xref: /linux/security/keys/key.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent = NULL;
58 	struct rb_node **p;
59 
60 try_again:
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	refcount_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	refcount_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  * @restrict_link: Optional link restriction for new keyrings.
205  *
206  * Allocate a key of the specified type with the attributes given.  The key is
207  * returned in an uninstantiated state and the caller needs to instantiate the
208  * key before returning.
209  *
210  * The restrict_link structure (if not NULL) will be freed when the
211  * keyring is destroyed, so it must be dynamically allocated.
212  *
213  * The user's key count quota is updated to reflect the creation of the key and
214  * the user's key data quota has the default for the key type reserved.  The
215  * instantiation function should amend this as necessary.  If insufficient
216  * quota is available, -EDQUOT will be returned.
217  *
218  * The LSM security modules can prevent a key being created, in which case
219  * -EACCES will be returned.
220  *
221  * Returns a pointer to the new key if successful and an error code otherwise.
222  *
223  * Note that the caller needs to ensure the key type isn't uninstantiated.
224  * Internally this can be done by locking key_types_sem.  Externally, this can
225  * be done by either never unregistering the key type, or making sure
226  * key_alloc() calls don't race with module unloading.
227  */
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 		      kuid_t uid, kgid_t gid, const struct cred *cred,
230 		      key_perm_t perm, unsigned long flags,
231 		      struct key_restriction *restrict_link)
232 {
233 	struct key_user *user = NULL;
234 	struct key *key;
235 	size_t desclen, quotalen;
236 	int ret;
237 
238 	key = ERR_PTR(-EINVAL);
239 	if (!desc || !*desc)
240 		goto error;
241 
242 	if (type->vet_description) {
243 		ret = type->vet_description(desc);
244 		if (ret < 0) {
245 			key = ERR_PTR(ret);
246 			goto error;
247 		}
248 	}
249 
250 	desclen = strlen(desc);
251 	quotalen = desclen + 1 + type->def_datalen;
252 
253 	/* get hold of the key tracking for this user */
254 	user = key_user_lookup(uid);
255 	if (!user)
256 		goto no_memory_1;
257 
258 	/* check that the user's quota permits allocation of another key and
259 	 * its description */
260 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 			key_quota_root_maxkeys : key_quota_maxkeys;
263 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 			key_quota_root_maxbytes : key_quota_maxbytes;
265 
266 		spin_lock(&user->lock);
267 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 			if (user->qnkeys + 1 >= maxkeys ||
269 			    user->qnbytes + quotalen >= maxbytes ||
270 			    user->qnbytes + quotalen < user->qnbytes)
271 				goto no_quota;
272 		}
273 
274 		user->qnkeys++;
275 		user->qnbytes += quotalen;
276 		spin_unlock(&user->lock);
277 	}
278 
279 	/* allocate and initialise the key and its description */
280 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 	if (!key)
282 		goto no_memory_2;
283 
284 	key->index_key.desc_len = desclen;
285 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 	if (!key->index_key.description)
287 		goto no_memory_3;
288 
289 	refcount_set(&key->usage, 1);
290 	init_rwsem(&key->sem);
291 	lockdep_set_class(&key->sem, &type->lock_class);
292 	key->index_key.type = type;
293 	key->user = user;
294 	key->quotalen = quotalen;
295 	key->datalen = type->def_datalen;
296 	key->uid = uid;
297 	key->gid = gid;
298 	key->perm = perm;
299 	key->restrict_link = restrict_link;
300 
301 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 	if (flags & KEY_ALLOC_BUILT_IN)
304 		key->flags |= 1 << KEY_FLAG_BUILTIN;
305 
306 #ifdef KEY_DEBUGGING
307 	key->magic = KEY_DEBUG_MAGIC;
308 #endif
309 
310 	/* let the security module know about the key */
311 	ret = security_key_alloc(key, cred, flags);
312 	if (ret < 0)
313 		goto security_error;
314 
315 	/* publish the key by giving it a serial number */
316 	atomic_inc(&user->nkeys);
317 	key_alloc_serial(key);
318 
