1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <linux/uaccess.h> 21 #include "internal.h" 22 23 #define rcu_dereference_locked_keyring(keyring) \ 24 (rcu_dereference_protected( \ 25 (keyring)->payload.subscriptions, \ 26 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) 27 28 #define rcu_deref_link_locked(klist, index, keyring) \ 29 (rcu_dereference_protected( \ 30 (klist)->keys[index], \ 31 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) 32 33 #define MAX_KEYRING_LINKS \ 34 min_t(size_t, USHRT_MAX - 1, \ 35 ((PAGE_SIZE - sizeof(struct keyring_list)) / sizeof(struct key *))) 36 37 #define KEY_LINK_FIXQUOTA 1UL 38 39 /* 40 * When plumbing the depths of the key tree, this sets a hard limit 41 * set on how deep we're willing to go. 42 */ 43 #define KEYRING_SEARCH_MAX_DEPTH 6 44 45 /* 46 * We keep all named keyrings in a hash to speed looking them up. 47 */ 48 #define KEYRING_NAME_HASH_SIZE (1 << 5) 49 50 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 51 static DEFINE_RWLOCK(keyring_name_lock); 52 53 static inline unsigned keyring_hash(const char *desc) 54 { 55 unsigned bucket = 0; 56 57 for (; *desc; desc++) 58 bucket += (unsigned char)*desc; 59 60 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 61 } 62 63 /* 64 * The keyring key type definition. Keyrings are simply keys of this type and 65 * can be treated as ordinary keys in addition to having their own special 66 * operations. 67 */ 68 static int keyring_instantiate(struct key *keyring, 69 const void *data, size_t datalen); 70 static int keyring_match(const struct key *keyring, const void *criterion); 71 static void keyring_revoke(struct key *keyring); 72 static void keyring_destroy(struct key *keyring); 73 static void keyring_describe(const struct key *keyring, struct seq_file *m); 74 static long keyring_read(const struct key *keyring, 75 char __user *buffer, size_t buflen); 76 77 struct key_type key_type_keyring = { 78 .name = "keyring", 79 .def_datalen = sizeof(struct keyring_list), 80 .instantiate = keyring_instantiate, 81 .match = keyring_match, 82 .revoke = keyring_revoke, 83 .destroy = keyring_destroy, 84 .describe = keyring_describe, 85 .read = keyring_read, 86 }; 87 EXPORT_SYMBOL(key_type_keyring); 88 89 /* 90 * Semaphore to serialise link/link calls to prevent two link calls in parallel 91 * introducing a cycle. 92 */ 93 static DECLARE_RWSEM(keyring_serialise_link_sem); 94 95 /* 96 * Publish the name of a keyring so that it can be found by name (if it has 97 * one). 98 */ 99 static void keyring_publish_name(struct key *keyring) 100 { 101 int bucket; 102 103 if (keyring->description) { 104 bucket = keyring_hash(keyring->description); 105 106 write_lock(&keyring_name_lock); 107 108 if (!keyring_name_hash[bucket].next) 109 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 110 111 list_add_tail(&keyring->type_data.link, 112 &keyring_name_hash[bucket]); 113 114 write_unlock(&keyring_name_lock); 115 } 116 } 117 118 /* 119 * Initialise a keyring. 120 * 121 * Returns 0 on success, -EINVAL if given any data. 122 */ 123 static int keyring_instantiate(struct key *keyring, 124 const void *data, size_t datalen) 125 { 126 int ret; 127 128 ret = -EINVAL; 129 if (datalen == 0) { 130 /* make the keyring available by name if it has one */ 131 keyring_publish_name(keyring); 132 ret = 0; 133 } 134 135 return ret; 136 } 137 138 /* 139 * Match keyrings on their name 140 */ 141 static int keyring_match(const struct key *keyring, const void *description) 142 { 143 return keyring->description && 144 strcmp(keyring->description, description) == 0; 145 } 146 147 /* 148 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 149 * and dispose of its data. 150 * 151 * The garbage collector detects the final key_put(), removes the keyring from 152 * the serial number tree and then does RCU synchronisation before coming here, 153 * so we shouldn't need to worry about code poking around here with the RCU 154 * readlock held by this time. 155 */ 156 static void keyring_destroy(struct key *keyring) 157 { 158 struct keyring_list *klist; 159 int loop; 160 161 if (keyring->description) { 162 write_lock(&keyring_name_lock); 163 164 if (keyring->type_data.link.next != NULL && 165 !list_empty(&keyring->type_data.link)) 166 list_del(&keyring->type_data.link); 167 168 write_unlock(&keyring_name_lock); 169 } 170 171 klist = rcu_access_pointer(keyring->payload.subscriptions); 172 if (klist) { 173 