1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Basic authentication token and access key management 3 * 4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/init.h> 10 #include <linux/poison.h> 11 #include <linux/sched.h> 12 #include <linux/slab.h> 13 #include <linux/security.h> 14 #include <linux/workqueue.h> 15 #include <linux/random.h> 16 #include <linux/ima.h> 17 #include <linux/err.h> 18 #include "internal.h" 19 20 struct kmem_cache *key_jar; 21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 22 DEFINE_SPINLOCK(key_serial_lock); 23 24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 25 DEFINE_SPINLOCK(key_user_lock); 26 27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 29 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 31 32 static LIST_HEAD(key_types_list); 33 static DECLARE_RWSEM(key_types_sem); 34 35 /* We serialise key instantiation and link */ 36 DEFINE_MUTEX(key_construction_mutex); 37 38 #ifdef KEY_DEBUGGING 39 void __key_check(const struct key *key) 40 { 41 printk("__key_check: key %p {%08x} should be {%08x}\n", 42 key, key->magic, KEY_DEBUG_MAGIC); 43 BUG(); 44 } 45 #endif 46 47 /* 48 * Get the key quota record for a user, allocating a new record if one doesn't 49 * already exist. 50 */ 51 struct key_user *key_user_lookup(kuid_t uid) 52 { 53 struct key_user *candidate = NULL, *user; 54 struct rb_node *parent, **p; 55 56 try_again: 57 parent = NULL; 58 p = &key_user_tree.rb_node; 59 spin_lock(&key_user_lock); 60 61 /* search the tree for a user record with a matching UID */ 62 while (*p) { 63 parent = *p; 64 user = rb_entry(parent, struct key_user, node); 65 66 if (uid_lt(uid, user->uid)) 67 p = &(*p)->rb_left; 68 else if (uid_gt(uid, user->uid)) 69 p = &(*p)->rb_right; 70 else 71 goto found; 72 } 73 74 /* if we get here, we failed to find a match in the tree */ 75 if (!candidate) { 76 /* allocate a candidate user record if we don't already have 77 * one */ 78 spin_unlock(&key_user_lock); 79 80 user = NULL; 81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 82 if (unlikely(!candidate)) 83 goto out; 84 85 /* the allocation may have scheduled, so we need to repeat the 86 * search lest someone else added the record whilst we were 87 * asleep */ 88 goto try_again; 89 } 90 91 /* if we get here, then the user record still hadn't appeared on the 92 * second pass - so we use the candidate record */ 93 refcount_set(&candidate->usage, 1); 94 atomic_set(&candidate->nkeys, 0); 95 atomic_set(&candidate->nikeys, 0); 96 candidate->uid = uid; 97 candidate->qnkeys = 0; 98 candidate->qnbytes = 0; 99 spin_lock_init(&candidate->lock); 100 mutex_init(&candidate->cons_lock); 101 102 rb_link_node(&candidate->node, parent, p); 103 rb_insert_color(&candidate->node, &key_user_tree); 104 spin_unlock(&key_user_lock); 105 user = candidate; 106 goto out; 107 108 /* okay - we found a user record for this UID */ 109 found: 110 refcount_inc(&user->usage); 111 spin_unlock(&key_user_lock); 112 kfree(candidate); 113 out: 114 return user; 115 } 116 117 /* 118 * Dispose of a user structure 119 */ 120 void key_user_put(struct key_user *user) 121 { 122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { 123 rb_erase(&user->node, &key_user_tree); 124 spin_unlock(&key_user_lock); 125 126 kfree(user); 127 } 128 } 129 130 /* 131 * Allocate a serial number for a key. These are assigned randomly to avoid 132 * security issues through covert channel problems. 