1 /* Basic authentication token and access key management 2 * 3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/poison.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/security.h> 18 #include <linux/workqueue.h> 19 #include <linux/random.h> 20 #include <linux/err.h> 21 #include "internal.h" 22 23 struct kmem_cache *key_jar; 24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 25 DEFINE_SPINLOCK(key_serial_lock); 26 27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 28 DEFINE_SPINLOCK(key_user_lock); 29 30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 32 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 34 35 static LIST_HEAD(key_types_list); 36 static DECLARE_RWSEM(key_types_sem); 37 38 /* We serialise key instantiation and link */ 39 DEFINE_MUTEX(key_construction_mutex); 40 41 #ifdef KEY_DEBUGGING 42 void __key_check(const struct key *key) 43 { 44 printk("__key_check: key %p {%08x} should be {%08x}\n", 45 key, key->magic, KEY_DEBUG_MAGIC); 46 BUG(); 47 } 48 #endif 49 50 /* 51 * Get the key quota record for a user, allocating a new record if one doesn't 52 * already exist. 53 */ 54 struct key_user *key_user_lookup(kuid_t uid) 55 { 56 struct key_user *candidate = NULL, *user; 57 struct rb_node *parent = NULL; 58 struct rb_node **p; 59 60 try_again: 61 p = &key_user_tree.rb_node; 62 spin_lock(&key_user_lock); 63 64 /* search the tree for a user record with a matching UID */ 65 while (*p) { 66 parent = *p; 67 user = rb_entry(parent, struct key_user, node); 68 69 if (uid_lt(uid, user->uid)) 70 p = &(*p)->rb_left; 71 else if (uid_gt(uid, user->uid)) 72 p = &(*p)->rb_right; 73 else 74 goto found; 75 } 76 77 /* if we get here, we failed to find a match in the tree */ 78 if (!candidate) { 79 /* allocate a candidate user record if we don't already have 80 * one */ 81 spin_unlock(&key_user_lock); 82 83 user = NULL; 84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 85 if (unlikely(!candidate)) 86 goto out; 87 88 /* the allocation may have scheduled, so we need to repeat the 89 * search lest someone else added the record whilst we were 90 * asleep */ 91 goto try_again; 92 } 93 94 /* if we get here, then the user record still hadn't appeared on the 95 * second pass - so we use the candidate record */ 96 refcount_set(&candidate->usage, 1); 97 atomic_set(&candidate->nkeys, 0); 98 atomic_set(&candidate->nikeys, 0); 99 candidate->uid = uid; 100 candidate->qnkeys = 0; 101 candidate->qnbytes = 0; 102 spin_lock_init(&candidate->lock); 103 mutex_init(&candidate->cons_lock); 104 105 rb_link_node(&candidate->node, parent, p); 106 rb_insert_color(&candidate->node, &key_user_tree); 107 spin_unlock(&key_user_lock); 108 user = candidate; 109 goto out; 110 111 /* okay - we found a user record for this UID */ 112 found: 113 refcount_inc(&user->usage); 114 spin_unlock(&key_user_lock); 115 kfree(candidate); 116 out: 117 return user; 118 } 119 120 /* 121 * Dispose of a user structure 122 */ 123 void key_user_put(struct key_user *user) 124 { 125 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { 126 rb_erase(&user->node, &key_user_tree); 127 spin_unlock(&key_user_lock); 128 129 kfree(user); 130 } 131 } 132 133 /* 134 * Allocate a serial number for a key. These are assigned randomly to avoid 135 * security issues through covert channel problems. 136 */ 137 static inline void key_alloc_serial(struct key *key) 138 { 139 struct rb_node *parent, **p; 140 struct key *xkey; 141 142 /* propose a random serial number and look for a hole for it in the 143 * serial number tree */ 144 do { 145 get_random_bytes(&key->serial, sizeof(key->serial)); 146 147 key->serial >>= 1; /* negative numbers are not permitted */ 148 } while (key->serial < 3); 149 150 spin_lock(&key_serial_lock); 151 152 attempt_insertion: 153 parent = NULL; 154 p = &key_serial_tree.rb_node; 155 156 while (*p) { 157 parent = *p; 158 xkey = rb_entry(parent, struct key, serial_node); 159 160 if (key->serial < xkey->serial) 161 p = &(*p)->rb_left; 162 else if (key->serial > xkey->serial) 163 p = &(*p)->rb_right; 164 else 165 goto serial_exists; 166 } 167 168 /* we've found a suitable hole - arrange for this key to occupy it */ 169 