xref: /linux/security/keys/keyring.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <linux/uaccess.h>
21 #include "internal.h"
22 
23 #define rcu_dereference_locked_keyring(keyring)				\
24 	(rcu_dereference_protected(					\
25 		(keyring)->payload.subscriptions,			\
26 		rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
27 
28 #define rcu_deref_link_locked(klist, index, keyring)			\
29 	(rcu_dereference_protected(					\
30 		(klist)->keys[index],					\
31 		rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
32 
33 #define MAX_KEYRING_LINKS						\
34 	min_t(size_t, USHRT_MAX - 1,					\
35 	      ((PAGE_SIZE - sizeof(struct keyring_list)) / sizeof(struct key *)))
36 
37 #define KEY_LINK_FIXQUOTA 1UL
38 
39 /*
40  * When plumbing the depths of the key tree, this sets a hard limit
41  * set on how deep we're willing to go.
42  */
43 #define KEYRING_SEARCH_MAX_DEPTH 6
44 
45 /*
46  * We keep all named keyrings in a hash to speed looking them up.
47  */
48 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
49 
50 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
51 static DEFINE_RWLOCK(keyring_name_lock);
52 
53 static inline unsigned keyring_hash(const char *desc)
54 {
55 	unsigned bucket = 0;
56 
57 	for (; *desc; desc++)
58 		bucket += (unsigned char)*desc;
59 
60 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
61 }
62 
63 /*
64  * The keyring key type definition.  Keyrings are simply keys of this type and
65  * can be treated as ordinary keys in addition to having their own special
66  * operations.
67  */
68 static int keyring_instantiate(struct key *keyring,
69 			       const void *data, size_t datalen);
70 static int keyring_match(const struct key *keyring, const void *criterion);
71 static void keyring_revoke(struct key *keyring);
72 static void keyring_destroy(struct key *keyring);
73 static void keyring_describe(const struct key *keyring, struct seq_file *m);
74 static long keyring_read(const struct key *keyring,
75 			 char __user *buffer, size_t buflen);
76 
77 struct key_type key_type_keyring = {
78 	.name		= "keyring",
79 	.def_datalen	= sizeof(struct keyring_list),
80 	.instantiate	= keyring_instantiate,
81 	.match		= keyring_match,
82 	.revoke		= keyring_revoke,
83 	.destroy	= keyring_destroy,
84 	.describe	= keyring_describe,
85 	.read		= keyring_read,
86 };
87 EXPORT_SYMBOL(key_type_keyring);
88 
89 /*
90  * Semaphore to serialise link/link calls to prevent two link calls in parallel
91  * introducing a cycle.
92  */
93 static DECLARE_RWSEM(keyring_serialise_link_sem);
94 
95 /*
96  * Publish the name of a keyring so that it can be found by name (if it has
97  * one).
98  */
99 static void keyring_publish_name(struct key *keyring)
100 {
101 	int bucket;
102 
103 	if (keyring->description) {
104 		bucket = keyring_hash(keyring->description);
105 
106 		write_lock(&keyring_name_lock);
107 
108 		if (!keyring_name_hash[bucket].next)
109 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
110 
111 		list_add_tail(&keyring->type_data.link,
112 			      &keyring_name_hash[bucket]);
113 
114 		write_unlock(&keyring_name_lock);
115 	}
116 }
117 
118 /*
119  * Initialise a keyring.
120  *
121  * Returns 0 on success, -EINVAL if given any data.
122  */
123 static int keyring_instantiate(struct key *keyring,
124 			       const void *data, size_t datalen)
125 {
126 	int ret;
127 
128 	ret = -EINVAL;
129 	if (datalen == 0) {
130 		/* make the keyring available by name if it has one */
131 		keyring_publish_name(keyring);
132 		ret = 0;
133 	}
134 
135 	return ret;
136 }
137 
138 /*
139  * Match keyrings on their name
140  */
141 static int keyring_match(const struct key *keyring, const void *description)
142 {
143 	return keyring->description &&
144 		strcmp(keyring->description, description) == 0;
145 }
146 
147 /*
148  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
149  * and dispose of its data.
150  *
151  * The garbage collector detects the final key_put(), removes the keyring from
152  * the serial number tree and then does RCU synchronisation before coming here,
153  * so we shouldn't need to worry about code poking around here with the RCU
154  * readlock held by this time.
155  */
156 static void keyring_destroy(struct key *keyring)
157 {
158 	struct keyring_list *klist;
159 	int loop;
160 
161 	if (keyring->description) {
162 		write_lock(&keyring_name_lock);
163 
164 		if (keyring->type_data.link.next != NULL &&
165 		    !list_empty(&keyring->type_data.link))
166 			list_del(&keyring->type_data.link);
167 
168 		write_unlock(&keyring_name_lock);
169 	}
170 
171 	klist = rcu_access_pointer(keyring->payload.subscriptions);
172 	if (klist) {
173 		for (loop = klist->nkeys - 1; loop >= 0; loop--)
174 			key_put(rcu_access_pointer(klist->keys[loop]));
175 		kfree(klist);
176 	}
177 }
178 
179 /*
180  * Describe a keyring for /proc.
