xref: /linux/security/keys/keyring.c (revision aeca4e2ca65c1aeacfbe520684e6421719d99417)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 		/* fall through */
250 	default:
251 		offset += sizeof(chunk) - 1;
252 		offset += (level - 3) * sizeof(chunk);
253 		if (offset >= desc_len)
254 			return 0;
255 		desc_len -= offset;
256 		if (desc_len > n)
257 			desc_len = n;
258 		offset += desc_len;
259 		do {
260 			chunk <<= 8;
261 			chunk |= ((u8*)index_key->description)[--offset];
262 		} while (--desc_len > 0);
263 
264 		if (level == 2) {
265 			chunk <<= 8;
266 			chunk |= (u8)((unsigned long)index_key->type >>
267 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
268 		}
269 		return chunk;
270 	}
271 }
272 
273 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
274 {
275 	const struct key *key = keyring_ptr_to_key(object);
276 	return keyring_get_key_chunk(&key->index_key, level);
277 }
278 
279 static bool keyring_compare_object(const void *object, const void *data)
280 {
281 	const struct keyring_index_key *index_key = data;
282 	const struct key *key = keyring_ptr_to_key(object);
283 
284 	return key->index_key.type == index_key->type &&
285 		key->index_key.desc_len == index_key->desc_len &&
286 		memcmp(key->index_key.description, index_key->description,
287 		       index_key->desc_len) == 0;
288 }
289 
290 /*
291  * Compare the index keys of a pair of objects and determine the bit position
292  * at which they differ - if they differ.
293  */
294 static int keyring_diff_objects(const void *object, const void *data)
295 {
296 	const struct key *key_a = keyring_ptr_to_key(object);
297 	const struct keyring_index_key *a = &key_a->index_key;
298 	const struct keyring_index_key *b = data;
299 	unsigned long seg_a, seg_b;
300 	int level, i;
301 
302 	level = 0;
303 	seg_a = hash_key_type_and_desc(a);
304 	seg_b = hash_key_type_and_desc(b);
305 	if ((seg_a ^ seg_b) != 0)
306 		goto differ;
307 
308 	/* The number of bits contributed by the hash is controlled by a
309 	 * constant in the assoc_array headers.  Everything else thereafter we
310 	 * can deal with as being machine word-size dependent.
311 	 */
312 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
313 	seg_a = a->desc_len;
314 	seg_b = b->desc_len;
315 	if ((seg_a ^ seg_b) != 0)
316 		goto differ;
317 
318 	/* The next bit may not work on big endian */
319 	level++;
320 	seg_a = (unsigned long)a->type;
321 	seg_b = (unsigned long)b->type;
322 	if ((seg_a ^ seg_b) != 0)
323 		goto differ;
324 
325 	level += sizeof(unsigned long);
326 	if (a->desc_len == 0)
327 		goto same;
328 
329 	i = 0;
330 	if (((unsigned long)a->description | (unsigned long)b->description) &
331 	    (sizeof(unsigned long) - 1)) {
332 		do {
333 			seg_a = *(unsigned long *)(a->description + i);
334 			seg_b = *(unsigned long *)(b->description + i);
335 			if ((seg_a ^ seg_b) != 0)
336 				goto differ_plus_i;
337 			i += sizeof(unsigned long);
338 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
339 	}
340 
341 	for (; i < a->desc_len; i++) {
342 		seg_a = *(unsigned char *)(a->description + i);
343 		seg_b = *(unsigned char *)(b->description + i);
344 		if ((seg_a ^ seg_b) != 0)
345 			goto differ_plus_i;
346 	}
347 
348 same:
349 	return -1;
350 
351 differ_plus_i:
352 	level += i;
353 differ:
354 	i = level * 8 + __ffs(seg_a ^ seg_b);
355 	return i;
356 }
357 
358 /*
359  * Free an object after stripping the keyring flag off of the pointer.
360  */
361 static void keyring_free_object(void *object)
362 {
363 	key_put(keyring_ptr_to_key(object));
364 }
365 
366 /*
367  * Operations for keyring management by the index-tree routines.
368  */
369 static const struct assoc_array_ops keyring_assoc_array_ops = {
370 	.get_key_chunk		= keyring_get_key_chunk,
371 	.get_object_key_chunk	= keyring_get_object_key_chunk,
372 	.compare_object		= keyring_compare_object,
373 	.diff_objects		= keyring_diff_objects,
374 	.free_object		= keyring_free_object,
375 };
376 
377 /*
378  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
379  * and dispose of its data.
380  *
381  * The garbage collector detects the final key_put(), removes the keyring from
382  * the serial number tree and then does RCU synchronisation before coming here,
383  * so we shouldn't need to worry about code poking around here with the RCU
384  * readlock held by this time.
385  */
386 static void keyring_destroy(struct key *keyring)
387 {
388 	if (keyring->description) {
389 		write_lock(&keyring_name_lock);
390 
391 		if (keyring->name_link.next != NULL &&
392 		    !list_empty(&keyring->name_link))
393 			list_del(&keyring->name_link);
394 
395 		write_unlock(&keyring_name_lock);
396 	}
397 
398 	if (keyring->restrict_link) {
399 		struct key_restriction *keyres = keyring->restrict_link;
400 
401 		key_put(keyres->key);
402 		kfree(keyres);
403 	}
404 
405 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
406 }
407 
408 /*
409  * Describe a keyring for /proc.