rb_link_node(&key->serial_node, parent, p); 170 rb_insert_color(&key->serial_node, &key_serial_tree); 171 172 spin_unlock(&key_serial_lock); 173 return; 174 175 /* we found a key with the proposed serial number - walk the tree from 176 * that point looking for the next unused serial number */ 177 serial_exists: 178 for (;;) { 179 key->serial++; 180 if (key->serial < 3) { 181 key->serial = 3; 182 goto attempt_insertion; 183 } 184 185 parent = rb_next(parent); 186 if (!parent) 187 goto attempt_insertion; 188 189 xkey = rb_entry(parent, struct key, serial_node); 190 if (key->serial < xkey->serial) 191 goto attempt_insertion; 192 } 193 } 194 195 /** 196 * key_alloc - Allocate a key of the specified type. 197 * @type: The type of key to allocate. 198 * @desc: The key description to allow the key to be searched out. 199 * @uid: The owner of the new key. 200 * @gid: The group ID for the new key's group permissions. 201 * @cred: The credentials specifying UID namespace. 202 * @perm: The permissions mask of the new key. 203 * @flags: Flags specifying quota properties. 204 * @restrict_link: Optional link restriction for new keyrings. 205 * 206 * Allocate a key of the specified type with the attributes given. The key is 207 * returned in an uninstantiated state and the caller needs to instantiate the 208 * key before returning. 209 * 210 * The restrict_link structure (if not NULL) will be freed when the 211 * keyring is destroyed, so it must be dynamically allocated. 212 * 213 * The user's key count quota is updated to reflect the creation of the key and 214 * the user's key data quota has the default for the key type reserved. The 215 * instantiation function should amend this as necessary. If insufficient 216 * quota is available, -EDQUOT will be returned. 217 * 218 * The LSM security modules can prevent a key being created, in which case 219 * -EACCES will be returned. 220 * 221 * Returns a pointer to the new key if successful and an error code otherwise. 222 * 223 * Note that the caller needs to ensure the key type isn't uninstantiated. 224 * Internally this can be done by locking key_types_sem. Externally, this can 225 * be done by either never unregistering the key type, or making sure 226 * key_alloc() calls don't race with module unloading. 227 */ 228 struct key *key_alloc(struct key_type *type, const char *desc, 229 kuid_t uid, kgid_t gid, const struct cred *cred, 230 key_perm_t perm, unsigned long flags, 231 struct key_restriction *restrict_link) 232 { 233 struct key_user *user = NULL; 234 struct key *key; 235 size_t desclen, quotalen; 236 int ret; 237 238 key = ERR_PTR(-EINVAL); 239 if (!desc || !*desc) 240 goto error; 241 242 if (type->vet_description) { 243 ret = type->vet_description(desc); 244 if (ret < 0) { 245 key = ERR_PTR(ret); 246 goto error; 247 } 248 } 249 250 desclen = strlen(desc); 251 quotalen = desclen + 1 + type->def_datalen; 252 253 /* get hold of the key tracking for this user */ 254 user = key_user_lookup(uid); 255 if (!user) 256 goto no_memory_1; 257 258 /* check that the user's quota permits allocation of another key and 259 * its description */ 260 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 261 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 262 key_quota_root_maxkeys : key_quota_maxkeys; 263 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 264 key_quota_root_maxbytes : key_quota_maxbytes; 265 266 spin_lock(&user->lock); 267 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 268 if (user->qnkeys + 1 >= maxkeys || 269 user->qnbytes + quotalen >= maxbytes || 270 user->qnbytes + quotalen < user->qnbytes) 271 goto no_quota; 272 } 273 274 user->qnkeys++; 275 user->qnbytes += quotalen; 276 spin_unlock(&user->lock); 277 } 278 279 /* allocate and initialise the key and its description */ 280 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 281 if (!key) 282 goto no_memory_2; 283 284 key->index_key.desc_len = desclen; 285 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 286 if (!key->index_key.description) 287 goto no_memory_3; 288 289 refcount_set(&key->usage, 1); 290 init_rwsem(&key->sem); 291 lockdep_set_class(&key->sem, &type->lock_class); 