == 0) 1523 __key_unlink(keyring, key, &edit); 1524 __key_unlink_end(keyring, key, edit); 1525 return ret; 1526 } 1527 EXPORT_SYMBOL(key_unlink); 1528 1529 /** 1530 * key_move - Move a key from one keyring to another 1531 * @key: The key to move 1532 * @from_keyring: The keyring to remove the link from. 1533 * @to_keyring: The keyring to make the link in. 1534 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL. 1535 * 1536 * Make a link in @to_keyring to a key, such that the keyring holds a reference 1537 * on that key and the key can potentially be found by searching that keyring 1538 * whilst simultaneously removing a link to the key from @from_keyring. 1539 * 1540 * This function will write-lock both keyring's semaphores and will consume 1541 * some of the user's key data quota to hold the link on @to_keyring. 1542 * 1543 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring, 1544 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second 1545 * keyring is full, -EDQUOT if there is insufficient key data quota remaining 1546 * to add another link or -ENOMEM if there's insufficient memory. If 1547 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a 1548 * matching key in @to_keyring. 1549 * 1550 * It is assumed that the caller has checked that it is permitted for a link to 1551 * be made (the keyring should have Write permission and the key Link 1552 * permission). 1553 */ 1554 int key_move(struct key *key, 1555 struct key *from_keyring, 1556 struct key *to_keyring, 1557 unsigned int flags) 1558 { 1559 struct assoc_array_edit *from_edit = NULL, *to_edit = NULL; 1560 int ret; 1561 1562 kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial); 1563 1564 if (from_keyring == to_keyring) 1565 return 0; 1566 1567 key_check(key); 1568 key_check(from_keyring); 1569 key_check(to_keyring); 1570 1571 ret = __key_move_lock(from_keyring, to_keyring, &key->index_key); 1572 if (ret < 0) 1573 goto out; 1574 ret = __key_unlink_begin(from_keyring, key, &from_edit); 1575 if (ret < 0) 1576 goto error; 1577 ret = __key_link_begin(to_keyring, &key->index_key, &to_edit); 1578 if (ret < 0) 1579 goto error; 1580 1581 ret = -EEXIST; 1582 if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL)) 1583 goto error; 1584 1585 ret = __key_link_check_restriction(to_keyring, key); 1586 if (ret < 0) 1587 goto error; 1588 ret = __key_link_check_live_key(to_keyring, key); 1589 if (ret < 0) 1590 goto error; 1591 1592 __key_unlink(from_keyring, key, &from_edit); 1593 __key_link(key, &to_edit); 1594 error: 1595 __key_link_end(to_keyring, &key->index_key, to_edit); 1596 __key_unlink_end(from_keyring, key, from_edit); 1597 out: 1598 kleave(" = %d", ret); 1599 return ret; 1600 } 1601 EXPORT_SYMBOL(key_move); 1602 1603 /** 1604 * keyring_clear - Clear a keyring 1605 * @keyring: The keyring to clear. 1606 * 1607 * Clear the contents of the specified keyring. 1608 * 1609 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1610 */ 1611 int keyring_clear(struct key *keyring) 1612 { 1613 struct assoc_array_edit *edit; 1614 int ret; 1615 1616 if (keyring->type != &key_type_keyring) 1617 return -ENOTDIR; 1618 1619 down_write(&keyring->sem); 1620 1621 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1622 if (IS_ERR(edit)) { 1623 ret = PTR_ERR(edit); 1624 } else { 1625 if (edit) 1626 assoc_array_apply_edit(edit); 1627 key_payload_reserve(keyring, 0); 1628 ret = 0; 1629 } 1630 1631 up_write(&keyring->sem); 1632 return ret; 1633 } 1634 EXPORT_SYMBOL(keyring_clear); 1635 1636 /* 1637 * Dispose of the links from a revoked keyring. 1638 * 1639 * This is called with the key sem write-locked. 1640 */ 1641 static void keyring_revoke(struct key *keyring) 1642 { 1643 struct assoc_array_edit *edit; 1644 1645 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1646 if (!IS_ERR(edit)) { 1647 if (edit) 1648 assoc_array_apply_edit(edit); 1649 key_payload_reserve(keyring, 0); 1650 } 1651 } 1652 1653 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1654 { 1655 struct key *key = keyring_ptr_to_key(object); 1656 time64_t *limit = iterator_data; 1657 1658 if (key_is_dead(key, *limit)) 1659 return false; 1660 key_get(key); 1661 return true; 1662 } 1663 1664 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1665 { 1666 const struct key *key = keyring_ptr_to_key(object); 1667 time64_t *limit = iterator_data; 1668 1669 key_check(key); 1670 return key_is_dead(key, *limit); 1671 } 1672 1673 /* 1674 * Garbage collect pointers from a keyring. 1675 * 1676 * Not called with any locks held. The keyring's key struct will not be 1677 * deallocated under us as only our caller may deallocate it. 1678 */ 1679 void keyring_gc(struct key *keyring, time64_t limit) 1680 { 1681 int result; 1682 1683 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1684 1685 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1686 (1 << KEY_FLAG_REVOKED))) 1687 goto dont_gc; 1688 1689 /* scan the keyring looking for dead keys */ 1690 rcu_read_lock(); 1691 result = assoc_array_iterate(&keyring->keys, 1692 keyring_gc_check_iterator, &limit); 1693 rcu_read_unlock(); 1694 if (result == true) 1695 goto do_gc; 1696 1697 dont_gc: 1698 kleave(" [no gc]"); 1699 return; 1700 1701 do_gc: 1702 down_write(&keyring->sem); 1703 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1704 keyring_gc_select_iterator, &limit); 1705 up_write(&keyring->sem); 1706 kleave(" [gc]"); 1707 } 1708 1709 /* 1710 * Garbage collect restriction pointers from a keyring. 1711 * 1712 * Keyring restrictions are associated with a key type, and must be cleaned 1713 * up if the key type is unregistered. The restriction is altered to always 1714 * reject additional keys so a keyring cannot be opened up by unregistering 1715 * a key type. 1716 * 1717 * Not called with any keyring locks held. The keyring's key struct will not 1718 * be deallocated under us as only our caller may deallocate it. 1719 * 1720 * The caller is required to hold key_types_sem and dead_type->sem. This is 1721 * fulfilled by key_gc_keytype() holding the locks on behalf of 1722 * key_garbage_collector(), which it invokes on a workqueue. 1723 */ 1724 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) 1725 { 1726 struct key_restriction *keyres; 1727 1728 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1729 1730 /* 1731 * keyring->restrict_link is only assigned at key allocation time 1732 * or with the key type locked, so the only values that could be 1733 * concurrently assigned to keyring->restrict_link are for key 1734 * types other than dead_type. Given this, it's ok to check 1735 * the key type before acquiring keyring->sem. 1736 */ 1737 if (!dead_type || !keyring->restrict_link || 1738 keyring->restrict_link->keytype != dead_type) { 1739 kleave(" [no restriction gc]"); 1740 return; 1741 } 1742 1743 /* Lock the keyring to ensure that a link is not in progress */ 1744 down_write(&keyring->sem); 1745 1746 keyres = keyring->restrict_link; 1747 1748 keyres->check = restrict_link_reject; 1749 1750 key_put(keyres->key); 1751 keyres->key = NULL; 1752 keyres->keytype = NULL; 1753 1754 up_write(&keyring->sem); 1755 1756 kleave(" [restriction gc]"); 1757 } 1758