xref: /linux/security/keys/keyctl.c (revision f7e47677e39a03057dcced2016c92a9c868693ec)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Userspace key control operations
3  *
4  * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/init.h>
9 #include <linux/sched.h>
10 #include <linux/sched/task.h>
11 #include <linux/slab.h>
12 #include <linux/syscalls.h>
13 #include <linux/key.h>
14 #include <linux/keyctl.h>
15 #include <linux/fs.h>
16 #include <linux/capability.h>
17 #include <linux/cred.h>
18 #include <linux/string.h>
19 #include <linux/err.h>
20 #include <linux/vmalloc.h>
21 #include <linux/security.h>
22 #include <linux/uio.h>
23 #include <linux/uaccess.h>
24 #include <keys/request_key_auth-type.h>
25 #include "internal.h"
26 
27 #define KEY_MAX_DESC_SIZE 4096
28 
29 static const unsigned char keyrings_capabilities[2] = {
30 	[0] = (KEYCTL_CAPS0_CAPABILITIES |
31 	       (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS)	? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
32 	       (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS)	? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
33 	       (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE)	? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
34 	       (IS_ENABLED(CONFIG_BIG_KEYS)		? KEYCTL_CAPS0_BIG_KEY : 0) |
35 	       KEYCTL_CAPS0_INVALIDATE |
36 	       KEYCTL_CAPS0_RESTRICT_KEYRING |
37 	       KEYCTL_CAPS0_MOVE
38 	       ),
39 	[1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
40 	       KEYCTL_CAPS1_NS_KEY_TAG |
41 	       (IS_ENABLED(CONFIG_KEY_NOTIFICATIONS)	? KEYCTL_CAPS1_NOTIFICATIONS : 0)
42 	       ),
43 };
44 
45 static int key_get_type_from_user(char *type,
46 				  const char __user *_type,
47 				  unsigned len)
48 {
49 	int ret;
50 
51 	ret = strncpy_from_user(type, _type, len);
52 	if (ret < 0)
53 		return ret;
54 	if (ret == 0 || ret >= len)
55 		return -EINVAL;
56 	if (type[0] == '.')
57 		return -EPERM;
58 	type[len - 1] = '\0';
59 	return 0;
60 }
61 
62 /*
63  * Extract the description of a new key from userspace and either add it as a
64  * new key to the specified keyring or update a matching key in that keyring.
65  *
66  * If the description is NULL or an empty string, the key type is asked to
67  * generate one from the payload.
68  *
69  * The keyring must be writable so that we can attach the key to it.
70  *
71  * If successful, the new key's serial number is returned, otherwise an error
72  * code is returned.
73  */
74 SYSCALL_DEFINE5(add_key, const char __user *, _type,
75 		const char __user *, _description,
76 		const void __user *, _payload,
77 		size_t, plen,
78 		key_serial_t, ringid)
79 {
80 	key_ref_t keyring_ref, key_ref;
81 	char type[32], *description;
82 	void *payload;
83 	long ret;
84 
85 	ret = -EINVAL;
86 	if (plen > 1024 * 1024 - 1)
87 		goto error;
88 
89 	/* draw all the data into kernel space */
90 	ret = key_get_type_from_user(type, _type, sizeof(type));
91 	if (ret < 0)
92 		goto error;
93 
94 	description = NULL;
95 	if (_description) {
96 		description = strndup_user(_description, KEY_MAX_DESC_SIZE);
97 		if (IS_ERR(description)) {
98 			ret = PTR_ERR(description);
99 			goto error;
100 		}
101 		if (!*description) {
102 			kfree(description);
103 			description = NULL;
104 		} else if ((description[0] == '.') &&
105 			   (strncmp(type, "keyring", 7) == 0)) {
106 			ret = -EPERM;
107 			goto error2;
108 		}
109 	}
110 
111 	/* pull the payload in if one was supplied */
112 	payload = NULL;
113 
114 	if (plen) {
115 		ret = -ENOMEM;
116 		payload = kvmalloc(plen, GFP_KERNEL);
117 		if (!payload)
118 			goto error2;
119 
120 		ret = -EFAULT;
121 		if (copy_from_user(payload, _payload, plen) != 0)
122 			goto error3;
123 	}
124 
125 	/* find the target keyring (which must be writable) */
126 	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
127 	if (IS_ERR(keyring_ref)) {
128 		ret = PTR_ERR(keyring_ref);
129 		goto error3;
130 	}
131 
132 	/* create or update the requested key and add it to the target
133 	 * keyring */
134 	key_ref = key_create_or_update(keyring_ref, type, description,
135 				       payload, plen, KEY_PERM_UNDEF,
136 				       KEY_ALLOC_IN_QUOTA);
137 	if (!IS_ERR(key_ref)) {
138 		ret = key_ref_to_ptr(key_ref)->serial;
139 		key_ref_put(key_ref);
140 	}
141 	else {
142 		ret = PTR_ERR(key_ref);
143 	}
144 
145 	key_ref_put(keyring_ref);
146  error3:
147 	if (payload) {
148 		memzero_explicit(payload, plen);
149 		kvfree(payload);
150 	}
151  error2:
152 	kfree(description);
153  error:
154 	return ret;
155 }
156 
157 /*
158  * Search the process keyrings and keyring trees linked from those for a
159  * matching key.  Keyrings must have appropriate Search permission to be
160  * searched.
161  *
162  * If a key is found, it will be attached to the destination keyring if there's
163  * one specified and the serial number of the key will be returned.
164  *
165  * If no key is found, /sbin/request-key will be invoked if _callout_info is
166  * non-NULL in an attempt to create a key.  The _callout_info string will be
167  * passed to /sbin/request-key to aid with completing the request.  If the
168  * _callout_info string is "" then it will be changed to "-".
169  */
170 SYSCALL_DEFINE4(request_key, const char __user *, _type,
171 		const char __user *, _description,
172 		const char __user *, _callout_info,
173 		key_serial_t, destringid)
174 {
175 	struct key_type *ktype;
176 	struct key *key;
177 	key_ref_t dest_ref;
178 	size_t callout_len;
179 	char type[32], *description, *callout_info;
180 	long ret;
181 
182 	/* pull the type into kernel space */
183 	ret = key_get_type_from_user(type, _type, sizeof(type));
184 	if (ret < 0)
185 		goto error;
186 
187 	/* pull the description into kernel space */
188 	description = strndup_user(_description, KEY_MAX_DESC_SIZE);
189 	if (IS_ERR(description)) {
190 		ret = PTR_ERR(description);
191 		goto error;
192 	}
193 
194 	/* pull the callout info into kernel space */
195 	callout_info = NULL;
196 	callout_len = 0;
197 	if (_callout_info) {
198 		callout_info = strndup_user(_callout_info, PAGE_SIZE);
199 		if (IS_ERR(callout_info)) {
200 			ret = PTR_ERR(callout_info);
201 			goto error2;
202 		}
203 		callout_len = strlen(callout_info);
204 	}
205 
206 	/* get the destination keyring if specified */
207 	dest_ref = NULL;
208 	if (destringid) {
209 		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
210 					   KEY_NEED_WRITE);
211 		if (IS_ERR(dest_ref)) {
212 			ret = PTR_ERR(dest_ref);
213 			goto error3;
214 		}
215 	}
216 
217 	/* find the key type */
218 	ktype = key_type_lookup(type);
219 	if (IS_ERR(ktype)) {
220 		ret = PTR_ERR(ktype);
221 		goto error4;
222 	}
223 
224 	/* do the search */
225 	key = request_key_and_link(ktype, description, NULL, callout_info,
226 				   callout_len, NULL, key_ref_to_ptr(dest_ref),
227 				   KEY_ALLOC_IN_QUOTA);
228 	if (IS_ERR(key)) {
229 		ret = PTR_ERR(key);
230 		goto error5;
231 	}
232 
233 	/* wait for the key to finish being constructed */
234 	ret = wait_for_key_construction(key, 1);
235 	if (ret < 0)
236 		goto error6;
237 
238 	ret = key->serial;
239 
240 error6:
241  	key_put(key);
242 error5:
243 	key_type_put(ktype);
244 error4:
245 	key_ref_put(dest_ref);
246 error3:
247 	kfree(callout_info);
248 error2:
249 	kfree(description);
250 error:
251 	return ret;
252 }
253 
254 /*
255  * Get the ID of the specified process keyring.