181  */
182 static void keyring_describe(const struct key *keyring, struct seq_file *m)
183 {
184 	struct keyring_list *klist;
185 
186 	if (keyring->description)
187 		seq_puts(m, keyring->description);
188 	else
189 		seq_puts(m, "[anon]");
190 
191 	if (key_is_instantiated(keyring)) {
192 		rcu_read_lock();
193 		klist = rcu_dereference(keyring->payload.subscriptions);
194 		if (klist)
195 			seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys);
196 		else
197 			seq_puts(m, ": empty");
198 		rcu_read_unlock();
199 	}
200 }
201 
202 /*
203  * Read a list of key IDs from the keyring's contents in binary form
204  *
205  * The keyring's semaphore is read-locked by the caller.
206  */
207 static long keyring_read(const struct key *keyring,
208 			 char __user *buffer, size_t buflen)
209 {
210 	struct keyring_list *klist;
211 	struct key *key;
212 	size_t qty, tmp;
213 	int loop, ret;
214 
215 	ret = 0;
216 	klist = rcu_dereference_locked_keyring(keyring);
217 	if (klist) {
218 		/* calculate how much data we could return */
219 		qty = klist->nkeys * sizeof(key_serial_t);
220 
221 		if (buffer && buflen > 0) {
222 			if (buflen > qty)
223 				buflen = qty;
224 
225 			/* copy the IDs of the subscribed keys into the
226 			 * buffer */
227 			ret = -EFAULT;
228 
229 			for (loop = 0; loop < klist->nkeys; loop++) {
230 				key = rcu_deref_link_locked(klist, loop,
231 							    keyring);
232 
233 				tmp = sizeof(key_serial_t);
234 				if (tmp > buflen)
235 					tmp = buflen;
236 
237 				if (copy_to_user(buffer,
238 						 &key->serial,
239 						 tmp) != 0)
240 					goto error;
241 
242 				buflen -= tmp;
243 				if (buflen == 0)
244 					break;
245 				buffer += tmp;
246 			}
247 		}
248 
249 		ret = qty;
250 	}
251 
252 error:
253 	return ret;
254 }
255 
256 /*
257  * Allocate a keyring and link into the destination keyring.
258  */
259 struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
260 			  const struct cred *cred, unsigned long flags,
261 			  struct key *dest)
262 {
263 	struct key *keyring;
264 	int ret;
265 
266 	keyring = key_alloc(&key_type_keyring, description,
267 			    uid, gid, cred,
268 			    (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL,
269 			    flags);
270 
271 	if (!IS_ERR(keyring)) {
272 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
273 		if (ret < 0) {
274 			key_put(keyring);
275 			keyring = ERR_PTR(ret);
276 		}
277 	}
278 
279 	return keyring;
280 }
281 
282 /**
283  * keyring_search_aux - Search a keyring tree for a key matching some criteria
284  * @keyring_ref: A pointer to the keyring with possession indicator.
285  * @cred: The credentials to use for permissions checks.
286  * @type: The type of key to search for.
287  * @description: Parameter for @match.
288  * @match: Function to rule on whether or not a key is the one required.
289  * @no_state_check: Don't check if a matching key is bad
290  *
291  * Search the supplied keyring tree for a key that matches the criteria given.
292  * The root keyring and any linked keyrings must grant Search permission to the
293  * caller to be searchable and keys can only be found if they too grant Search
294  * to the caller. The possession flag on the root keyring pointer controls use
295  * of the possessor bits in permissions checking of the entire tree.  In
296  * addition, the LSM gets to forbid keyring searches and key matches.
297  *
298  * The search is performed as a breadth-then-depth search up to the prescribed
299  * limit (KEYRING_SEARCH_MAX_DEPTH).
300  *
301  * Keys are matched to the type provided and are then filtered by the match
302  * function, which is given the description to use in any way it sees fit.  The
303  * match function may use any attributes of a key that it wishes to to
304  * determine the match.  Normally the match function from the key type would be
305  * used.
306  *
307  * RCU is used to prevent the keyring key lists from disappearing without the
308  * need to take lots of locks.
309  *
310  * Returns a pointer to the found key and increments the key usage count if
311  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
312  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
313  * specified keyring wasn't a keyring.
314  *
315  * In the case of a successful return, the possession attribute from
316  * @keyring_ref is propagated to the returned key reference.
