xref: /linux/security/keys/keyring.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Keyring handling
3  *
4  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/security.h>
13 #include <linux/seq_file.h>
14 #include <linux/err.h>
15 #include <linux/user_namespace.h>
16 #include <linux/nsproxy.h>
17 #include <keys/keyring-type.h>
18 #include <keys/user-type.h>
19 #include <linux/assoc_array_priv.h>
20 #include <linux/uaccess.h>
21 #include <net/net_namespace.h>
22 #include "internal.h"
23 
24 /*
25  * When plumbing the depths of the key tree, this sets a hard limit
26  * set on how deep we're willing to go.
27  */
28 #define KEYRING_SEARCH_MAX_DEPTH 6
29 
30 /*
31  * We mark pointers we pass to the associative array with bit 1 set if
32  * they're keyrings and clear otherwise.
33  */
34 #define KEYRING_PTR_SUBTYPE	0x2UL
35 
36 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
37 {
38 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
39 }
40 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
41 {
42 	void *object = assoc_array_ptr_to_leaf(x);
43 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
44 }
45 static inline void *keyring_key_to_ptr(struct key *key)
46 {
47 	if (key->type == &key_type_keyring)
48 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
49 	return key;
50 }
51 
52 static DEFINE_RWLOCK(keyring_name_lock);
53 
54 /*
55  * Clean up the bits of user_namespace that belong to us.
56  */
57 void key_free_user_ns(struct user_namespace *ns)
58 {
59 	write_lock(&keyring_name_lock);
60 	list_del_init(&ns->keyring_name_list);
61 	write_unlock(&keyring_name_lock);
62 
63 	key_put(ns->user_keyring_register);
64 #ifdef CONFIG_PERSISTENT_KEYRINGS
65 	key_put(ns->persistent_keyring_register);
66 #endif
67 }
68 
69 /*
70  * The keyring key type definition.  Keyrings are simply keys of this type and
71  * can be treated as ordinary keys in addition to having their own special
72  * operations.
73  */
74 static int keyring_preparse(struct key_preparsed_payload *prep);
75 static void keyring_free_preparse(struct key_preparsed_payload *prep);
76 static int keyring_instantiate(struct key *keyring,
77 			       struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 			 char __user *buffer, size_t buflen);
83 
84 struct key_type key_type_keyring = {
85 	.name		= "keyring",
86 	.def_datalen	= 0,
87 	.preparse	= keyring_preparse,
88 	.free_preparse	= keyring_free_preparse,
89 	.instantiate	= keyring_instantiate,
90 	.revoke		= keyring_revoke,
91 	.destroy	= keyring_destroy,
92 	.describe	= keyring_describe,
93 	.read		= keyring_read,
94 };
95 EXPORT_SYMBOL(key_type_keyring);
96 
97 /*
98  * Semaphore to serialise link/link calls to prevent two link calls in parallel
99  * introducing a cycle.
100  */
101 static DEFINE_MUTEX(keyring_serialise_link_lock);
102 
103 /*
104  * Publish the name of a keyring so that it can be found by name (if it has
105  * one and it doesn't begin with a dot).
106  */
107 static void keyring_publish_name(struct key *keyring)
108 {
109 	struct user_namespace *ns = current_user_ns();
110 
111 	if (keyring->description &&
112 	    keyring->description[0] &&
113 	    keyring->description[0] != '.') {
114 		write_lock(&keyring_name_lock);
115 		list_add_tail(&keyring->name_link, &ns->keyring_name_list);
116 		write_unlock(&keyring_name_lock);
117 	}
118 }
119 
120 /*
121  * Preparse a keyring payload
122  */
123 static int keyring_preparse(struct key_preparsed_payload *prep)
124 {
125 	return prep->datalen != 0 ? -EINVAL : 0;
126 }
127 
128 /*
129  * Free a preparse of a user defined key payload
130  */
131 static void keyring_free_preparse(struct key_preparsed_payload *prep)
132 {
133 }
134 
135 /*
136  * Initialise a keyring.
137  *
138  * Returns 0 on success, -EINVAL if given any data.
139  */
140 static int keyring_instantiate(struct key *keyring,
141 			       struct key_preparsed_payload *prep)
142 {
143 	assoc_array_init(&keyring->keys);
144 	/* make the keyring available by name if it has one */
145 	keyring_publish_name(keyring);
146 	return 0;
147 }
148 
149 /*
150  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
151  * fold the carry back too, but that requires inline asm.
152  */
153 static u64 mult_64x32_and_fold(u64 x, u32 y)
154 {
155 	u64 hi = (u64)(u32)(x >> 32) * y;
156 	u64 lo = (u64)(u32)(x) * y;
157 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158 }
159 
160 /*
161  * Hash a key type and description.
162  */
163 static void hash_key_type_and_desc(struct keyring_index_key *index_key)
164 {
165 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
166 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
167 	const char *description = index_key->description;
168 	unsigned long hash, type;
169 	u32 piece;
170 	u64 acc;
171 	int n, desc_len = index_key->desc_len;
172 
173 	type = (unsigned long)index_key->type;
174 	acc = mult_64x32_and_fold(type, desc_len + 13);
175 	acc = mult_64x32_and_fold(acc, 9207);
176 	piece = (unsigned long)index_key->domain_tag;
177 	acc = mult_64x32_and_fold(acc, piece);
178 	acc = mult_64x32_and_fold(acc, 9207);
179 
180 	for (;;) {
181 		n = desc_len;
182 		if (n <= 0)
183 			break;
184 		if (n > 4)
185 			n = 4;
186 		piece = 0;
187 		memcpy(&piece, description, n);
188 		description += n;
189 		desc_len -= n;
190 		acc = mult_64x32_and_fold(acc, piece);
191 		acc = mult_64x32_and_fold(acc, 9207);
192 	}
193 
194 	/* Fold the hash down to 32 bits if need be. */
195 	hash = acc;
196 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
197 		hash ^= acc >> 32;
198 
199 	/* Squidge all the keyrings into a separate part of the tree to
200 	 * ordinary keys by making sure the lowest level segment in the hash is
201 	 * zero for keyrings and non-zero otherwise.
202 	 */
203 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
204 		hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
205 	else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
206 		hash = (hash + (hash << level_shift)) & ~fan_mask;
207 	index_key->hash = hash;
208 }
209 
210 /*
211  * Finalise an index key to include a part of the description actually in the
212  * index key, to set the domain tag and to calculate the hash.
213  */
214 void key_set_index_key(struct keyring_index_key *index_key)
215 {
216 	static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
217 	size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
218 
219 	memcpy(index_key->desc, index_key->description, n);
220 
221 	if (!index_key->domain_tag) {
222 		if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
223 			index_key->domain_tag = current->nsproxy->net_ns->key_domain;
224 		else
225 			index_key->domain_tag = &default_domain_tag;
226 	}
227 
228 	hash_key_type_and_desc(index_key);
229 }
230 
231 /**
232  * key_put_tag - Release a ref on a tag.
233  * @tag: The tag to release.
234  *
235  * This releases a reference the given tag and returns true if that ref was the
236  * last one.