410  */
411 static void keyring_describe(const struct key *keyring, struct seq_file *m)
412 {
413 	if (keyring->description)
414 		seq_puts(m, keyring->description);
415 	else
416 		seq_puts(m, "[anon]");
417 
418 	if (key_is_positive(keyring)) {
419 		if (keyring->keys.nr_leaves_on_tree != 0)
420 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
421 		else
422 			seq_puts(m, ": empty");
423 	}
424 }
425 
426 struct keyring_read_iterator_context {
427 	size_t			buflen;
428 	size_t			count;
429 	key_serial_t __user	*buffer;
430 };
431 
432 static int keyring_read_iterator(const void *object, void *data)
433 {
434 	struct keyring_read_iterator_context *ctx = data;
435 	const struct key *key = keyring_ptr_to_key(object);
436 	int ret;
437 
438 	kenter("{%s,%d},,{%zu/%zu}",
439 	       key->type->name, key->serial, ctx->count, ctx->buflen);
440 
441 	if (ctx->count >= ctx->buflen)
442 		return 1;
443 
444 	ret = put_user(key->serial, ctx->buffer);
445 	if (ret < 0)
446 		return ret;
447 	ctx->buffer++;
448 	ctx->count += sizeof(key->serial);
449 	return 0;
450 }
451 
452 /*
453  * Read a list of key IDs from the keyring's contents in binary form
454  *
455  * The keyring's semaphore is read-locked by the caller.  This prevents someone
456  * from modifying it under us - which could cause us to read key IDs multiple
457  * times.
458  */
459 static long keyring_read(const struct key *keyring,
460 			 char __user *buffer, size_t buflen)
461 {
462 	struct keyring_read_iterator_context ctx;
463 	long ret;
464 
465 	kenter("{%d},,%zu", key_serial(keyring), buflen);
466 
467 	if (buflen & (sizeof(key_serial_t) - 1))
468 		return -EINVAL;
469 
470 	/* Copy as many key IDs as fit into the buffer */
471 	if (buffer && buflen) {
472 		ctx.buffer = (key_serial_t __user *)buffer;
473 		ctx.buflen = buflen;
474 		ctx.count = 0;
475 		ret = assoc_array_iterate(&keyring->keys,
476 					  keyring_read_iterator, &ctx);
477 		if (ret < 0) {
478 			kleave(" = %ld [iterate]", ret);
479 			return ret;
480 		}
481 	}
482 
483 	/* Return the size of the buffer needed */
484 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
485 	if (ret <= buflen)
486 		kleave("= %ld [ok]", ret);
487 	else
488 		kleave("= %ld [buffer too small]", ret);
489 	return ret;
490 }
491 
492 /*
493  * Allocate a keyring and link into the destination keyring.
494  */
495 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
496 			  const struct cred *cred, key_perm_t perm,
497 			  unsigned long flags,
498 			  struct key_restriction *restrict_link,
499 			  struct key *dest)
500 {
501 	struct key *keyring;
502 	int ret;
503 
504 	keyring = key_alloc(&key_type_keyring, description,
505 			    uid, gid, cred, perm, flags, restrict_link);
506 	if (!IS_ERR(keyring)) {
507 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
508 		if (ret < 0) {
509 			key_put(keyring);
510 			keyring = ERR_PTR(ret);
511 		}
512 	}
513 
514 	return keyring;
515 }
516 EXPORT_SYMBOL(keyring_alloc);
517 
518 /**
519  * restrict_link_reject - Give -EPERM to restrict link
520  * @keyring: The keyring being added to.
521  * @type: The type of key being added.
522  * @payload: The payload of the key intended to be added.
523  * @data: Additional data for evaluating restriction.
524  *
525  * Reject the addition of any links to a keyring.  It can be overridden by
526  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
527  * adding a key to a keyring.
528  *
529  * This is meant to be stored in a key_restriction structure which is passed
530  * in the restrict_link parameter to keyring_alloc().
531  */
532 int restrict_link_reject(struct key *keyring,
533 			 const struct key_type *type,
534 			 const union key_payload *payload,
535 			 struct key *restriction_key)
536 {
537 	return -EPERM;
538 }
539 
540 /*
541  * By default, we keys found by getting an exact match on their descriptions.
542  */
543 bool key_default_cmp(const struct key *key,
544 		     const struct key_match_data *match_data)
545 {
546 	return strcmp(key->description, match_data->raw_data) == 0;
547 }
548 
549 /*
550  * Iteration function to consider each key found.