319 error:
320 	return key;
321 
322 security_error:
323 	kfree(key->description);
324 	kmem_cache_free(key_jar, key);
325 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
326 		spin_lock(&user->lock);
327 		user->qnkeys--;
328 		user->qnbytes -= quotalen;
329 		spin_unlock(&user->lock);
330 	}
331 	key_user_put(user);
332 	key = ERR_PTR(ret);
333 	goto error;
334 
335 no_memory_3:
336 	kmem_cache_free(key_jar, key);
337 no_memory_2:
338 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
339 		spin_lock(&user->lock);
340 		user->qnkeys--;
341 		user->qnbytes -= quotalen;
342 		spin_unlock(&user->lock);
343 	}
344 	key_user_put(user);
345 no_memory_1:
346 	key = ERR_PTR(-ENOMEM);
347 	goto error;
348 
349 no_quota:
350 	spin_unlock(&user->lock);
351 	key_user_put(user);
352 	key = ERR_PTR(-EDQUOT);
353 	goto error;
354 }
355 EXPORT_SYMBOL(key_alloc);
356 
357 /**
358  * key_payload_reserve - Adjust data quota reservation for the key's payload
359  * @key: The key to make the reservation for.
360  * @datalen: The amount of data payload the caller now wants.
361  *
362  * Adjust the amount of the owning user's key data quota that a key reserves.
363  * If the amount is increased, then -EDQUOT may be returned if there isn't
364  * enough free quota available.
365  *
366  * If successful, 0 is returned.
367  */
368 int key_payload_reserve(struct key *key, size_t datalen)
369 {
370 	int delta = (int)datalen - key->datalen;
371 	int ret = 0;
372 
373 	key_check(key);
374 
375 	/* contemplate the quota adjustment */
376 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
377 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
378 			key_quota_root_maxbytes : key_quota_maxbytes;
379 
380 		spin_lock(&key->user->lock);
381 
382 		if (delta > 0 &&
383 		    (key->user->qnbytes + delta >= maxbytes ||
384 		     key->user->qnbytes + delta < key->user->qnbytes)) {
385 			ret = -EDQUOT;
386 		}
387 		else {
388 			key->user->qnbytes += delta;
389 			key->quotalen += delta;
390 		}
391 		spin_unlock(&key->user->lock);
392 	}
393 
394 	/* change the recorded data length if that didn't generate an error */
395 	if (ret == 0)
396 		key->datalen = datalen;
397 
398 	return ret;
399 }
400 EXPORT_SYMBOL(key_payload_reserve);
401 
402 /*
403  * Instantiate a key and link it into the target keyring atomically.  Must be
404  * called with the target keyring's semaphore writelocked.  The target key's
405  * semaphore need not be locked as instantiation is serialised by
406  * key_construction_mutex.
407  */
408 static int __key_instantiate_and_link(struct key *key,
409 				      struct key_preparsed_payload *prep,
410 				      struct key *keyring,
411 				      struct key *authkey,
412 				      struct assoc_array_edit **_edit)
413 {
414 	int ret, awaken;
415 
416 	key_check(key);
417 	key_check(keyring);
418 
419 	awaken = 0;
420 	ret = -EBUSY;
421 
422 	mutex_lock(&key_construction_mutex);
423 
424 	/* can't instantiate twice */
425 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
426 		/* instantiate the key */
427 		ret = key->type->instantiate(key, prep);
428 
429 		if (ret == 0) {
430 			/* mark the key as being instantiated */
431 			atomic_inc(&key->user->nikeys);
432 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
433 
434 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
435 				awaken = 1;
436 
437 			/* and link it into the destination keyring */
438 			if (keyring) {
439 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
440 					set_bit(KEY_FLAG_KEEP, &key->flags);
441 
442 				__key_link(key, _edit);
443 			}
444 
445 			/* disable the authorisation key */
446 			if (authkey)
447 				key_revoke(authkey);
448 
449 			if (prep->expiry != TIME_T_MAX) {
450 				key->expiry = prep->expiry;
451 				key_schedule_gc(prep->expiry + key_gc_delay);
452 			}
453 		}
454 	}
455 
456 	mutex_unlock(&key_construction_mutex);
457 
458 	/* wake up anyone waiting for a key to be constructed */
459 	if (awaken)
460 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
461 
462 	return ret;
463 }
464 
465 /**
466  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
467  * @key: The key to instantiate.