237  */
238 bool key_put_tag(struct key_tag *tag)
239 {
240 	if (refcount_dec_and_test(&tag->usage)) {
241 		kfree_rcu(tag, rcu);
242 		return true;
243 	}
244 
245 	return false;
246 }
247 
248 /**
249  * key_remove_domain - Kill off a key domain and gc its keys
250  * @domain_tag: The domain tag to release.
251  *
252  * This marks a domain tag as being dead and releases a ref on it.  If that
253  * wasn't the last reference, the garbage collector is poked to try and delete
254  * all keys that were in the domain.
255  */
256 void key_remove_domain(struct key_tag *domain_tag)
257 {
258 	domain_tag->removed = true;
259 	if (!key_put_tag(domain_tag))
260 		key_schedule_gc_links();
261 }
262 
263 /*
264  * Build the next index key chunk.
265  *
266  * We return it one word-sized chunk at a time.
267  */
268 static unsigned long keyring_get_key_chunk(const void *data, int level)
269 {
270 	const struct keyring_index_key *index_key = data;
271 	unsigned long chunk = 0;
272 	const u8 *d;
273 	int desc_len = index_key->desc_len, n = sizeof(chunk);
274 
275 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
276 	switch (level) {
277 	case 0:
278 		return index_key->hash;
279 	case 1:
280 		return index_key->x;
281 	case 2:
282 		return (unsigned long)index_key->type;
283 	case 3:
284 		return (unsigned long)index_key->domain_tag;
285 	default:
286 		level -= 4;
287 		if (desc_len <= sizeof(index_key->desc))
288 			return 0;
289 
290 		d = index_key->description + sizeof(index_key->desc);
291 		d += level * sizeof(long);
292 		desc_len -= sizeof(index_key->desc);
293 		if (desc_len > n)
294 			desc_len = n;
295 		do {
296 			chunk <<= 8;
297 			chunk |= *d++;
298 		} while (--desc_len > 0);
299 		return chunk;
300 	}
301 }
302 
303 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
304 {
305 	const struct key *key = keyring_ptr_to_key(object);
306 	return keyring_get_key_chunk(&key->index_key, level);
307 }
308 
309 static bool keyring_compare_object(const void *object, const void *data)
310 {
311 	const struct keyring_index_key *index_key = data;
312 	const struct key *key = keyring_ptr_to_key(object);
313 
314 	return key->index_key.type == index_key->type &&
315 		key->index_key.domain_tag == index_key->domain_tag &&
316 		key->index_key.desc_len == index_key->desc_len &&
317 		memcmp(key->index_key.description, index_key->description,
318 		       index_key->desc_len) == 0;
319 }
320 
321 /*
322  * Compare the index keys of a pair of objects and determine the bit position
323  * at which they differ - if they differ.
324  */
325 static int keyring_diff_objects(const void *object, const void *data)
326 {
327 	const struct key *key_a = keyring_ptr_to_key(object);
328 	const struct keyring_index_key *a = &key_a->index_key;
329 	const struct keyring_index_key *b = data;
330 	unsigned long seg_a, seg_b;
331 	int level, i;
332 
333 	level = 0;
334 	seg_a = a->hash;
335 	seg_b = b->hash;
336 	if ((seg_a ^ seg_b) != 0)
337 		goto differ;
338 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
339 
340 	/* The number of bits contributed by the hash is controlled by a
341 	 * constant in the assoc_array headers.  Everything else thereafter we
342 	 * can deal with as being machine word-size dependent.
343 	 */
344 	seg_a = a->x;
345 	seg_b = b->x;
346 	if ((seg_a ^ seg_b) != 0)
347 		goto differ;
348 	level += sizeof(unsigned long);
349 
350 	/* The next bit may not work on big endian */
351 	seg_a = (unsigned long)a->type;
352 	seg_b = (unsigned long)b->type;
353 	if ((seg_a ^ seg_b) != 0)
354 		goto differ;
355 	level += sizeof(unsigned long);
356 
357 	seg_a = (unsigned long)a->domain_tag;
358 	seg_b = (unsigned long)b->domain_tag;
359 	if ((seg_a ^ seg_b) != 0)
360 		goto differ;
361 	level += sizeof(unsigned long);
362 
363 	i = sizeof(a->desc);
364 	if (a->desc_len <= i)
365 		goto same;
366 
367 	for (; i < a->desc_len; i++) {
368 		seg_a = *(unsigned char *)(a->description + i);
369 		seg_b = *(unsigned char *)(b->description + i);
370 		if ((seg_a ^ seg_b) != 0)
371 			goto differ_plus_i;
372 	}
373 
374 same:
375 	return -1;
376 
377 differ_plus_i:
378 	level += i;
379 differ:
380 	i = level * 8 + __ffs(seg_a ^ seg_b);
381 	return i;
382 }
383 
384 /*
385  * Free an object after stripping the keyring flag off of the pointer.
386  */
387 static void keyring_free_object(void *object)
388 {
389 	key_put(keyring_ptr_to_key(object));
390 }
391 
392 /*
393  * Operations for keyring management by the index-tree routines.
394  */
395 static const struct assoc_array_ops keyring_assoc_array_ops = {
396 	.get_key_chunk		= keyring_get_key_chunk,
397 	.get_object_key_chunk	= keyring_get_object_key_chunk,
398 	.compare_object		= keyring_compare_object,
399 	.diff_objects		= keyring_diff_objects,
400 	.free_object		= keyring_free_object,
401 };
402 
403 /*
404  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
405  * and dispose of its data.
406  *
407  * The garbage collector detects the final key_put(), removes the keyring from
408  * the serial number tree and then does RCU synchronisation before coming here,
409  * so we shouldn't need to worry about code poking around here with the RCU
410  * readlock held by this time.
411  */
412 static void keyring_destroy(struct key *keyring)
413 {
414 	if (keyring->description) {
415 		write_lock(&keyring_name_lock);
416 
417 		if (keyring->name_link.next != NULL &&
418 		    !list_empty(&keyring->name_link))
419 			list_del(&keyring->name_link);
420 
421 		write_unlock(&keyring_name_lock);
422 	}
423 
424 	if (keyring->restrict_link) {
425 		struct key_restriction *keyres = keyring->restrict_link;
426 
427 		key_put(keyres->key);
428 		kfree(keyres);
429 	}
430 
431 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
432 }
433 
434 /*
435  * Describe a keyring for /proc.