292 key->index_key.type = type; 293 key->user = user; 294 key->quotalen = quotalen; 295 key->datalen = type->def_datalen; 296 key->uid = uid; 297 key->gid = gid; 298 key->perm = perm; 299 key->restrict_link = restrict_link; 300 301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 302 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 303 if (flags & KEY_ALLOC_BUILT_IN) 304 key->flags |= 1 << KEY_FLAG_BUILTIN; 305 306 #ifdef KEY_DEBUGGING 307 key->magic = KEY_DEBUG_MAGIC; 308 #endif 309 310 /* let the security module know about the key */ 311 ret = security_key_alloc(key, cred, flags); 312 if (ret < 0) 313 goto security_error; 314 315 /* publish the key by giving it a serial number */ 316 atomic_inc(&user->nkeys); 317 key_alloc_serial(key); 318 319 error: 320 return key; 321 322 security_error: 323 kfree(key->description); 324 kmem_cache_free(key_jar, key); 325 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 326 spin_lock(&user->lock); 327 user->qnkeys--; 328 user->qnbytes -= quotalen; 329 spin_unlock(&user->lock); 330 } 331 key_user_put(user); 332 key = ERR_PTR(ret); 333 goto error; 334 335 no_memory_3: 336 kmem_cache_free(key_jar, key); 337 no_memory_2: 338 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 339 spin_lock(&user->lock); 340 user->qnkeys--; 341 user->qnbytes -= quotalen; 342 spin_unlock(&user->lock); 343 } 344 key_user_put(user); 345 no_memory_1: 346 key = ERR_PTR(-ENOMEM); 347 goto error; 348 349 no_quota: 350 spin_unlock(&user->lock); 351 key_user_put(user); 352 key = ERR_PTR(-EDQUOT); 353 goto error; 354 } 355 EXPORT_SYMBOL(key_alloc); 356 357 /** 358 * key_payload_reserve - Adjust data quota reservation for the key's payload 359 * @key: The key to make the reservation for. 360 * @datalen: The amount of data payload the caller now wants. 361 * 362 * Adjust the amount of the owning user's key data quota that a key reserves. 363 * If the amount is increased, then -EDQUOT may be returned if there isn't 364 * enough free quota available. 365 * 366 * If successful, 0 is returned. 367 */ 368 int key_payload_reserve(struct key *key, size_t datalen) 369 { 370 int delta = (int)datalen - key->datalen; 371 int ret = 0; 372 373 key_check(key); 374 375 /* contemplate the quota adjustment */ 376 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 377 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 378 key_quota_root_maxbytes : key_quota_maxbytes; 379 380 spin_lock(&key->user->lock); 381 382 if (delta > 0 && 383 (key->user->qnbytes + delta >= maxbytes || 384 key->user->qnbytes + delta < key->user->qnbytes)) { 385 ret = -EDQUOT; 386 } 387 else { 388 key->user->qnbytes += delta; 389 key->quotalen += delta; 390 } 391 spin_unlock(&key->user->lock); 392 } 393 394 /* change the recorded data length if that didn't generate an error */ 395 if (ret == 0) 396 key->datalen = datalen; 397 398 return ret; 399 } 400 EXPORT_SYMBOL(key_payload_reserve); 401 402 /* 403 * Instantiate a key and link it into the target keyring atomically. Must be 404 * called with the target keyring's semaphore writelocked. The target key's 405 * semaphore need not be locked as instantiation is serialised by 406 * key_construction_mutex. 407 */ 408 static int __key_instantiate_and_link(struct key *key, 409 struct key_preparsed_payload *prep, 410 struct key *keyring, 411 struct key *authkey, 412 struct assoc_array_edit **_edit) 413 { 414 int ret, awaken; 415 416 key_check(key); 417 key_check(keyring); 418 419 awaken = 0; 420 ret = -EBUSY; 421 422 mutex_lock(&key_construction_mutex); 423 424 /* can't instantiate twice */ 425 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 426 /* instantiate the key */ 427 ret = key->type->instantiate(key, prep); 428 429 if (ret == 0) { 430 /* mark the key as being instantiated */ 431 atomic_inc(&key->user->nikeys); 432 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 433 434 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 435 awaken = 1; 436 437 /* and link it into the destination keyring */ 438 if (keyring) { 439 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 440 set_bit(KEY_FLAG_KEEP, &key->flags); 441 442 __key_link(key, _edit); 443 } 444 445 /* disable the authorisation key */ 446 if (authkey) 447 key_revoke(authkey); 448 449 if (prep->expiry != TIME_T_MAX) { 450 key->expiry = prep->expiry; 451 key_schedule_gc(prep->expiry + key_gc_delay); 452 } 453 } 454 } 455 456 mutex_unlock(&key_construction_mutex); 457 458 /* wake up anyone waiting for a key to be constructed */ 459 if (awaken) 460 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 461 462 return ret; 463 } 464 465 /** 466 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 467 * @key: The key to instantiate. 