256  *
257  * The requested keyring must have search permission to be found.
258  *
259  * If successful, the ID of the requested keyring will be returned.
260  */
261 long keyctl_get_keyring_ID(key_serial_t id, int create)
262 {
263 	key_ref_t key_ref;
264 	unsigned long lflags;
265 	long ret;
266 
267 	lflags = create ? KEY_LOOKUP_CREATE : 0;
268 	key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
269 	if (IS_ERR(key_ref)) {
270 		ret = PTR_ERR(key_ref);
271 		goto error;
272 	}
273 
274 	ret = key_ref_to_ptr(key_ref)->serial;
275 	key_ref_put(key_ref);
276 error:
277 	return ret;
278 }
279 
280 /*
281  * Join a (named) session keyring.
282  *
283  * Create and join an anonymous session keyring or join a named session
284  * keyring, creating it if necessary.  A named session keyring must have Search
285  * permission for it to be joined.  Session keyrings without this permit will
286  * be skipped over.  It is not permitted for userspace to create or join
287  * keyrings whose name begin with a dot.
288  *
289  * If successful, the ID of the joined session keyring will be returned.
290  */
291 long keyctl_join_session_keyring(const char __user *_name)
292 {
293 	char *name;
294 	long ret;
295 
296 	/* fetch the name from userspace */
297 	name = NULL;
298 	if (_name) {
299 		name = strndup_user(_name, KEY_MAX_DESC_SIZE);
300 		if (IS_ERR(name)) {
301 			ret = PTR_ERR(name);
302 			goto error;
303 		}
304 
305 		ret = -EPERM;
306 		if (name[0] == '.')
307 			goto error_name;
308 	}
309 
310 	/* join the session */
311 	ret = join_session_keyring(name);
312 error_name:
313 	kfree(name);
314 error:
315 	return ret;
316 }
317 
318 /*
319  * Update a key's data payload from the given data.
320  *
321  * The key must grant the caller Write permission and the key type must support
322  * updating for this to work.  A negative key can be positively instantiated
323  * with this call.
324  *
325  * If successful, 0 will be returned.  If the key type does not support
326  * updating, then -EOPNOTSUPP will be returned.
327  */
328 long keyctl_update_key(key_serial_t id,
329 		       const void __user *_payload,
330 		       size_t plen)
331 {
332 	key_ref_t key_ref;
333 	void *payload;
334 	long ret;
335 
336 	ret = -EINVAL;
337 	if (plen > PAGE_SIZE)
338 		goto error;
339 
340 	/* pull the payload in if one was supplied */
341 	payload = NULL;
342 	if (plen) {
343 		ret = -ENOMEM;
344 		payload = kvmalloc(plen, GFP_KERNEL);
345 		if (!payload)
346 			goto error;
347 
348 		ret = -EFAULT;
349 		if (copy_from_user(payload, _payload, plen) != 0)
350 			goto error2;
351 	}
352 
353 	/* find the target key (which must be writable) */
354 	key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
355 	if (IS_ERR(key_ref)) {
356 		ret = PTR_ERR(key_ref);
357 		goto error2;
358 	}
359 
360 	/* update the key */
361 	ret = key_update(key_ref, payload, plen);
362 
363 	key_ref_put(key_ref);
364 error2:
365 	__kvzfree(payload, plen);
366 error:
367 	return ret;
368 }
369 
370 /*
371  * Revoke a key.
372  *
373  * The key must be grant the caller Write or Setattr permission for this to
374  * work.  The key type should give up its quota claim when revoked.  The key
375  * and any links to the key will be automatically garbage collected after a
376  * certain amount of time (/proc/sys/kernel/keys/gc_delay).
377  *
378  * Keys with KEY_FLAG_KEEP set should not be revoked.
379  *
380  * If successful, 0 is returned.
381  */
382 long keyctl_revoke_key(key_serial_t id)
383 {
384 	key_ref_t key_ref;
385 	struct key *key;
386 	long ret;
387 
388 	key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
389 	if (IS_ERR(key_ref)) {
390 		ret = PTR_ERR(key_ref);
391 		if (ret != -EACCES)
392 			goto error;
393 		key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
394 		if (IS_ERR(key_ref)) {
395 			ret = PTR_ERR(key_ref);
396 			goto error;
397 		}
398 	}
399 
400 	key = key_ref_to_ptr(key_ref);
401 	ret = 0;
402 	if (test_bit(KEY_FLAG_KEEP, &key->flags))
403 		ret = -EPERM;
404 	else
405 		key_revoke(key);
406 
407 	key_ref_put(key_ref);
408 error:
409 	return ret;
410 }
411 
412 /*
413  * Invalidate a key.
414  *
415  * The key must be grant the caller Invalidate permission for this to work.
416  * The key and any links to the key will be automatically garbage collected
417  * immediately.
418  *
419  * Keys with KEY_FLAG_KEEP set should not be invalidated.
420  *
421  * If successful, 0 is returned.
422  */
423 long keyctl_invalidate_key(key_serial_t id)
424 {
425 	key_ref_t key_ref;
426 	struct key *key;
427 	long ret;
428 
429 	kenter("%d", id);
430 
431 	key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
432 	if (IS_ERR(key_ref)) {
433 		ret = PTR_ERR(key_ref);
434 
435 		/* Root is permitted to invalidate certain special keys */
436 		if (capable(CAP_SYS_ADMIN)) {
437 			key_ref = lookup_user_key(id, 0, 0);
438 			if (IS_ERR(key_ref))
439 				goto error;
440 			if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
441 				     &key_ref_to_ptr(key_ref)->flags))
442 				goto invalidate;
443 			goto error_put;
444 		}
445 
446 		goto error;
447 	}
448 
449 invalidate:
450 	key = key_ref_to_ptr(key_ref);
451 	ret = 0;
452 	if (test_bit(KEY_FLAG_KEEP, &key->flags))
453 		ret = -EPERM;
454 	else
455 		key_invalidate(key);
456 error_put:
457 	key_ref_put(key_ref);
458 error:
459 	kleave(" = %ld", ret);
460 	return ret;
461 }
462 
463 /*
464  * Clear the specified keyring, creating an empty process keyring if one of the
465  * special keyring IDs is used.
466  *
467  * The keyring must grant the caller Write permission and not have
468  * KEY_FLAG_KEEP set for this to work.  If successful, 0 will be returned.
469  */
470 long keyctl_keyring_clear(key_serial_t ringid)
471 {
472 	key_ref_t keyring_ref;
473 	struct key *keyring;
474 	long ret;
475 
476 	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
477 	if (IS_ERR(keyring_ref)) {
478 		ret = PTR_ERR(keyring_ref);
479 
480 		/* Root is permitted to invalidate certain special keyrings */
481 		if (capable(CAP_SYS_ADMIN)) {
482 			keyring_ref = lookup_user_key(ringid, 0, 0);
483 			if (IS_ERR(keyring_ref))
484 				goto error;
485 			if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
486 				     &key_ref_to_ptr(keyring_ref)->flags))
487 				goto clear;
488 			goto error_put;
489 		}
490 
491 		goto error;
492 	}
493 
494 clear:
495 	keyring = key_ref_to_ptr(keyring_ref);
496 	if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
497 		ret = -EPERM;
498 	else
499 		ret = keyring_clear(keyring);
500 error_put:
501 	key_ref_put(keyring_ref);
502 error:
503 	return ret;
504 }
505 
506 /*
507  * Create a link from a keyring to a key if there's no matching key in the
508  * keyring, otherwise replace the link to the matching key with a link to the
509  * new key.
510  *
511  * The key must grant the caller Link permission and the the keyring must grant
512  * the caller Write permission.  Furthermore, if an additional link is created,
513  * the keyring's quota will be extended.
514  *
515  * If successful, 0 will be returned.
516  */
517 long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
518 {
519 	key_ref_t keyring_ref, key_ref;
520 	long ret;
521 
522 	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
523 	if (IS_ERR(keyring_ref)) {
524 		ret = PTR_ERR(keyring_ref);
525 		goto error;
526 	}
527 
528 	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
529 	if (IS_ERR(key_ref)) {
530 		ret = PTR_ERR(key_ref);
531 		goto error2;
532 	}
533 
534 	ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
535 
536 	key_ref_put(key_ref);
537 error2:
538 	key_ref_put(keyring_ref);
539 error:
540 	return ret;
541 }
542 
543 /*
544  * Unlink a key from a keyring.