317  */
318 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
319 			     const struct cred *cred,
320 			     struct key_type *type,
321 			     const void *description,
322 			     key_match_func_t match,
323 			     bool no_state_check)
324 {
325 	struct {
326 		/* Need a separate keylist pointer for RCU purposes */
327 		struct key *keyring;
328 		struct keyring_list *keylist;
329 		int kix;
330 	} stack[KEYRING_SEARCH_MAX_DEPTH];
331 
332 	struct keyring_list *keylist;
333 	struct timespec now;
334 	unsigned long possessed, kflags;
335 	struct key *keyring, *key;
336 	key_ref_t key_ref;
337 	long err;
338 	int sp, nkeys, kix;
339 
340 	keyring = key_ref_to_ptr(keyring_ref);
341 	possessed = is_key_possessed(keyring_ref);
342 	key_check(keyring);
343 
344 	/* top keyring must have search permission to begin the search */
345 	err = key_task_permission(keyring_ref, cred, KEY_SEARCH);
346 	if (err < 0) {
347 		key_ref = ERR_PTR(err);
348 		goto error;
349 	}
350 
351 	key_ref = ERR_PTR(-ENOTDIR);
352 	if (keyring->type != &key_type_keyring)
353 		goto error;
354 
355 	rcu_read_lock();
356 
357 	now = current_kernel_time();
358 	err = -EAGAIN;
359 	sp = 0;
360 
361 	/* firstly we should check to see if this top-level keyring is what we
362 	 * are looking for */
363 	key_ref = ERR_PTR(-EAGAIN);
364 	kflags = keyring->flags;
365 	if (keyring->type == type && match(keyring, description)) {
366 		key = keyring;
367 		if (no_state_check)
368 			goto found;
369 
370 		/* check it isn't negative and hasn't expired or been
371 		 * revoked */
372 		if (kflags & (1 << KEY_FLAG_REVOKED))
373 			goto error_2;
374 		if (key->expiry && now.tv_sec >= key->expiry)
375 			goto error_2;
376 		key_ref = ERR_PTR(key->type_data.reject_error);
377 		if (kflags & (1 << KEY_FLAG_NEGATIVE))
378 			goto error_2;
379 		goto found;
380 	}
381 
382 	/* otherwise, the top keyring must not be revoked, expired, or
383 	 * negatively instantiated if we are to search it */
384 	key_ref = ERR_PTR(-EAGAIN);
385 	if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
386 		      (1 << KEY_FLAG_REVOKED) |
387 		      (1 << KEY_FLAG_NEGATIVE)) ||
388 	    (keyring->expiry && now.tv_sec >= keyring->expiry))
389 		goto error_2;
390 
391 	/* start processing a new keyring */
392 descend:
393 	kflags = keyring->flags;
394 	if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
395 		      (1 << KEY_FLAG_REVOKED)))
396 		goto not_this_keyring;
397 
398 	keylist = rcu_dereference(keyring->payload.subscriptions);
399 	if (!keylist)
400 		goto not_this_keyring;
401 
402 	/* iterate through the keys in this keyring first */
403 	nkeys = keylist->nkeys;
404 	smp_rmb();
405 	for (kix = 0; kix < nkeys; kix++) {
406 		key = rcu_dereference(keylist->keys[kix]);
407 		kflags = key->flags;
408 
409 		/* ignore keys not of this type */
410 		if (key->type != type)
411 			continue;
412 
413 		/* skip invalidated, revoked and expired keys */
414 		if (!no_state_check) {
415 			if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
416 				      (1 << KEY_FLAG_REVOKED)))
417 				continue;
418 
419 			if (key->expiry && now.tv_sec >= key->expiry)
420 				continue;
421 		}
422 
423 		/* keys that don't match */
424 		if (!match(key, description))
425 			continue;
426 
427 		/* key must have search permissions */
428 		if (key_task_permission(make_key_ref(key, possessed),
429 					cred, KEY_SEARCH) < 0)
430 			continue;
431 
432 		if (no_state_check)
433 			goto found;
434 
435 		/* we set a different error code if we pass a negative key */
436 		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
437 			err = key->type_data.reject_error;
438 			continue;
439 		}
440 
441 		goto found;
442 	}
443 
444 	/* search through the keyrings nested in this one */
445 	kix = 0;
446 ascend:
447 	nkeys = keylist->nkeys;
448 	smp_rmb();
449 	for (; kix < nkeys; kix++) {
450 		key = rcu_dereference(keylist->keys[kix]);
451 		if (key->type != &key_type_keyring)
452 			continue;
453 
454 		/* recursively search nested keyrings
455 		 * - only search keyrings for which we have search permission
456 		 */
457 		if (sp >= KEYRING_SEARCH_MAX_DEPTH)
458 			continue;
459 
460 		if (key_task_permission(make_key_ref(key, possessed),
461 					cred, KEY_SEARCH) < 0)
462 			continue;
463 
464 		/* stack the current position */
465 		stack[sp].keyring = keyring;
466 		stack[sp].keylist = keylist;
467 		stack[sp].kix = kix;
468 		sp++;
469 
470 		/* begin again with the new keyring */
471 		keyring = key;
472 		goto descend;
473 	}
474 
475 	/* the keyring we're looking at was disqualified or didn't contain a
476 	 * matching key */
477 not_this_keyring:
478 	if (sp > 0) {
479 		/* resume the processing of a keyring higher up in the tree */
480 		sp--;
481 		keyring = stack[sp].keyring;
482 		keylist = stack[sp].keylist;
483 		kix = stack[sp].kix + 1;
484 		goto ascend;
485 	}
486 
487 	key_ref = ERR_PTR(err);
488 	goto error_2;
489 
490 	/* we found a viable match */
491 found:
492 	atomic_inc(&key->usage);
493 	key->last_used_at = now.tv_sec;
494 	keyring->last_used_at = now.tv_sec;
495 	while (sp > 0)
496 		stack[--sp].keyring->last_used_at = now.tv_sec;
497 	key_check(key);
498 	key_ref = make_key_ref(key, possessed);
499 error_2:
500 	rcu_read_unlock();
501 error:
502 	return key_ref;
503 }
504 
505 /**
506  * keyring_search - Search the supplied keyring tree for a matching key
507  * @keyring: The root of the keyring tree to be searched.