133 */ 134 static inline void key_alloc_serial(struct key *key) 135 { 136 struct rb_node *parent, **p; 137 struct key *xkey; 138 139 /* propose a random serial number and look for a hole for it in the 140 * serial number tree */ 141 do { 142 get_random_bytes(&key->serial, sizeof(key->serial)); 143 144 key->serial >>= 1; /* negative numbers are not permitted */ 145 } while (key->serial < 3); 146 147 spin_lock(&key_serial_lock); 148 149 attempt_insertion: 150 parent = NULL; 151 p = &key_serial_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 xkey = rb_entry(parent, struct key, serial_node); 156 157 if (key->serial < xkey->serial) 158 p = &(*p)->rb_left; 159 else if (key->serial > xkey->serial) 160 p = &(*p)->rb_right; 161 else 162 goto serial_exists; 163 } 164 165 /* we've found a suitable hole - arrange for this key to occupy it */ 166 rb_link_node(&key->serial_node, parent, p); 167 rb_insert_color(&key->serial_node, &key_serial_tree); 168 169 spin_unlock(&key_serial_lock); 170 return; 171 172 /* we found a key with the proposed serial number - walk the tree from 173 * that point looking for the next unused serial number */ 174 serial_exists: 175 for (;;) { 176 key->serial++; 177 if (key->serial < 3) { 178 key->serial = 3; 179 goto attempt_insertion; 180 } 181 182 parent = rb_next(parent); 183 if (!parent) 184 goto attempt_insertion; 185 186 xkey = rb_entry(parent, struct key, serial_node); 187 if (key->serial < xkey->serial) 188 goto attempt_insertion; 189 } 190 } 191 192 /** 193 * key_alloc - Allocate a key of the specified type. 194 * @type: The type of key to allocate. 195 * @desc: The key description to allow the key to be searched out. 196 * @uid: The owner of the new key. 197 * @gid: The group ID for the new key's group permissions. 198 * @cred: The credentials specifying UID namespace. 199 * @perm: The permissions mask of the new key. 200 * @flags: Flags specifying quota properties. 201 * @restrict_link: Optional link restriction for new keyrings. 202 * 203 * Allocate a key of the specified type with the attributes given. The key is 204 * returned in an uninstantiated state and the caller needs to instantiate the 205 * key before returning. 206 * 207 * The restrict_link structure (if not NULL) will be freed when the 208 * keyring is destroyed, so it must be dynamically allocated. 209 * 210 * The user's key count quota is updated to reflect the creation of the key and 211 * the user's key data quota has the default for the key type reserved. The 212 * instantiation function should amend this as necessary. If insufficient 213 * quota is available, -EDQUOT will be returned. 214 * 215 * The LSM security modules can prevent a key being created, in which case 216 * -EACCES will be returned. 217 * 218 * Returns a pointer to the new key if successful and an error code otherwise. 219 * 220 * Note that the caller needs to ensure the key type isn't uninstantiated. 221 * Internally this can be done by locking key_types_sem. Externally, this can 222 * be done by either never unregistering the key type, or making sure 223 * key_alloc() calls don't race with module unloading. 224 */ 225 struct key *key_alloc(struct key_type *type, const char *desc, 226 kuid_t uid, kgid_t gid, const struct cred *cred, 227 key_perm_t perm, unsigned long flags, 228 struct key_restriction *restrict_link) 229 { 230 struct key_user *user = NULL; 231 struct key *key; 232 size_t desclen, quotalen; 233 int ret; 234 235 key = ERR_PTR(-EINVAL); 236 if (!desc || !