436  */
437 static void keyring_describe(const struct key *keyring, struct seq_file *m)
438 {
439 	if (keyring->description)
440 		seq_puts(m, keyring->description);
441 	else
442 		seq_puts(m, "[anon]");
443 
444 	if (key_is_positive(keyring)) {
445 		if (keyring->keys.nr_leaves_on_tree != 0)
446 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
447 		else
448 			seq_puts(m, ": empty");
449 	}
450 }
451 
452 struct keyring_read_iterator_context {
453 	size_t			buflen;
454 	size_t			count;
455 	key_serial_t __user	*buffer;
456 };
457 
458 static int keyring_read_iterator(const void *object, void *data)
459 {
460 	struct keyring_read_iterator_context *ctx = data;
461 	const struct key *key = keyring_ptr_to_key(object);
462 	int ret;
463 
464 	kenter("{%s,%d},,{%zu/%zu}",
465 	       key->type->name, key->serial, ctx->count, ctx->buflen);
466 
467 	if (ctx->count >= ctx->buflen)
468 		return 1;
469 
470 	ret = put_user(key->serial, ctx->buffer);
471 	if (ret < 0)
472 		return ret;
473 	ctx->buffer++;
474 	ctx->count += sizeof(key->serial);
475 	return 0;
476 }
477 
478 /*
479  * Read a list of key IDs from the keyring's contents in binary form
480  *
481  * The keyring's semaphore is read-locked by the caller.  This prevents someone
482  * from modifying it under us - which could cause us to read key IDs multiple
483  * times.
484  */
485 static long keyring_read(const struct key *keyring,
486 			 char __user *buffer, size_t buflen)
487 {
488 	struct keyring_read_iterator_context ctx;
489 	long ret;
490 
491 	kenter("{%d},,%zu", key_serial(keyring), buflen);
492 
493 	if (buflen & (sizeof(key_serial_t) - 1))
494 		return -EINVAL;
495 
496 	/* Copy as many key IDs as fit into the buffer */
497 	if (buffer && buflen) {
498 		ctx.buffer = (key_serial_t __user *)buffer;
499 		ctx.buflen = buflen;
500 		ctx.count = 0;
501 		ret = assoc_array_iterate(&keyring->keys,
502 					  keyring_read_iterator, &ctx);
503 		if (ret < 0) {
504 			kleave(" = %ld [iterate]", ret);
505 			return ret;
506 		}
507 	}
508 
509 	/* Return the size of the buffer needed */
510 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
511 	if (ret <= buflen)
512 		kleave("= %ld [ok]", ret);
513 	else
514 		kleave("= %ld [buffer too small]", ret);
515 	return ret;
516 }
517 
518 /*
519  * Allocate a keyring and link into the destination keyring.
520  */
521 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
522 			  const struct cred *cred, key_perm_t perm,
523 			  unsigned long flags,
524 			  struct key_restriction *restrict_link,
525 			  struct key *dest)
526 {
527 	struct key *keyring;
528 	int ret;
529 
530 	keyring = key_alloc(&key_type_keyring, description,
531 			    uid, gid, cred, perm, flags, restrict_link);
532 	if (!IS_ERR(keyring)) {
533 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
534 		if (ret < 0) {
535 			key_put(keyring);
536 			keyring = ERR_PTR(ret);
537 		}
538 	}
539 
540 	return keyring;
541 }
542 EXPORT_SYMBOL(keyring_alloc);
543 
544 /**
545  * restrict_link_reject - Give -EPERM to restrict link
546  * @keyring: The keyring being added to.
547  * @type: The type of key being added.
548  * @payload: The payload of the key intended to be added.
549  * @restriction_key: Keys providing additional data for evaluating restriction.
550  *
551  * Reject the addition of any links to a keyring.  It can be overridden by
552  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
553  * adding a key to a keyring.
554  *
555  * This is meant to be stored in a key_restriction structure which is passed
556  * in the restrict_link parameter to keyring_alloc().
557  */
558 int restrict_link_reject(struct key *keyring,
559 			 const struct key_type *type,
560 			 const union key_payload *payload,
561 			 struct key *restriction_key)
562 {
563 	return -EPERM;
564 }
565 
566 /*
567  * By default, we keys found by getting an exact match on their descriptions.
568  */
569 bool key_default_cmp(const struct key *key,
570 		     const struct key_match_data *match_data)
571 {
572 	return strcmp(key->description, match_data->raw_data) == 0;
573 }
574 
575 /*
576  * Iteration function to consider each key found.
577  */
578 static int keyring_search_iterator(const void *object, void *iterator_data)
579 {
580 	struct keyring_search_context *ctx = iterator_data;
581 	const struct key *key = keyring_ptr_to_key(object);
582 	unsigned long kflags = READ_ONCE(key->flags);
583 	short state = READ_ONCE(key->state);
584 
585 	kenter("{%d}", key->serial);
586 
587 	/* ignore keys not of this type */
588 	if (key->type != ctx->index_key.type) {
589 		kleave(" = 0 [!type]");
590 		return 0;
591 	}
592 
593 	/* skip invalidated, revoked and expired keys */
594 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
595 		time64_t expiry = READ_ONCE(key->expiry);
596 
597 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
598 			      (1 << KEY_FLAG_REVOKED))) {
599 			ctx->result = ERR_PTR(-EKEYREVOKED);
600 			kleave(" = %d [invrev]", ctx->skipped_ret);
601 			goto skipped;
602 		}
603 
604 		if (expiry && ctx->now >= expiry) {
605 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
606 				ctx->result = ERR_PTR(-EKEYEXPIRED);
607 			kleave(" = %d [expire]", ctx->skipped_ret);
608 			goto skipped;
609 		}
610 	}
611 
612 	/* keys that don't match */
613 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
614 		kleave(" = 0 [!match]");
615 		return 0;
616 	}
617 
618 	/* key must have search permissions */
619 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
620 	    key_task_permission(make_key_ref(key, ctx->possessed),
621 				ctx->cred, KEY_NEED_SEARCH) < 0) {
622 		ctx->result = ERR_PTR(-EACCES);
623 		kleave(" = %d [!perm]", ctx->skipped_ret);
624 		goto skipped;
625 	}
626 
627 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
628 		/* we set a different error code if we pass a negative key */
629 		if (state < 0) {
630 			ctx->result = ERR_PTR(state);
631 			kleave(" = %d [neg]", ctx->skipped_ret);
632 			goto skipped;
633 		}
634 	}
635 
636 	/* Found */
637 	ctx->result = make_key_ref(key, ctx->possessed);
638 	kleave(" = 1 [found]");
639 	return 1;
640 
641 skipped:
642 	return ctx->skipped_ret;
643 }
644 
645 /*
646  * Search inside a keyring for a key.  We can search by walking to it
647  * directly based on its index-key or we can iterate over the entire
648  * tree looking for it, based on the match function.
649  */
650 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
651 {
652 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
653 		const void *object;
654 
655 		object = assoc_array_find(&keyring->keys,
656 					  &keyring_assoc_array_ops,
657 					  &ctx->index_key);
658 		return object ? ctx->iterator(object, ctx) : 0;
659 	}
660 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
661 }
662 
663 /*
664  * Search a tree of keyrings that point to other keyrings up to the maximum
665  * depth.
666  */
667 static bool search_nested_keyrings(struct key *keyring,
668 				   struct keyring_search_context *ctx)
669 {
670 	struct {
671 		struct key *keyring;
672 		struct assoc_array_node *node;
673 		int slot;
674 	} stack[KEYRING_SEARCH_MAX_DEPTH];
675 
676 	struct assoc_array_shortcut *shortcut;
677 	struct assoc_array_node *node;
678 	struct assoc_array_ptr *ptr;
679 	struct key *key;
680 	int sp = 0, slot;
681 
682 	kenter("{%d},{%s,%s}",
683 	       keyring->serial,
684 	       ctx->index_key.type->name,
685 	       ctx->index_key.description);
686 
687 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
688 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
689 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
690 
691 	if (ctx->index_key.description)
692 		key_set_index_key(&ctx->index_key);
693 
694 	/* Check to see if this top-level keyring is what we are looking for
695 	 * and whether it is valid or not.