551  */
552 static int keyring_search_iterator(const void *object, void *iterator_data)
553 {
554 	struct keyring_search_context *ctx = iterator_data;
555 	const struct key *key = keyring_ptr_to_key(object);
556 	unsigned long kflags = READ_ONCE(key->flags);
557 	short state = READ_ONCE(key->state);
558 
559 	kenter("{%d}", key->serial);
560 
561 	/* ignore keys not of this type */
562 	if (key->type != ctx->index_key.type) {
563 		kleave(" = 0 [!type]");
564 		return 0;
565 	}
566 
567 	/* skip invalidated, revoked and expired keys */
568 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
569 		time64_t expiry = READ_ONCE(key->expiry);
570 
571 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
572 			      (1 << KEY_FLAG_REVOKED))) {
573 			ctx->result = ERR_PTR(-EKEYREVOKED);
574 			kleave(" = %d [invrev]", ctx->skipped_ret);
575 			goto skipped;
576 		}
577 
578 		if (expiry && ctx->now >= expiry) {
579 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
580 				ctx->result = ERR_PTR(-EKEYEXPIRED);
581 			kleave(" = %d [expire]", ctx->skipped_ret);
582 			goto skipped;
583 		}
584 	}
585 
586 	/* keys that don't match */
587 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
588 		kleave(" = 0 [!match]");
589 		return 0;
590 	}
591 
592 	/* key must have search permissions */
593 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
594 	    key_task_permission(make_key_ref(key, ctx->possessed),
595 				ctx->cred, KEY_NEED_SEARCH) < 0) {
596 		ctx->result = ERR_PTR(-EACCES);
597 		kleave(" = %d [!perm]", ctx->skipped_ret);
598 		goto skipped;
599 	}
600 
601 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
602 		/* we set a different error code if we pass a negative key */
603 		if (state < 0) {
604 			ctx->result = ERR_PTR(state);
605 			kleave(" = %d [neg]", ctx->skipped_ret);
606 			goto skipped;
607 		}
608 	}
609 
610 	/* Found */
611 	ctx->result = make_key_ref(key, ctx->possessed);
612 	kleave(" = 1 [found]");
613 	return 1;
614 
615 skipped:
616 	return ctx->skipped_ret;
617 }
618 
619 /*
620  * Search inside a keyring for a key.  We can search by walking to it
621  * directly based on its index-key or we can iterate over the entire
622  * tree looking for it, based on the match function.
623  */
624 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
625 {
626 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
627 		const void *object;
628 
629 		object = assoc_array_find(&keyring->keys,
630 					  &keyring_assoc_array_ops,
631 					  &ctx->index_key);
632 		return object ? ctx->iterator(object, ctx) : 0;
633 	}
634 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
635 }
636 
637 /*
638  * Search a tree of keyrings that point to other keyrings up to the maximum
639  * depth.
640  */
641 static bool search_nested_keyrings(struct key *keyring,
642 				   struct keyring_search_context *ctx)
643 {
644 	struct {
645 		struct key *keyring;
646 		struct assoc_array_node *node;
647 		int slot;
648 	} stack[KEYRING_SEARCH_MAX_DEPTH];
649 
650 	struct assoc_array_shortcut *shortcut;
651 	struct assoc_array_node *node;
652 	struct assoc_array_ptr *ptr;
653 	struct key *key;
654 	int sp = 0, slot;
655 
656 	kenter("{%d},{%s,%s}",
657 	       keyring->serial,
658 	       ctx->index_key.type->name,
659 	       ctx->index_key.description);
660 
661 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
662 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
663 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
664 
665 	if (ctx->index_key.description)
666 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
667 
668 	/* Check to see if this top-level keyring is what we are looking for
669 	 * and whether it is valid or not.
670 	 */
671 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
672 	    keyring_compare_object(keyring, &ctx->index_key)) {
673 		ctx->skipped_ret = 2;
674 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
675 		case 1:
676 			goto found;
677 		case 2:
678 			return false;
679 		default:
680 			break;
681 		}
682 	}
683 
684 	ctx->skipped_ret = 0;
685 
686 	/* Start processing a new keyring */
687 descend_to_keyring:
688 	kdebug("descend to %d", keyring->serial);
689 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
690 			      (1 << KEY_FLAG_REVOKED)))
691 		goto not_this_keyring;
692 
693 	/* Search through the keys in this keyring before its searching its
694 	 * subtrees.
695 	 */
696 	if (search_keyring(keyring, ctx))
697 		goto found;
698 
699 	/* Then manually iterate through the keyrings nested in this one.
700 	 *
701 	 * Start from the root node of the index tree.  Because of the way the
702 	 * hash function has been set up, keyrings cluster on the leftmost
703 	 * branch of the root node (root slot 0) or in the root node itself.
704 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
705 	 * slots 1-15).
706 	 */
707 	ptr = READ_ONCE(keyring->keys.root);
708 	if (!ptr)
709 		goto not_this_keyring;
710 
711 	if (assoc_array_ptr_is_shortcut(ptr)) {
712 		/* If the root is a shortcut, either the keyring only contains
713 		 * keyring pointers (everything clusters behind root slot 0) or
714 		 * doesn't contain any keyring pointers.
715 		 */
716 		shortcut = assoc_array_ptr_to_shortcut(ptr);
717 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
718 			goto not_this_keyring;
719 
720 		ptr = READ_ONCE(shortcut->next_node);
721 		node = assoc_array_ptr_to_node(ptr);
722 		goto begin_node;
723 	}
724 
725 	node = assoc_array_ptr_to_node(ptr);
726 	ptr = node->slots[0];
727 	if (!assoc_array_ptr_is_meta(ptr))
728 		goto begin_node;
729 
730 descend_to_node:
731 	/* Descend to a more distal node in this keyring's content tree and go
732 	 * through that.