468 * @data: The data to use to instantiate the keyring. 469 * @datalen: The length of @data. 470 * @keyring: Keyring to create a link in on success (or NULL). 471 * @authkey: The authorisation token permitting instantiation. 472 * 473 * Instantiate a key that's in the uninstantiated state using the provided data 474 * and, if successful, link it in to the destination keyring if one is 475 * supplied. 476 * 477 * If successful, 0 is returned, the authorisation token is revoked and anyone 478 * waiting for the key is woken up. If the key was already instantiated, 479 * -EBUSY will be returned. 480 */ 481 int key_instantiate_and_link(struct key *key, 482 const void *data, 483 size_t datalen, 484 struct key *keyring, 485 struct key *authkey) 486 { 487 struct key_preparsed_payload prep; 488 struct assoc_array_edit *edit; 489 int ret; 490 491 memset(&prep, 0, sizeof(prep)); 492 prep.data = data; 493 prep.datalen = datalen; 494 prep.quotalen = key->type->def_datalen; 495 prep.expiry = TIME_T_MAX; 496 if (key->type->preparse) { 497 ret = key->type->preparse(&prep); 498 if (ret < 0) 499 goto error; 500 } 501 502 if (keyring) { 503 ret = __key_link_begin(keyring, &key->index_key, &edit); 504 if (ret < 0) 505 goto error; 506 507 if (keyring->restrict_link && keyring->restrict_link->check) { 508 struct key_restriction *keyres = keyring->restrict_link; 509 510 ret = keyres->check(keyring, key->type, &prep.payload, 511 keyres->key); 512 if (ret < 0) 513 goto error_link_end; 514 } 515 } 516 517 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 518 519 error_link_end: 520 if (keyring) 521 __key_link_end(keyring, &key->index_key, edit); 522 523 error: 524 if (key->type->preparse) 525 key->type->free_preparse(&prep); 526 return ret; 527 } 528 529 EXPORT_SYMBOL(key_instantiate_and_link); 530 531 /** 532 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 533 * @key: The key to instantiate. 534 * @timeout: The timeout on the negative key. 535 * @error: The error to return when the key is hit. 536 * @keyring: Keyring to create a link in on success (or NULL). 537 * @authkey: The authorisation token permitting instantiation. 538 * 539 * Negatively instantiate a key that's in the uninstantiated state and, if 540 * successful, set its timeout and stored error and link it in to the 541 * destination keyring if one is supplied. The key and any links to the key 542 * will be automatically garbage collected after the timeout expires. 543 * 544 * Negative keys are used to rate limit repeated request_key() calls by causing 545 * them to return the stored error code (typically ENOKEY) until the negative 546 * key expires. 547 * 548 * If successful, 0 is returned, the authorisation token is revoked and anyone 549 * waiting for the key is woken up. If the key was already instantiated, 550 * -EBUSY will be returned. 551 */ 552 int key_reject_and_link(struct key *key, 553 unsigned timeout, 554 unsigned error, 555 struct key *keyring, 556 struct key *authkey) 557 { 558 struct assoc_array_edit *edit; 559 struct timespec now; 560 int ret, awaken, link_ret = 0; 561 562 key_check(key); 563 key_check(keyring); 564 565 awaken = 0; 566 ret = -EBUSY; 567 568 if (keyring) { 569 if (keyring->restrict_link) 570 return -EPERM; 571 572 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 573 } 574 575 mutex_lock(&key_construction_mutex); 576 577 /* can't instantiate twice */ 578 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 579 /* mark the key as being negatively instantiated */ 580 atomic_inc(&key->user->nikeys); 581 key->reject_error = -error; 582 smp_wmb(); 583 set_bit(KEY_FLAG_NEGATIVE, &key->flags); 