545  *
546  * The keyring must grant the caller Write permission for this to work; the key
547  * itself need not grant the caller anything.  If the last link to a key is
548  * removed then that key will be scheduled for destruction.
549  *
550  * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
551  *
552  * If successful, 0 will be returned.
553  */
554 long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
555 {
556 	key_ref_t keyring_ref, key_ref;
557 	struct key *keyring, *key;
558 	long ret;
559 
560 	keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
561 	if (IS_ERR(keyring_ref)) {
562 		ret = PTR_ERR(keyring_ref);
563 		goto error;
564 	}
565 
566 	key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0);
567 	if (IS_ERR(key_ref)) {
568 		ret = PTR_ERR(key_ref);
569 		goto error2;
570 	}
571 
572 	keyring = key_ref_to_ptr(keyring_ref);
573 	key = key_ref_to_ptr(key_ref);
574 	if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
575 	    test_bit(KEY_FLAG_KEEP, &key->flags))
576 		ret = -EPERM;
577 	else
578 		ret = key_unlink(keyring, key);
579 
580 	key_ref_put(key_ref);
581 error2:
582 	key_ref_put(keyring_ref);
583 error:
584 	return ret;
585 }
586 
587 /*
588  * Move a link to a key from one keyring to another, displacing any matching
589  * key from the destination keyring.
590  *
591  * The key must grant the caller Link permission and both keyrings must grant
592  * the caller Write permission.  There must also be a link in the from keyring
593  * to the key.  If both keyrings are the same, nothing is done.
594  *
595  * If successful, 0 will be returned.
596  */
597 long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
598 			 key_serial_t to_ringid, unsigned int flags)
599 {
600 	key_ref_t key_ref, from_ref, to_ref;
601 	long ret;
602 
603 	if (flags & ~KEYCTL_MOVE_EXCL)
604 		return -EINVAL;
605 
606 	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
607 	if (IS_ERR(key_ref))
608 		return PTR_ERR(key_ref);
609 
610 	from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
611 	if (IS_ERR(from_ref)) {
612 		ret = PTR_ERR(from_ref);
613 		goto error2;
614 	}
615 
616 	to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
617 	if (IS_ERR(to_ref)) {
618 		ret = PTR_ERR(to_ref);
619 		goto error3;
620 	}
621 
622 	ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
623 		       key_ref_to_ptr(to_ref), flags);
624 
625 	key_ref_put(to_ref);
626 error3:
627 	key_ref_put(from_ref);
628 error2:
629 	key_ref_put(key_ref);
630 	return ret;
631 }
632 
633 /*
634  * Return a description of a key to userspace.
635  *
636  * The key must grant the caller View permission for this to work.
637  *
638  * If there's a buffer, we place up to buflen bytes of data into it formatted
639  * in the following way:
640  *
641  *	type;uid;gid;perm;description<NUL>
642  *
643  * If successful, we return the amount of description available, irrespective
644  * of how much we may have copied into the buffer.
645  */
646 long keyctl_describe_key(key_serial_t keyid,
647 			 char __user *buffer,
648 			 size_t buflen)
649 {
650 	struct key *key, *instkey;
651 	key_ref_t key_ref;
652 	char *infobuf;
653 	long ret;
654 	int desclen, infolen;
655 
656 	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
657 	if (IS_ERR(key_ref)) {
658 		/* viewing a key under construction is permitted if we have the
659 		 * authorisation token handy */
660 		if (PTR_ERR(key_ref) == -EACCES) {
661 			instkey = key_get_instantiation_authkey(keyid);
662 			if (!IS_ERR(instkey)) {
663 				key_put(instkey);
664 				key_ref = lookup_user_key(keyid,
665 							  KEY_LOOKUP_PARTIAL,
666 							  0);
667 				if (!IS_ERR(key_ref))
668 					goto okay;
669 			}
670 		}
671 
672 		ret = PTR_ERR(key_ref);
673 		goto error;
674 	}
675 
676 okay:
677 	key = key_ref_to_ptr(key_ref);
678 	desclen = strlen(key->description);
679 
680 	/* calculate how much information we're going to return */
681 	ret = -ENOMEM;
682 	infobuf = kasprintf(GFP_KERNEL,
683 			    "%s;%d;%d;%08x;",
684 			    key->type->name,
685 			    from_kuid_munged(current_user_ns(), key->uid),
686 			    from_kgid_munged(current_user_ns(), key->gid),
687 			    key->perm);
688 	if (!infobuf)
689 		goto error2;
690 	infolen = strlen(infobuf);
691 	ret = infolen + desclen + 1;
692 
693 	/* consider returning the data */
694 	if (buffer && buflen >= ret) {
695 		if (copy_to_user(buffer, infobuf, infolen) != 0 ||
696 		    copy_to_user(buffer + infolen, key->description,
697 				 desclen + 1) != 0)
698 			ret = -EFAULT;
699 	}
700 
701 	kfree(infobuf);
702 error2:
703 	key_ref_put(key_ref);
704 error:
705 	return ret;
706 }
707 
708 /*
709  * Search the specified keyring and any keyrings it links to for a matching
710  * key.  Only keyrings that grant the caller Search permission will be searched
711  * (this includes the starting keyring).  Only keys with Search permission can
712  * be found.
713  *
714  * If successful, the found key will be linked to the destination keyring if
715  * supplied and the key has Link permission, and the found key ID will be
716  * returned.
717  */
718 long keyctl_keyring_search(key_serial_t ringid,
719 			   const char __user *_type,
720 			   const char __user *_description,
721 			   key_serial_t destringid)
722 {
723 	struct key_type *ktype;
724 	key_ref_t keyring_ref, key_ref, dest_ref;
725 	char type[32], *description;
726 	long ret;
727 
728 	/* pull the type and description into kernel space */
729 	ret = key_get_type_from_user(type, _type, sizeof(type));
730 	if (ret < 0)
731 		goto error;
732 
733 	description = strndup_user(_description, KEY_MAX_DESC_SIZE);
734 	if (IS_ERR(description)) {
735 		ret = PTR_ERR(description);
736 		goto error;
737 	}
738 
739 	/* get the keyring at which to begin the search */
740 	keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
741 	if (IS_ERR(keyring_ref)) {
742 		ret = PTR_ERR(keyring_ref);
743 		goto error2;
744 	}
745 
746 	/* get the destination keyring if specified */
747 	dest_ref = NULL;
748 	if (destringid) {
749 		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
750 					   KEY_NEED_WRITE);
751 		if (IS_ERR(dest_ref)) {
752 			ret = PTR_ERR(dest_ref);
753 			goto error3;
754 		}
755 	}
756 
757 	/* find the key type */
758 	ktype = key_type_lookup(type);
759 	if (IS_ERR(ktype)) {
760 		ret = PTR_ERR(ktype);
761 		goto error4;
762 	}
763 
764 	/* do the search */
765 	key_ref = keyring_search(keyring_ref, ktype, description, true);
766 	if (IS_ERR(key_ref)) {
767 		ret = PTR_ERR(key_ref);
768 
769 		/* treat lack or presence of a negative key the same */
770 		if (ret == -EAGAIN)
771 			ret = -ENOKEY;
772 		goto error5;
773 	}
774 
775 	/* link the resulting key to the destination keyring if we can */
776 	if (dest_ref) {
777 		ret = key_permission(key_ref, KEY_NEED_LINK);
778 		if (ret < 0)
779 			goto error6;
780 
781 		ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
782 		if (ret < 0)
783 			goto error6;
784 	}
785 
786 	ret = key_ref_to_ptr(key_ref)->serial;
787 
788 error6:
789 	key_ref_put(key_ref);
790 error5:
791 	key_type_put(ktype);
792 error4:
793 	key_ref_put(dest_ref);
794 error3:
795 	key_ref_put(keyring_ref);
796 error2:
797 	kfree(description);
798 error:
799 	return ret;
800 }
801 
802 /*
803  * Call the read method
804  */
805 static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
806 {
807 	long ret;
808 
809 	down_read(&key->sem);
810 	ret = key_validate(key);
811 	if (ret == 0)
812 		ret = key->type->read(key, buffer, buflen);
813 	up_read(&key->sem);
814 	return ret;
815 }
816 
817 /*
818  * Read a key's payload.