*desc) 237 goto error; 238 239 if (type->vet_description) { 240 ret = type->vet_description(desc); 241 if (ret < 0) { 242 key = ERR_PTR(ret); 243 goto error; 244 } 245 } 246 247 desclen = strlen(desc); 248 quotalen = desclen + 1 + type->def_datalen; 249 250 /* get hold of the key tracking for this user */ 251 user = key_user_lookup(uid); 252 if (!user) 253 goto no_memory_1; 254 255 /* check that the user's quota permits allocation of another key and 256 * its description */ 257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxkeys : key_quota_maxkeys; 260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 261 key_quota_root_maxbytes : key_quota_maxbytes; 262 263 spin_lock(&user->lock); 264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 265 if (user->qnkeys + 1 > maxkeys || 266 user->qnbytes + quotalen > maxbytes || 267 user->qnbytes + quotalen < user->qnbytes) 268 goto no_quota; 269 } 270 271 user->qnkeys++; 272 user->qnbytes += quotalen; 273 spin_unlock(&user->lock); 274 } 275 276 /* allocate and initialise the key and its description */ 277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 278 if (!key) 279 goto no_memory_2; 280 281 key->index_key.desc_len = desclen; 282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 283 if (!key->index_key.description) 284 goto no_memory_3; 285 key->index_key.type = type; 286 key_set_index_key(&key->index_key); 287 288 refcount_set(&key->usage, 1); 289 init_rwsem(&key->sem); 290 lockdep_set_class(&key->sem, &type->lock_class); 291 key->user = user; 292 key->quotalen = quotalen; 293 key->datalen = type->def_datalen; 294 key->uid = uid; 295 key->gid = gid; 296 key->perm = perm; 297 key->restrict_link = restrict_link; 298 key->last_used_at = ktime_get_real_seconds(); 299 300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 301 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 302 if (flags & KEY_ALLOC_BUILT_IN) 303 key->flags |= 1 << KEY_FLAG_BUILTIN; 304 if (flags & KEY_ALLOC_UID_KEYRING) 305 key->flags |= 1 << KEY_FLAG_UID_KEYRING; 306 307 #ifdef KEY_DEBUGGING 308 key->magic = KEY_DEBUG_MAGIC; 309 #endif 310 311 /* let the security module know about the key */ 312 ret = security_key_alloc(key, cred, flags); 313 if (ret < 0) 314 goto security_error; 315 316 /* publish the key by giving it a serial number */ 317 refcount_inc(&key->domain_tag->usage); 318 atomic_inc(&user->nkeys); 319 key_alloc_serial(key); 320 321 error: 322 return key; 323 324 security_error: 325 kfree(key->description); 326 kmem_cache_free(key_jar, key); 327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 328 spin_lock(&user->lock); 329 user->qnkeys--; 330 user->qnbytes -= quotalen; 331 spin_unlock(&user->lock); 332 } 333 key_user_put(user); 334 key = ERR_PTR(ret); 335 goto error; 336 337 no_memory_3: 338 kmem_cache_free(key_jar, key); 339 no_memory_2: 340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 341 spin_lock(&user->lock); 342 user->qnkeys--; 343 user->qnbytes -= quotalen; 344 spin_unlock(&user->lock); 345 } 346 key_user_put(user); 347 no_memory_1: 348 key = ERR_PTR(-ENOMEM); 349 goto error; 350 351 no_quota: 352 spin_unlock(&user->lock); 353 key_user_put(user); 354 key = ERR_PTR(-EDQUOT); 355 goto error; 356 } 357 EXPORT_SYMBOL(key_alloc); 358 359 /** 360 * key_payload_reserve - Adjust data quota reservation for the key's payload 361 * @key: The key to make the reservation for. 362 * @datalen: The amount of data payload the caller now wants. 363 * 364 * Adjust the amount of the owning user's key data quota that a key reserves. 365 * If the amount is increased, then -EDQUOT may be returned if there isn't 366 * enough free quota available. 367 * 368 * If successful, 0 is returned. 