468  * @data: The data to use to instantiate the keyring.
469  * @datalen: The length of @data.
470  * @keyring: Keyring to create a link in on success (or NULL).
471  * @authkey: The authorisation token permitting instantiation.
472  *
473  * Instantiate a key that's in the uninstantiated state using the provided data
474  * and, if successful, link it in to the destination keyring if one is
475  * supplied.
476  *
477  * If successful, 0 is returned, the authorisation token is revoked and anyone
478  * waiting for the key is woken up.  If the key was already instantiated,
479  * -EBUSY will be returned.
480  */
481 int key_instantiate_and_link(struct key *key,
482 			     const void *data,
483 			     size_t datalen,
484 			     struct key *keyring,
485 			     struct key *authkey)
486 {
487 	struct key_preparsed_payload prep;
488 	struct assoc_array_edit *edit;
489 	int ret;
490 
491 	memset(&prep, 0, sizeof(prep));
492 	prep.data = data;
493 	prep.datalen = datalen;
494 	prep.quotalen = key->type->def_datalen;
495 	prep.expiry = TIME_T_MAX;
496 	if (key->type->preparse) {
497 		ret = key->type->preparse(&prep);
498 		if (ret < 0)
499 			goto error;
500 	}
501 
502 	if (keyring) {
503 		ret = __key_link_begin(keyring, &key->index_key, &edit);
504 		if (ret < 0)
505 			goto error;
506 
507 		if (keyring->restrict_link && keyring->restrict_link->check) {
508 			struct key_restriction *keyres = keyring->restrict_link;
509 
510 			ret = keyres->check(keyring, key->type, &prep.payload,
511 					    keyres->key);
512 			if (ret < 0)
513 				goto error_link_end;
514 		}
515 	}
516 
517 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
518 
519 error_link_end:
520 	if (keyring)
521 		__key_link_end(keyring, &key->index_key, edit);
522 
523 error:
524 	if (key->type->preparse)
525 		key->type->free_preparse(&prep);
526 	return ret;
527 }
528 
529 EXPORT_SYMBOL(key_instantiate_and_link);
530 
531 /**
532  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
533  * @key: The key to instantiate.
534  * @timeout: The timeout on the negative key.
535  * @error: The error to return when the key is hit.
536  * @keyring: Keyring to create a link in on success (or NULL).
537  * @authkey: The authorisation token permitting instantiation.
538  *
539  * Negatively instantiate a key that's in the uninstantiated state and, if
540  * successful, set its timeout and stored error and link it in to the
541  * destination keyring if one is supplied.  The key and any links to the key
542  * will be automatically garbage collected after the timeout expires.
543  *
544  * Negative keys are used to rate limit repeated request_key() calls by causing
545  * them to return the stored error code (typically ENOKEY) until the negative
546  * key expires.
547  *
548  * If successful, 0 is returned, the authorisation token is revoked and anyone
549  * waiting for the key is woken up.  If the key was already instantiated,
550  * -EBUSY will be returned.