733 	 */
734 	kdebug("descend");
735 	if (assoc_array_ptr_is_shortcut(ptr)) {
736 		shortcut = assoc_array_ptr_to_shortcut(ptr);
737 		ptr = READ_ONCE(shortcut->next_node);
738 		BUG_ON(!assoc_array_ptr_is_node(ptr));
739 	}
740 	node = assoc_array_ptr_to_node(ptr);
741 
742 begin_node:
743 	kdebug("begin_node");
744 	slot = 0;
745 ascend_to_node:
746 	/* Go through the slots in a node */
747 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
748 		ptr = READ_ONCE(node->slots[slot]);
749 
750 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
751 			goto descend_to_node;
752 
753 		if (!keyring_ptr_is_keyring(ptr))
754 			continue;
755 
756 		key = keyring_ptr_to_key(ptr);
757 
758 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
759 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
760 				ctx->result = ERR_PTR(-ELOOP);
761 				return false;
762 			}
763 			goto not_this_keyring;
764 		}
765 
766 		/* Search a nested keyring */
767 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
768 		    key_task_permission(make_key_ref(key, ctx->possessed),
769 					ctx->cred, KEY_NEED_SEARCH) < 0)
770 			continue;
771 
772 		/* stack the current position */
773 		stack[sp].keyring = keyring;
774 		stack[sp].node = node;
775 		stack[sp].slot = slot;
776 		sp++;
777 
778 		/* begin again with the new keyring */
779 		keyring = key;
780 		goto descend_to_keyring;
781 	}
782 
783 	/* We've dealt with all the slots in the current node, so now we need
784 	 * to ascend to the parent and continue processing there.
785 	 */
786 	ptr = READ_ONCE(node->back_pointer);
787 	slot = node->parent_slot;
788 
789 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
790 		shortcut = assoc_array_ptr_to_shortcut(ptr);
791 		ptr = READ_ONCE(shortcut->back_pointer);
792 		slot = shortcut->parent_slot;
793 	}
794 	if (!ptr)
795 		goto not_this_keyring;
796 	node = assoc_array_ptr_to_node(ptr);
797 	slot++;
798 
799 	/* If we've ascended to the root (zero backpointer), we must have just
800 	 * finished processing the leftmost branch rather than the root slots -
801 	 * so there can't be any more keyrings for us to find.
802 	 */
803 	if (node->back_pointer) {
804 		kdebug("ascend %d", slot);
805 		goto ascend_to_node;
806 	}
807 
808 	/* The keyring we're looking at was disqualified or didn't contain a
809 	 * matching key.
810 	 */
811 not_this_keyring:
812 	kdebug("not_this_keyring %d", sp);
813 	if (sp <= 0) {
814 		kleave(" = false");
815 		return false;
816 	}
817 
818 	/* Resume the processing of a keyring higher up in the tree */
819 	sp--;
820 	keyring = stack[sp].keyring;
821 	node = stack[sp].node;
822 	slot = stack[sp].slot + 1;
823 	kdebug("ascend to %d [%d]", keyring->serial, slot);
824 	goto ascend_to_node;
825 
826 	/* We found a viable match */
827 found:
828 	key = key_ref_to_ptr(ctx->result);
829 	key_check(key);
830 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
831 		key->last_used_at = ctx->now;
832 		keyring->last_used_at = ctx->now;
833 		while (sp > 0)
834 			stack[--sp].keyring->last_used_at = ctx->now;
835 	}
836 	kleave(" = true");
837 	return true;
838 }
839 
840 /**
841  * keyring_search_aux - Search a keyring tree for a key matching some criteria
842  * @keyring_ref: A pointer to the keyring with possession indicator.
843  * @ctx: The keyring search context.
844  *
845  * Search the supplied keyring tree for a key that matches the criteria given.
846  * The root keyring and any linked keyrings must grant Search permission to the
847  * caller to be searchable and keys can only be found if they too grant Search
848  * to the caller. The possession flag on the root keyring pointer controls use
849  * of the possessor bits in permissions checking of the entire tree.  In
850  * addition, the LSM gets to forbid keyring searches and key matches.
851  *
852  * The search is performed as a breadth-then-depth search up to the prescribed
853  * limit (KEYRING_SEARCH_MAX_DEPTH).
854  *
855  * Keys are matched to the type provided and are then filtered by the match
856  * function, which is given the description to use in any way it sees fit.  The
857  * match function may use any attributes of a key that it wishes to to
858  * determine the match.  Normally the match function from the key type would be
859  * used.
860  *
861  * RCU can be used to prevent the keyring key lists from disappearing without
862  * the need to take lots of locks.
863  *
864  * Returns a pointer to the found key and increments the key usage count if
865  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
866  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
867  * specified keyring wasn't a keyring.
868  *
869  * In the case of a successful return, the possession attribute from
870  * @keyring_ref is propagated to the returned key reference.
871  */
872 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
873 			     struct keyring_search_context *ctx)
874 {
875 	struct key *keyring;
876 	long err;
877 
878 	ctx->iterator = keyring_search_iterator;
879 	ctx->possessed = is_key_possessed(keyring_ref);
880 	ctx->result = ERR_PTR(-EAGAIN);
881 
882 	keyring = key_ref_to_ptr(keyring_ref);
883 	key_check(keyring);
884 
885 	if (keyring->type != &key_type_keyring)
886 		return ERR_PTR(-ENOTDIR);
887 
888 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
889 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
890 		if (err < 0)
891 			return ERR_PTR(err);
892 	}
893 
894 	rcu_read_lock();
895 	ctx->now = ktime_get_real_seconds();
896 	if (search_nested_keyrings(keyring, ctx))
897 		__key_get(key_ref_to_ptr(ctx->result));
898 	rcu_read_unlock();
899 	return ctx->result;
900 }
901 
902 /**
903  * keyring_search - Search the supplied keyring tree for a matching key
904  * @keyring: The root of the keyring tree to be searched.