508  * @type: The type of keyring we want to find.
509  * @description: The name of the keyring we want to find.
510  *
511  * As keyring_search_aux() above, but using the current task's credentials and
512  * type's default matching function.
513  */
514 key_ref_t keyring_search(key_ref_t keyring,
515 			 struct key_type *type,
516 			 const char *description)
517 {
518 	if (!type->match)
519 		return ERR_PTR(-ENOKEY);
520 
521 	return keyring_search_aux(keyring, current->cred,
522 				  type, description, type->match, false);
523 }
524 EXPORT_SYMBOL(keyring_search);
525 
526 /*
527  * Search the given keyring only (no recursion).
528  *
529  * The caller must guarantee that the keyring is a keyring and that the
530  * permission is granted to search the keyring as no check is made here.
531  *
532  * RCU is used to make it unnecessary to lock the keyring key list here.
533  *
534  * Returns a pointer to the found key with usage count incremented if
535  * successful and returns -ENOKEY if not found.  Revoked keys and keys not
536  * providing the requested permission are skipped over.
537  *
538  * If successful, the possession indicator is propagated from the keyring ref
539  * to the returned key reference.
540  */
541 key_ref_t __keyring_search_one(key_ref_t keyring_ref,
542 			       const struct key_type *ktype,
543 			       const char *description,
544 			       key_perm_t perm)
545 {
546 	struct keyring_list *klist;
547 	unsigned long possessed;
548 	struct key *keyring, *key;
549 	int nkeys, loop;
550 
551 	keyring = key_ref_to_ptr(keyring_ref);
552 	possessed = is_key_possessed(keyring_ref);
553 
554 	rcu_read_lock();
555 
556 	klist = rcu_dereference(keyring->payload.subscriptions);
557 	if (klist) {
558 		nkeys = klist->nkeys;
559 		smp_rmb();
560 		for (loop = 0; loop < nkeys ; loop++) {
561 			key = rcu_dereference(klist->keys[loop]);
562 			if (key->type == ktype &&
563 			    (!key->type->match ||
564 			     key->type->match(key, description)) &&
565 			    key_permission(make_key_ref(key, possessed),
566 					   perm) == 0 &&
567 			    !(key->flags & ((1 << KEY_FLAG_INVALIDATED) |
568 					    (1 << KEY_FLAG_REVOKED)))
569 			    )
570 				goto found;
571 		}
572 	}
573 
574 	rcu_read_unlock();
575 	return ERR_PTR(-ENOKEY);
576 
577 found:
578 	atomic_inc(&key->usage);
579 	keyring->last_used_at = key->last_used_at =
580 		current_kernel_time().tv_sec;
581 	rcu_read_unlock();
582 	return make_key_ref(key, possessed);
583 }
584 
585 /*
586  * Find a keyring with the specified name.
587  *
588  * All named keyrings in the current user namespace are searched, provided they
589  * grant Search permission directly to the caller (unless this check is
590  * skipped).  Keyrings whose usage points have reached zero or who have been
591  * revoked are skipped.
592  *
593  * Returns a pointer to the keyring with the keyring's refcount having being
594  * incremented on success.  -ENOKEY is returned if a key could not be found.
595  */
596 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
597 {
598 	struct key *keyring;
599 	int bucket;
600 
601 	if (!name)
602 		return ERR_PTR(-EINVAL);
603 
604 	bucket = keyring_hash(name);
605 
606 	read_lock(&keyring_name_lock);
607 
608 	if (keyring_name_hash[bucket].next) {
609 		/* search this hash bucket for a keyring with a matching name
610 		 * that's readable and that hasn't been revoked */
611 		list_for_each_entry(keyring,
612 				    &keyring_name_hash[bucket],
613 				    type_data.link
614 				    ) {
615 			if (keyring->user->user_ns != current_user_ns())
616 				continue;
617 
618 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
619 				continue;
620 
621 			if (strcmp(keyring->description, name) != 0)
622 				continue;
623 
624 			if (!skip_perm_check &&
625 			    key_permission(make_key_ref(keyring, 0),
626 					   KEY_SEARCH) < 0)
627 				continue;
628 
629 			/* we've got a match but we might end up racing with
630 			 * key_cleanup() if the keyring is currently 'dead'
631 			 * (ie. it has a zero usage count) */
632 			if (!atomic_inc_not_zero(&keyring->usage))
633 				continue;
634 			keyring->last_used_at = current_kernel_time().tv_sec;
635 			goto out;
636 		}
637 	}
638 
639 	keyring = ERR_PTR(-ENOKEY);
640 out:
641 	read_unlock(&keyring_name_lock);
642 	return keyring;
643 }
644 
645 /*
646  * See if a cycle will will be created by inserting acyclic tree B in acyclic
647  * tree A at the topmost level (ie: as a direct child of A).
648  *
649  * Since we are adding B to A at the top level, checking for cycles should just
650  * be a matter of seeing if node A is somewhere in tree B.