369 */ 370 int key_payload_reserve(struct key *key, size_t datalen) 371 { 372 int delta = (int)datalen - key->datalen; 373 int ret = 0; 374 375 key_check(key); 376 377 /* contemplate the quota adjustment */ 378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 380 key_quota_root_maxbytes : key_quota_maxbytes; 381 382 spin_lock(&key->user->lock); 383 384 if (delta > 0 && 385 (key->user->qnbytes + delta > maxbytes || 386 key->user->qnbytes + delta < key->user->qnbytes)) { 387 ret = -EDQUOT; 388 } 389 else { 390 key->user->qnbytes += delta; 391 key->quotalen += delta; 392 } 393 spin_unlock(&key->user->lock); 394 } 395 396 /* change the recorded data length if that didn't generate an error */ 397 if (ret == 0) 398 key->datalen = datalen; 399 400 return ret; 401 } 402 EXPORT_SYMBOL(key_payload_reserve); 403 404 /* 405 * Change the key state to being instantiated. 406 */ 407 static void mark_key_instantiated(struct key *key, int reject_error) 408 { 409 /* Commit the payload before setting the state; barrier versus 410 * key_read_state(). 411 */ 412 smp_store_release(&key->state, 413 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE); 414 } 415 416 /* 417 * Instantiate a key and link it into the target keyring atomically. Must be 418 * called with the target keyring's semaphore writelocked. The target key's 419 * semaphore need not be locked as instantiation is serialised by 420 * key_construction_mutex. 421 */ 422 static int __key_instantiate_and_link(struct key *key, 423 struct key_preparsed_payload *prep, 424 struct key *keyring, 425 struct key *authkey, 426 struct assoc_array_edit **_edit) 427 { 428 int ret, awaken; 429 430 key_check(key); 431 key_check(keyring); 432 433 awaken = 0; 434 ret = -EBUSY; 435 436 mutex_lock(&key_construction_mutex); 437 438 /* can't instantiate twice */ 439 if (key->state == KEY_IS_UNINSTANTIATED) { 440 /* instantiate the key */ 441 ret = key->type->instantiate(key, prep); 442 443 if (ret == 0) { 444 /* mark the key as being instantiated */ 445 atomic_inc(&key->user->nikeys); 446 mark_key_instantiated(key, 0); 447 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0); 448 449 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 450 awaken = 1; 451 452 /* and link it into the destination keyring */ 453 if (keyring) { 454 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 455 set_bit(KEY_FLAG_KEEP, &key->flags); 456 457 __key_link(keyring, key, _edit); 458 } 459 460 /* disable the authorisation key */ 461 if (authkey) 462 key_invalidate(authkey); 463 464 if (prep->expiry != TIME64_MAX) { 465 key->expiry = prep->expiry; 466 key_schedule_gc(prep->expiry + key_gc_delay); 467 } 468 } 469 } 470 471 mutex_unlock(&key_construction_mutex); 472 473 /* wake up anyone waiting for a key to be constructed */ 474 if (awaken) 475 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 476 477 return ret; 478 } 479 480 /** 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 482 * @key: The key to instantiate. 483 * @data: The data to use to instantiate the keyring. 484 * @datalen: The length of @data. 485 * @keyring: Keyring to create a link in on success (or NULL). 486 * @authkey: The authorisation token permitting instantiation. 487 * 488 * Instantiate a key that's in the uninstantiated state using the provided data 489 * and, if successful, link it in to the destination keyring if one is 490 * supplied. 491 * 492 * If successful, 0 is returned, the authorisation token is revoked and anyone 493 * waiting for the key is woken up. If the key was already instantiated, 494 * -EBUSY will be returned. 