819  *
820  * The key must either grant the caller Read permission, or it must grant the
821  * caller Search permission when searched for from the process keyrings.
822  *
823  * If successful, we place up to buflen bytes of data into the buffer, if one
824  * is provided, and return the amount of data that is available in the key,
825  * irrespective of how much we copied into the buffer.
826  */
827 long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
828 {
829 	struct key *key;
830 	key_ref_t key_ref;
831 	long ret;
832 	char *key_data = NULL;
833 	size_t key_data_len;
834 
835 	/* find the key first */
836 	key_ref = lookup_user_key(keyid, 0, 0);
837 	if (IS_ERR(key_ref)) {
838 		ret = -ENOKEY;
839 		goto out;
840 	}
841 
842 	key = key_ref_to_ptr(key_ref);
843 
844 	ret = key_read_state(key);
845 	if (ret < 0)
846 		goto key_put_out; /* Negatively instantiated */
847 
848 	/* see if we can read it directly */
849 	ret = key_permission(key_ref, KEY_NEED_READ);
850 	if (ret == 0)
851 		goto can_read_key;
852 	if (ret != -EACCES)
853 		goto key_put_out;
854 
855 	/* we can't; see if it's searchable from this process's keyrings
856 	 * - we automatically take account of the fact that it may be
857 	 *   dangling off an instantiation key
858 	 */
859 	if (!is_key_possessed(key_ref)) {
860 		ret = -EACCES;
861 		goto key_put_out;
862 	}
863 
864 	/* the key is probably readable - now try to read it */
865 can_read_key:
866 	if (!key->type->read) {
867 		ret = -EOPNOTSUPP;
868 		goto key_put_out;
869 	}
870 
871 	if (!buffer || !buflen) {
872 		/* Get the key length from the read method */
873 		ret = __keyctl_read_key(key, NULL, 0);
874 		goto key_put_out;
875 	}
876 
877 	/*
878 	 * Read the data with the semaphore held (since we might sleep)
879 	 * to protect against the key being updated or revoked.
880 	 *
881 	 * Allocating a temporary buffer to hold the keys before
882 	 * transferring them to user buffer to avoid potential
883 	 * deadlock involving page fault and mmap_sem.
884 	 *
885 	 * key_data_len = (buflen <= PAGE_SIZE)
886 	 *		? buflen : actual length of key data
887 	 *
888 	 * This prevents allocating arbitrary large buffer which can
889 	 * be much larger than the actual key length. In the latter case,
890 	 * at least 2 passes of this loop is required.
891 	 */
892 	key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
893 	for (;;) {
894 		if (key_data_len) {
895 			key_data = kvmalloc(key_data_len, GFP_KERNEL);
896 			if (!key_data) {
897 				ret = -ENOMEM;
898 				goto key_put_out;
899 			}
900 		}
901 
902 		ret = __keyctl_read_key(key, key_data, key_data_len);
903 
904 		/*
905 		 * Read methods will just return the required length without
906 		 * any copying if the provided length isn't large enough.
907 		 */
908 		if (ret <= 0 || ret > buflen)
909 			break;
910 
911 		/*
912 		 * The key may change (unlikely) in between 2 consecutive
913 		 * __keyctl_read_key() calls. In this case, we reallocate
914 		 * a larger buffer and redo the key read when
915 		 * key_data_len < ret <= buflen.
916 		 */
917 		if (ret > key_data_len) {
918 			if (unlikely(key_data))
919 				__kvzfree(key_data, key_data_len);
920 			key_data_len = ret;
921 			continue;	/* Allocate buffer */
922 		}
923 
924 		if (copy_to_user(buffer, key_data, ret))
925 			ret = -EFAULT;
926 		break;
927 	}
928 	__kvzfree(key_data, key_data_len);
929 
930 key_put_out:
931 	key_put(key);
932 out:
933 	return ret;
934 }
935 
936 /*
937  * Change the ownership of a key
938  *
939  * The key must grant the caller Setattr permission for this to work, though
940  * the key need not be fully instantiated yet.  For the UID to be changed, or
941  * for the GID to be changed to a group the caller is not a member of, the
942  * caller must have sysadmin capability.  If either uid or gid is -1 then that
943  * attribute is not changed.
944  *
945  * If the UID is to be changed, the new user must have sufficient quota to
946  * accept the key.  The quota deduction will be removed from the old user to
947  * the new user should the attribute be changed.
948  *
949  * If successful, 0 will be returned.
950  */
951 long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
952 {
953 	struct key_user *newowner, *zapowner = NULL;
954 	struct key *key;
955 	key_ref_t key_ref;
956 	long ret;
957 	kuid_t uid;
958 	kgid_t gid;
959 
960 	uid = make_kuid(current_user_ns(), user);
961 	gid = make_kgid(current_user_ns(), group);
962 	ret = -EINVAL;
963 	if ((user != (uid_t) -1) && !uid_valid(uid))
964 		goto error;
965 	if ((group != (gid_t) -1) && !gid_valid(gid))
966 		goto error;
967 
968 	ret = 0;
969 	if (user == (uid_t) -1 && group == (gid_t) -1)
970 		goto error;
971 
972 	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
973 				  KEY_NEED_SETATTR);
974 	if (IS_ERR(key_ref)) {
975 		ret = PTR_ERR(key_ref);
976 		goto error;
977 	}
978 
979 	key = key_ref_to_ptr(key_ref);
980 
981 	/* make the changes with the locks held to prevent chown/chown races */
982 	ret = -EACCES;
983 	down_write(&key->sem);
984 
985 	if (!capable(CAP_SYS_ADMIN)) {
986 		/* only the sysadmin can chown a key to some other UID */
987 		if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
988 			goto error_put;
989 
990 		/* only the sysadmin can set the key's GID to a group other
991 		 * than one of those that the current process subscribes to */
992 		if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
993 			goto error_put;
994 	}
995 
996 	/* change the UID */
997 	if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
998 		ret = -ENOMEM;
999 		newowner = key_user_lookup(uid);
1000 		if (!newowner)
1001 			goto error_put;
1002 
1003 		/* transfer the quota burden to the new user */
1004 		if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
1005 			unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
1006 				key_quota_root_maxkeys : key_quota_maxkeys;
1007 			unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
1008 				key_quota_root_maxbytes : key_quota_maxbytes;
1009 
1010 			spin_lock(&newowner->lock);
1011 			if (newowner->qnkeys + 1 > maxkeys ||
1012 			    newowner->qnbytes + key->quotalen > maxbytes ||
1013 			    newowner->qnbytes + key->quotalen <
1014 			    newowner->qnbytes)
1015 				goto quota_overrun;
1016 
1017 			newowner->qnkeys++;
1018 			newowner->qnbytes += key->quotalen;
1019 			spin_unlock(&newowner->lock);
1020 
1021 			spin_lock(&key->user->lock);
1022 			key->user->qnkeys--;
1023 			key->user->qnbytes -= key->quotalen;
1024 			spin_unlock(&key->user->lock);
1025 		}
1026 
1027 		atomic_dec(&key->user->nkeys);
1028 		atomic_inc(&newowner->nkeys);
1029 
1030 		if (key->state != KEY_IS_UNINSTANTIATED) {
1031 			atomic_dec(&key->user->nikeys);
1032 			atomic_inc(&newowner->nikeys);
1033 		}
1034 
1035 		zapowner = key->user;
1036 		key->user = newowner;
1037 		key->uid = uid;
1038 	}
1039 
1040 	/* change the GID */
1041 	if (group != (gid_t) -1)
1042 		key->gid = gid;
1043 
1044 	notify_key(key, NOTIFY_KEY_SETATTR, 0);
1045 	ret = 0;
1046 
1047 error_put:
1048 	up_write(&key->sem);
1049 	key_put(key);
1050 	if (zapowner)
1051 		key_user_put(zapowner);
1052 error:
1053 	return ret;
1054 
1055 quota_overrun:
1056 	spin_unlock(&newowner->lock);
1057 	zapowner = newowner;
1058 	ret = -EDQUOT;
1059 	goto error_put;
1060 }
1061 
1062 /*
1063  * Change the permission mask on a key.
1064  *
1065  * The key must grant the caller Setattr permission for this to work, though
1066  * the key need not be fully instantiated yet.  If the caller does not have
1067  * sysadmin capability, it may only change the permission on keys that it owns.