for (loop = klist->nkeys - 1; loop >= 0; loop--) 174 key_put(rcu_access_pointer(klist->keys[loop])); 175 kfree(klist); 176 } 177 } 178 179 /* 180 * Describe a keyring for /proc. 181 */ 182 static void keyring_describe(const struct key *keyring, struct seq_file *m) 183 { 184 struct keyring_list *klist; 185 186 if (keyring->description) 187 seq_puts(m, keyring->description); 188 else 189 seq_puts(m, "[anon]"); 190 191 if (key_is_instantiated(keyring)) { 192 rcu_read_lock(); 193 klist = rcu_dereference(keyring->payload.subscriptions); 194 if (klist) 195 seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys); 196 else 197 seq_puts(m, ": empty"); 198 rcu_read_unlock(); 199 } 200 } 201 202 /* 203 * Read a list of key IDs from the keyring's contents in binary form 204 * 205 * The keyring's semaphore is read-locked by the caller. 206 */ 207 static long keyring_read(const struct key *keyring, 208 char __user *buffer, size_t buflen) 209 { 210 struct keyring_list *klist; 211 struct key *key; 212 size_t qty, tmp; 213 int loop, ret; 214 215 ret = 0; 216 klist = rcu_dereference_locked_keyring(keyring); 217 if (klist) { 218 /* calculate how much data we could return */ 219 qty = klist->nkeys * sizeof(key_serial_t); 220 221 if (buffer && buflen > 0) { 222 if (buflen > qty) 223 buflen = qty; 224 225 /* copy the IDs of the subscribed keys into the 226 * buffer */ 227 ret = -EFAULT; 228 229 for (loop = 0; loop < klist->nkeys; loop++) { 230 key = rcu_deref_link_locked(klist, loop, 231 keyring); 232 233 tmp = sizeof(key_serial_t); 234 if (tmp > buflen) 235 tmp = buflen; 236 237 if (copy_to_user(buffer, 238 &key->serial, 239 tmp) != 0) 240 goto error; 241 242 buflen -= tmp; 243 if (buflen == 0) 244 break; 245 buffer += tmp; 246 } 247 } 248 249 ret = qty; 250 } 251 252 error: 253 return ret; 254 } 255 256 /* 257 * Allocate a keyring and link into the destination keyring. 258 */ 259 struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid, 260 const struct cred *cred, unsigned long flags, 261 struct key *dest) 262 { 263 struct key *keyring; 264 int ret; 265 266 keyring = key_alloc(&key_type_keyring, description, 267 uid, gid, cred, 268 (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL, 269 flags); 270 271 if (!IS_ERR(keyring)) { 272 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 273 if (ret < 0) { 274 key_put(keyring); 275 keyring = ERR_PTR(ret); 276 } 277 } 278 279 return keyring; 280 } 281 282 /** 283 * keyring_search_aux - Search a keyring tree for a key matching some criteria 284 * @keyring_ref: A pointer to the keyring with possession indicator. 285 * @cred: The credentials to use for permissions checks. 286 * @type: The type of key to search for. 287 * @description: Parameter for @match. 288 * @match: Function to rule on whether or not a key is the one required. 289 * @no_state_check: Don't check if a matching key is bad 290 * 291 * Search the supplied keyring tree for a key that matches the criteria given. 292 * The root keyring and any linked keyrings must grant Search permission to the 293 * caller to be searchable and keys can only be found if they too grant Search 294 * to the caller. The possession flag on the root keyring pointer controls use 295 * of the possessor bits in permissions checking of the entire tree. In 296 * addition, the LSM gets to forbid keyring searches and key matches. 297 * 298 * The search is performed as a breadth-then-depth search up to the prescribed 299 * limit (KEYRING_SEARCH_MAX_DEPTH). 300 * 301 * Keys are matched to the type provided and are then filtered by the match 302 * function, which is given the description to use in any way it sees fit. The 303 * match function may use any attributes of a key that it wishes to to 304 * determine the match. Normally the match function from the key type would be 305 * used. 306 * 307 * RCU is used to prevent the keyring key lists from disappearing without the 308 * need to take lots of locks. 309 * 310 * Returns a pointer to the found key and increments the key usage count if 311 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 312 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 313 * specified keyring wasn't a keyring. 314 * 315 * In the case of a successful return, the possession attribute from 316 * @keyring_ref is propagated to the returned key reference. 