696 	 */
697 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
698 	    keyring_compare_object(keyring, &ctx->index_key)) {
699 		ctx->skipped_ret = 2;
700 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
701 		case 1:
702 			goto found;
703 		case 2:
704 			return false;
705 		default:
706 			break;
707 		}
708 	}
709 
710 	ctx->skipped_ret = 0;
711 
712 	/* Start processing a new keyring */
713 descend_to_keyring:
714 	kdebug("descend to %d", keyring->serial);
715 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
716 			      (1 << KEY_FLAG_REVOKED)))
717 		goto not_this_keyring;
718 
719 	/* Search through the keys in this keyring before its searching its
720 	 * subtrees.
721 	 */
722 	if (search_keyring(keyring, ctx))
723 		goto found;
724 
725 	/* Then manually iterate through the keyrings nested in this one.
726 	 *
727 	 * Start from the root node of the index tree.  Because of the way the
728 	 * hash function has been set up, keyrings cluster on the leftmost
729 	 * branch of the root node (root slot 0) or in the root node itself.
730 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
731 	 * slots 1-15).
732 	 */
733 	if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
734 		goto not_this_keyring;
735 
736 	ptr = READ_ONCE(keyring->keys.root);
737 	if (!ptr)
738 		goto not_this_keyring;
739 
740 	if (assoc_array_ptr_is_shortcut(ptr)) {
741 		/* If the root is a shortcut, either the keyring only contains
742 		 * keyring pointers (everything clusters behind root slot 0) or
743 		 * doesn't contain any keyring pointers.
744 		 */
745 		shortcut = assoc_array_ptr_to_shortcut(ptr);
746 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
747 			goto not_this_keyring;
748 
749 		ptr = READ_ONCE(shortcut->next_node);
750 		node = assoc_array_ptr_to_node(ptr);
751 		goto begin_node;
752 	}
753 
754 	node = assoc_array_ptr_to_node(ptr);
755 	ptr = node->slots[0];
756 	if (!assoc_array_ptr_is_meta(ptr))
757 		goto begin_node;
758 
759 descend_to_node:
760 	/* Descend to a more distal node in this keyring's content tree and go
761 	 * through that.
762 	 */
763 	kdebug("descend");
764 	if (assoc_array_ptr_is_shortcut(ptr)) {
765 		shortcut = assoc_array_ptr_to_shortcut(ptr);
766 		ptr = READ_ONCE(shortcut->next_node);
767 		BUG_ON(!assoc_array_ptr_is_node(ptr));
768 	}
769 	node = assoc_array_ptr_to_node(ptr);
770 
771 begin_node:
772 	kdebug("begin_node");
773 	slot = 0;
774 ascend_to_node:
775 	/* Go through the slots in a node */
776 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
777 		ptr = READ_ONCE(node->slots[slot]);
778 
779 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
780 			goto descend_to_node;
781 
782 		if (!keyring_ptr_is_keyring(ptr))
783 			continue;
784 
785 		key = keyring_ptr_to_key(ptr);
786 
787 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
788 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
789 				ctx->result = ERR_PTR(-ELOOP);
790 				return false;
791 			}
792 			goto not_this_keyring;
793 		}
794 
795 		/* Search a nested keyring */
796 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
797 		    key_task_permission(make_key_ref(key, ctx->possessed),
798 					ctx->cred, KEY_NEED_SEARCH) < 0)
799 			continue;
800 
801 		/* stack the current position */
802 		stack[sp].keyring = keyring;
803 		stack[sp].node = node;
804 		stack[sp].slot = slot;
805 		sp++;
806 
807 		/* begin again with the new keyring */
808 		keyring = key;
809 		goto descend_to_keyring;
810 	}
811 
812 	/* We've dealt with all the slots in the current node, so now we need
813 	 * to ascend to the parent and continue processing there.
814 	 */
815 	ptr = READ_ONCE(node->back_pointer);
816 	slot = node->parent_slot;
817 
818 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
819 		shortcut = assoc_array_ptr_to_shortcut(ptr);
820 		ptr = READ_ONCE(shortcut->back_pointer);
821 		slot = shortcut->parent_slot;
822 	}
823 	if (!ptr)
824 		goto not_this_keyring;
825 	node = assoc_array_ptr_to_node(ptr);
826 	slot++;
827 
828 	/* If we've ascended to the root (zero backpointer), we must have just
829 	 * finished processing the leftmost branch rather than the root slots -
830 	 * so there can't be any more keyrings for us to find.
831 	 */
832 	if (node->back_pointer) {
833 		kdebug("ascend %d", slot);
834 		goto ascend_to_node;
835 	}
836 
837 	/* The keyring we're looking at was disqualified or didn't contain a
838 	 * matching key.
839 	 */
840 not_this_keyring:
841 	kdebug("not_this_keyring %d", sp);
842 	if (sp <= 0) {
843 		kleave(" = false");
844 		return false;
845 	}
846 
847 	/* Resume the processing of a keyring higher up in the tree */
848 	sp--;
849 	keyring = stack[sp].keyring;
850 	node = stack[sp].node;
851 	slot = stack[sp].slot + 1;
852 	kdebug("ascend to %d [%d]", keyring->serial, slot);
853 	goto ascend_to_node;
854 
855 	/* We found a viable match */
856 found:
857 	key = key_ref_to_ptr(ctx->result);
858 	key_check(key);
859 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
860 		key->last_used_at = ctx->now;
861 		keyring->last_used_at = ctx->now;
862 		while (sp > 0)
863 			stack[--sp].keyring->last_used_at = ctx->now;
864 	}
865 	kleave(" = true");
866 	return true;
867 }
868 
869 /**
870  * keyring_search_rcu - Search a keyring tree for a matching key under RCU
871  * @keyring_ref: A pointer to the keyring with possession indicator.
872  * @ctx: The keyring search context.
873  *
874  * Search the supplied keyring tree for a key that matches the criteria given.
875  * The root keyring and any linked keyrings must grant Search permission to the
876  * caller to be searchable and keys can only be found if they too grant Search
877  * to the caller. The possession flag on the root keyring pointer controls use
878  * of the possessor bits in permissions checking of the entire tree.  In
879  * addition, the LSM gets to forbid keyring searches and key matches.
880  *
881  * The search is performed as a breadth-then-depth search up to the prescribed
882  * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
883  * prevent keyrings from being destroyed or rearranged whilst they are being
884  * searched.
885  *
886  * Keys are matched to the type provided and are then filtered by the match
887  * function, which is given the description to use in any way it sees fit.  The
888  * match function may use any attributes of a key that it wishes to to
889  * determine the match.  Normally the match function from the key type would be
890  * used.
891  *
892  * RCU can be used to prevent the keyring key lists from disappearing without
893  * the need to take lots of locks.