905  * @type: The type of keyring we want to find.
906  * @description: The name of the keyring we want to find.
907  *
908  * As keyring_search_aux() above, but using the current task's credentials and
909  * type's default matching function and preferred search method.
910  */
911 key_ref_t keyring_search(key_ref_t keyring,
912 			 struct key_type *type,
913 			 const char *description)
914 {
915 	struct keyring_search_context ctx = {
916 		.index_key.type		= type,
917 		.index_key.description	= description,
918 		.cred			= current_cred(),
919 		.match_data.cmp		= key_default_cmp,
920 		.match_data.raw_data	= description,
921 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
922 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
923 	};
924 	key_ref_t key;
925 	int ret;
926 
927 	if (type->match_preparse) {
928 		ret = type->match_preparse(&ctx.match_data);
929 		if (ret < 0)
930 			return ERR_PTR(ret);
931 	}
932 
933 	key = keyring_search_aux(keyring, &ctx);
934 
935 	if (type->match_free)
936 		type->match_free(&ctx.match_data);
937 	return key;
938 }
939 EXPORT_SYMBOL(keyring_search);
940 
941 static struct key_restriction *keyring_restriction_alloc(
942 	key_restrict_link_func_t check)
943 {
944 	struct key_restriction *keyres =
945 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
946 
947 	if (!keyres)
948 		return ERR_PTR(-ENOMEM);
949 
950 	keyres->check = check;
951 
952 	return keyres;
953 }
954 
955 /*
956  * Semaphore to serialise restriction setup to prevent reference count
957  * cycles through restriction key pointers.
958  */
959 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
960 
961 /*
962  * Check for restriction cycles that would prevent keyring garbage collection.
963  * keyring_serialise_restrict_sem must be held.
964  */
965 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
966 					     struct key_restriction *keyres)
967 {
968 	while (keyres && keyres->key &&
969 	       keyres->key->type == &key_type_keyring) {
970 		if (keyres->key == dest_keyring)
971 			return true;
972 
973 		keyres = keyres->key->restrict_link;
974 	}
975 
976 	return false;
977 }
978 
979 /**
980  * keyring_restrict - Look up and apply a restriction to a keyring
981  *
982  * @keyring: The keyring to be restricted
983  * @restriction: The restriction options to apply to the keyring
984  */
985 int keyring_restrict(key_ref_t keyring_ref, const char *type,
986 		     const char *restriction)
987 {
988 	struct key *keyring;
989 	struct key_type *restrict_type = NULL;
990 	struct key_restriction *restrict_link;
991 	int ret = 0;
992 
993 	keyring = key_ref_to_ptr(keyring_ref);
994 	key_check(keyring);
995 
996 	if (keyring->type != &key_type_keyring)
997 		return -ENOTDIR;
998 
999 	if (!type) {
1000 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1001 	} else {
1002 		restrict_type = key_type_lookup(type);
1003 
1004 		if (IS_ERR(restrict_type))
1005 			return PTR_ERR(restrict_type);
1006 
1007 		if (!restrict_type->lookup_restriction) {
1008 			ret = -ENOENT;
1009 			goto error;
1010 		}
1011 
1012 		restrict_link = restrict_type->lookup_restriction(restriction);
1013 	}
1014 
1015 	if (IS_ERR(restrict_link)) {
1016 		ret = PTR_ERR(restrict_link);
1017 		goto error;
1018 	}
1019 
1020 	down_write(&keyring->sem);
1021 	down_write(&keyring_serialise_restrict_sem);
1022 
1023 	if (keyring->restrict_link)
1024 		ret = -EEXIST;
1025 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1026 		ret = -EDEADLK;
1027 	else
1028 		keyring->restrict_link = restrict_link;
1029 
1030 	up_write(&keyring_serialise_restrict_sem);
1031 	up_write(&keyring->sem);
1032 
1033 	if (ret < 0) {
1034 		key_put(restrict_link->key);
1035 		kfree(restrict_link);
1036 	}
1037 
1038 error:
1039 	if (restrict_type)
1040 		key_type_put(restrict_type);
1041 
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL(keyring_restrict);
1045 
1046 /*
1047  * Search the given keyring for a key that might be updated.
1048  *
1049  * The caller must guarantee that the keyring is a keyring and that the
1050  * permission is granted to modify the keyring as no check is made here.  The
1051  * caller must also hold a lock on the keyring semaphore.
1052  *
1053  * Returns a pointer to the found key with usage count incremented if
1054  * successful and returns NULL if not found.  Revoked and invalidated keys are
1055  * skipped over.
1056  *
1057  * If successful, the possession indicator is propagated from the keyring ref
1058  * to the returned key reference.
1059  */
1060 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1061 			     const struct keyring_index_key *index_key)
1062 {
1063 	struct key *keyring, *key;
1064 	const void *object;
1065 
1066 	keyring = key_ref_to_ptr(keyring_ref);
1067 
1068 	kenter("{%d},{%s,%s}",
1069 	       keyring->serial, index_key->type->name, index_key->description);
1070 
1071 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1072 				  index_key);
1073 
1074 	if (object)
1075 		goto found;
1076 
1077 	kleave(" = NULL");
1078 	return NULL;
1079 
1080 found:
1081 	key = keyring_ptr_to_key(object);
1082 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1083 			  (1 << KEY_FLAG_REVOKED))) {
1084 		kleave(" = NULL [x]");
1085 		return NULL;
1086 	}
1087 	__key_get(key);
1088 	kleave(" = {%d}", key->serial);
1089 	return make_key_ref(key, is_key_possessed(keyring_ref));
1090 }
1091 
1092 /*
1093  * Find a keyring with the specified name.