317 */ 318 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 319 const struct cred *cred, 320 struct key_type *type, 321 const void *description, 322 key_match_func_t match, 323 bool no_state_check) 324 { 325 struct { 326 /* Need a separate keylist pointer for RCU purposes */ 327 struct key *keyring; 328 struct keyring_list *keylist; 329 int kix; 330 } stack[KEYRING_SEARCH_MAX_DEPTH]; 331 332 struct keyring_list *keylist; 333 struct timespec now; 334 unsigned long possessed, kflags; 335 struct key *keyring, *key; 336 key_ref_t key_ref; 337 long err; 338 int sp, nkeys, kix; 339 340 keyring = key_ref_to_ptr(keyring_ref); 341 possessed = is_key_possessed(keyring_ref); 342 key_check(keyring); 343 344 /* top keyring must have search permission to begin the search */ 345 err = key_task_permission(keyring_ref, cred, KEY_SEARCH); 346 if (err < 0) { 347 key_ref = ERR_PTR(err); 348 goto error; 349 } 350 351 key_ref = ERR_PTR(-ENOTDIR); 352 if (keyring->type != &key_type_keyring) 353 goto error; 354 355 rcu_read_lock(); 356 357 now = current_kernel_time(); 358 err = -EAGAIN; 359 sp = 0; 360 361 /* firstly we should check to see if this top-level keyring is what we 362 * are looking for */ 363 key_ref = ERR_PTR(-EAGAIN); 364 kflags = keyring->flags; 365 if (keyring->type == type && match(keyring, description)) { 366 key = keyring; 367 if (no_state_check) 368 goto found; 369 370 /* check it isn't negative and hasn't expired or been 371 * revoked */ 372 if (kflags & (1 << KEY_FLAG_REVOKED)) 373 goto error_2; 374 if (key->expiry && now.tv_sec >= key->expiry) 375 goto error_2; 376 key_ref = ERR_PTR(key->type_data.reject_error); 377 if (kflags & (1 << KEY_FLAG_NEGATIVE)) 378 goto error_2; 379 goto found; 380 } 381 382 /* otherwise, the top keyring must not be revoked, expired, or 383 * negatively instantiated if we are to search it */ 384 key_ref = ERR_PTR(-EAGAIN); 385 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 386 (1 << KEY_FLAG_REVOKED) | 387 (1 << KEY_FLAG_NEGATIVE)) || 388 (keyring->expiry && now.tv_sec >= keyring->expiry)) 389 goto error_2; 390 391 /* start processing a new keyring */ 392 descend: 393 kflags = keyring->flags; 394 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 395 (1 << KEY_FLAG_REVOKED))) 396 goto not_this_keyring; 397 398 keylist = rcu_dereference(keyring->payload.subscriptions); 399 if (!keylist) 400 goto not_this_keyring; 401 402 /* iterate through the keys in this keyring first */ 403 nkeys = keylist->nkeys; 404 smp_rmb(); 405 for (kix = 0; kix < nkeys; kix++) { 406 key = rcu_dereference(keylist->keys[kix]); 407 kflags = key->flags; 408 409 /* ignore keys not of this type */ 410 if (key->type != type) 411 continue; 412 413 /* skip invalidated, revoked and expired keys */ 414 if (!no_state_check) { 415 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 416 (1 << KEY_FLAG_REVOKED))) 417 continue; 418 419 if (key->expiry && now.tv_sec >= key->expiry) 420 continue; 421 } 422 423 /* keys that don't match */ 424 if (!match(key, description)) 425 continue; 426 427 /* key must have search permissions */ 428 if (key_task_permission(make_key_ref(key, possessed), 429 cred, KEY_SEARCH) < 0) 430 continue; 431 432 if (no_state_check) 433 goto found; 434 435 /* we set a different error code if we pass a negative key */ 436 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 437 err = key->type_data.reject_error; 438 continue; 439 } 440 441 goto found; 442 } 443 444 /* search through the keyrings nested in this one */ 445 kix = 0; 446 ascend: 447 nkeys = keylist->nkeys; 448 smp_rmb(); 449 for (; kix < nkeys; kix++) { 450 key = rcu_dereference(keylist->keys[kix]); 451 if (key->type != &key_type_keyring) 452 continue; 453 454 /* recursively search nested keyrings 455 * - only search keyrings for which we have search permission 456 */ 457 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 458 continue; 459 460 if (key_task_permission(make_key_ref(key, possessed), 461 cred, KEY_SEARCH) < 0) 462 continue; 463 464 /* stack the current position */ 465 stack[sp].keyring = keyring; 466 stack[sp].keylist = keylist; 467 stack[sp].kix = kix; 468 sp++; 469 470 /* begin again with the new keyring */ 471 keyring = key; 472 goto descend; 473 } 474 475 /* the keyring we're looking at was disqualified or didn't contain a 476 * matching key */ 477 not_this_keyring: 478 if (sp > 0) { 479 /* resume the processing of a keyring higher up in the tree */ 480 sp--; 481 keyring = stack[sp].keyring; 482 keylist = stack[sp].keylist; 483 kix = stack[sp].kix + 1; 484 goto ascend; 485 } 486 487 key_ref = ERR_PTR(err); 488 goto error_2; 489 490 /* we found a viable match */ 491 found: 492 atomic_inc(&key->usage); 493 key->last_used_at = now.tv_sec; 494 keyring->last_used_at = now.tv_sec; 495 while (sp > 0) 496 stack[--sp].keyring->last_used_at = now.tv_sec; 497 key_check(key); 498 key_ref = make_key_ref(key, possessed); 499 error_2: 500 rcu_read_unlock(); 501 error: 502 return key_ref; 503 } 504 505 /** 506 * keyring_search - Search the supplied keyring tree for a matching key 507 * @keyring: The root of the keyring tree to be searched. 