551  */
552 int key_reject_and_link(struct key *key,
553 			unsigned timeout,
554 			unsigned error,
555 			struct key *keyring,
556 			struct key *authkey)
557 {
558 	struct assoc_array_edit *edit;
559 	struct timespec now;
560 	int ret, awaken, link_ret = 0;
561 
562 	key_check(key);
563 	key_check(keyring);
564 
565 	awaken = 0;
566 	ret = -EBUSY;
567 
568 	if (keyring) {
569 		if (keyring->restrict_link)
570 			return -EPERM;
571 
572 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
573 	}
574 
575 	mutex_lock(&key_construction_mutex);
576 
577 	/* can't instantiate twice */
578 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
579 		/* mark the key as being negatively instantiated */
580 		atomic_inc(&key->user->nikeys);
581 		key->reject_error = -error;
582 		smp_wmb();
583 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
584 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
585 		now = current_kernel_time();
586 		key->expiry = now.tv_sec + timeout;
587 		key_schedule_gc(key->expiry + key_gc_delay);
588 
589 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
590 			awaken = 1;
591 
592 		ret = 0;
593 
594 		/* and link it into the destination keyring */
595 		if (keyring && link_ret == 0)
596 			__key_link(key, &edit);
597 
598 		/* disable the authorisation key */
599 		if (authkey)
600 			key_revoke(authkey);
601 	}
602 
603 	mutex_unlock(&key_construction_mutex);
604 
605 	if (keyring && link_ret == 0)
606 		__key_link_end(keyring, &key->index_key, edit);
607 
608 	/* wake up anyone waiting for a key to be constructed */
609 	if (awaken)
610 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
611 
612 	return ret == 0 ? link_ret : ret;
613 }
614 EXPORT_SYMBOL(key_reject_and_link);
615 
616 /**
617  * key_put - Discard a reference to a key.
618  * @key: The key to discard a reference from.
619  *
620  * Discard a reference to a key, and when all the references are gone, we
621  * schedule the cleanup task to come and pull it out of the tree in process
622  * context at some later time.
623  */
624 void key_put(struct key *key)
625 {
626 	if (key) {
627 		key_check(key);
628 
629 		if (refcount_dec_and_test(&key->usage))
630 			schedule_work(&key_gc_work);
631 	}
632 }
633 EXPORT_SYMBOL(key_put);
634 
635 /*
636  * Find a key by its serial number.
637  */
638 struct key *key_lookup(key_serial_t id)
639 {
640 	struct rb_node *n;
641 	struct key *key;
642 
643 	spin_lock(&key_serial_lock);
644 
645 	/* search the tree for the specified key */
646 	n = key_serial_tree.rb_node;
647 	while (n) {
648 		key = rb_entry(n, struct key, serial_node);
649 
650 		if (id < key->serial)
651 			n = n->rb_left;
652 		else if (id > key->serial)
653 			n = n->rb_right;
654 		else
655 			goto found;
656 	}
657 
658 not_found:
659 	key = ERR_PTR(-ENOKEY);
660 	goto error;
661 
662 found:
663 	/* pretend it doesn't exist if it is awaiting deletion */
664 	if (refcount_read(&key->usage) == 0)
665 		goto not_found;
666 
667 	/* this races with key_put(), but that doesn't matter since key_put()
668 	 * doesn't actually change the key
669 	 */
670 	__key_get(key);
671 
672 error:
673 	spin_unlock(&key_serial_lock);
674 	return key;
675 }
676 
677 /*
678  * Find and lock the specified key type against removal.
679  *
680  * We return with the sem read-locked if successful.  If the type wasn't
681  * available -ENOKEY is returned instead.