651  */
652 static int keyring_detect_cycle(struct key *A, struct key *B)
653 {
654 	struct {
655 		struct keyring_list *keylist;
656 		int kix;
657 	} stack[KEYRING_SEARCH_MAX_DEPTH];
658 
659 	struct keyring_list *keylist;
660 	struct key *subtree, *key;
661 	int sp, nkeys, kix, ret;
662 
663 	rcu_read_lock();
664 
665 	ret = -EDEADLK;
666 	if (A == B)
667 		goto cycle_detected;
668 
669 	subtree = B;
670 	sp = 0;
671 
672 	/* start processing a new keyring */
673 descend:
674 	if (test_bit(KEY_FLAG_REVOKED, &subtree->flags))
675 		goto not_this_keyring;
676 
677 	keylist = rcu_dereference(subtree->payload.subscriptions);
678 	if (!keylist)
679 		goto not_this_keyring;
680 	kix = 0;
681 
682 ascend:
683 	/* iterate through the remaining keys in this keyring */
684 	nkeys = keylist->nkeys;
685 	smp_rmb();
686 	for (; kix < nkeys; kix++) {
687 		key = rcu_dereference(keylist->keys[kix]);
688 
689 		if (key == A)
690 			goto cycle_detected;
691 
692 		/* recursively check nested keyrings */
693 		if (key->type == &key_type_keyring) {
694 			if (sp >= KEYRING_SEARCH_MAX_DEPTH)
695 				goto too_deep;
696 
697 			/* stack the current position */
698 			stack[sp].keylist = keylist;
699 			stack[sp].kix = kix;
700 			sp++;
701 
702 			/* begin again with the new keyring */
703 			subtree = key;
704 			goto descend;
705 		}
706 	}
707 
708 	/* the keyring we're looking at was disqualified or didn't contain a
709 	 * matching key */
710 not_this_keyring:
711 	if (sp > 0) {
712 		/* resume the checking of a keyring higher up in the tree */
713 		sp--;
714 		keylist = stack[sp].keylist;
715 		kix = stack[sp].kix + 1;
716 		goto ascend;
717 	}
718 
719 	ret = 0; /* no cycles detected */
720 
721 error:
722 	rcu_read_unlock();
723 	return ret;
724 
725 too_deep:
726 	ret = -ELOOP;
727 	goto error;
728 
729 cycle_detected:
730 	ret = -EDEADLK;
731 	goto error;
732 }
733 
734 /*
735  * Dispose of a keyring list after the RCU grace period, freeing the unlinked
736  * key
737  */
738 static void keyring_unlink_rcu_disposal(struct rcu_head *rcu)
739 {
740 	struct keyring_list *klist =
741 		container_of(rcu, struct keyring_list, rcu);
742 
743 	if (klist->delkey != USHRT_MAX)
744 		key_put(rcu_access_pointer(klist->keys[klist->delkey]));
745 	kfree(klist);
746 }
747 
748 /*
749  * Preallocate memory so that a key can be linked into to a keyring.
750  */
751 int __key_link_begin(struct key *keyring, const struct key_type *type,
752 		     const char *description, unsigned long *_prealloc)
753 	__acquires(&keyring->sem)
754 	__acquires(&keyring_serialise_link_sem)
755 {
756 	struct keyring_list *klist, *nklist;
757 	unsigned long prealloc;
758 	unsigned max;
759 	time_t lowest_lru;
760 	size_t size;
761 	int loop, lru, ret;
762 
763 	kenter("%d,%s,%s,", key_serial(keyring), type->name, description);
764 
765 	if (keyring->type != &key_type_keyring)
766 		return -ENOTDIR;
767 
768 	down_write(&keyring->sem);
769 
770 	ret = -EKEYREVOKED;
771 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
772 		goto error_krsem;
773 
774 	/* serialise link/link calls to prevent parallel calls causing a cycle
775 	 * when linking two keyring in opposite orders */
776 	if (type == &key_type_keyring)
777 		down_write(&keyring_serialise_link_sem);
778 
779 	klist = rcu_dereference_locked_keyring(keyring);
780 
781 	/* see if there's a matching key we can displace */
782 	lru = -1;
783 	if (klist && klist->nkeys > 0) {
784 		lowest_lru = TIME_T_MAX;
785 		for (loop = klist->nkeys - 1; loop >= 0; loop--) {
786 			struct key *key = rcu_deref_link_locked(klist, loop,
787 								keyring);
788 			if (key->type == type &&
789 			    strcmp(key->description, description) == 0) {
790 				/* Found a match - we'll replace the link with
791 				 * one to the new key.  We record the slot
792 				 * position.