894  *
895  * Returns a pointer to the found key and increments the key usage count if
896  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
897  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
898  * specified keyring wasn't a keyring.
899  *
900  * In the case of a successful return, the possession attribute from
901  * @keyring_ref is propagated to the returned key reference.
902  */
903 key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
904 			     struct keyring_search_context *ctx)
905 {
906 	struct key *keyring;
907 	long err;
908 
909 	ctx->iterator = keyring_search_iterator;
910 	ctx->possessed = is_key_possessed(keyring_ref);
911 	ctx->result = ERR_PTR(-EAGAIN);
912 
913 	keyring = key_ref_to_ptr(keyring_ref);
914 	key_check(keyring);
915 
916 	if (keyring->type != &key_type_keyring)
917 		return ERR_PTR(-ENOTDIR);
918 
919 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
920 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
921 		if (err < 0)
922 			return ERR_PTR(err);
923 	}
924 
925 	ctx->now = ktime_get_real_seconds();
926 	if (search_nested_keyrings(keyring, ctx))
927 		__key_get(key_ref_to_ptr(ctx->result));
928 	return ctx->result;
929 }
930 
931 /**
932  * keyring_search - Search the supplied keyring tree for a matching key
933  * @keyring: The root of the keyring tree to be searched.
934  * @type: The type of keyring we want to find.
935  * @description: The name of the keyring we want to find.
936  * @recurse: True to search the children of @keyring also
937  *
938  * As keyring_search_rcu() above, but using the current task's credentials and
939  * type's default matching function and preferred search method.
940  */
941 key_ref_t keyring_search(key_ref_t keyring,
942 			 struct key_type *type,
943 			 const char *description,
944 			 bool recurse)
945 {
946 	struct keyring_search_context ctx = {
947 		.index_key.type		= type,
948 		.index_key.description	= description,
949 		.index_key.desc_len	= strlen(description),
950 		.cred			= current_cred(),
951 		.match_data.cmp		= key_default_cmp,
952 		.match_data.raw_data	= description,
953 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
954 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
955 	};
956 	key_ref_t key;
957 	int ret;
958 
959 	if (recurse)
960 		ctx.flags |= KEYRING_SEARCH_RECURSE;
961 	if (type->match_preparse) {
962 		ret = type->match_preparse(&ctx.match_data);
963 		if (ret < 0)
964 			return ERR_PTR(ret);
965 	}
966 
967 	rcu_read_lock();
968 	key = keyring_search_rcu(keyring, &ctx);
969 	rcu_read_unlock();
970 
971 	if (type->match_free)
972 		type->match_free(&ctx.match_data);
973 	return key;
974 }
975 EXPORT_SYMBOL(keyring_search);
976 
977 static struct key_restriction *keyring_restriction_alloc(
978 	key_restrict_link_func_t check)
979 {
980 	struct key_restriction *keyres =
981 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
982 
983 	if (!keyres)
984 		return ERR_PTR(-ENOMEM);
985 
986 	keyres->check = check;
987 
988 	return keyres;
989 }
990 
991 /*
992  * Semaphore to serialise restriction setup to prevent reference count
993  * cycles through restriction key pointers.
994  */
995 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
996 
997 /*
998  * Check for restriction cycles that would prevent keyring garbage collection.
999  * keyring_serialise_restrict_sem must be held.
1000  */
1001 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
1002 					     struct key_restriction *keyres)
1003 {
1004 	while (keyres && keyres->key &&
1005 	       keyres->key->type == &key_type_keyring) {
1006 		if (keyres->key == dest_keyring)
1007 			return true;
1008 
1009 		keyres = keyres->key->restrict_link;
1010 	}
1011 
1012 	return false;
1013 }
1014 
1015 /**
1016  * keyring_restrict - Look up and apply a restriction to a keyring
1017  * @keyring_ref: The keyring to be restricted
1018  * @type: The key type that will provide the restriction checker.
1019  * @restriction: The restriction options to apply to the keyring
1020  *
1021  * Look up a keyring and apply a restriction to it.  The restriction is managed
1022  * by the specific key type, but can be configured by the options specified in
1023  * the restriction string.
1024  */
1025 int keyring_restrict(key_ref_t keyring_ref, const char *type,
1026 		     const char *restriction)
1027 {
1028 	struct key *keyring;
1029 	struct key_type *restrict_type = NULL;
1030 	struct key_restriction *restrict_link;
1031 	int ret = 0;
1032 
1033 	keyring = key_ref_to_ptr(keyring_ref);
1034 	key_check(keyring);
1035 
1036 	if (keyring->type != &key_type_keyring)
1037 		return -ENOTDIR;
1038 
1039 	if (!type) {
1040 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1041 	} else {
1042 		restrict_type = key_type_lookup(type);
1043 
1044 		if (IS_ERR(restrict_type))
1045 			return PTR_ERR(restrict_type);
1046 
1047 		if (!restrict_type->lookup_restriction) {
1048 			ret = -ENOENT;
1049 			goto error;
1050 		}
1051 
1052 		restrict_link = restrict_type->lookup_restriction(restriction);
1053 	}
1054 
1055 	if (IS_ERR(restrict_link)) {
1056 		ret = PTR_ERR(restrict_link);
1057 		goto error;
1058 	}
1059 
1060 	down_write(&keyring->sem);
1061 	down_write(&keyring_serialise_restrict_sem);
1062 
1063 	if (keyring->restrict_link)
1064 		ret = -EEXIST;
1065 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1066 		ret = -EDEADLK;
1067 	else
1068 		keyring->restrict_link = restrict_link;
1069 
1070 	up_write(&keyring_serialise_restrict_sem);
1071 	up_write(&keyring->sem);
1072 
1073 	if (ret < 0) {
1074 		key_put(restrict_link->key);
1075 		kfree(restrict_link);
1076 	}
1077 
1078 error:
1079 	if (restrict_type)
1080 		key_type_put(restrict_type);
1081 
1082 	return ret;
1083 }
1084 EXPORT_SYMBOL(keyring_restrict);
1085 
1086 /*
1087  * Search the given keyring for a key that might be updated.
1088  *
1089  * The caller must guarantee that the keyring is a keyring and that the
1090  * permission is granted to modify the keyring as no check is made here.  The
1091  * caller must also hold a lock on the keyring semaphore.
1092  *
1093  * Returns a pointer to the found key with usage count incremented if
1094  * successful and returns NULL if not found.  Revoked and invalidated keys are
1095  * skipped over.
1096  *
1097  * If successful, the possession indicator is propagated from the keyring ref
1098  * to the returned key reference.
1099  */
1100 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1101 			     const struct keyring_index_key *index_key)
1102 {
1103 	struct key *keyring, *key;
1104 	const void *object;
1105 
1106 	keyring = key_ref_to_ptr(keyring_ref);
1107 
1108 	kenter("{%d},{%s,%s}",
1109 	       keyring->serial, index_key->type->name, index_key->description);
1110 
1111 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1112 				  index_key);
1113 
1114 	if (object)
1115 		goto found;
1116 
1117 	kleave(" = NULL");
1118 	return NULL;
1119 
1120 found:
1121 	key = keyring_ptr_to_key(object);
1122 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1123 			  (1 << KEY_FLAG_REVOKED))) {
1124 		kleave(" = NULL [x]");
1125 		return NULL;
1126 	}
1127 	__key_get(key);
1128 	kleave(" = {%d}", key->serial);
1129 	return make_key_ref(key, is_key_possessed(keyring_ref));
1130 }
1131 
1132 /*
1133  * Find a keyring with the specified name.