584 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 585 now = current_kernel_time(); 586 key->expiry = now.tv_sec + timeout; 587 key_schedule_gc(key->expiry + key_gc_delay); 588 589 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 590 awaken = 1; 591 592 ret = 0; 593 594 /* and link it into the destination keyring */ 595 if (keyring && link_ret == 0) 596 __key_link(key, &edit); 597 598 /* disable the authorisation key */ 599 if (authkey) 600 key_revoke(authkey); 601 } 602 603 mutex_unlock(&key_construction_mutex); 604 605 if (keyring && link_ret == 0) 606 __key_link_end(keyring, &key->index_key, edit); 607 608 /* wake up anyone waiting for a key to be constructed */ 609 if (awaken) 610 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 611 612 return ret == 0 ? link_ret : ret; 613 } 614 EXPORT_SYMBOL(key_reject_and_link); 615 616 /** 617 * key_put - Discard a reference to a key. 618 * @key: The key to discard a reference from. 619 * 620 * Discard a reference to a key, and when all the references are gone, we 621 * schedule the cleanup task to come and pull it out of the tree in process 622 * context at some later time. 623 */ 624 void key_put(struct key *key) 625 { 626 if (key) { 627 key_check(key); 628 629 if (refcount_dec_and_test(&key->usage)) 630 schedule_work(&key_gc_work); 631 } 632 } 633 EXPORT_SYMBOL(key_put); 634 635 /* 636 * Find a key by its serial number. 637 */ 638 struct key *key_lookup(key_serial_t id) 639 { 640 struct rb_node *n; 641 struct key *key; 642 643 spin_lock(&key_serial_lock); 644 645 /* search the tree for the specified key */ 646 n = key_serial_tree.rb_node; 647 while (n) { 648 key = rb_entry(n, struct key, serial_node); 649 650 if (id < key->serial) 651 n = n->rb_left; 652 else if (id > key->serial) 653 n = n->rb_right; 654 else 655 goto found; 656 } 657 658 not_found: 659 key = ERR_PTR(-ENOKEY); 660 goto error; 661 662 found: 663 /* pretend it doesn't exist if it is awaiting deletion */ 664 if (refcount_read(&key->usage) == 0) 665 goto not_found; 666 667 /* this races with key_put(), but that doesn't matter since key_put() 668 * doesn't actually change the key 669 */ 670 __key_get(key); 671 672 error: 673 spin_unlock(&key_serial_lock); 674 return key; 675 } 676 677 /* 678 * Find and lock the specified key type against removal. 679 * 680 * We return with the sem read-locked if successful. If the type wasn't 681 * available -ENOKEY is returned instead. 682 */ 683 struct key_type *key_type_lookup(const char *type) 684 { 685 struct key_type *ktype; 686 687 down_read(&key_types_sem); 688 689 /* look up the key type to see if it's one of the registered kernel 690 * types */ 691 list_for_each_entry(ktype, &key_types_list, link) { 692 if (strcmp(ktype->name, type) == 0) 693 goto found_kernel_type; 694 } 695 696 up_read(&key_types_sem); 697 ktype = ERR_PTR(-ENOKEY); 698 699 found_kernel_type: 700 return ktype; 701 } 702 703 void key_set_timeout(struct key *key, unsigned timeout) 704 { 705 struct timespec now; 706 time_t expiry = 0; 707 708 /* make the changes with the locks held to prevent races */ 709 down_write(&key->sem); 710 711 if (timeout > 0) { 712 now = current_kernel_time(); 713 expiry = now.tv_sec + timeout; 714 } 715 716 key->expiry = expiry; 717 key_schedule_gc(key->expiry + key_gc_delay); 718 719 up_write(&key->sem); 720 } 721 EXPORT_SYMBOL_GPL(key_set_timeout); 722 723 /* 724 * Unlock a key type locked by key_type_lookup(). 725 */ 726 void key_type_put(struct key_type *ktype) 727 { 728 up_read(&key_types_sem); 729 } 730 731 /* 732 * Attempt to update an existing key. 733 * 734 * The key is given to us with an incremented refcount that we need to discard 735 * if we get an error. 