793 				 */
794 				klist->delkey = loop;
795 				prealloc = 0;
796 				goto done;
797 			}
798 			if (key->last_used_at < lowest_lru) {
799 				lowest_lru = key->last_used_at;
800 				lru = loop;
801 			}
802 		}
803 	}
804 
805 	/* If the keyring is full then do an LRU discard */
806 	if (klist &&
807 	    klist->nkeys == klist->maxkeys &&
808 	    klist->maxkeys >= MAX_KEYRING_LINKS) {
809 		kdebug("LRU discard %d\n", lru);
810 		klist->delkey = lru;
811 		prealloc = 0;
812 		goto done;
813 	}
814 
815 	/* check that we aren't going to overrun the user's quota */
816 	ret = key_payload_reserve(keyring,
817 				  keyring->datalen + KEYQUOTA_LINK_BYTES);
818 	if (ret < 0)
819 		goto error_sem;
820 
821 	if (klist && klist->nkeys < klist->maxkeys) {
822 		/* there's sufficient slack space to append directly */
823 		klist->delkey = klist->nkeys;
824 		prealloc = KEY_LINK_FIXQUOTA;
825 	} else {
826 		/* grow the key list */
827 		max = 4;
828 		if (klist) {
829 			max += klist->maxkeys;
830 			if (max > MAX_KEYRING_LINKS)
831 				max = MAX_KEYRING_LINKS;
832 			BUG_ON(max <= klist->maxkeys);
833 		}
834 
835 		size = sizeof(*klist) + sizeof(struct key *) * max;
836 
837 		ret = -ENOMEM;
838 		nklist = kmalloc(size, GFP_KERNEL);
839 		if (!nklist)
840 			goto error_quota;
841 
842 		nklist->maxkeys = max;
843 		if (klist) {
844 			memcpy(nklist->keys, klist->keys,
845 			       sizeof(struct key *) * klist->nkeys);
846 			nklist->delkey = klist->nkeys;
847 			nklist->nkeys = klist->nkeys + 1;
848 			klist->delkey = USHRT_MAX;
849 		} else {
850 			nklist->nkeys = 1;
851 			nklist->delkey = 0;
852 		}
853 
854 		/* add the key into the new space */
855 		RCU_INIT_POINTER(nklist->keys[nklist->delkey], NULL);
856 		prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA;
857 	}
858 
859 done:
860 	*_prealloc = prealloc;
861 	kleave(" = 0");
862 	return 0;
863 
864 error_quota:
865 	/* undo the quota changes */
866 	key_payload_reserve(keyring,
867 			    keyring->datalen - KEYQUOTA_LINK_BYTES);
868 error_sem:
869 	if (type == &key_type_keyring)
870 		up_write(&keyring_serialise_link_sem);
871 error_krsem:
872 	up_write(&keyring->sem);
873 	kleave(" = %d", ret);
874 	return ret;
875 }
876 
877 /*
878  * Check already instantiated keys aren't going to be a problem.
879  *
880  * The caller must have called __key_link_begin(). Don't need to call this for
881  * keys that were created since __key_link_begin() was called.
882  */
883 int __key_link_check_live_key(struct key *keyring, struct key *key)
884 {
885 	if (key->type == &key_type_keyring)
886 		/* check that we aren't going to create a cycle by linking one
887 		 * keyring to another */
888 		return keyring_detect_cycle(keyring, key);
889 	return 0;
890 }
891 
892 /*
893  * Link a key into to a keyring.
894  *
895  * Must be called with __key_link_begin() having being called.  Discards any
896  * already extant link to matching key if there is one, so that each keyring
897  * holds at most one link to any given key of a particular type+description
898  * combination.
899  */
900 void __key_link(struct key *keyring, struct key *key,
901 		unsigned long *_prealloc)
902 {
903 	struct keyring_list *klist, *nklist;
904 	struct key *discard;
905 
906 	nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA);
907 	*_prealloc = 0;
908 
909 	kenter("%d,%d,%p", keyring->serial, key->serial, nklist);
910 
911 	klist = rcu_dereference_locked_keyring(keyring);
912 
913 	atomic_inc(&key->usage);
914 	keyring->last_used_at = key->last_used_at =
915 		current_kernel_time().tv_sec;
916 
917 	/* there's a matching key we can displace or an empty slot in a newly
918 	 * allocated list we can fill */
919 	if (nklist) {
920 		kdebug("reissue %hu/%hu/%hu",
921 		       nklist->delkey, nklist->nkeys, nklist->maxkeys);
922 
923 		RCU_INIT_POINTER(nklist->keys[nklist->delkey], key);
924 
925 		rcu_assign_pointer(keyring->payload.subscriptions, nklist);
926 
927 		/* dispose of the old keyring list and, if there was one, the
928 		 * displaced key */
929 		if (klist) {
930 			kdebug("dispose %hu/%hu/%hu",
931 			       klist->delkey, klist->nkeys, klist->maxkeys);
932 			call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
933 		}
934 	} else if (klist->delkey < klist->nkeys) {
935 		kdebug("replace %hu/%hu/%hu",
936 		       klist->delkey, klist->nkeys, klist->maxkeys);
937 
938 		discard = rcu_dereference_protected(
939 			klist->keys[klist->delkey],
940 			rwsem_is_locked(&keyring->sem));
941 		rcu_assign_pointer(klist->keys[klist->delkey], key);
942 		/* The garbage collector will take care of RCU
943 		 * synchronisation */
944 		key_put(discard);
945 	} else {
946 		/* there's sufficient slack space to append directly */
947 		kdebug("append %hu/%hu/%hu",
948 		       klist->delkey, klist->nkeys, klist->maxkeys);
949 
950 		RCU_INIT_POINTER(klist->keys[klist->delkey], key);
951 		smp_wmb();
952 		klist->nkeys++;
953 	}
954 }
955 
956 /*
957  * Finish linking a key into to a keyring.
958  *
959  * Must be called with __key_link_begin() having being called.