1134  *
1135  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1136  * user in the current user namespace are considered.  If @uid_keyring is %true,
1137  * the keyring additionally must have been allocated as a user or user session
1138  * keyring; otherwise, it must grant Search permission directly to the caller.
1139  *
1140  * Returns a pointer to the keyring with the keyring's refcount having being
1141  * incremented on success.  -ENOKEY is returned if a key could not be found.
1142  */
1143 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1144 {
1145 	struct user_namespace *ns = current_user_ns();
1146 	struct key *keyring;
1147 
1148 	if (!name)
1149 		return ERR_PTR(-EINVAL);
1150 
1151 	read_lock(&keyring_name_lock);
1152 
1153 	/* Search this hash bucket for a keyring with a matching name that
1154 	 * grants Search permission and that hasn't been revoked
1155 	 */
1156 	list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1157 		if (!kuid_has_mapping(ns, keyring->user->uid))
1158 			continue;
1159 
1160 		if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1161 			continue;
1162 
1163 		if (strcmp(keyring->description, name) != 0)
1164 			continue;
1165 
1166 		if (uid_keyring) {
1167 			if (!test_bit(KEY_FLAG_UID_KEYRING,
1168 				      &keyring->flags))
1169 				continue;
1170 		} else {
1171 			if (key_permission(make_key_ref(keyring, 0),
1172 					   KEY_NEED_SEARCH) < 0)
1173 				continue;
1174 		}
1175 
1176 		/* we've got a match but we might end up racing with
1177 		 * key_cleanup() if the keyring is currently 'dead'
1178 		 * (ie. it has a zero usage count) */
1179 		if (!refcount_inc_not_zero(&keyring->usage))
1180 			continue;
1181 		keyring->last_used_at = ktime_get_real_seconds();
1182 		goto out;
1183 	}
1184 
1185 	keyring = ERR_PTR(-ENOKEY);
1186 out:
1187 	read_unlock(&keyring_name_lock);
1188 	return keyring;
1189 }
1190 
1191 static int keyring_detect_cycle_iterator(const void *object,
1192 					 void *iterator_data)
1193 {
1194 	struct keyring_search_context *ctx = iterator_data;
1195 	const struct key *key = keyring_ptr_to_key(object);
1196 
1197 	kenter("{%d}", key->serial);
1198 
1199 	/* We might get a keyring with matching index-key that is nonetheless a
1200 	 * different keyring. */
1201 	if (key != ctx->match_data.raw_data)
1202 		return 0;
1203 
1204 	ctx->result = ERR_PTR(-EDEADLK);
1205 	return 1;
1206 }
1207 
1208 /*
1209  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1210  * tree A at the topmost level (ie: as a direct child of A).
1211  *
1212  * Since we are adding B to A at the top level, checking for cycles should just
1213  * be a matter of seeing if node A is somewhere in tree B.
1214  */
1215 static int keyring_detect_cycle(struct key *A, struct key *B)
1216 {
1217 	struct keyring_search_context ctx = {
1218 		.index_key		= A->index_key,
1219 		.match_data.raw_data	= A,
1220 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1221 		.iterator		= keyring_detect_cycle_iterator,
1222 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1223 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1224 					   KEYRING_SEARCH_NO_CHECK_PERM |
1225 					   KEYRING_SEARCH_DETECT_TOO_DEEP |
1226 					   KEYRING_SEARCH_RECURSE),
1227 	};
1228 
1229 	rcu_read_lock();
1230 	search_nested_keyrings(B, &ctx);
1231 	rcu_read_unlock();
1232 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1233 }
1234 
1235 /*
1236  * Lock keyring for link.
1237  */
1238 int __key_link_lock(struct key *keyring,
1239 		    const struct keyring_index_key *index_key)
1240 	__acquires(&keyring->sem)
1241 	__acquires(&keyring_serialise_link_lock)
1242 {
1243 	if (keyring->type != &key_type_keyring)
1244 		return -ENOTDIR;
1245 
1246 	down_write(&keyring->sem);
1247 
1248 	/* Serialise link/link calls to prevent parallel calls causing a cycle
1249 	 * when linking two keyring in opposite orders.
1250 	 */
1251 	if (index_key->type == &key_type_keyring)
1252 		mutex_lock(&keyring_serialise_link_lock);
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  * Lock keyrings for move (link/unlink combination).
1259  */
1260 int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1261 		    const struct keyring_index_key *index_key)
1262 	__acquires(&l_keyring->sem)
1263 	__acquires(&u_keyring->sem)
1264 	__acquires(&keyring_serialise_link_lock)
1265 {
1266 	if (l_keyring->type != &key_type_keyring ||
1267 	    u_keyring->type != &key_type_keyring)
1268 		return -ENOTDIR;
1269 
1270 	/* We have to be very careful here to take the keyring locks in the
1271 	 * right order, lest we open ourselves to deadlocking against another
1272 	 * move operation.
1273 	 */
1274 	if (l_keyring < u_keyring) {
1275 		down_write(&l_keyring->sem);
1276 		down_write_nested(&u_keyring->sem, 1);
1277 	} else {
1278 		down_write(&u_keyring->sem);
1279 		down_write_nested(&l_keyring->sem, 1);
1280 	}
1281 
1282 	/* Serialise link/link calls to prevent parallel calls causing a cycle
1283 	 * when linking two keyring in opposite orders.
1284 	 */
1285 	if (index_key->type == &key_type_keyring)
1286 		mutex_lock(&keyring_serialise_link_lock);
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Preallocate memory so that a key can be linked into to a keyring.
1293  */
1294 int __key_link_begin(struct key *keyring,
1295 		     const struct keyring_index_key *index_key,
1296 		     struct assoc_array_edit **_edit)
1297 {
1298 	struct assoc_array_edit *edit;
1299 	int ret;
1300 
1301 	kenter("%d,%s,%s,",
1302 	       keyring->serial, index_key->type->name, index_key->description);
1303 
1304 	BUG_ON(index_key->desc_len == 0);
1305 	BUG_ON(*_edit != NULL);
1306 
1307 	*_edit = NULL;
1308 
1309 	ret = -EKEYREVOKED;
1310 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1311 		goto error;
1312 
1313 	/* Create an edit script that will insert/replace the key in the
1314 	 * keyring tree.
1315 	 */
1316 	edit = assoc_array_insert(&keyring->keys,
1317 				  &keyring_assoc_array_ops,
1318 				  index_key,
1319 				  NULL);
1320 	if (IS_ERR(edit)) {
1321 		ret = PTR_ERR(edit);
1322 		goto error;
1323 	}
1324 
1325 	/* If we're not replacing a link in-place then we're going to need some
1326 	 * extra quota.