508 * @type: The type of keyring we want to find. 509 * @description: The name of the keyring we want to find. 510 * 511 * As keyring_search_aux() above, but using the current task's credentials and 512 * type's default matching function. 513 */ 514 key_ref_t keyring_search(key_ref_t keyring, 515 struct key_type *type, 516 const char *description) 517 { 518 if (!type->match) 519 return ERR_PTR(-ENOKEY); 520 521 return keyring_search_aux(keyring, current->cred, 522 type, description, type->match, false); 523 } 524 EXPORT_SYMBOL(keyring_search); 525 526 /* 527 * Search the given keyring only (no recursion). 528 * 529 * The caller must guarantee that the keyring is a keyring and that the 530 * permission is granted to search the keyring as no check is made here. 531 * 532 * RCU is used to make it unnecessary to lock the keyring key list here. 533 * 534 * Returns a pointer to the found key with usage count incremented if 535 * successful and returns -ENOKEY if not found. Revoked keys and keys not 536 * providing the requested permission are skipped over. 537 * 538 * If successful, the possession indicator is propagated from the keyring ref 539 * to the returned key reference. 540 */ 541 key_ref_t __keyring_search_one(key_ref_t keyring_ref, 542 const struct key_type *ktype, 543 const char *description, 544 key_perm_t perm) 545 { 546 struct keyring_list *klist; 547 unsigned long possessed; 548 struct key *keyring, *key; 549 int nkeys, loop; 550 551 keyring = key_ref_to_ptr(keyring_ref); 552 possessed = is_key_possessed(keyring_ref); 553 554 rcu_read_lock(); 555 556 klist = rcu_dereference(keyring->payload.subscriptions); 557 if (klist) { 558 nkeys = klist->nkeys; 559 smp_rmb(); 560 for (loop = 0; loop < nkeys ; loop++) { 561 key = rcu_dereference(klist->keys[loop]); 562 if (key->type == ktype && 563 (!key->type->match || 564 key->type->match(key, description)) && 565 key_permission(make_key_ref(key, possessed), 566 perm) == 0 && 567 !(key->flags & ((1 << KEY_FLAG_INVALIDATED) | 568 (1 << KEY_FLAG_REVOKED))) 569 ) 570 goto found; 571 } 572 } 573 574 rcu_read_unlock(); 575 return ERR_PTR(-ENOKEY); 576 577 found: 578 atomic_inc(&key->usage); 579 keyring->last_used_at = key->last_used_at = 580 current_kernel_time().tv_sec; 581 rcu_read_unlock(); 582 return make_key_ref(key, possessed); 583 } 584 585 /* 586 * Find a keyring with the specified name. 587 * 588 * All named keyrings in the current user namespace are searched, provided they 589 * grant Search permission directly to the caller (unless this check is 590 * skipped). Keyrings whose usage points have reached zero or who have been 591 * revoked are skipped. 592 * 593 * Returns a pointer to the keyring with the keyring's refcount having being 594 * incremented on success. -ENOKEY is returned if a key could not be found. 595 */ 596 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 597 { 598 struct key *keyring; 599 int bucket; 600 601 if (!name) 602 return ERR_PTR(-EINVAL); 603 604 bucket = keyring_hash(name); 605 606 read_lock(&keyring_name_lock); 607 608 if (keyring_name_hash[bucket].next) { 609 /* search this hash bucket for a keyring with a matching name 610 * that's readable and that hasn't been revoked */ 611 list_for_each_entry(keyring, 612 &keyring_name_hash[bucket], 613 type_data.link 614 ) { 615 if (keyring->user->user_ns != current_user_ns()) 616 continue; 617 618 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 619 continue; 620 621 if (strcmp(keyring->description, name) != 0) 622 continue; 623 624 if (!skip_perm_check && 625 key_permission(make_key_ref(keyring, 0), 626 KEY_SEARCH) < 0) 627 continue; 628 629 /* we've got a match but we might end up racing with 630 * key_cleanup() if the keyring is currently 'dead' 631 * (ie. it has a zero usage count) */ 632 if (!atomic_inc_not_zero(&keyring->usage)) 633 continue; 634 keyring->last_used_at = current_kernel_time().tv_sec; 635 goto out; 636 } 637 } 638 639 keyring = ERR_PTR(-ENOKEY); 640 out: 641 read_unlock(&keyring_name_lock); 642 return keyring; 643 } 644 645 /* 646 * See if a cycle will will be created by inserting acyclic tree B in acyclic 647 * tree A at the topmost level (ie: as a direct child of A). 