1068  */
1069 long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
1070 {
1071 	struct key *key;
1072 	key_ref_t key_ref;
1073 	long ret;
1074 
1075 	ret = -EINVAL;
1076 	if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1077 		goto error;
1078 
1079 	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1080 				  KEY_NEED_SETATTR);
1081 	if (IS_ERR(key_ref)) {
1082 		ret = PTR_ERR(key_ref);
1083 		goto error;
1084 	}
1085 
1086 	key = key_ref_to_ptr(key_ref);
1087 
1088 	/* make the changes with the locks held to prevent chown/chmod races */
1089 	ret = -EACCES;
1090 	down_write(&key->sem);
1091 
1092 	/* if we're not the sysadmin, we can only change a key that we own */
1093 	if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
1094 		key->perm = perm;
1095 		notify_key(key, NOTIFY_KEY_SETATTR, 0);
1096 		ret = 0;
1097 	}
1098 
1099 	up_write(&key->sem);
1100 	key_put(key);
1101 error:
1102 	return ret;
1103 }
1104 
1105 /*
1106  * Get the destination keyring for instantiation and check that the caller has
1107  * Write permission on it.
1108  */
1109 static long get_instantiation_keyring(key_serial_t ringid,
1110 				      struct request_key_auth *rka,
1111 				      struct key **_dest_keyring)
1112 {
1113 	key_ref_t dkref;
1114 
1115 	*_dest_keyring = NULL;
1116 
1117 	/* just return a NULL pointer if we weren't asked to make a link */
1118 	if (ringid == 0)
1119 		return 0;
1120 
1121 	/* if a specific keyring is nominated by ID, then use that */
1122 	if (ringid > 0) {
1123 		dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1124 		if (IS_ERR(dkref))
1125 			return PTR_ERR(dkref);
1126 		*_dest_keyring = key_ref_to_ptr(dkref);
1127 		return 0;
1128 	}
1129 
1130 	if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1131 		return -EINVAL;
1132 
1133 	/* otherwise specify the destination keyring recorded in the
1134 	 * authorisation key (any KEY_SPEC_*_KEYRING) */
1135 	if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1136 		*_dest_keyring = key_get(rka->dest_keyring);
1137 		return 0;
1138 	}
1139 
1140 	return -ENOKEY;
1141 }
1142 
1143 /*
1144  * Change the request_key authorisation key on the current process.
1145  */
1146 static int keyctl_change_reqkey_auth(struct key *key)
1147 {
1148 	struct cred *new;
1149 
1150 	new = prepare_creds();
1151 	if (!new)
1152 		return -ENOMEM;
1153 
1154 	key_put(new->request_key_auth);
1155 	new->request_key_auth = key_get(key);
1156 
1157 	return commit_creds(new);
1158 }
1159 
1160 /*
1161  * Instantiate a key with the specified payload and link the key into the
1162  * destination keyring if one is given.
1163  *
1164  * The caller must have the appropriate instantiation permit set for this to
1165  * work (see keyctl_assume_authority).  No other permissions are required.
1166  *
1167  * If successful, 0 will be returned.
1168  */
1169 long keyctl_instantiate_key_common(key_serial_t id,
1170 				   struct iov_iter *from,
1171 				   key_serial_t ringid)
1172 {
1173 	const struct cred *cred = current_cred();
1174 	struct request_key_auth *rka;
1175 	struct key *instkey, *dest_keyring;
1176 	size_t plen = from ? iov_iter_count(from) : 0;
1177 	void *payload;
1178 	long ret;
1179 
1180 	kenter("%d,,%zu,%d", id, plen, ringid);
1181 
1182 	if (!plen)
1183 		from = NULL;
1184 
1185 	ret = -EINVAL;
1186 	if (plen > 1024 * 1024 - 1)
1187 		goto error;
1188 
1189 	/* the appropriate instantiation authorisation key must have been
1190 	 * assumed before calling this */
1191 	ret = -EPERM;
1192 	instkey = cred->request_key_auth;
1193 	if (!instkey)
1194 		goto error;
1195 
1196 	rka = instkey->payload.data[0];
1197 	if (rka->target_key->serial != id)
1198 		goto error;
1199 
1200 	/* pull the payload in if one was supplied */
1201 	payload = NULL;
1202 
1203 	if (from) {
1204 		ret = -ENOMEM;
1205 		payload = kvmalloc(plen, GFP_KERNEL);
1206 		if (!payload)
1207 			goto error;
1208 
1209 		ret = -EFAULT;
1210 		if (!copy_from_iter_full(payload, plen, from))
1211 			goto error2;
1212 	}
1213 
1214 	/* find the destination keyring amongst those belonging to the
1215 	 * requesting task */
1216 	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1217 	if (ret < 0)
1218 		goto error2;
1219 
1220 	/* instantiate the key and link it into a keyring */
1221 	ret = key_instantiate_and_link(rka->target_key, payload, plen,
1222 				       dest_keyring, instkey);
1223 
1224 	key_put(dest_keyring);
1225 
1226 	/* discard the assumed authority if it's just been disabled by
1227 	 * instantiation of the key */
1228 	if (ret == 0)
1229 		keyctl_change_reqkey_auth(NULL);
1230 
1231 error2:
1232 	if (payload) {
1233 		memzero_explicit(payload, plen);
1234 		kvfree(payload);
1235 	}
1236 error:
1237 	return ret;
1238 }
1239 
1240 /*
1241  * Instantiate a key with the specified payload and link the key into the
1242  * destination keyring if one is given.
1243  *
1244  * The caller must have the appropriate instantiation permit set for this to
1245  * work (see keyctl_assume_authority).  No other permissions are required.
1246  *
1247  * If successful, 0 will be returned.
1248  */
1249 long keyctl_instantiate_key(key_serial_t id,
1250 			    const void __user *_payload,
1251 			    size_t plen,
1252 			    key_serial_t ringid)
1253 {
1254 	if (_payload && plen) {
1255 		struct iovec iov;
1256 		struct iov_iter from;
1257 		int ret;
1258 
1259 		ret = import_single_range(WRITE, (void __user *)_payload, plen,
1260 					  &iov, &from);
1261 		if (unlikely(ret))
1262 			return ret;
1263 
1264 		return keyctl_instantiate_key_common(id, &from, ringid);
1265 	}
1266 
1267 	return keyctl_instantiate_key_common(id, NULL, ringid);
1268 }
1269 
1270 /*
1271  * Instantiate a key with the specified multipart payload and link the key into
1272  * the destination keyring if one is given.
1273  *
1274  * The caller must have the appropriate instantiation permit set for this to
1275  * work (see keyctl_assume_authority).  No other permissions are required.
1276  *
1277  * If successful, 0 will be returned.
1278  */
1279 long keyctl_instantiate_key_iov(key_serial_t id,
1280 				const struct iovec __user *_payload_iov,
1281 				unsigned ioc,
1282 				key_serial_t ringid)
1283 {
1284 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1285 	struct iov_iter from;
1286 	long ret;
1287 
1288 	if (!_payload_iov)
1289 		ioc = 0;
1290 
1291 	ret = import_iovec(WRITE, _payload_iov, ioc,
1292 				    ARRAY_SIZE(iovstack), &iov, &from);
1293 	if (ret < 0)
1294 		return ret;
1295 	ret = keyctl_instantiate_key_common(id, &from, ringid);
1296 	kfree(iov);
1297 	return ret;
1298 }
1299 
1300 /*
1301  * Negatively instantiate the key with the given timeout (in seconds) and link
1302  * the key into the destination keyring if one is given.
1303  *
1304  * The caller must have the appropriate instantiation permit set for this to
1305  * work (see keyctl_assume_authority).  No other permissions are required.
1306  *
1307  * The key and any links to the key will be automatically garbage collected
1308  * after the timeout expires.
1309  *
1310  * Negative keys are used to rate limit repeated request_key() calls by causing
1311  * them to return -ENOKEY until the negative key expires.
1312  *
1313  * If successful, 0 will be returned.
1314  */
1315 long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1316 {
1317 	return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1318 }
1319 
1320 /*
1321  * Negatively instantiate the key with the given timeout (in seconds) and error
1322  * code and link the key into the destination keyring if one is given.
1323  *
1324  * The caller must have the appropriate instantiation permit set for this to
1325  * work (see keyctl_assume_authority).  No other permissions are required.
1326  *
1327  * The key and any links to the key will be automatically garbage collected
1328  * after the timeout expires.