1094  *
1095  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1096  * user in the current user namespace are considered.  If @uid_keyring is %true,
1097  * the keyring additionally must have been allocated as a user or user session
1098  * keyring; otherwise, it must grant Search permission directly to the caller.
1099  *
1100  * Returns a pointer to the keyring with the keyring's refcount having being
1101  * incremented on success.  -ENOKEY is returned if a key could not be found.
1102  */
1103 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1104 {
1105 	struct key *keyring;
1106 	int bucket;
1107 
1108 	if (!name)
1109 		return ERR_PTR(-EINVAL);
1110 
1111 	bucket = keyring_hash(name);
1112 
1113 	read_lock(&keyring_name_lock);
1114 
1115 	if (keyring_name_hash[bucket].next) {
1116 		/* search this hash bucket for a keyring with a matching name
1117 		 * that's readable and that hasn't been revoked */
1118 		list_for_each_entry(keyring,
1119 				    &keyring_name_hash[bucket],
1120 				    name_link
1121 				    ) {
1122 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1123 				continue;
1124 
1125 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1126 				continue;
1127 
1128 			if (strcmp(keyring->description, name) != 0)
1129 				continue;
1130 
1131 			if (uid_keyring) {
1132 				if (!test_bit(KEY_FLAG_UID_KEYRING,
1133 					      &keyring->flags))
1134 					continue;
1135 			} else {
1136 				if (key_permission(make_key_ref(keyring, 0),
1137 						   KEY_NEED_SEARCH) < 0)
1138 					continue;
1139 			}
1140 
1141 			/* we've got a match but we might end up racing with
1142 			 * key_cleanup() if the keyring is currently 'dead'
1143 			 * (ie. it has a zero usage count) */
1144 			if (!refcount_inc_not_zero(&keyring->usage))
1145 				continue;
1146 			keyring->last_used_at = ktime_get_real_seconds();
1147 			goto out;
1148 		}
1149 	}
1150 
1151 	keyring = ERR_PTR(-ENOKEY);
1152 out:
1153 	read_unlock(&keyring_name_lock);
1154 	return keyring;
1155 }
1156 
1157 static int keyring_detect_cycle_iterator(const void *object,
1158 					 void *iterator_data)
1159 {
1160 	struct keyring_search_context *ctx = iterator_data;
1161 	const struct key *key = keyring_ptr_to_key(object);
1162 
1163 	kenter("{%d}", key->serial);
1164 
1165 	/* We might get a keyring with matching index-key that is nonetheless a
1166 	 * different keyring. */
1167 	if (key != ctx->match_data.raw_data)
1168 		return 0;
1169 
1170 	ctx->result = ERR_PTR(-EDEADLK);
1171 	return 1;
1172 }
1173 
1174 /*
1175  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1176  * tree A at the topmost level (ie: as a direct child of A).
1177  *
1178  * Since we are adding B to A at the top level, checking for cycles should just
1179  * be a matter of seeing if node A is somewhere in tree B.
1180  */
1181 static int keyring_detect_cycle(struct key *A, struct key *B)
1182 {
1183 	struct keyring_search_context ctx = {
1184 		.index_key		= A->index_key,
1185 		.match_data.raw_data	= A,
1186 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1187 		.iterator		= keyring_detect_cycle_iterator,
1188 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1189 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1190 					   KEYRING_SEARCH_NO_CHECK_PERM |
1191 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1192 	};
1193 
1194 	rcu_read_lock();
1195 	search_nested_keyrings(B, &ctx);
1196 	rcu_read_unlock();
1197 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1198 }
1199 
1200 /*
1201  * Preallocate memory so that a key can be linked into to a keyring.
1202  */
1203 int __key_link_begin(struct key *keyring,
1204 		     const struct keyring_index_key *index_key,
1205 		     struct assoc_array_edit **_edit)
1206 	__acquires(&keyring->sem)
1207 	__acquires(&keyring_serialise_link_sem)
1208 {
1209 	struct assoc_array_edit *edit;
1210 	int ret;
1211 
1212 	kenter("%d,%s,%s,",
1213 	       keyring->serial, index_key->type->name, index_key->description);
1214 
1215 	BUG_ON(index_key->desc_len == 0);
1216 
1217 	if (keyring->type != &key_type_keyring)
1218 		return -ENOTDIR;
1219 
1220 	down_write(&keyring->sem);
1221 
1222 	ret = -EKEYREVOKED;
1223 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1224 		goto error_krsem;
1225 
1226 	/* serialise link/link calls to prevent parallel calls causing a cycle
1227 	 * when linking two keyring in opposite orders */
1228 	if (index_key->type == &key_type_keyring)
1229 		down_write(&keyring_serialise_link_sem);
1230 
1231 	/* Create an edit script that will insert/replace the key in the
1232 	 * keyring tree.