648 * 649 * Since we are adding B to A at the top level, checking for cycles should just 650 * be a matter of seeing if node A is somewhere in tree B. 651 */ 652 static int keyring_detect_cycle(struct key *A, struct key *B) 653 { 654 struct { 655 struct keyring_list *keylist; 656 int kix; 657 } stack[KEYRING_SEARCH_MAX_DEPTH]; 658 659 struct keyring_list *keylist; 660 struct key *subtree, *key; 661 int sp, nkeys, kix, ret; 662 663 rcu_read_lock(); 664 665 ret = -EDEADLK; 666 if (A == B) 667 goto cycle_detected; 668 669 subtree = B; 670 sp = 0; 671 672 /* start processing a new keyring */ 673 descend: 674 if (test_bit(KEY_FLAG_REVOKED, &subtree->flags)) 675 goto not_this_keyring; 676 677 keylist = rcu_dereference(subtree->payload.subscriptions); 678 if (!keylist) 679 goto not_this_keyring; 680 kix = 0; 681 682 ascend: 683 /* iterate through the remaining keys in this keyring */ 684 nkeys = keylist->nkeys; 685 smp_rmb(); 686 for (; kix < nkeys; kix++) { 687 key = rcu_dereference(keylist->keys[kix]); 688 689 if (key == A) 690 goto cycle_detected; 691 692 /* recursively check nested keyrings */ 693 if (key->type == &key_type_keyring) { 694 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 695 goto too_deep; 696 697 /* stack the current position */ 698 stack[sp].keylist = keylist; 699 stack[sp].kix = kix; 700 sp++; 701 702 /* begin again with the new keyring */ 703 subtree = key; 704 goto descend; 705 } 706 } 707 708 /* the keyring we're looking at was disqualified or didn't contain a 709 * matching key */ 710 not_this_keyring: 711 if (sp > 0) { 712 /* resume the checking of a keyring higher up in the tree */ 713 sp--; 714 keylist = stack[sp].keylist; 715 kix = stack[sp].kix + 1; 716 goto ascend; 717 } 718 719 ret = 0; /* no cycles detected */ 720 721 error: 722 rcu_read_unlock(); 723 return ret; 724 725 too_deep: 726 ret = -ELOOP; 727 goto error; 728 729 cycle_detected: 730 ret = -EDEADLK; 731 goto error; 732 } 733 734 /* 735 * Dispose of a keyring list after the RCU grace period, freeing the unlinked 736 * key 737 */ 738 static void keyring_unlink_rcu_disposal(struct rcu_head *rcu) 739 { 740 struct keyring_list *klist = 741 container_of(rcu, struct keyring_list, rcu); 742 743 if (klist->delkey != USHRT_MAX) 744 key_put(rcu_access_pointer(klist->keys[klist->delkey])); 745 kfree(klist); 746 } 747 748 /* 749 * Preallocate memory so that a key can be linked into to a keyring. 750 */ 751 int __key_link_begin(struct key *keyring, const struct key_type *type, 752 const char *description, unsigned long *_prealloc) 753 __acquires(&keyring->sem) 754 { 755 struct keyring_list *klist, *nklist; 756 unsigned long prealloc; 757 unsigned max; 758 time_t lowest_lru; 759 size_t size; 760 int loop, lru, ret; 761 762 kenter("%d,%s,%s,", key_serial(keyring), type->name, description); 763 764 if (keyring->type != &key_type_keyring) 765 return -ENOTDIR; 766 767 down_write(&keyring->sem); 768 769 ret = -EKEYREVOKED; 770 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 771 goto error_krsem; 772 773 /* serialise link/link calls to prevent parallel calls causing a cycle 774 * when linking two keyring in opposite orders */ 775 if (type == &key_type_keyring) 776 down_write(&keyring_serialise_link_sem); 777 778 klist = rcu_dereference_locked_keyring(keyring); 779 780 /* see if there's a matching key we can displace */ 781 lru = -1; 782 if (klist && klist->nkeys > 0) { 783 lowest_lru = TIME_T_MAX; 784 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 785 struct key *key = rcu_deref_link_locked(klist, loop, 786 keyring); 787 if (key->type == type && 788 strcmp(key->description, description) == 0) { 789 /* Found a match - we'll replace the link with 790 * one to the new key. We record the slot 791 * position. 