736 */ 737 static inline key_ref_t __key_update(key_ref_t key_ref, 738 struct key_preparsed_payload *prep) 739 { 740 struct key *key = key_ref_to_ptr(key_ref); 741 int ret; 742 743 /* need write permission on the key to update it */ 744 ret = key_permission(key_ref, KEY_NEED_WRITE); 745 if (ret < 0) 746 goto error; 747 748 ret = -EEXIST; 749 if (!key->type->update) 750 goto error; 751 752 down_write(&key->sem); 753 754 ret = key->type->update(key, prep); 755 if (ret == 0) 756 /* updating a negative key instantiates it */ 757 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 758 759 up_write(&key->sem); 760 761 if (ret < 0) 762 goto error; 763 out: 764 return key_ref; 765 766 error: 767 key_put(key); 768 key_ref = ERR_PTR(ret); 769 goto out; 770 } 771 772 /** 773 * key_create_or_update - Update or create and instantiate a key. 774 * @keyring_ref: A pointer to the destination keyring with possession flag. 775 * @type: The type of key. 776 * @description: The searchable description for the key. 777 * @payload: The data to use to instantiate or update the key. 778 * @plen: The length of @payload. 779 * @perm: The permissions mask for a new key. 780 * @flags: The quota flags for a new key. 781 * 782 * Search the destination keyring for a key of the same description and if one 783 * is found, update it, otherwise create and instantiate a new one and create a 784 * link to it from that keyring. 785 * 786 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 787 * concocted. 788 * 789 * Returns a pointer to the new key if successful, -ENODEV if the key type 790 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 791 * caller isn't permitted to modify the keyring or the LSM did not permit 792 * creation of the key. 793 * 794 * On success, the possession flag from the keyring ref will be tacked on to 795 * the key ref before it is returned. 796 */ 797 key_ref_t key_create_or_update(key_ref_t keyring_ref, 798 const char *type, 799 const char *description, 800 const void *payload, 801 size_t plen, 802 key_perm_t perm, 803 unsigned long flags) 804 { 805 struct keyring_index_key index_key = { 806 .description = description, 807 }; 808 struct key_preparsed_payload prep; 809 struct assoc_array_edit *edit; 810 const struct cred *cred = current_cred(); 811 struct key *keyring, *key = NULL; 812 key_ref_t key_ref; 813 int ret; 814 struct key_restriction *restrict_link = NULL; 815 816 /* look up the key type to see if it's one of the registered kernel 817 * types */ 818 index_key.type = key_type_lookup(type); 819 if (IS_ERR(index_key.type)) { 820 key_ref = ERR_PTR(-ENODEV); 821 goto error; 822 } 823 824 key_ref = ERR_PTR(-EINVAL); 825 if (!index_key.type->instantiate || 826 (!index_key.description && !index_key.type->preparse)) 827 goto error_put_type; 828 829 keyring = key_ref_to_ptr(keyring_ref); 830 831 key_check(keyring); 832 833 key_ref = ERR_PTR(-EPERM); 834 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) 835 restrict_link = keyring->restrict_link; 836 837 key_ref = ERR_PTR(-ENOTDIR); 838 if (keyring->type != &key_type_keyring) 839 goto error_put_type; 840 841 memset(&prep, 0, sizeof(prep)); 842 prep.data = payload; 843 prep.datalen = plen; 844 prep.quotalen = index_key.type->def_datalen; 845 prep.expiry = TIME_T_MAX; 846 if (index_key.type->preparse) { 847 ret = index_key.type->preparse(&prep); 848 if (ret < 0) { 849 key_ref = ERR_PTR(ret); 850 goto error_free_prep; 851 } 852 if (!index_key.description) 853 index_key.description = prep.description; 854 key_ref = ERR_PTR(-EINVAL); 855 if (!index_key.description) 856 goto error_free_prep; 857 } 858 index_key.desc_len = strlen(index_key.description); 859 860 ret = __key_link_begin(keyring, &index_key, &edit); 861 if (ret < 0) { 862 key_ref = ERR_PTR(ret); 863 goto error_free_prep; 864 } 865 866 if (restrict_link && restrict_link->check) { 867 ret = restrict_link->check(keyring, index_key.type, 868 &prep.payload, restrict_link->key); 869 if (ret < 0) { 870 key_ref = ERR_PTR(ret); 871 goto error_link_end; 872 } 873 } 874 875 /* if we're going to allocate a new key, we're going to have 876 * to modify the keyring */ 877 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 878 if (ret < 0) { 879 key_ref = ERR_PTR(ret); 880 goto error_link_end; 881 } 882 883 /* if it's possible to update this type of key, search for an existing 884 * key of the same type and description in the destination keyring and 885 * update that instead if possible 886 */ 887 if (index_key.type->update) { 888 key_ref = find_key_to_update(keyring_ref, &index_key); 889 if (key_ref) 890 goto found_matching_key; 891 } 892 893 /* if