960  */
961 void __key_link_end(struct key *keyring, struct key_type *type,
962 		    unsigned long prealloc)
963 	__releases(&keyring->sem)
964 	__releases(&keyring_serialise_link_sem)
965 {
966 	BUG_ON(type == NULL);
967 	BUG_ON(type->name == NULL);
968 	kenter("%d,%s,%lx", keyring->serial, type->name, prealloc);
969 
970 	if (type == &key_type_keyring)
971 		up_write(&keyring_serialise_link_sem);
972 
973 	if (prealloc) {
974 		if (prealloc & KEY_LINK_FIXQUOTA)
975 			key_payload_reserve(keyring,
976 					    keyring->datalen -
977 					    KEYQUOTA_LINK_BYTES);
978 		kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA));
979 	}
980 	up_write(&keyring->sem);
981 }
982 
983 /**
984  * key_link - Link a key to a keyring
985  * @keyring: The keyring to make the link in.
986  * @key: The key to link to.
987  *
988  * Make a link in a keyring to a key, such that the keyring holds a reference
989  * on that key and the key can potentially be found by searching that keyring.
990  *
991  * This function will write-lock the keyring's semaphore and will consume some
992  * of the user's key data quota to hold the link.
993  *
994  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
995  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
996  * full, -EDQUOT if there is insufficient key data quota remaining to add
997  * another link or -ENOMEM if there's insufficient memory.
998  *
999  * It is assumed that the caller has checked that it is permitted for a link to
1000  * be made (the keyring should have Write permission and the key Link
1001  * permission).
1002  */
1003 int key_link(struct key *keyring, struct key *key)
1004 {
1005 	unsigned long prealloc;
1006 	int ret;
1007 
1008 	key_check(keyring);
1009 	key_check(key);
1010 
1011 	ret = __key_link_begin(keyring, key->type, key->description, &prealloc);
1012 	if (ret == 0) {
1013 		ret = __key_link_check_live_key(keyring, key);
1014 		if (ret == 0)
1015 			__key_link(keyring, key, &prealloc);
1016 		__key_link_end(keyring, key->type, prealloc);
1017 	}
1018 
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL(key_link);
1022 
1023 /**
1024  * key_unlink - Unlink the first link to a key from a keyring.
1025  * @keyring: The keyring to remove the link from.
1026  * @key: The key the link is to.
1027  *
1028  * Remove a link from a keyring to a key.
1029  *
1030  * This function will write-lock the keyring's semaphore.
1031  *
1032  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1033  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1034  * memory.
1035  *
1036  * It is assumed that the caller has checked that it is permitted for a link to
1037  * be removed (the keyring should have Write permission; no permissions are
1038  * required on the key).
1039  */
1040 int key_unlink(struct key *keyring, struct key *key)
1041 {
1042 	struct keyring_list *klist, *nklist;
1043 	int loop, ret;
1044 
1045 	key_check(keyring);
1046 	key_check(key);
1047 
1048 	ret = -ENOTDIR;
1049 	if (keyring->type != &key_type_keyring)
1050 		goto error;
1051 
1052 	down_write(&keyring->sem);
1053 
1054 	klist = rcu_dereference_locked_keyring(keyring);
1055 	if (klist) {
1056 		/* search the keyring for the key */
1057 		for (loop = 0; loop < klist->nkeys; loop++)
1058 			if (rcu_access_pointer(klist->keys[loop]) == key)
1059 				goto key_is_present;
1060 	}
1061 
1062 	up_write(&keyring->sem);
1063 	ret = -ENOENT;
1064 	goto error;
1065 
1066 key_is_present:
1067 	/* we need to copy the key list for RCU purposes */
1068 	nklist = kmalloc(sizeof(*klist) +
1069 			 sizeof(struct key *) * klist->maxkeys,
1070 			 GFP_KERNEL);
1071 	if (!nklist)
1072 		goto nomem;
1073 	nklist->maxkeys = klist->maxkeys;
1074 	nklist->nkeys = klist->nkeys - 1;
1075 
1076 	if (loop > 0)
1077 		memcpy(&nklist->keys[0],
1078 		       &klist->keys[0],
1079 		       loop * sizeof(struct key *));
1080 
1081 	if (loop < nklist->nkeys)
1082 		memcpy(&nklist->keys[loop],
1083 		       &klist->keys[loop + 1],
1084 		       (nklist->nkeys - loop) * sizeof(struct key *));
1085 
1086 	/* adjust the user's quota */
1087 	key_payload_reserve(keyring,
1088 			    keyring->datalen - KEYQUOTA_LINK_BYTES);
1089 
1090 	rcu_assign_pointer(keyring->payload.subscriptions, nklist);
1091 
1092 	up_write(&keyring->sem);
1093 
1094 	/* schedule for later cleanup */
1095 	klist->delkey = loop;
1096 	call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
1097 
1098 	ret = 0;
1099 
1100 error:
1101 	return ret;
1102 nomem:
1103 	ret = -ENOMEM;
1104 	up_write(&keyring->sem);
1105 	goto error;
1106 }
1107 EXPORT_SYMBOL(key_unlink);
1108 
1109 /*
1110  * Dispose of a keyring list after the RCU grace period, releasing the keys it
1111  * links to.