495 */ 496 int key_instantiate_and_link(struct key *key, 497 const void *data, 498 size_t datalen, 499 struct key *keyring, 500 struct key *authkey) 501 { 502 struct key_preparsed_payload prep; 503 struct assoc_array_edit *edit = NULL; 504 int ret; 505 506 memset(&prep, 0, sizeof(prep)); 507 prep.orig_description = key->description; 508 prep.data = data; 509 prep.datalen = datalen; 510 prep.quotalen = key->type->def_datalen; 511 prep.expiry = TIME64_MAX; 512 if (key->type->preparse) { 513 ret = key->type->preparse(&prep); 514 if (ret < 0) 515 goto error; 516 } 517 518 if (keyring) { 519 ret = __key_link_lock(keyring, &key->index_key); 520 if (ret < 0) 521 goto error; 522 523 ret = __key_link_begin(keyring, &key->index_key, &edit); 524 if (ret < 0) 525 goto error_link_end; 526 527 if (keyring->restrict_link && keyring->restrict_link->check) { 528 struct key_restriction *keyres = keyring->restrict_link; 529 530 ret = keyres->check(keyring, key->type, &prep.payload, 531 keyres->key); 532 if (ret < 0) 533 goto error_link_end; 534 } 535 } 536 537 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 538 539 error_link_end: 540 if (keyring) 541 __key_link_end(keyring, &key->index_key, edit); 542 543 error: 544 if (key->type->preparse) 545 key->type->free_preparse(&prep); 546 return ret; 547 } 548 549 EXPORT_SYMBOL(key_instantiate_and_link); 550 551 /** 552 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 553 * @key: The key to instantiate. 554 * @timeout: The timeout on the negative key. 555 * @error: The error to return when the key is hit. 556 * @keyring: Keyring to create a link in on success (or NULL). 557 * @authkey: The authorisation token permitting instantiation. 558 * 559 * Negatively instantiate a key that's in the uninstantiated state and, if 560 * successful, set its timeout and stored error and link it in to the 561 * destination keyring if one is supplied. The key and any links to the key 562 * will be automatically garbage collected after the timeout expires. 563 * 564 * Negative keys are used to rate limit repeated request_key() calls by causing 565 * them to return the stored error code (typically ENOKEY) until the negative 566 * key expires. 567 * 568 * If successful, 0 is returned, the authorisation token is revoked and anyone 569 * waiting for the key is woken up. If the key was already instantiated, 570 * -EBUSY will be returned. 571 */ 572 int key_reject_and_link(struct key *key, 573 unsigned timeout, 574 unsigned error, 575 struct key *keyring, 576 struct key *authkey) 577 { 578 struct assoc_array_edit *edit = NULL; 579 int ret, awaken, link_ret = 0; 580 581 key_check(key); 582 key_check(keyring); 583 584 awaken = 0; 585 ret = -EBUSY; 586 587 if (keyring) { 588 if (keyring->restrict_link) 589 return -EPERM; 590 591 link_ret = __key_link_lock(keyring, &key->index_key); 592 if (link_ret == 0) { 593 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 594 if (link_ret < 0) 595 __key_link_end(keyring, &key->index_key, edit); 596 } 597 } 598 599 mutex_lock(&key_construction_mutex); 600 601 /* can't instantiate twice */ 602 if (key->state == KEY_IS_UNINSTANTIATED) { 603 /* mark the key as being negatively instantiated */ 604 atomic_inc(&key->user->nikeys); 605 mark_key_instantiated(key, -error); 606 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error); 607 key->expiry = ktime_get_real_seconds() + timeout; 608 key_schedule_gc(key->expiry + key_gc_delay); 609 610 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 611 awaken = 1; 612 613 ret = 0; 614 615 /* and link it into the destination keyring */ 616 if (keyring && link_ret == 0) 617 __key_link(keyring, key, &edit); 618 619 /* disable the authorisation key */ 620 if (authkey) 621 key_invalidate(authkey); 622 } 623 624 mutex_unlock(&key_construction_mutex); 625 626 if (keyring && link_ret == 0) 627 __key_link_end(keyring, &key->index_key, edit); 628 629 /* wake up anyone waiting for a key to be constructed */ 630 if (awaken) 631 