1329  *
1330  * Negative keys are used to rate limit repeated request_key() calls by causing
1331  * them to return the specified error code until the negative key expires.
1332  *
1333  * If successful, 0 will be returned.
1334  */
1335 long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1336 		       key_serial_t ringid)
1337 {
1338 	const struct cred *cred = current_cred();
1339 	struct request_key_auth *rka;
1340 	struct key *instkey, *dest_keyring;
1341 	long ret;
1342 
1343 	kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1344 
1345 	/* must be a valid error code and mustn't be a kernel special */
1346 	if (error <= 0 ||
1347 	    error >= MAX_ERRNO ||
1348 	    error == ERESTARTSYS ||
1349 	    error == ERESTARTNOINTR ||
1350 	    error == ERESTARTNOHAND ||
1351 	    error == ERESTART_RESTARTBLOCK)
1352 		return -EINVAL;
1353 
1354 	/* the appropriate instantiation authorisation key must have been
1355 	 * assumed before calling this */
1356 	ret = -EPERM;
1357 	instkey = cred->request_key_auth;
1358 	if (!instkey)
1359 		goto error;
1360 
1361 	rka = instkey->payload.data[0];
1362 	if (rka->target_key->serial != id)
1363 		goto error;
1364 
1365 	/* find the destination keyring if present (which must also be
1366 	 * writable) */
1367 	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1368 	if (ret < 0)
1369 		goto error;
1370 
1371 	/* instantiate the key and link it into a keyring */
1372 	ret = key_reject_and_link(rka->target_key, timeout, error,
1373 				  dest_keyring, instkey);
1374 
1375 	key_put(dest_keyring);
1376 
1377 	/* discard the assumed authority if it's just been disabled by
1378 	 * instantiation of the key */
1379 	if (ret == 0)
1380 		keyctl_change_reqkey_auth(NULL);
1381 
1382 error:
1383 	return ret;
1384 }
1385 
1386 /*
1387  * Read or set the default keyring in which request_key() will cache keys and
1388  * return the old setting.
1389  *
1390  * If a thread or process keyring is specified then it will be created if it
1391  * doesn't yet exist.  The old setting will be returned if successful.
1392  */
1393 long keyctl_set_reqkey_keyring(int reqkey_defl)
1394 {
1395 	struct cred *new;
1396 	int ret, old_setting;
1397 
1398 	old_setting = current_cred_xxx(jit_keyring);
1399 
1400 	if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1401 		return old_setting;
1402 
1403 	new = prepare_creds();
1404 	if (!new)
1405 		return -ENOMEM;
1406 
1407 	switch (reqkey_defl) {
1408 	case KEY_REQKEY_DEFL_THREAD_KEYRING:
1409 		ret = install_thread_keyring_to_cred(new);
1410 		if (ret < 0)
1411 			goto error;
1412 		goto set;
1413 
1414 	case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1415 		ret = install_process_keyring_to_cred(new);
1416 		if (ret < 0)
1417 			goto error;
1418 		goto set;
1419 
1420 	case KEY_REQKEY_DEFL_DEFAULT:
1421 	case KEY_REQKEY_DEFL_SESSION_KEYRING:
1422 	case KEY_REQKEY_DEFL_USER_KEYRING:
1423 	case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1424 	case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1425 		goto set;
1426 
1427 	case KEY_REQKEY_DEFL_NO_CHANGE:
1428 	case KEY_REQKEY_DEFL_GROUP_KEYRING:
1429 	default:
1430 		ret = -EINVAL;
1431 		goto error;
1432 	}
1433 
1434 set:
1435 	new->jit_keyring = reqkey_defl;
1436 	commit_creds(new);
1437 	return old_setting;
1438 error:
1439 	abort_creds(new);
1440 	return ret;
1441 }
1442 
1443 /*
1444  * Set or clear the timeout on a key.
1445  *
1446  * Either the key must grant the caller Setattr permission or else the caller
1447  * must hold an instantiation authorisation token for the key.
1448  *
1449  * The timeout is either 0 to clear the timeout, or a number of seconds from
1450  * the current time.  The key and any links to the key will be automatically
1451  * garbage collected after the timeout expires.
1452  *
1453  * Keys with KEY_FLAG_KEEP set should not be timed out.
1454  *
1455  * If successful, 0 is returned.
1456  */
1457 long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1458 {
1459 	struct key *key, *instkey;
1460 	key_ref_t key_ref;
1461 	long ret;
1462 
1463 	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1464 				  KEY_NEED_SETATTR);
1465 	if (IS_ERR(key_ref)) {
1466 		/* setting the timeout on a key under construction is permitted
1467 		 * if we have the authorisation token handy */
1468 		if (PTR_ERR(key_ref) == -EACCES) {
1469 			instkey = key_get_instantiation_authkey(id);
1470 			if (!IS_ERR(instkey)) {
1471 				key_put(instkey);
1472 				key_ref = lookup_user_key(id,
1473 							  KEY_LOOKUP_PARTIAL,
1474 							  0);
1475 				if (!IS_ERR(key_ref))
1476 					goto okay;
1477 			}
1478 		}
1479 
1480 		ret = PTR_ERR(key_ref);
1481 		goto error;
1482 	}
1483 
1484 okay:
1485 	key = key_ref_to_ptr(key_ref);
1486 	ret = 0;
1487 	if (test_bit(KEY_FLAG_KEEP, &key->flags)) {
1488 		ret = -EPERM;
1489 	} else {
1490 		key_set_timeout(key, timeout);
1491 		notify_key(key, NOTIFY_KEY_SETATTR, 0);
1492 	}
1493 	key_put(key);
1494 
1495 error:
1496 	return ret;
1497 }
1498 
1499 /*
1500  * Assume (or clear) the authority to instantiate the specified key.
1501  *
1502  * This sets the authoritative token currently in force for key instantiation.
1503  * This must be done for a key to be instantiated.  It has the effect of making
1504  * available all the keys from the caller of the request_key() that created a
1505  * key to request_key() calls made by the caller of this function.
1506  *
1507  * The caller must have the instantiation key in their process keyrings with a
1508  * Search permission grant available to the caller.
1509  *
1510  * If the ID given is 0, then the setting will be cleared and 0 returned.
1511  *
1512  * If the ID given has a matching an authorisation key, then that key will be
1513  * set and its ID will be returned.  The authorisation key can be read to get
1514  * the callout information passed to request_key().
1515  */
1516 long keyctl_assume_authority(key_serial_t id)
1517 {
1518 	struct key *authkey;
1519 	long ret;
1520 
1521 	/* special key IDs aren't permitted */
1522 	ret = -EINVAL;
1523 	if (id < 0)
1524 		goto error;
1525 
1526 	/* we divest ourselves of authority if given an ID of 0 */
1527 	if (id == 0) {
1528 		ret = keyctl_change_reqkey_auth(NULL);
1529 		goto error;
1530 	}
1531 
1532 	/* attempt to assume the authority temporarily granted to us whilst we
1533 	 * instantiate the specified key
1534 	 * - the authorisation key must be in the current task's keyrings
1535 	 *   somewhere
1536 	 */
1537 	authkey = key_get_instantiation_authkey(id);
1538 	if (IS_ERR(authkey)) {
1539 		ret = PTR_ERR(authkey);
1540 		goto error;
1541 	}
1542 
1543 	ret = keyctl_change_reqkey_auth(authkey);
1544 	if (ret == 0)
1545 		ret = authkey->serial;
1546 	key_put(authkey);
1547 error:
1548 	return ret;
1549 }
1550 
1551 /*
1552  * Get a key's the LSM security label.
1553  *
1554  * The key must grant the caller View permission for this to work.
1555  *
1556  * If there's a buffer, then up to buflen bytes of data will be placed into it.
1557  *
1558  * If successful, the amount of information available will be returned,
1559  * irrespective of how much was copied (including the terminal NUL).