1327 	 */
1328 	if (!edit->dead_leaf) {
1329 		ret = key_payload_reserve(keyring,
1330 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1331 		if (ret < 0)
1332 			goto error_cancel;
1333 	}
1334 
1335 	*_edit = edit;
1336 	kleave(" = 0");
1337 	return 0;
1338 
1339 error_cancel:
1340 	assoc_array_cancel_edit(edit);
1341 error:
1342 	kleave(" = %d", ret);
1343 	return ret;
1344 }
1345 
1346 /*
1347  * Check already instantiated keys aren't going to be a problem.
1348  *
1349  * The caller must have called __key_link_begin(). Don't need to call this for
1350  * keys that were created since __key_link_begin() was called.
1351  */
1352 int __key_link_check_live_key(struct key *keyring, struct key *key)
1353 {
1354 	if (key->type == &key_type_keyring)
1355 		/* check that we aren't going to create a cycle by linking one
1356 		 * keyring to another */
1357 		return keyring_detect_cycle(keyring, key);
1358 	return 0;
1359 }
1360 
1361 /*
1362  * Link a key into to a keyring.
1363  *
1364  * Must be called with __key_link_begin() having being called.  Discards any
1365  * already extant link to matching key if there is one, so that each keyring
1366  * holds at most one link to any given key of a particular type+description
1367  * combination.
1368  */
1369 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1370 {
1371 	__key_get(key);
1372 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1373 	assoc_array_apply_edit(*_edit);
1374 	*_edit = NULL;
1375 }
1376 
1377 /*
1378  * Finish linking a key into to a keyring.
1379  *
1380  * Must be called with __key_link_begin() having being called.
1381  */
1382 void __key_link_end(struct key *keyring,
1383 		    const struct keyring_index_key *index_key,
1384 		    struct assoc_array_edit *edit)
1385 	__releases(&keyring->sem)
1386 	__releases(&keyring_serialise_link_lock)
1387 {
1388 	BUG_ON(index_key->type == NULL);
1389 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1390 
1391 	if (edit) {
1392 		if (!edit->dead_leaf) {
1393 			key_payload_reserve(keyring,
1394 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1395 		}
1396 		assoc_array_cancel_edit(edit);
1397 	}
1398 	up_write(&keyring->sem);
1399 
1400 	if (index_key->type == &key_type_keyring)
1401 		mutex_unlock(&keyring_serialise_link_lock);
1402 }
1403 
1404 /*
1405  * Check addition of keys to restricted keyrings.
1406  */
1407 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1408 {
1409 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1410 		return 0;
1411 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1412 					     keyring->restrict_link->key);
1413 }
1414 
1415 /**
1416  * key_link - Link a key to a keyring
1417  * @keyring: The keyring to make the link in.
1418  * @key: The key to link to.
1419  *
1420  * Make a link in a keyring to a key, such that the keyring holds a reference
1421  * on that key and the key can potentially be found by searching that keyring.
1422  *
1423  * This function will write-lock the keyring's semaphore and will consume some
1424  * of the user's key data quota to hold the link.
1425  *
1426  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1427  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1428  * full, -EDQUOT if there is insufficient key data quota remaining to add
1429  * another link or -ENOMEM if there's insufficient memory.
1430  *
1431  * It is assumed that the caller has checked that it is permitted for a link to
1432  * be made (the keyring should have Write permission and the key Link
1433  * permission).
1434  */
1435 int key_link(struct key *keyring, struct key *key)
1436 {
1437 	struct assoc_array_edit *edit = NULL;
1438 	int ret;
1439 
1440 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1441 
1442 	key_check(keyring);
1443 	key_check(key);
1444 
1445 	ret = __key_link_lock(keyring, &key->index_key);
1446 	if (ret < 0)
1447 		goto error;
1448 
1449 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1450 	if (ret < 0)
1451 		goto error_end;
1452 
1453 	kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1454 	ret = __key_link_check_restriction(keyring, key);
1455 	if (ret == 0)
1456 		ret = __key_link_check_live_key(keyring, key);
1457 	if (ret == 0)
1458 		__key_link(key, &edit);
1459 
1460 error_end:
1461 	__key_link_end(keyring, &key->index_key, edit);
1462 error:
1463 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL(key_link);
1467 
1468 /*
1469  * Lock a keyring for unlink.
1470  */
1471 static int __key_unlink_lock(struct key *keyring)
1472 	__acquires(&keyring->sem)
1473 {
1474 	if (keyring->type != &key_type_keyring)
1475 		return -ENOTDIR;
1476 
1477 	down_write(&keyring->sem);
1478 	return 0;
1479 }
1480 
1481 /*
1482  * Begin the process of unlinking a key from a keyring.
1483  */
1484 static int __key_unlink_begin(struct key *keyring, struct key *key,
1485 			      struct assoc_array_edit **_edit)
1486 {
1487 	struct assoc_array_edit *edit;
1488 
1489 	BUG_ON(*_edit != NULL);
1490 
1491 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1492 				  &key->index_key);
1493 	if (IS_ERR(edit))
1494 		return PTR_ERR(edit);
1495 
1496 	if (!edit)
1497 		return -ENOENT;
1498 
1499 	*_edit = edit;
1500 	return 0;
1501 }
1502 
1503 /*
1504  * Apply an unlink change.
1505  */
1506 static void __key_unlink(struct key *keyring, struct key *key,
1507 			 struct assoc_array_edit **_edit)
1508 {
1509 	assoc_array_apply_edit(*_edit);
1510 	*_edit = NULL;
1511 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1512 }
1513 
1514 /*
1515  * Finish unlinking a key from to a keyring.
1516  */
1517 static void __key_unlink_end(struct key *keyring,
1518 			     struct key *key,
1519 			     struct assoc_array_edit *edit)
1520 	__releases(&keyring->sem)
1521 {
1522 	if (edit)
1523 		assoc_array_cancel_edit(edit);
1524 	up_write(&keyring->sem);
1525 }
1526 
1527 /**
1528  * key_unlink - Unlink the first link to a key from a keyring.
1529  * @keyring: The keyring to remove the link from.
1530  * @key: The key the link is to.
1531  *
1532  * Remove a link from a keyring to a key.
1533  *
1534  * This function will write-lock the keyring's semaphore.
1535  *
1536  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1537  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1538  * memory.
1539  *
1540  * It is assumed that the caller has checked that it is permitted for a link to
1541  * be removed (the keyring should have Write permission; no permissions are
1542  * required on the key).
1543  */
1544 int key_unlink(struct key *keyring, struct key *key)
1545 {
1546 	struct assoc_array_edit *edit = NULL;
1547 	int ret;
1548 
1549 	key_check(keyring);
1550 	key_check(key);
1551 
1552 	ret = __key_unlink_lock(keyring);
1553 	if (ret < 0)
1554 		return ret;
1555 
1556 	ret = __key_unlink_begin(keyring, key, &edit);
1557 	if (ret == 0)
1558 		__key_unlink(keyring, key, &edit);
1559 	__key_unlink_end(keyring, key, edit);
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL(key_unlink);
1563 
1564 /**
1565  * key_move - Move a key from one keyring to another
1566  * @key: The key to move
1567  * @from_keyring: The keyring to remove the link from.