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 632 633 return ret == 0 ? link_ret : ret; 634 } 635 EXPORT_SYMBOL(key_reject_and_link); 636 637 /** 638 * key_put - Discard a reference to a key. 639 * @key: The key to discard a reference from. 640 * 641 * Discard a reference to a key, and when all the references are gone, we 642 * schedule the cleanup task to come and pull it out of the tree in process 643 * context at some later time. 644 */ 645 void key_put(struct key *key) 646 { 647 if (key) { 648 key_check(key); 649 650 if (refcount_dec_and_test(&key->usage)) 651 schedule_work(&key_gc_work); 652 } 653 } 654 EXPORT_SYMBOL(key_put); 655 656 /* 657 * Find a key by its serial number. 658 */ 659 struct key *key_lookup(key_serial_t id) 660 { 661 struct rb_node *n; 662 struct key *key; 663 664 spin_lock(&key_serial_lock); 665 666 /* search the tree for the specified key */ 667 n = key_serial_tree.rb_node; 668 while (n) { 669 key = rb_entry(n, struct key, serial_node); 670 671 if (id < key->serial) 672 n = n->rb_left; 673 else if (id > key->serial) 674 n = n->rb_right; 675 else 676 goto found; 677 } 678 679 not_found: 680 key = ERR_PTR(-ENOKEY); 681 goto error; 682 683 found: 684 /* A key is allowed to be looked up only if someone still owns a 685 * reference to it - otherwise it's awaiting the gc. 686 */ 687 if (!refcount_inc_not_zero(&key->usage)) 688 goto not_found; 689 690 error: 691 spin_unlock(&key_serial_lock); 692 return key; 693 } 694 695 /* 696 * Find and lock the specified key type against removal. 697 * 698 * We return with the sem read-locked if successful. If the type wasn't 699 * available -ENOKEY is returned instead. 700 */ 701 struct key_type *key_type_lookup(const char *type) 702 { 703 struct key_type *ktype; 704 705 down_read(&key_types_sem); 706 707 /* look up the key type to see if it's one of the registered kernel 708 * types */ 709 list_for_each_entry(ktype, &key_types_list, link) { 710 if (strcmp(ktype->name, type) == 0) 711 goto found_kernel_type; 712 } 713 714 up_read(&key_types_sem); 715 ktype = ERR_PTR(-ENOKEY); 716 717 found_kernel_type: 718 return ktype; 719 } 720 721 void key_set_timeout(struct key *key, unsigned timeout) 722 { 723 time64_t expiry = 0; 724 725 /* make the changes with the locks held to prevent races */ 726 down_write(&key->sem); 727 728 if (timeout > 0) 729 expiry = ktime_get_real_seconds() + timeout; 730 731 key->expiry = expiry; 732 key_schedule_gc(key->expiry + key_gc_delay); 733 734 up_write(&key->sem); 735 } 736 EXPORT_SYMBOL_GPL(key_set_timeout); 737 738 /* 739 * Unlock a key type locked by key_type_lookup(). 740 */ 741 void key_type_put(struct key_type *ktype) 742 { 743 up_read(&key_types_sem); 744 } 745 746 /* 747 * Attempt to update an existing key. 748 * 749 * The key is given to us with an incremented refcount that we need to discard 750 * if we get an error. 751 */ 752 static inline key_ref_t __key_update(key_ref_t key_ref, 753 struct key_preparsed_payload *prep) 754 { 755 struct key *key = key_ref_to_ptr(key_ref); 756 int ret; 757 758 /* need write permission on the key to update it */ 759 ret = key_permission(key_ref, KEY_NEED_WRITE); 760 if (ret < 0) 761 goto error; 762 763 ret = -EEXIST; 764 if (!key->type->update) 765 goto error; 766 767 down_write(&key->sem); 768 769 ret = key->type->update(key, prep); 770 if (ret == 0) { 771 /* Updating a negative key positively instantiates it */ 772 mark_key_instantiated(key, 0); 773 notify_key(key, NOTIFY_KEY_UPDATED, 0); 774 } 775 776 up_write(&key->sem); 777 778 if (ret < 0) 779 goto error; 780 out: 781 return key_ref; 782 783 error: 784 key_put(key); 785 key_ref = ERR_PTR(ret); 786 goto out; 787 } 788 789 /** 790 * key_create_or_update - Update or create and instantiate a key. 791 * @keyring_ref: A pointer to the destination keyring with possession flag. 792 * @type: The type of key. 793 * @description: The searchable description for the key. 794 * @payload: The data to use to instantiate or update the key. 795 * @plen: The length of @payload. 