1560  */
1561 long keyctl_get_security(key_serial_t keyid,
1562 			 char __user *buffer,
1563 			 size_t buflen)
1564 {
1565 	struct key *key, *instkey;
1566 	key_ref_t key_ref;
1567 	char *context;
1568 	long ret;
1569 
1570 	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1571 	if (IS_ERR(key_ref)) {
1572 		if (PTR_ERR(key_ref) != -EACCES)
1573 			return PTR_ERR(key_ref);
1574 
1575 		/* viewing a key under construction is also permitted if we
1576 		 * have the authorisation token handy */
1577 		instkey = key_get_instantiation_authkey(keyid);
1578 		if (IS_ERR(instkey))
1579 			return PTR_ERR(instkey);
1580 		key_put(instkey);
1581 
1582 		key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0);
1583 		if (IS_ERR(key_ref))
1584 			return PTR_ERR(key_ref);
1585 	}
1586 
1587 	key = key_ref_to_ptr(key_ref);
1588 	ret = security_key_getsecurity(key, &context);
1589 	if (ret == 0) {
1590 		/* if no information was returned, give userspace an empty
1591 		 * string */
1592 		ret = 1;
1593 		if (buffer && buflen > 0 &&
1594 		    copy_to_user(buffer, "", 1) != 0)
1595 			ret = -EFAULT;
1596 	} else if (ret > 0) {
1597 		/* return as much data as there's room for */
1598 		if (buffer && buflen > 0) {
1599 			if (buflen > ret)
1600 				buflen = ret;
1601 
1602 			if (copy_to_user(buffer, context, buflen) != 0)
1603 				ret = -EFAULT;
1604 		}
1605 
1606 		kfree(context);
1607 	}
1608 
1609 	key_ref_put(key_ref);
1610 	return ret;
1611 }
1612 
1613 /*
1614  * Attempt to install the calling process's session keyring on the process's
1615  * parent process.
1616  *
1617  * The keyring must exist and must grant the caller LINK permission, and the
1618  * parent process must be single-threaded and must have the same effective
1619  * ownership as this process and mustn't be SUID/SGID.
1620  *
1621  * The keyring will be emplaced on the parent when it next resumes userspace.
1622  *
1623  * If successful, 0 will be returned.
1624  */
1625 long keyctl_session_to_parent(void)
1626 {
1627 	struct task_struct *me, *parent;
1628 	const struct cred *mycred, *pcred;
1629 	struct callback_head *newwork, *oldwork;
1630 	key_ref_t keyring_r;
1631 	struct cred *cred;
1632 	int ret;
1633 
1634 	keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1635 	if (IS_ERR(keyring_r))
1636 		return PTR_ERR(keyring_r);
1637 
1638 	ret = -ENOMEM;
1639 
1640 	/* our parent is going to need a new cred struct, a new tgcred struct
1641 	 * and new security data, so we allocate them here to prevent ENOMEM in
1642 	 * our parent */
1643 	cred = cred_alloc_blank();
1644 	if (!cred)
1645 		goto error_keyring;
1646 	newwork = &cred->rcu;
1647 
1648 	cred->session_keyring = key_ref_to_ptr(keyring_r);
1649 	keyring_r = NULL;
1650 	init_task_work(newwork, key_change_session_keyring);
1651 
1652 	me = current;
1653 	rcu_read_lock();
1654 	write_lock_irq(&tasklist_lock);
1655 
1656 	ret = -EPERM;
1657 	oldwork = NULL;
1658 	parent = rcu_dereference_protected(me->real_parent,
1659 					   lockdep_is_held(&tasklist_lock));
1660 
1661 	/* the parent mustn't be init and mustn't be a kernel thread */
1662 	if (parent->pid <= 1 || !parent->mm)
1663 		goto unlock;
1664 
1665 	/* the parent must be single threaded */
1666 	if (!thread_group_empty(parent))
1667 		goto unlock;
1668 
1669 	/* the parent and the child must have different session keyrings or
1670 	 * there's no point */
1671 	mycred = current_cred();
1672 	pcred = __task_cred(parent);
1673 	if (mycred == pcred ||
1674 	    mycred->session_keyring == pcred->session_keyring) {
1675 		ret = 0;
1676 		goto unlock;
1677 	}
1678 
1679 	/* the parent must have the same effective ownership and mustn't be
1680 	 * SUID/SGID */
1681 	if (!uid_eq(pcred->uid,	 mycred->euid) ||
1682 	    !uid_eq(pcred->euid, mycred->euid) ||
1683 	    !uid_eq(pcred->suid, mycred->euid) ||
1684 	    !gid_eq(pcred->gid,	 mycred->egid) ||
1685 	    !gid_eq(pcred->egid, mycred->egid) ||
1686 	    !gid_eq(pcred->sgid, mycred->egid))
1687 		goto unlock;
1688 
1689 	/* the keyrings must have the same UID */
1690 	if ((pcred->session_keyring &&
1691 	     !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1692 	    !uid_eq(mycred->session_keyring->uid, mycred->euid))
1693 		goto unlock;
1694 
1695 	/* cancel an already pending keyring replacement */
1696 	oldwork = task_work_cancel(parent, key_change_session_keyring);
1697 
1698 	/* the replacement session keyring is applied just prior to userspace
1699 	 * restarting */
1700 	ret = task_work_add(parent, newwork, true);
1701 	if (!ret)
1702 		newwork = NULL;
1703 unlock:
1704 	write_unlock_irq(&tasklist_lock);
1705 	rcu_read_unlock();
1706 	if (oldwork)
1707 		put_cred(container_of(oldwork, struct cred, rcu));
1708 	if (newwork)
1709 		put_cred(cred);
1710 	return ret;
1711 
1712 error_keyring:
1713 	key_ref_put(keyring_r);
1714 	return ret;
1715 }
1716 
1717 /*
1718  * Apply a restriction to a given keyring.
1719  *
1720  * The caller must have Setattr permission to change keyring restrictions.
1721  *
1722  * The requested type name may be a NULL pointer to reject all attempts
1723  * to link to the keyring.  In this case, _restriction must also be NULL.
1724  * Otherwise, both _type and _restriction must be non-NULL.
1725  *
1726  * Returns 0 if successful.
1727  */
1728 long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1729 			     const char __user *_restriction)
1730 {
1731 	key_ref_t key_ref;
1732 	char type[32];
1733 	char *restriction = NULL;
1734 	long ret;
1735 
1736 	key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1737 	if (IS_ERR(key_ref))
1738 		return PTR_ERR(key_ref);
1739 
1740 	ret = -EINVAL;
1741 	if (_type) {
1742 		if (!_restriction)
1743 			goto error;
1744 
1745 		ret = key_get_type_from_user(type, _type, sizeof(type));
1746 		if (ret < 0)
1747 			goto error;
1748 
1749 		restriction = strndup_user(_restriction, PAGE_SIZE);
1750 		if (IS_ERR(restriction)) {
1751 			ret = PTR_ERR(restriction);
1752 			goto error;
1753 		}
1754 	} else {
1755 		if (_restriction)
1756 			goto error;
1757 	}
1758 
1759 	ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1760 	kfree(restriction);
1761 error:
1762 	key_ref_put(key_ref);
1763 	return ret;
1764 }
1765 
1766 #ifdef CONFIG_KEY_NOTIFICATIONS
1767 /*
1768  * Watch for changes to a key.
1769  *
1770  * The caller must have View permission to watch a key or keyring.