the client doesn't provide, decide on the permissions we want */ 894 if (perm == KEY_PERM_UNDEF) { 895 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 896 perm |= KEY_USR_VIEW; 897 898 if (index_key.type->read) 899 perm |= KEY_POS_READ; 900 901 if (index_key.type == &key_type_keyring || 902 index_key.type->update) 903 perm |= KEY_POS_WRITE; 904 } 905 906 /* allocate a new key */ 907 key = key_alloc(index_key.type, index_key.description, 908 cred->fsuid, cred->fsgid, cred, perm, flags, NULL); 909 if (IS_ERR(key)) { 910 key_ref = ERR_CAST(key); 911 goto error_link_end; 912 } 913 914 /* instantiate it and link it into the target keyring */ 915 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 916 if (ret < 0) { 917 key_put(key); 918 key_ref = ERR_PTR(ret); 919 goto error_link_end; 920 } 921 922 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 923 924 error_link_end: 925 __key_link_end(keyring, &index_key, edit); 926 error_free_prep: 927 if (index_key.type->preparse) 928 index_key.type->free_preparse(&prep); 929 error_put_type: 930 key_type_put(index_key.type); 931 error: 932 return key_ref; 933 934 found_matching_key: 935 /* we found a matching key, so we're going to try to update it 936 * - we can drop the locks first as we have the key pinned 937 */ 938 __key_link_end(keyring, &index_key, edit); 939 940 key_ref = __key_update(key_ref, &prep); 941 goto error_free_prep; 942 } 943 EXPORT_SYMBOL(key_create_or_update); 944 945 /** 946 * key_update - Update a key's contents. 947 * @key_ref: The pointer (plus possession flag) to the key. 948 * @payload: The data to be used to update the key. 949 * @plen: The length of @payload. 950 * 951 * Attempt to update the contents of a key with the given payload data. The 952 * caller must be granted Write permission on the key. Negative keys can be 953 * instantiated by this method. 954 * 955 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 956 * type does not support updating. The key type may return other errors. 957 */ 958 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 959 { 960 struct key_preparsed_payload prep; 961 struct key *key = key_ref_to_ptr(key_ref); 962 int ret; 963 964 key_check(key); 965 966 /* the key must be writable */ 967 ret = key_permission(key_ref, KEY_NEED_WRITE); 968 if (ret < 0) 969 goto error; 970 971 /* attempt to update it if supported */ 972 ret = -EOPNOTSUPP; 973 if (!key->type->update) 974 goto error; 975 976 memset(&prep, 0, sizeof(prep)); 977 prep.data = payload; 978 prep.datalen = plen; 979 prep.quotalen = key->type->def_datalen; 980 prep.expiry = TIME_T_MAX; 981 if (key->type->preparse) { 982 ret = key->type->preparse(&prep); 983 if (ret < 0) 984 goto error; 985 } 986 987 down_write(&key->sem); 988 989 ret = key->type->update(key, &prep); 990 if (ret == 0) 991 /* updating a negative key instantiates it */ 992 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 993 994 up_write(&key->sem); 995 996 error: 997 if (key->type->preparse) 998 key->type->free_preparse(&prep); 999 return ret; 1000 } 1001 EXPORT_SYMBOL(key_update); 1002 1003 /** 1004 * key_revoke - Revoke a key. 1005 * @key: The key to be revoked. 1006 * 1007 * Mark a key as being revoked and ask the type to free up its resources. The 1008 * revocation timeout is set and the key and all its links will be 1009 * automatically garbage collected after key_gc_delay amount of time if they 1010 * are not manually dealt with first. 1011 */ 1012 void key_revoke(struct key *key) 1013 { 1014 struct timespec now; 1015 time_t time; 1016 1017 key_check(key); 1018 1019 /* make sure no one's trying to change or use the key when we mark it 1020 * - we tell lockdep that we might nest because we might be revoking an 1021 * authorisation key whilst holding the sem on a key we've just 1022 * instantiated 1023 */ 1024 down_write_nested(&key->sem, 1); 1025 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 1026 key->type->revoke) 1027 key->type->revoke(key); 1028 1029 /* set the death time to no more than the expiry time */ 1030 now = current_kernel_time(); 1031 time = now.tv_sec; 1032 if (key->revoked_at == 0 || key->revoked_at > time) { 1033 key->revoked_at = time; 1034 key_schedule_gc(key->revoked_at + key_gc_delay); 1035 } 1036 1037 up_write(&key->sem); 1038 } 1039 EXPORT_SYMBOL(key_revoke); 1040 1041 /** 1042 * key_invalidate - Invalidate a key. 1043 * @key: The key to be invalidated. 