1112  */
1113 static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
1114 {
1115 	struct keyring_list *klist;
1116 	int loop;
1117 
1118 	klist = container_of(rcu, struct keyring_list, rcu);
1119 
1120 	for (loop = klist->nkeys - 1; loop >= 0; loop--)
1121 		key_put(rcu_access_pointer(klist->keys[loop]));
1122 
1123 	kfree(klist);
1124 }
1125 
1126 /**
1127  * keyring_clear - Clear a keyring
1128  * @keyring: The keyring to clear.
1129  *
1130  * Clear the contents of the specified keyring.
1131  *
1132  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1133  */
1134 int keyring_clear(struct key *keyring)
1135 {
1136 	struct keyring_list *klist;
1137 	int ret;
1138 
1139 	ret = -ENOTDIR;
1140 	if (keyring->type == &key_type_keyring) {
1141 		/* detach the pointer block with the locks held */
1142 		down_write(&keyring->sem);
1143 
1144 		klist = rcu_dereference_locked_keyring(keyring);
1145 		if (klist) {
1146 			/* adjust the quota */
1147 			key_payload_reserve(keyring,
1148 					    sizeof(struct keyring_list));
1149 
1150 			rcu_assign_pointer(keyring->payload.subscriptions,
1151 					   NULL);
1152 		}
1153 
1154 		up_write(&keyring->sem);
1155 
1156 		/* free the keys after the locks have been dropped */
1157 		if (klist)
1158 			call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1159 
1160 		ret = 0;
1161 	}
1162 
1163 	return ret;
1164 }
1165 EXPORT_SYMBOL(keyring_clear);
1166 
1167 /*
1168  * Dispose of the links from a revoked keyring.
1169  *
1170  * This is called with the key sem write-locked.
1171  */
1172 static void keyring_revoke(struct key *keyring)
1173 {
1174 	struct keyring_list *klist;
1175 
1176 	klist = rcu_dereference_locked_keyring(keyring);
1177 
1178 	/* adjust the quota */
1179 	key_payload_reserve(keyring, 0);
1180 
1181 	if (klist) {
1182 		rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1183 		call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1184 	}
1185 }
1186 
1187 /*
1188  * Collect garbage from the contents of a keyring, replacing the old list with
1189  * a new one with the pointers all shuffled down.
1190  *
1191  * Dead keys are classed as oned that are flagged as being dead or are revoked,
1192  * expired or negative keys that were revoked or expired before the specified
1193  * limit.
1194  */
1195 void keyring_gc(struct key *keyring, time_t limit)
1196 {
1197 	struct keyring_list *klist, *new;
1198 	struct key *key;
1199 	int loop, keep, max;
1200 
1201 	kenter("{%x,%s}", key_serial(keyring), keyring->description);
1202 
1203 	down_write(&keyring->sem);
1204 
1205 	klist = rcu_dereference_locked_keyring(keyring);
1206 	if (!klist)
1207 		goto no_klist;
1208 
1209 	/* work out how many subscriptions we're keeping */
1210 	keep = 0;
1211 	for (loop = klist->nkeys - 1; loop >= 0; loop--)
1212 		if (!key_is_dead(rcu_deref_link_locked(klist, loop, keyring),
1213 				 limit))
1214 			keep++;
1215 
1216 	if (keep == klist->nkeys)
1217 		goto just_return;
1218 
1219 	/* allocate a new keyring payload */
1220 	max = roundup(keep, 4);
1221 	new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *),
1222 		      GFP_KERNEL);
1223 	if (!new)
1224 		goto nomem;
1225 	new->maxkeys = max;
1226 	new->nkeys = 0;
1227 	new->delkey = 0;
1228 
1229 	/* install the live keys
1230 	 * - must take care as expired keys may be updated back to life
1231 	 */
1232 	keep = 0;
1233 	for (loop = klist->nkeys - 1; loop >= 0; loop--) {
1234 		key = rcu_deref_link_locked(klist, loop, keyring);
1235 		if (!key_is_dead(key, limit)) {
1236 			if (keep >= max)
1237 				goto discard_new;
1238 			RCU_INIT_POINTER(new->keys[keep++], key_get(key));
1239 		}
1240 	}
1241 	new->nkeys = keep;
1242 
1243 	/* adjust the quota */
1244 	key_payload_reserve(keyring,
1245 			    sizeof(struct keyring_list) +
1246 			    KEYQUOTA_LINK_BYTES * keep);
1247 
1248 	if (keep == 0) {
1249 		rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1250 		kfree(new);
1251 	} else {
1252 		rcu_assign_pointer(keyring->payload.subscriptions, new);
1253 	}
1254 
1255 	up_write(&keyring->sem);
1256 
1257 	call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1258 	kleave(" [yes]");
1259 	return;
1260 
1261 discard_new:
1262 	new->nkeys = keep;
1263 	keyring_clear_rcu_disposal(&new->rcu);
1264 	up_write(&keyring->sem);
1265 	kleave(" [discard]");
1266 	return;
1267 
1268 just_return:
1269 	up_write(&keyring->sem);
1270 	kleave(" [no dead]");
1271 	return;
1272 
1273 no_klist:
1274 	up_write(&keyring->sem);
1275 	kleave(" [no_klist]");
1276 	return;
1277 
1278 nomem:
1279 	up_write(&keyring->sem);
1280 	kleave(" [oom]");
1281 }
1282