796 * @perm: The permissions mask for a new key. 797 * @flags: The quota flags for a new key. 798 * 799 * Search the destination keyring for a key of the same description and if one 800 * is found, update it, otherwise create and instantiate a new one and create a 801 * link to it from that keyring. 802 * 803 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 804 * concocted. 805 * 806 * Returns a pointer to the new key if successful, -ENODEV if the key type 807 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 808 * caller isn't permitted to modify the keyring or the LSM did not permit 809 * creation of the key. 810 * 811 * On success, the possession flag from the keyring ref will be tacked on to 812 * the key ref before it is returned. 813 */ 814 key_ref_t key_create_or_update(key_ref_t keyring_ref, 815 const char *type, 816 const char *description, 817 const void *payload, 818 size_t plen, 819 key_perm_t perm, 820 unsigned long flags) 821 { 822 struct keyring_index_key index_key = { 823 .description = description, 824 }; 825 struct key_preparsed_payload prep; 826 struct assoc_array_edit *edit = NULL; 827 const struct cred *cred = current_cred(); 828 struct key *keyring, *key = NULL; 829 key_ref_t key_ref; 830 int ret; 831 struct key_restriction *restrict_link = NULL; 832 833 /* look up the key type to see if it's one of the registered kernel 834 * types */ 835 index_key.type = key_type_lookup(type); 836 if (IS_ERR(index_key.type)) { 837 key_ref = ERR_PTR(-ENODEV); 838 goto error; 839 } 840 841 key_ref = ERR_PTR(-EINVAL); 842 if (!index_key.type->instantiate || 843 (!index_key.description && !index_key.type->preparse)) 844 goto error_put_type; 845 846 keyring = key_ref_to_ptr(keyring_ref); 847 848 key_check(keyring); 849 850 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) 851 restrict_link = keyring->restrict_link; 852 853 key_ref = ERR_PTR(-ENOTDIR); 854 if (keyring->type != &key_type_keyring) 855 goto error_put_type; 856 857 memset(&prep, 0, sizeof(prep)); 858 prep.orig_description = description; 859 prep.data = payload; 860 prep.datalen = plen; 861 prep.quotalen = index_key.type->def_datalen; 862 prep.expiry = TIME64_MAX; 863 if (index_key.type->preparse) { 864 ret = index_key.type->preparse(&prep); 865 if (ret < 0) { 866 key_ref = ERR_PTR(ret); 867 goto error_free_prep; 868 } 869 if (!index_key.description) 870 index_key.description = prep.description; 871 key_ref = ERR_PTR(-EINVAL); 872 if (!index_key.description) 873 goto error_free_prep; 874 } 875 index_key.desc_len = strlen(index_key.description); 876 key_set_index_key(&index_key); 877 878 ret = __key_link_lock(keyring, &index_key); 879 if (ret < 0) { 880 key_ref = ERR_PTR(ret); 881 goto error_free_prep; 882 } 883 884 ret = __key_link_begin(keyring, &index_key, &edit); 885 if (ret < 0) { 886 key_ref = ERR_PTR(ret); 887 goto error_link_end; 888 } 889 890 if (restrict_link && restrict_link->check) { 891 ret = restrict_link->check(keyring, index_key.type, 892 &prep.payload, restrict_link->key); 893 if (ret < 0) { 894 key_ref = ERR_PTR(ret); 895 goto error_link_end; 896 } 897 } 898 899 /* if we're going to allocate a new key, we're going to have 900 * to modify the keyring */ 901 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 