1044 * 1045 * Mark a key as being invalidated and have it cleaned up immediately. The key 1046 * is ignored by all searches and other operations from this point. 1047 */ 1048 void key_invalidate(struct key *key) 1049 { 1050 kenter("%d", key_serial(key)); 1051 1052 key_check(key); 1053 1054 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1055 down_write_nested(&key->sem, 1); 1056 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) 1057 key_schedule_gc_links(); 1058 up_write(&key->sem); 1059 } 1060 } 1061 EXPORT_SYMBOL(key_invalidate); 1062 1063 /** 1064 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1065 * @key: The key to be instantiated 1066 * @prep: The preparsed data to load. 1067 * 1068 * Instantiate a key from preparsed data. We assume we can just copy the data 1069 * in directly and clear the old pointers. 1070 * 1071 * This can be pointed to directly by the key type instantiate op pointer. 1072 */ 1073 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1074 { 1075 int ret; 1076 1077 pr_devel("==>%s()\n", __func__); 1078 1079 ret = key_payload_reserve(key, prep->quotalen); 1080 if (ret == 0) { 1081 rcu_assign_keypointer(key, prep->payload.data[0]); 1082 key->payload.data[1] = prep->payload.data[1]; 1083 key->payload.data[2] = prep->payload.data[2]; 1084 key->payload.data[3] = prep->payload.data[3]; 1085 prep->payload.data[0] = NULL; 1086 prep->payload.data[1] = NULL; 1087 prep->payload.data[2] = NULL; 1088 prep->payload.data[3] = NULL; 1089 } 1090 pr_devel("<==%s() = %d\n", __func__, ret); 1091 return ret; 1092 } 1093 EXPORT_SYMBOL(generic_key_instantiate); 1094 1095 /** 1096 * register_key_type - Register a type of key. 1097 * @ktype: The new key type. 1098 * 1099 * Register a new key type. 1100 * 1101 * Returns 0 on success or -EEXIST if a type of this name already exists. 1102 */ 1103 int register_key_type(struct key_type *ktype) 1104 { 1105 struct key_type *p; 1106 int ret; 1107 1108 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1109 1110 ret = -EEXIST; 1111 down_write(&key_types_sem); 1112 1113 /* disallow key types with the same name */ 1114 list_for_each_entry(p, &key_types_list, link) { 1115 if (strcmp(p->name, ktype->name) == 0) 1116 goto out; 1117 } 1118 1119 /* store the type */ 1120 list_add(&ktype->link, &key_types_list); 1121 1122 pr_notice("Key type %s registered\n", ktype->name); 1123 ret = 0; 1124 1125 out: 1126 up_write(&key_types_sem); 1127 return ret; 1128 } 1129 EXPORT_SYMBOL(register_key_type); 1130 1131 /** 1132 * unregister_key_type - Unregister a type of key. 1133 * @ktype: The key type. 1134 * 1135 * Unregister a key type and mark all the extant keys of this type as dead. 1136 * Those keys of this type are then destroyed to get rid of their payloads and 1137 * they and their links will be garbage collected as soon as possible. 1138 */ 1139 void unregister_key_type(struct key_type *ktype) 1140 { 1141 down_write(&key_types_sem); 1142 list_del_init(&ktype->link); 1143 downgrade_write(&key_types_sem); 1144 key_gc_keytype(ktype); 1145 pr_notice("Key type %s unregistered\n", ktype->name); 1146 up_read(&key_types_sem); 1147 } 1148 EXPORT_SYMBOL(unregister_key_type); 1149 1150 /* 1151 * Initialise the key management state. 1152 */ 1153 void __init key_init(void) 1154 { 1155 /* allocate a slab in which we can store keys */ 1156 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1157 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1158 1159 /* add the special key types */ 1160 list_add_tail(&key_type_keyring.link, &key_types_list); 1161 list_add_tail(&key_type_dead.link, &key_types_list); 1162 list_add_tail(&key_type_user.link, &key_types_list); 1163 list_add_tail(&key_type_logon.link, &key_types_list); 1164 1165 /* record the root user tracking */ 1166 rb_link_node(&root_key_user.node, 1167 NULL, 1168 &key_user_tree.rb_node); 1169 1170 rb_insert_color(&root_key_user.node, 1171 &key_user_tree); 1172 } 1173