792 */ 793 klist->delkey = loop; 794 prealloc = 0; 795 goto done; 796 } 797 if (key->last_used_at < lowest_lru) { 798 lowest_lru = key->last_used_at; 799 lru = loop; 800 } 801 } 802 } 803 804 /* If the keyring is full then do an LRU discard */ 805 if (klist && 806 klist->nkeys == klist->maxkeys && 807 klist->maxkeys >= MAX_KEYRING_LINKS) { 808 kdebug("LRU discard %d\n", lru); 809 klist->delkey = lru; 810 prealloc = 0; 811 goto done; 812 } 813 814 /* check that we aren't going to overrun the user's quota */ 815 ret = key_payload_reserve(keyring, 816 keyring->datalen + KEYQUOTA_LINK_BYTES); 817 if (ret < 0) 818 goto error_sem; 819 820 if (klist && klist->nkeys < klist->maxkeys) { 821 /* there's sufficient slack space to append directly */ 822 klist->delkey = klist->nkeys; 823 prealloc = KEY_LINK_FIXQUOTA; 824 } else { 825 /* grow the key list */ 826 max = 4; 827 if (klist) { 828 max += klist->maxkeys; 829 if (max > MAX_KEYRING_LINKS) 830 max = MAX_KEYRING_LINKS; 831 BUG_ON(max <= klist->maxkeys); 832 } 833 834 size = sizeof(*klist) + sizeof(struct key *) * max; 835 836 ret = -ENOMEM; 837 nklist = kmalloc(size, GFP_KERNEL); 838 if (!nklist) 839 goto error_quota; 840 841 nklist->maxkeys = max; 842 if (klist) { 843 memcpy(nklist->keys, klist->keys, 844 sizeof(struct key *) * klist->nkeys); 845 nklist->delkey = klist->nkeys; 846 nklist->nkeys = klist->nkeys + 1; 847 klist->delkey = USHRT_MAX; 848 } else { 849 nklist->nkeys = 1; 850 nklist->delkey = 0; 851 } 852 853 /* add the key into the new space */ 854 RCU_INIT_POINTER(nklist->keys[nklist->delkey], NULL); 855 prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA; 856 } 857 858 done: 859 *_prealloc = prealloc; 860 kleave(" = 0"); 861 return 0; 862 863 error_quota: 864 /* undo the quota changes */ 865 key_payload_reserve(keyring, 866 keyring->datalen - KEYQUOTA_LINK_BYTES); 867 error_sem: 868 if (type == &key_type_keyring) 869 up_write(&keyring_serialise_link_sem); 870 error_krsem: 871 up_write(&keyring->sem); 872 kleave(" = %d", ret); 873 return ret; 874 } 875 876 /* 877 * Check already instantiated keys aren't going to be a problem. 878 * 879 * The caller must have called __key_link_begin(). Don't need to call this for 880 * keys that were created since __key_link_begin() was called. 881 */ 882 int __key_link_check_live_key(struct key *keyring, struct key *key) 883 { 884 if (key->type == &key_type_keyring) 885 /* check that we aren't going to create a cycle by linking one 886 * keyring to another */ 887 return keyring_detect_cycle(keyring, key); 888 return 0; 889 } 890 891 /* 892 * Link a key into to a keyring. 893 * 894 * Must be called with __key_link_begin() having being called. Discards any 895 * already extant link to matching key if there is one, so that each keyring 896 * holds at most one link to any given key of a particular type+description 897 * combination. 898 */ 899 void __key_link(struct key *keyring, struct key *key, 900 unsigned long *_prealloc) 901 { 902 struct keyring_list *klist, *nklist; 903 struct key *discard; 904 905 nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA); 906 *_prealloc = 0; 907 908 kenter("%d,%d,%p", keyring->serial, key->serial, nklist); 909 910 klist = rcu_dereference_locked_keyring(keyring); 911 912 atomic_inc(&key->usage); 913 keyring->last_used_at = key->last_used_at = 914 current_kernel_time().tv_sec; 915 916 /* there's a matching key we can displace or an empty slot in a newly 917 * allocated list we can fill */ 918 if (nklist) { 919 kdebug("reissue %hu/%hu/%hu", 920 nklist->delkey, nklist->nkeys, nklist->maxkeys); 921 922 RCU_INIT_POINTER(nklist->keys[nklist->delkey], key); 923 924 rcu_assign_pointer(keyring->payload.subscriptions, nklist); 925 926 /* dispose of the old keyring list and, if there was one, the 927 * displaced key */ 928 if (klist) { 929 kdebug("dispose %hu/%hu/%hu", 930 klist->delkey, klist->nkeys, klist->maxkeys); 931 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); 932 } 933 } else if (klist->delkey < klist->nkeys) { 934 kdebug("replace %hu/%hu/%hu", 935 klist->delkey, klist->nkeys, klist->maxkeys); 936 937 discard = rcu_dereference_protected( 938 klist->keys[klist->delkey], 939 rwsem_is_locked(&keyring->sem)); 940 rcu_assign_pointer(klist->keys[klist->delkey], key); 941 /* The garbage collector will take care of RCU 942 * synchronisation */ 943 key_put(discard); 944 } else { 945 /* there's sufficient slack space to append directly */ 946 kdebug("append %hu/%hu/%hu", 947 klist->delkey, klist->nkeys, klist->maxkeys); 948 949 RCU_INIT_POINTER(klist->keys[klist->delkey], key); 950 smp_wmb(); 951 klist->nkeys++; 952 } 953 } 954 955 /* 956 * Finish linking a key into to a keyring. 957 * 958 * Must be called with __key_link_begin() having being called. 