1233 	 */
1234 	edit = assoc_array_insert(&keyring->keys,
1235 				  &keyring_assoc_array_ops,
1236 				  index_key,
1237 				  NULL);
1238 	if (IS_ERR(edit)) {
1239 		ret = PTR_ERR(edit);
1240 		goto error_sem;
1241 	}
1242 
1243 	/* If we're not replacing a link in-place then we're going to need some
1244 	 * extra quota.
1245 	 */
1246 	if (!edit->dead_leaf) {
1247 		ret = key_payload_reserve(keyring,
1248 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1249 		if (ret < 0)
1250 			goto error_cancel;
1251 	}
1252 
1253 	*_edit = edit;
1254 	kleave(" = 0");
1255 	return 0;
1256 
1257 error_cancel:
1258 	assoc_array_cancel_edit(edit);
1259 error_sem:
1260 	if (index_key->type == &key_type_keyring)
1261 		up_write(&keyring_serialise_link_sem);
1262 error_krsem:
1263 	up_write(&keyring->sem);
1264 	kleave(" = %d", ret);
1265 	return ret;
1266 }
1267 
1268 /*
1269  * Check already instantiated keys aren't going to be a problem.
1270  *
1271  * The caller must have called __key_link_begin(). Don't need to call this for
1272  * keys that were created since __key_link_begin() was called.
1273  */
1274 int __key_link_check_live_key(struct key *keyring, struct key *key)
1275 {
1276 	if (key->type == &key_type_keyring)
1277 		/* check that we aren't going to create a cycle by linking one
1278 		 * keyring to another */
1279 		return keyring_detect_cycle(keyring, key);
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Link a key into to a keyring.
1285  *
1286  * Must be called with __key_link_begin() having being called.  Discards any
1287  * already extant link to matching key if there is one, so that each keyring
1288  * holds at most one link to any given key of a particular type+description
1289  * combination.
1290  */
1291 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1292 {
1293 	__key_get(key);
1294 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1295 	assoc_array_apply_edit(*_edit);
1296 	*_edit = NULL;
1297 }
1298 
1299 /*
1300  * Finish linking a key into to a keyring.
1301  *
1302  * Must be called with __key_link_begin() having being called.
1303  */
1304 void __key_link_end(struct key *keyring,
1305 		    const struct keyring_index_key *index_key,
1306 		    struct assoc_array_edit *edit)
1307 	__releases(&keyring->sem)
1308 	__releases(&keyring_serialise_link_sem)
1309 {
1310 	BUG_ON(index_key->type == NULL);
1311 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1312 
1313 	if (index_key->type == &key_type_keyring)
1314 		up_write(&keyring_serialise_link_sem);
1315 
1316 	if (edit) {
1317 		if (!edit->dead_leaf) {
1318 			key_payload_reserve(keyring,
1319 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1320 		}
1321 		assoc_array_cancel_edit(edit);
1322 	}
1323 	up_write(&keyring->sem);
1324 }
1325 
1326 /*
1327  * Check addition of keys to restricted keyrings.
1328  */
1329 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1330 {
1331 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1332 		return 0;
1333 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1334 					     keyring->restrict_link->key);
1335 }
1336 
1337 /**
1338  * key_link - Link a key to a keyring
1339  * @keyring: The keyring to make the link in.
1340  * @key: The key to link to.
1341  *
1342  * Make a link in a keyring to a key, such that the keyring holds a reference
1343  * on that key and the key can potentially be found by searching that keyring.
1344  *
1345  * This function will write-lock the keyring's semaphore and will consume some
1346  * of the user's key data quota to hold the link.
1347  *
1348  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1349  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1350  * full, -EDQUOT if there is insufficient key data quota remaining to add
1351  * another link or -ENOMEM if there's insufficient memory.
1352  *
1353  * It is assumed that the caller has checked that it is permitted for a link to
1354  * be made (the keyring should have Write permission and the key Link
1355  * permission).
1356  */
1357 int key_link(struct key *keyring, struct key *key)
1358 {
1359 	struct assoc_array_edit *edit;
1360 	int ret;
1361 
1362 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1363 
1364 	key_check(keyring);
1365 	key_check(key);
1366 
1367 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1368 	if (ret == 0) {
1369 		kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1370 		ret = __key_link_check_restriction(keyring, key);
1371 		if (ret == 0)
1372 			ret = __key_link_check_live_key(keyring, key);
1373 		if (ret == 0)
1374 			__key_link(key, &edit);
1375 		__key_link_end(keyring, &key->index_key, edit);
1376 	}
1377 
1378 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL(key_link);
1382 
1383 /**
1384  * key_unlink - Unlink the first link to a key from a keyring.
1385  * @keyring: The keyring to remove the link from.
1386  * @key: The key the link is to.
1387  *
1388  * Remove a link from a keyring to a key.
1389  *
1390  * This function will write-lock the keyring's semaphore.
1391  *
1392  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1393  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1394  * memory.
1395  *
1396  * It is assumed that the caller has checked that it is permitted for a link to
1397  * be removed (the keyring should have Write permission; no permissions are
1398  * required on the key).