682  */
683 struct key_type *key_type_lookup(const char *type)
684 {
685 	struct key_type *ktype;
686 
687 	down_read(&key_types_sem);
688 
689 	/* look up the key type to see if it's one of the registered kernel
690 	 * types */
691 	list_for_each_entry(ktype, &key_types_list, link) {
692 		if (strcmp(ktype->name, type) == 0)
693 			goto found_kernel_type;
694 	}
695 
696 	up_read(&key_types_sem);
697 	ktype = ERR_PTR(-ENOKEY);
698 
699 found_kernel_type:
700 	return ktype;
701 }
702 
703 void key_set_timeout(struct key *key, unsigned timeout)
704 {
705 	struct timespec now;
706 	time_t expiry = 0;
707 
708 	/* make the changes with the locks held to prevent races */
709 	down_write(&key->sem);
710 
711 	if (timeout > 0) {
712 		now = current_kernel_time();
713 		expiry = now.tv_sec + timeout;
714 	}
715 
716 	key->expiry = expiry;
717 	key_schedule_gc(key->expiry + key_gc_delay);
718 
719 	up_write(&key->sem);
720 }
721 EXPORT_SYMBOL_GPL(key_set_timeout);
722 
723 /*
724  * Unlock a key type locked by key_type_lookup().
725  */
726 void key_type_put(struct key_type *ktype)
727 {
728 	up_read(&key_types_sem);
729 }
730 
731 /*
732  * Attempt to update an existing key.
733  *
734  * The key is given to us with an incremented refcount that we need to discard
735  * if we get an error.
736  */
737 static inline key_ref_t __key_update(key_ref_t key_ref,
738 				     struct key_preparsed_payload *prep)
739 {
740 	struct key *key = key_ref_to_ptr(key_ref);
741 	int ret;
742 
743 	/* need write permission on the key to update it */
744 	ret = key_permission(key_ref, KEY_NEED_WRITE);
745 	if (ret < 0)
746 		goto error;
747 
748 	ret = -EEXIST;
749 	if (!key->type->update)
750 		goto error;
751 
752 	down_write(&key->sem);
753 
754 	ret = key->type->update(key, prep);
755 	if (ret == 0)
756 		/* updating a negative key instantiates it */
757 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
758 
759 	up_write(&key->sem);
760 
761 	if (ret < 0)
762 		goto error;
763 out:
764 	return key_ref;
765 
766 error:
767 	key_put(key);
768 	key_ref = ERR_PTR(ret);
769 	goto out;
770 }
771 
772 /**
773  * key_create_or_update - Update or create and instantiate a key.
774  * @keyring_ref: A pointer to the destination keyring with possession flag.
775  * @type: The type of key.
776  * @description: The searchable description for the key.
777  * @payload: The data to use to instantiate or update the key.
778  * @plen: The length of @payload.
779  * @perm: The permissions mask for a new key.
780  * @flags: The quota flags for a new key.
781  *
782  * Search the destination keyring for a key of the same description and if one
783  * is found, update it, otherwise create and instantiate a new one and create a
784  * link to it from that keyring.
785  *
786  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
787  * concocted.
788  *
789  * Returns a pointer to the new key if successful, -ENODEV if the key type
790  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
791  * caller isn't permitted to modify the keyring or the LSM did not permit
792  * creation of the key.
793  *
794  * On success, the possession flag from the keyring ref will be tacked on to
795  * the key ref before it is returned.