959 */ 960 void __key_link_end(struct key *keyring, struct key_type *type, 961 unsigned long prealloc) 962 __releases(&keyring->sem) 963 { 964 BUG_ON(type == NULL); 965 BUG_ON(type->name == NULL); 966 kenter("%d,%s,%lx", keyring->serial, type->name, prealloc); 967 968 if (type == &key_type_keyring) 969 up_write(&keyring_serialise_link_sem); 970 971 if (prealloc) { 972 if (prealloc & KEY_LINK_FIXQUOTA) 973 key_payload_reserve(keyring, 974 keyring->datalen - 975 KEYQUOTA_LINK_BYTES); 976 kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA)); 977 } 978 up_write(&keyring->sem); 979 } 980 981 /** 982 * key_link - Link a key to a keyring 983 * @keyring: The keyring to make the link in. 984 * @key: The key to link to. 985 * 986 * Make a link in a keyring to a key, such that the keyring holds a reference 987 * on that key and the key can potentially be found by searching that keyring. 988 * 989 * This function will write-lock the keyring's semaphore and will consume some 990 * of the user's key data quota to hold the link. 991 * 992 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 993 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 994 * full, -EDQUOT if there is insufficient key data quota remaining to add 995 * another link or -ENOMEM if there's insufficient memory. 996 * 997 * It is assumed that the caller has checked that it is permitted for a link to 998 * be made (the keyring should have Write permission and the key Link 999 * permission). 1000 */ 1001 int key_link(struct key *keyring, struct key *key) 1002 { 1003 unsigned long prealloc; 1004 int ret; 1005 1006 key_check(keyring); 1007 key_check(key); 1008 1009 ret = __key_link_begin(keyring, key->type, key->description, &prealloc); 1010 if (ret == 0) { 1011 ret = __key_link_check_live_key(keyring, key); 1012 if (ret == 0) 1013 __key_link(keyring, key, &prealloc); 1014 __key_link_end(keyring, key->type, prealloc); 1015 } 1016 1017 return ret; 1018 } 1019 EXPORT_SYMBOL(key_link); 1020 1021 /** 1022 * key_unlink - Unlink the first link to a key from a keyring. 1023 * @keyring: The keyring to remove the link from. 1024 * @key: The key the link is to. 1025 * 1026 * Remove a link from a keyring to a key. 1027 * 1028 * This function will write-lock the keyring's semaphore. 1029 * 1030 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1031 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1032 * memory. 1033 * 1034 * It is assumed that the caller has checked that it is permitted for a link to 1035 * be removed (the keyring should have Write permission; no permissions are 1036 * required on the key). 1037 */ 1038 int key_unlink(struct key *keyring, struct key *key) 1039 { 1040 struct keyring_list *klist, *nklist; 1041 int loop, ret; 1042 1043 key_check(keyring); 1044 key_check(key); 1045 1046 ret = -ENOTDIR; 1047 if (keyring->type != &key_type_keyring) 1048 goto error; 1049 1050 down_write(&keyring->sem); 1051 1052 klist = rcu_dereference_locked_keyring(keyring); 1053 if (klist) { 1054 /* search the keyring for the key */ 1055 for (loop = 0; loop < klist->nkeys; loop++) 1056 if (rcu_access_pointer(klist->keys[loop]) == key) 1057 goto key_is_present; 1058 } 1059 1060 up_write(&keyring->sem); 1061 ret = -ENOENT; 1062 goto error; 1063 1064 key_is_present: 1065 /* we need to copy the key list for RCU purposes */ 1066 nklist = kmalloc(sizeof(*klist) + 1067 sizeof(struct key *) * klist->maxkeys, 1068 GFP_KERNEL); 1069 if (!nklist) 1070 goto nomem; 1071 nklist->maxkeys = klist->maxkeys; 1072 nklist->nkeys = klist->nkeys - 1; 1073 1074 if (loop > 0) 1075 memcpy(&nklist->keys[0], 1076 &klist->keys[0], 1077 loop * sizeof(struct key *)); 1078 1079 if (loop < nklist->nkeys) 1080 memcpy(&nklist->keys[loop], 1081 &klist->keys[loop + 1], 1082 (nklist->nkeys - loop) * sizeof(struct key *)); 1083 1084 /* adjust the user's quota */ 1085 key_payload_reserve(keyring, 1086 keyring->datalen - KEYQUOTA_LINK_BYTES); 1087 1088 rcu_assign_pointer(keyring->payload.subscriptions, nklist); 1089 1090 up_write(&keyring->sem); 1091 1092 /* schedule for later cleanup */ 1093 klist->delkey = loop; 1094 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); 1095 1096 ret = 0; 1097 1098 error: 1099 return ret; 1100 nomem: 1101 ret = -ENOMEM; 1102 up_write(&keyring->sem); 1103 goto error; 1104 } 1105 EXPORT_SYMBOL(key_unlink); 1106 1107 /* 1108 * Dispose of a keyring list after the RCU grace period, releasing the keys it 1109 * links to. 1110 */ 1111 static void keyring_clear_rcu_disposal(struct rcu_head *rcu) 1112 { 1113 struct keyring_list *klist; 1114 int loop; 1115 1116 klist = container_of(rcu, struct keyring_list, rcu); 1117 1118 for (loop = klist->nkeys - 1; loop >= 0; loop--) 1119 key_put(rcu_access_pointer(klist->keys[loop])); 1120 1121 kfree(klist); 1122 } 1123 1124 /** 1125 * keyring_clear - Clear a keyring 1126 * @keyring: The keyring to clear. 