1399  */
1400 int key_unlink(struct key *keyring, struct key *key)
1401 {
1402 	struct assoc_array_edit *edit;
1403 	int ret;
1404 
1405 	key_check(keyring);
1406 	key_check(key);
1407 
1408 	if (keyring->type != &key_type_keyring)
1409 		return -ENOTDIR;
1410 
1411 	down_write(&keyring->sem);
1412 
1413 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1414 				  &key->index_key);
1415 	if (IS_ERR(edit)) {
1416 		ret = PTR_ERR(edit);
1417 		goto error;
1418 	}
1419 	ret = -ENOENT;
1420 	if (edit == NULL)
1421 		goto error;
1422 
1423 	assoc_array_apply_edit(edit);
1424 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1425 	ret = 0;
1426 
1427 error:
1428 	up_write(&keyring->sem);
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL(key_unlink);
1432 
1433 /**
1434  * keyring_clear - Clear a keyring
1435  * @keyring: The keyring to clear.
1436  *
1437  * Clear the contents of the specified keyring.
1438  *
1439  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1440  */
1441 int keyring_clear(struct key *keyring)
1442 {
1443 	struct assoc_array_edit *edit;
1444 	int ret;
1445 
1446 	if (keyring->type != &key_type_keyring)
1447 		return -ENOTDIR;
1448 
1449 	down_write(&keyring->sem);
1450 
1451 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1452 	if (IS_ERR(edit)) {
1453 		ret = PTR_ERR(edit);
1454 	} else {
1455 		if (edit)
1456 			assoc_array_apply_edit(edit);
1457 		key_payload_reserve(keyring, 0);
1458 		ret = 0;
1459 	}
1460 
1461 	up_write(&keyring->sem);
1462 	return ret;
1463 }
1464 EXPORT_SYMBOL(keyring_clear);
1465 
1466 /*
1467  * Dispose of the links from a revoked keyring.
1468  *
1469  * This is called with the key sem write-locked.
1470  */
1471 static void keyring_revoke(struct key *keyring)
1472 {
1473 	struct assoc_array_edit *edit;
1474 
1475 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1476 	if (!IS_ERR(edit)) {
1477 		if (edit)
1478 			assoc_array_apply_edit(edit);
1479 		key_payload_reserve(keyring, 0);
1480 	}
1481 }
1482 
1483 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1484 {
1485 	struct key *key = keyring_ptr_to_key(object);
1486 	time64_t *limit = iterator_data;
1487 
1488 	if (key_is_dead(key, *limit))
1489 		return false;
1490 	key_get(key);
1491 	return true;
1492 }
1493 
1494 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1495 {
1496 	const struct key *key = keyring_ptr_to_key(object);
1497 	time64_t *limit = iterator_data;
1498 
1499 	key_check(key);
1500 	return key_is_dead(key, *limit);
1501 }
1502 
1503 /*
1504  * Garbage collect pointers from a keyring.
1505  *
1506  * Not called with any locks held.  The keyring's key struct will not be
1507  * deallocated under us as only our caller may deallocate it.
1508  */
1509 void keyring_gc(struct key *keyring, time64_t limit)
1510 {
1511 	int result;
1512 
1513 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1514 
1515 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1516 			      (1 << KEY_FLAG_REVOKED)))
1517 		goto dont_gc;
1518 
1519 	/* scan the keyring looking for dead keys */
1520 	rcu_read_lock();
1521 	result = assoc_array_iterate(&keyring->keys,
1522 				     keyring_gc_check_iterator, &limit);
1523 	rcu_read_unlock();
1524 	if (result == true)
1525 		goto do_gc;
1526 
1527 dont_gc:
1528 	kleave(" [no gc]");
1529 	return;
1530 
1531 do_gc:
1532 	down_write(&keyring->sem);
1533 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1534 		       keyring_gc_select_iterator, &limit);
1535 	up_write(&keyring->sem);
1536 	kleave(" [gc]");
1537 }
1538 
1539 /*
1540  * Garbage collect restriction pointers from a keyring.
1541  *
1542  * Keyring restrictions are associated with a key type, and must be cleaned
1543  * up if the key type is unregistered. The restriction is altered to always
1544  * reject additional keys so a keyring cannot be opened up by unregistering
1545  * a key type.
1546  *
1547  * Not called with any keyring locks held. The keyring's key struct will not
1548  * be deallocated under us as only our caller may deallocate it.
1549  *
1550  * The caller is required to hold key_types_sem and dead_type->sem. This is
1551  * fulfilled by key_gc_keytype() holding the locks on behalf of
1552  * key_garbage_collector(), which it invokes on a workqueue.
1553  */
1554 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1555 {
1556 	struct key_restriction *keyres;
1557 
1558 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1559 
1560 	/*
1561 	 * keyring->restrict_link is only assigned at key allocation time
1562 	 * or with the key type locked, so the only values that could be
1563 	 * concurrently assigned to keyring->restrict_link are for key
1564 	 * types other than dead_type. Given this, it's ok to check
1565 	 * the key type before acquiring keyring->sem.
1566 	 */
1567 	if (!dead_type || !keyring->restrict_link ||
1568 	    keyring->restrict_link->keytype != dead_type) {
1569 		kleave(" [no restriction gc]");
1570 		return;
1571 	}
1572 
1573 	/* Lock the keyring to ensure that a link is not in progress */
1574 	down_write(&keyring->sem);
1575 
1576 	keyres = keyring->restrict_link;
1577 
1578 	keyres->check = restrict_link_reject;
1579 
1580 	key_put(keyres->key);
1581 	keyres->key = NULL;
1582 	keyres->keytype = NULL;
1583 
1584 	up_write(&keyring->sem);
1585 
1586 	kleave(" [restriction gc]");
1587 }
1588