1771  */
1772 long keyctl_watch_key(key_serial_t id, int watch_queue_fd, int watch_id)
1773 {
1774 	struct watch_queue *wqueue;
1775 	struct watch_list *wlist = NULL;
1776 	struct watch *watch = NULL;
1777 	struct key *key;
1778 	key_ref_t key_ref;
1779 	long ret;
1780 
1781 	if (watch_id < -1 || watch_id > 0xff)
1782 		return -EINVAL;
1783 
1784 	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_VIEW);
1785 	if (IS_ERR(key_ref))
1786 		return PTR_ERR(key_ref);
1787 	key = key_ref_to_ptr(key_ref);
1788 
1789 	wqueue = get_watch_queue(watch_queue_fd);
1790 	if (IS_ERR(wqueue)) {
1791 		ret = PTR_ERR(wqueue);
1792 		goto err_key;
1793 	}
1794 
1795 	if (watch_id >= 0) {
1796 		ret = -ENOMEM;
1797 		if (!key->watchers) {
1798 			wlist = kzalloc(sizeof(*wlist), GFP_KERNEL);
1799 			if (!wlist)
1800 				goto err_wqueue;
1801 			init_watch_list(wlist, NULL);
1802 		}
1803 
1804 		watch = kzalloc(sizeof(*watch), GFP_KERNEL);
1805 		if (!watch)
1806 			goto err_wlist;
1807 
1808 		init_watch(watch, wqueue);
1809 		watch->id	= key->serial;
1810 		watch->info_id	= (u32)watch_id << WATCH_INFO_ID__SHIFT;
1811 
1812 		ret = security_watch_key(key);
1813 		if (ret < 0)
1814 			goto err_watch;
1815 
1816 		down_write(&key->sem);
1817 		if (!key->watchers) {
1818 			key->watchers = wlist;
1819 			wlist = NULL;
1820 		}
1821 
1822 		ret = add_watch_to_object(watch, key->watchers);
1823 		up_write(&key->sem);
1824 
1825 		if (ret == 0)
1826 			watch = NULL;
1827 	} else {
1828 		ret = -EBADSLT;
1829 		if (key->watchers) {
1830 			down_write(&key->sem);
1831 			ret = remove_watch_from_object(key->watchers,
1832 						       wqueue, key_serial(key),
1833 						       false);
1834 			up_write(&key->sem);
1835 		}
1836 	}
1837 
1838 err_watch:
1839 	kfree(watch);
1840 err_wlist:
1841 	kfree(wlist);
1842 err_wqueue:
1843 	put_watch_queue(wqueue);
1844 err_key:
1845 	key_put(key);
1846 	return ret;
1847 }
1848 #endif /* CONFIG_KEY_NOTIFICATIONS */
1849 
1850 /*
1851  * Get keyrings subsystem capabilities.
1852  */
1853 long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
1854 {
1855 	size_t size = buflen;
1856 
1857 	if (size > 0) {
1858 		if (size > sizeof(keyrings_capabilities))
1859 			size = sizeof(keyrings_capabilities);
1860 		if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
1861 			return -EFAULT;
1862 		if (size < buflen &&
1863 		    clear_user(_buffer + size, buflen - size) != 0)
1864 			return -EFAULT;
1865 	}
1866 
1867 	return sizeof(keyrings_capabilities);
1868 }
1869 
1870 /*
1871  * The key control system call
1872  */
1873 SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1874 		unsigned long, arg4, unsigned long, arg5)
1875 {
1876 	switch (option) {
1877 	case KEYCTL_GET_KEYRING_ID:
1878 		return keyctl_get_keyring_ID((key_serial_t) arg2,
1879 					     (int) arg3);
1880 
1881 	case KEYCTL_JOIN_SESSION_KEYRING:
1882 		return keyctl_join_session_keyring((const char __user *) arg2);
1883 
1884 	case KEYCTL_UPDATE:
1885 		return keyctl_update_key((key_serial_t) arg2,
1886 					 (const void __user *) arg3,
1887 					 (size_t) arg4);
1888 
1889 	case KEYCTL_REVOKE:
1890 		return keyctl_revoke_key((key_serial_t) arg2);
1891 
1892 	case KEYCTL_DESCRIBE:
1893 		return keyctl_describe_key((key_serial_t) arg2,
1894 					   (char __user *) arg3,
1895 					   (unsigned) arg4);
1896 
1897 	case KEYCTL_CLEAR:
1898 		return keyctl_keyring_clear((key_serial_t) arg2);
1899 
1900 	case KEYCTL_LINK:
1901 		return keyctl_keyring_link((key_serial_t) arg2,
1902 					   (key_serial_t) arg3);
1903 
1904 	case KEYCTL_UNLINK:
1905 		return keyctl_keyring_unlink((key_serial_t) arg2,
1906 					     (key_serial_t) arg3);
1907 
1908 	case KEYCTL_SEARCH:
1909 		return keyctl_keyring_search((key_serial_t) arg2,
1910 					     (const char __user *) arg3,
1911 					     (const char __user *) arg4,
1912 					     (key_serial_t) arg5);
1913 
1914 	case KEYCTL_READ:
1915 		return keyctl_read_key((key_serial_t) arg2,
1916 				       (char __user *) arg3,
1917 				       (size_t) arg4);
1918 
1919 	case KEYCTL_CHOWN:
1920 		return keyctl_chown_key((key_serial_t) arg2,
1921 					(uid_t) arg3,
1922 					(gid_t) arg4);
1923 
1924 	case KEYCTL_SETPERM:
1925 		return keyctl_setperm_key((key_serial_t) arg2,
1926 					  (key_perm_t) arg3);
1927 
1928 	case KEYCTL_INSTANTIATE:
1929 		return keyctl_instantiate_key((key_serial_t) arg2,
1930 					      (const void __user *) arg3,
1931 					      (size_t) arg4,
1932 					      (key_serial_t) arg5);
1933 
1934 	case KEYCTL_NEGATE:
1935 		return keyctl_negate_key((key_serial_t) arg2,
1936 					 (unsigned) arg3,
1937 					 (key_serial_t) arg4);
1938 
1939 	case KEYCTL_SET_REQKEY_KEYRING:
1940 		return keyctl_set_reqkey_keyring(arg2);
1941 
1942 	case KEYCTL_SET_TIMEOUT:
1943 		return keyctl_set_timeout((key_serial_t) arg2,
1944 					  (unsigned) arg3);
1945 
1946 	case KEYCTL_ASSUME_AUTHORITY:
1947 		return keyctl_assume_authority((key_serial_t) arg2);
1948 
1949 	case KEYCTL_GET_SECURITY:
1950 		return keyctl_get_security((key_serial_t) arg2,
1951 					   (char __user *) arg3,
1952 					   (size_t) arg4);
1953 
1954 	case KEYCTL_SESSION_TO_PARENT:
1955 		return keyctl_session_to_parent();
1956 
1957 	case KEYCTL_REJECT:
1958 		return keyctl_reject_key((key_serial_t) arg2,
1959 					 (unsigned) arg3,
1960 					 (unsigned) arg4,
1961 					 (key_serial_t) arg5);
1962 
1963 	case KEYCTL_INSTANTIATE_IOV:
1964 		return keyctl_instantiate_key_iov(
1965 			(key_serial_t) arg2,
1966 			(const struct iovec __user *) arg3,
1967 			(unsigned) arg4,
1968 			(key_serial_t) arg5);
1969 
1970 	case KEYCTL_INVALIDATE:
1971 		return keyctl_invalidate_key((key_serial_t) arg2);
1972 
1973 	case KEYCTL_GET_PERSISTENT:
1974 		return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1975 
1976 	case KEYCTL_DH_COMPUTE:
1977 		return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1978 					 (char __user *) arg3, (size_t) arg4,
1979 					 (struct keyctl_kdf_params __user *) arg5);
1980 
1981 	case KEYCTL_RESTRICT_KEYRING:
1982 		return keyctl_restrict_keyring((key_serial_t) arg2,
1983 					       (const char __user *) arg3,
1984 					       (const char __user *) arg4);
1985 
1986 	case KEYCTL_PKEY_QUERY:
1987 		if (arg3 != 0)
1988 			return -EINVAL;
1989 		return keyctl_pkey_query((key_serial_t)arg2,
1990 					 (const char __user *)arg4,
1991 					 (struct keyctl_pkey_query __user *)arg5);
1992 
1993 	case KEYCTL_PKEY_ENCRYPT:
1994 	case KEYCTL_PKEY_DECRYPT:
1995 	case KEYCTL_PKEY_SIGN:
1996 		return keyctl_pkey_e_d_s(
1997 			option,
1998 			(const struct keyctl_pkey_params __user *)arg2,
1999 			(const char __user *)arg3,
2000 			(const void __user *)arg4,
2001 			(void __user *)arg5);
2002 
2003 	case KEYCTL_PKEY_VERIFY:
2004 		return keyctl_pkey_verify(
2005 			(const struct keyctl_pkey_params __user *)arg2,
2006 			(const char __user *)arg3,
2007 			(const void __user *)arg4,
2008 			(const void __user *)arg5);
2009 
2010 	case KEYCTL_MOVE:
2011 		return keyctl_keyring_move((key_serial_t)arg2,
2012 					   (key_serial_t)arg3,
2013 					   (key_serial_t)arg4,
2014 					   (unsigned int)arg5);
2015 
2016 	case KEYCTL_CAPABILITIES:
2017 		return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
2018 
2019 	case KEYCTL_WATCH_KEY:
2020 		return keyctl_watch_key((key_serial_t)arg2, (int)arg3, (int)arg4);
2021 
2022 	default:
2023 		return -EOPNOTSUPP;
2024 	}
2025 }
2026