796  */
797 key_ref_t key_create_or_update(key_ref_t keyring_ref,
798 			       const char *type,
799 			       const char *description,
800 			       const void *payload,
801 			       size_t plen,
802 			       key_perm_t perm,
803 			       unsigned long flags)
804 {
805 	struct keyring_index_key index_key = {
806 		.description	= description,
807 	};
808 	struct key_preparsed_payload prep;
809 	struct assoc_array_edit *edit;
810 	const struct cred *cred = current_cred();
811 	struct key *keyring, *key = NULL;
812 	key_ref_t key_ref;
813 	int ret;
814 	struct key_restriction *restrict_link = NULL;
815 
816 	/* look up the key type to see if it's one of the registered kernel
817 	 * types */
818 	index_key.type = key_type_lookup(type);
819 	if (IS_ERR(index_key.type)) {
820 		key_ref = ERR_PTR(-ENODEV);
821 		goto error;
822 	}
823 
824 	key_ref = ERR_PTR(-EINVAL);
825 	if (!index_key.type->instantiate ||
826 	    (!index_key.description && !index_key.type->preparse))
827 		goto error_put_type;
828 
829 	keyring = key_ref_to_ptr(keyring_ref);
830 
831 	key_check(keyring);
832 
833 	key_ref = ERR_PTR(-EPERM);
834 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
835 		restrict_link = keyring->restrict_link;
836 
837 	key_ref = ERR_PTR(-ENOTDIR);
838 	if (keyring->type != &key_type_keyring)
839 		goto error_put_type;
840 
841 	memset(&prep, 0, sizeof(prep));
842 	prep.data = payload;
843 	prep.datalen = plen;
844 	prep.quotalen = index_key.type->def_datalen;
845 	prep.expiry = TIME_T_MAX;
846 	if (index_key.type->preparse) {
847 		ret = index_key.type->preparse(&prep);
848 		if (ret < 0) {
849 			key_ref = ERR_PTR(ret);
850 			goto error_free_prep;
851 		}
852 		if (!index_key.description)
853 			index_key.description = prep.description;
854 		key_ref = ERR_PTR(-EINVAL);
855 		if (!index_key.description)
856 			goto error_free_prep;
857 	}
858 	index_key.desc_len = strlen(index_key.description);
859 
860 	ret = __key_link_begin(keyring, &index_key, &edit);
861 	if (ret < 0) {
862 		key_ref = ERR_PTR(ret);
863 		goto error_free_prep;
864 	}
865 
866 	if (restrict_link && restrict_link->check) {
867 		ret = restrict_link->check(keyring, index_key.type,
868 					   &prep.payload, restrict_link->key);
869 		if (ret < 0) {
870 			key_ref = ERR_PTR(ret);
871 			goto error_link_end;
872 		}
873 	}
874 
875 	/* if we're going to allocate a new key, we're going to have
876 	 * to modify the keyring */
877 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
878 	if (ret < 0) {
879 		key_ref = ERR_PTR(ret);
880 		goto error_link_end;
881 	}
882 
883 	/* if it's possible to update this type of key, search for an existing
884 	 * key of the same type and description in the destination keyring and
885 	 * update that instead if possible
886 	 */
887 	if (index_key.type->update) {
888 		key_ref = find_key_to_update(keyring_ref, &index_key);
889 		if (key_ref)
890 			goto found_matching_key;
891 	}
892 
893 	/* if the client doesn't provide, decide on the permissions we want */
894 	if (perm == KEY_PERM_UNDEF) {
895 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
896 		perm |= KEY_USR_VIEW;
897 
898 		if (index_key.type->read)
899 			perm |= KEY_POS_READ;
900 
901 		if (index_key.type == &key_type_keyring ||
902 		    index_key.type->update)
903 			perm |= KEY_POS_WRITE;
904 	}
905 
906 	/* allocate a new key */
907 	key = key_alloc(index_key.type, index_key.description,
908 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
909 	if (IS_ERR(key)) {
910 		key_ref = ERR_CAST(key);
911 		goto error_link_end;
912 	}
913 
914 	/* instantiate it and link it into the target keyring */
915 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
916 	if (ret < 0) {
917 		key_put(key);
918 		key_ref = ERR_PTR(ret);
919 		goto error_link_end;
920 	}
921 
922 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
923 
924 error_link_end:
925 	__key_link_end(keyring, &index_key, edit);
926 error_free_prep:
927 	if (index_key.type->preparse)
928 		index_key.type->free_preparse(&prep);
929 error_put_type:
930 	key_type_put(index_key.type);
931 error:
932 	return key_ref;
933 
934  found_matching_key:
935 	/* we found a matching key, so we're going to try to update it
936 	 * - we can drop the locks first as we have the key pinned
937 	 */
938 	__key_link_end(keyring, &index_key, edit);
939 
940 	key_ref = __key_update(key_ref, &prep);
941 	goto error_free_prep;
942 }
943 EXPORT_SYMBOL(key_create_or_update);
944 
945 /**
946  * key_update - Update a key's contents.