1568  * @to_keyring: The keyring to make the link in.
1569  * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1570  *
1571  * Make a link in @to_keyring to a key, such that the keyring holds a reference
1572  * on that key and the key can potentially be found by searching that keyring
1573  * whilst simultaneously removing a link to the key from @from_keyring.
1574  *
1575  * This function will write-lock both keyring's semaphores and will consume
1576  * some of the user's key data quota to hold the link on @to_keyring.
1577  *
1578  * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1579  * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1580  * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1581  * to add another link or -ENOMEM if there's insufficient memory.  If
1582  * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1583  * matching key in @to_keyring.
1584  *
1585  * It is assumed that the caller has checked that it is permitted for a link to
1586  * be made (the keyring should have Write permission and the key Link
1587  * permission).
1588  */
1589 int key_move(struct key *key,
1590 	     struct key *from_keyring,
1591 	     struct key *to_keyring,
1592 	     unsigned int flags)
1593 {
1594 	struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1595 	int ret;
1596 
1597 	kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1598 
1599 	if (from_keyring == to_keyring)
1600 		return 0;
1601 
1602 	key_check(key);
1603 	key_check(from_keyring);
1604 	key_check(to_keyring);
1605 
1606 	ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1607 	if (ret < 0)
1608 		goto out;
1609 	ret = __key_unlink_begin(from_keyring, key, &from_edit);
1610 	if (ret < 0)
1611 		goto error;
1612 	ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1613 	if (ret < 0)
1614 		goto error;
1615 
1616 	ret = -EEXIST;
1617 	if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1618 		goto error;
1619 
1620 	ret = __key_link_check_restriction(to_keyring, key);
1621 	if (ret < 0)
1622 		goto error;
1623 	ret = __key_link_check_live_key(to_keyring, key);
1624 	if (ret < 0)
1625 		goto error;
1626 
1627 	__key_unlink(from_keyring, key, &from_edit);
1628 	__key_link(key, &to_edit);
1629 error:
1630 	__key_link_end(to_keyring, &key->index_key, to_edit);
1631 	__key_unlink_end(from_keyring, key, from_edit);
1632 out:
1633 	kleave(" = %d", ret);
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL(key_move);
1637 
1638 /**
1639  * keyring_clear - Clear a keyring
1640  * @keyring: The keyring to clear.
1641  *
1642  * Clear the contents of the specified keyring.
1643  *
1644  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1645  */
1646 int keyring_clear(struct key *keyring)
1647 {
1648 	struct assoc_array_edit *edit;
1649 	int ret;
1650 
1651 	if (keyring->type != &key_type_keyring)
1652 		return -ENOTDIR;
1653 
1654 	down_write(&keyring->sem);
1655 
1656 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1657 	if (IS_ERR(edit)) {
1658 		ret = PTR_ERR(edit);
1659 	} else {
1660 		if (edit)
1661 			assoc_array_apply_edit(edit);
1662 		key_payload_reserve(keyring, 0);
1663 		ret = 0;
1664 	}
1665 
1666 	up_write(&keyring->sem);
1667 	return ret;
1668 }
1669 EXPORT_SYMBOL(keyring_clear);
1670 
1671 /*
1672  * Dispose of the links from a revoked keyring.
1673  *
1674  * This is called with the key sem write-locked.
1675  */
1676 static void keyring_revoke(struct key *keyring)
1677 {
1678 	struct assoc_array_edit *edit;
1679 
1680 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1681 	if (!IS_ERR(edit)) {
1682 		if (edit)
1683 			assoc_array_apply_edit(edit);
1684 		key_payload_reserve(keyring, 0);
1685 	}
1686 }
1687 
1688 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1689 {
1690 	struct key *key = keyring_ptr_to_key(object);
1691 	time64_t *limit = iterator_data;
1692 
1693 	if (key_is_dead(key, *limit))
1694 		return false;
1695 	key_get(key);
1696 	return true;
1697 }
1698 
1699 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1700 {
1701 	const struct key *key = keyring_ptr_to_key(object);
1702 	time64_t *limit = iterator_data;
1703 
1704 	key_check(key);
1705 	return key_is_dead(key, *limit);
1706 }
1707 
1708 /*
1709  * Garbage collect pointers from a keyring.
1710  *
1711  * Not called with any locks held.  The keyring's key struct will not be
1712  * deallocated under us as only our caller may deallocate it.
1713  */
1714 void keyring_gc(struct key *keyring, time64_t limit)
1715 {
1716 	int result;
1717 
1718 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1719 
1720 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1721 			      (1 << KEY_FLAG_REVOKED)))
1722 		goto dont_gc;
1723 
1724 	/* scan the keyring looking for dead keys */
1725 	rcu_read_lock();
1726 	result = assoc_array_iterate(&keyring->keys,
1727 				     keyring_gc_check_iterator, &limit);
1728 	rcu_read_unlock();
1729 	if (result == true)
1730 		goto do_gc;
1731 
1732 dont_gc:
1733 	kleave(" [no gc]");
1734 	return;
1735 
1736 do_gc:
1737 	down_write(&keyring->sem);
1738 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1739 		       keyring_gc_select_iterator, &limit);
1740 	up_write(&keyring->sem);
1741 	kleave(" [gc]");
1742 }
1743 
1744 /*
1745  * Garbage collect restriction pointers from a keyring.
1746  *
1747  * Keyring restrictions are associated with a key type, and must be cleaned
1748  * up if the key type is unregistered. The restriction is altered to always
1749  * reject additional keys so a keyring cannot be opened up by unregistering
1750  * a key type.
1751  *
1752  * Not called with any keyring locks held. The keyring's key struct will not
1753  * be deallocated under us as only our caller may deallocate it.
1754  *
1755  * The caller is required to hold key_types_sem and dead_type->sem. This is
1756  * fulfilled by key_gc_keytype() holding the locks on behalf of
1757  * key_garbage_collector(), which it invokes on a workqueue.
1758  */
1759 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1760 {
1761 	struct key_restriction *keyres;
1762 
1763 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1764 
1765 	/*
1766 	 * keyring->restrict_link is only assigned at key allocation time
1767 	 * or with the key type locked, so the only values that could be
1768 	 * concurrently assigned to keyring->restrict_link are for key
1769 	 * types other than dead_type. Given this, it's ok to check
1770 	 * the key type before acquiring keyring->sem.
1771 	 */
1772 	if (!dead_type || !keyring->restrict_link ||
1773 	    keyring->restrict_link->keytype != dead_type) {
1774 		kleave(" [no restriction gc]");
1775 		return;
1776 	}
1777 
1778 	/* Lock the keyring to ensure that a link is not in progress */
1779 	down_write(&keyring->sem);
1780 
1781 	keyres = keyring->restrict_link;
1782 
1783 	keyres->check = restrict_link_reject;
1784 
1785 	key_put(keyres->key);
1786 	keyres->key = NULL;
1787 	keyres->keytype = NULL;
1788 
1789 	up_write(&keyring->sem);
1790 
1791 	kleave(" [restriction gc]");
1792 }
1793