1127 * 1128 * Clear the contents of the specified keyring. 1129 * 1130 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1131 */ 1132 int keyring_clear(struct key *keyring) 1133 { 1134 struct keyring_list *klist; 1135 int ret; 1136 1137 ret = -ENOTDIR; 1138 if (keyring->type == &key_type_keyring) { 1139 /* detach the pointer block with the locks held */ 1140 down_write(&keyring->sem); 1141 1142 klist = rcu_dereference_locked_keyring(keyring); 1143 if (klist) { 1144 /* adjust the quota */ 1145 key_payload_reserve(keyring, 1146 sizeof(struct keyring_list)); 1147 1148 rcu_assign_pointer(keyring->payload.subscriptions, 1149 NULL); 1150 } 1151 1152 up_write(&keyring->sem); 1153 1154 /* free the keys after the locks have been dropped */ 1155 if (klist) 1156 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1157 1158 ret = 0; 1159 } 1160 1161 return ret; 1162 } 1163 EXPORT_SYMBOL(keyring_clear); 1164 1165 /* 1166 * Dispose of the links from a revoked keyring. 1167 * 1168 * This is called with the key sem write-locked. 1169 */ 1170 static void keyring_revoke(struct key *keyring) 1171 { 1172 struct keyring_list *klist; 1173 1174 klist = rcu_dereference_locked_keyring(keyring); 1175 1176 /* adjust the quota */ 1177 key_payload_reserve(keyring, 0); 1178 1179 if (klist) { 1180 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1181 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1182 } 1183 } 1184 1185 /* 1186 * Collect garbage from the contents of a keyring, replacing the old list with 1187 * a new one with the pointers all shuffled down. 1188 * 1189 * Dead keys are classed as oned that are flagged as being dead or are revoked, 1190 * expired or negative keys that were revoked or expired before the specified 1191 * limit. 1192 */ 1193 void keyring_gc(struct key *keyring, time_t limit) 1194 { 1195 struct keyring_list *klist, *new; 1196 struct key *key; 1197 int loop, keep, max; 1198 1199 kenter("{%x,%s}", key_serial(keyring), keyring->description); 1200 1201 down_write(&keyring->sem); 1202 1203 klist = rcu_dereference_locked_keyring(keyring); 1204 if (!klist) 1205 goto no_klist; 1206 1207 /* work out how many subscriptions we're keeping */ 1208 keep = 0; 1209 for (loop = klist->nkeys - 1; loop >= 0; loop--) 1210 if (!key_is_dead(rcu_deref_link_locked(klist, loop, keyring), 1211 limit)) 1212 keep++; 1213 1214 if (keep == klist->nkeys) 1215 goto just_return; 1216 1217 /* allocate a new keyring payload */ 1218 max = roundup(keep, 4); 1219 new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *), 1220 GFP_KERNEL); 1221 if (!new) 1222 goto nomem; 1223 new->maxkeys = max; 1224 new->nkeys = 0; 1225 new->delkey = 0; 1226 1227 /* install the live keys 1228 * - must take care as expired keys may be updated back to life 1229 */ 1230 keep = 0; 1231 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 1232 key = rcu_deref_link_locked(klist, loop, keyring); 1233 if (!key_is_dead(key, limit)) { 1234 if (keep >= max) 1235 goto discard_new; 1236 RCU_INIT_POINTER(new->keys[keep++], key_get(key)); 1237 } 1238 } 1239 new->nkeys = keep; 1240 1241 /* adjust the quota */ 1242 key_payload_reserve(keyring, 1243 sizeof(struct keyring_list) + 1244 KEYQUOTA_LINK_BYTES * keep); 1245 1246 if (keep == 0) { 1247 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1248 kfree(new); 1249 } else { 1250 rcu_assign_pointer(keyring->payload.subscriptions, new); 1251 } 1252 1253 up_write(&keyring->sem); 1254 1255 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1256 kleave(" [yes]"); 1257 return; 1258 1259 discard_new: 1260 new->nkeys = keep; 1261 keyring_clear_rcu_disposal(&new->rcu); 1262 up_write(&keyring->sem); 1263 kleave(" [discard]"); 1264 return; 1265 1266 just_return: 1267 up_write(&keyring->sem); 1268 kleave(" [no dead]"); 1269 return; 1270 1271 no_klist: 1272 up_write(&keyring->sem); 1273 kleave(" [no_klist]"); 1274 return; 1275 1276 nomem: 1277 up_write(&keyring->sem); 1278 kleave(" [oom]"); 1279 } 1280