947  * @key_ref: The pointer (plus possession flag) to the key.
948  * @payload: The data to be used to update the key.
949  * @plen: The length of @payload.
950  *
951  * Attempt to update the contents of a key with the given payload data.  The
952  * caller must be granted Write permission on the key.  Negative keys can be
953  * instantiated by this method.
954  *
955  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
956  * type does not support updating.  The key type may return other errors.
957  */
958 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
959 {
960 	struct key_preparsed_payload prep;
961 	struct key *key = key_ref_to_ptr(key_ref);
962 	int ret;
963 
964 	key_check(key);
965 
966 	/* the key must be writable */
967 	ret = key_permission(key_ref, KEY_NEED_WRITE);
968 	if (ret < 0)
969 		goto error;
970 
971 	/* attempt to update it if supported */
972 	ret = -EOPNOTSUPP;
973 	if (!key->type->update)
974 		goto error;
975 
976 	memset(&prep, 0, sizeof(prep));
977 	prep.data = payload;
978 	prep.datalen = plen;
979 	prep.quotalen = key->type->def_datalen;
980 	prep.expiry = TIME_T_MAX;
981 	if (key->type->preparse) {
982 		ret = key->type->preparse(&prep);
983 		if (ret < 0)
984 			goto error;
985 	}
986 
987 	down_write(&key->sem);
988 
989 	ret = key->type->update(key, &prep);
990 	if (ret == 0)
991 		/* updating a negative key instantiates it */
992 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
993 
994 	up_write(&key->sem);
995 
996 error:
997 	if (key->type->preparse)
998 		key->type->free_preparse(&prep);
999 	return ret;
1000 }
1001 EXPORT_SYMBOL(key_update);
1002 
1003 /**
1004  * key_revoke - Revoke a key.
1005  * @key: The key to be revoked.
1006  *
1007  * Mark a key as being revoked and ask the type to free up its resources.  The
1008  * revocation timeout is set and the key and all its links will be
1009  * automatically garbage collected after key_gc_delay amount of time if they
1010  * are not manually dealt with first.
1011  */
1012 void key_revoke(struct key *key)
1013 {
1014 	struct timespec now;
1015 	time_t time;
1016 
1017 	key_check(key);
1018 
1019 	/* make sure no one's trying to change or use the key when we mark it
1020 	 * - we tell lockdep that we might nest because we might be revoking an
1021 	 *   authorisation key whilst holding the sem on a key we've just
1022 	 *   instantiated
1023 	 */
1024 	down_write_nested(&key->sem, 1);
1025 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1026 	    key->type->revoke)
1027 		key->type->revoke(key);
1028 
1029 	/* set the death time to no more than the expiry time */
1030 	now = current_kernel_time();
1031 	time = now.tv_sec;
1032 	if (key->revoked_at == 0 || key->revoked_at > time) {
1033 		key->revoked_at = time;
1034 		key_schedule_gc(key->revoked_at + key_gc_delay);
1035 	}
1036 
1037 	up_write(&key->sem);
1038 }
1039 EXPORT_SYMBOL(key_revoke);
1040 
1041 /**
1042  * key_invalidate - Invalidate a key.
1043  * @key: The key to be invalidated.
1044  *
1045  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1046  * is ignored by all searches and other operations from this point.
1047  */
1048 void key_invalidate(struct key *key)
1049 {
1050 	kenter("%d", key_serial(key));
1051 
1052 	key_check(key);
1053 
1054 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1055 		down_write_nested(&key->sem, 1);
1056 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1057 			key_schedule_gc_links();
1058 		up_write(&key->sem);
1059 	}
1060 }
1061 EXPORT_SYMBOL(key_invalidate);
1062 
1063 /**
1064  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1065  * @key: The key to be instantiated
1066  * @prep: The preparsed data to load.
1067  *
1068  * Instantiate a key from preparsed data.  We assume we can just copy the data
1069  * in directly and clear the old pointers.
1070  *
1071  * This can be pointed to directly by the key type instantiate op pointer.
1072  */
1073 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1074 {
1075 	int ret;
1076 
1077 	pr_devel("==>%s()\n", __func__);
1078 
1079 	ret = key_payload_reserve(key, prep->quotalen);
1080 	if (ret == 0) {
1081 		rcu_assign_keypointer(key, prep->payload.data[0]);
1082 		key->payload.data[1] = prep->payload.data[1];
1083 		key->payload.data[2] = prep->payload.data[2];
1084 		key->payload.data[3] = prep->payload.data[3];
1085 		prep->payload.data[0] = NULL;
1086 		prep->payload.data[1] = NULL;
1087 		prep->payload.data[2] = NULL;
1088 		prep->payload.data[3] = NULL;
1089 	}
1090 	pr_devel("<==%s() = %d\n", __func__, ret);
1091 	return ret;
1092 }
1093 EXPORT_SYMBOL(generic_key_instantiate);
1094 
1095 /**
1096  * register_key_type - Register a type of key.
1097  * @ktype: The new key type.
1098  *
1099  * Register a new key type.
1100  *
1101  * Returns 0 on success or -EEXIST if a type of this name already exists.
1102  */
1103 int register_key_type(struct key_type *ktype)
1104 {
1105 	struct key_type *p;
1106 	int ret;
1107 
1108 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1109 
1110 	ret = -EEXIST;
1111 	down_write(&key_types_sem);
1112 
1113 	/* disallow key types with the same name */
1114 	list_for_each_entry(p, &key_types_list, link) {
1115 		if (strcmp(p->name, ktype->name) == 0)
1116 			goto out;
1117 	}
1118 
1119 	/* store the type */
1120 	list_add(&ktype->link, &key_types_list);
1121 
1122 	pr_notice("Key type %s registered\n", ktype->name);
1123 	ret = 0;
1124 
1125 out:
1126 	up_write(&key_types_sem);
1127 	return ret;
1128 }
1129 EXPORT_SYMBOL(register_key_type);
1130 
1131 /**
1132  * unregister_key_type - Unregister a type of key.
1133  * @ktype: The key type.
1134  *
1135  * Unregister a key type and mark all the extant keys of this type as dead.
1136  * Those keys of this type are then destroyed to get rid of their payloads and
1137  * they and their links will be garbage collected as soon as possible.
1138  */
1139 void unregister_key_type(struct key_type *ktype)
1140 {
1141 	down_write(&key_types_sem);
1142 	list_del_init(&ktype->link);
1143 	downgrade_write(&key_types_sem);
1144 	key_gc_keytype(ktype);
1145 	pr_notice("Key type %s unregistered\n", ktype->name);
1146 	up_read(&key_types_sem);
1147 }
1148 EXPORT_SYMBOL(unregister_key_type);
1149 
1150 /*
1151  * Initialise the key management state.
1152  */
1153 void __init key_init(void)
1154 {
1155 	/* allocate a slab in which we can store keys */
1156 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1157 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1158 
1159 	/* add the special key types */
1160 	list_add_tail(&key_type_keyring.link, &key_types_list);
1161 	list_add_tail(&key_type_dead.link, &key_types_list);
1162 	list_add_tail(&key_type_user.link, &key_types_list);
1163 	list_add_tail(&key_type_logon.link, &key_types_list);
1164 
1165 	/* record the root user tracking */
1166 	rb_link_node(&root_key_user.node,
1167 		     NULL,
1168 		     &key_user_tree.rb_node);
1169 
1170 	rb_insert_color(&root_key_user.node,
1171 			&key_user_tree);
1172 }
1173