902 if (ret < 0) { 903 key_ref = ERR_PTR(ret); 904 goto error_link_end; 905 } 906 907 /* if it's possible to update this type of key, search for an existing 908 * key of the same type and description in the destination keyring and 909 * update that instead if possible 910 */ 911 if (index_key.type->update) { 912 key_ref = find_key_to_update(keyring_ref, &index_key); 913 if (key_ref) 914 goto found_matching_key; 915 } 916 917 /* if the client doesn't provide, decide on the permissions we want */ 918 if (perm == KEY_PERM_UNDEF) { 919 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 920 perm |= KEY_USR_VIEW; 921 922 if (index_key.type->read) 923 perm |= KEY_POS_READ; 924 925 if (index_key.type == &key_type_keyring || 926 index_key.type->update) 927 perm |= KEY_POS_WRITE; 928 } 929 930 /* allocate a new key */ 931 key = key_alloc(index_key.type, index_key.description, 932 cred->fsuid, cred->fsgid, cred, perm, flags, NULL); 933 if (IS_ERR(key)) { 934 key_ref = ERR_CAST(key); 935 goto error_link_end; 936 } 937 938 /* instantiate it and link it into the target keyring */ 939 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 940 if (ret < 0) { 941 key_put(key); 942 key_ref = ERR_PTR(ret); 943 goto error_link_end; 944 } 945 946 ima_post_key_create_or_update(keyring, key, payload, plen, 947 flags, true); 948 949 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 950 951 error_link_end: 952 __key_link_end(keyring, &index_key, edit); 953 error_free_prep: 954 if (index_key.type->preparse) 955 index_key.type->free_preparse(&prep); 956 error_put_type: 957 key_type_put(index_key.type); 958 error: 959 return key_ref; 960 961 found_matching_key: 962 /* we found a matching key, so we're going to try to update it 963 * - we can drop the locks first as we have the key pinned 964 */ 965 __key_link_end(keyring, &index_key, edit); 966 967 key = key_ref_to_ptr(key_ref); 968 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) { 969 ret = wait_for_key_construction(key, true); 970 if (ret < 0) { 971 key_ref_put(key_ref); 972 key_ref = ERR_PTR(ret); 973 goto error_free_prep; 974 } 975 } 976 977 key_ref = __key_update(key_ref, &prep); 978 979 if (!IS_ERR(key_ref)) 980 ima_post_key_create_or_update(keyring, key, 981 payload, plen, 982 flags, false); 983 984 goto error_free_prep; 985 } 986 EXPORT_SYMBOL(key_create_or_update); 987 988 /** 989 * key_update - Update a key's contents. 990 * @key_ref: The pointer (plus possession flag) to the key. 991 * @payload: The data to be used to update the key. 992 * @plen: The length of @payload. 993 * 994 * Attempt to update the contents of a key with the given payload data. The 995 * caller must be granted Write permission on the key. Negative keys can be 996 * instantiated by this method. 997 * 998 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 999 * type does not support updating. The key type may return other errors. 1000 */ 1001 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 1002 { 1003 struct key_preparsed_payload prep; 1004 struct key *key = key_ref_to_ptr(key_ref); 1005 int ret; 1006 1007 key_check(key); 1008 1009 /* the key must be writable */ 1010 ret = key_permission(key_ref, KEY_NEED_WRITE); 1011 if (ret < 0) 1012 return ret; 1013 1014 /* attempt to update it if supported */ 1015 if (!key->type->update) 1016 return -EOPNOTSUPP; 1017 1018 memset(&prep, 0, sizeof(prep)); 1019 prep.data = payload; 1020 prep.datalen = plen; 1021 prep.quotalen = key->type->def_datalen; 1022 prep.expiry = TIME64_MAX; 1023 if (key->type->preparse) { 1024 ret = key->type->preparse(&prep); 1025 if (ret < 0) 1026 goto error; 1027 } 1028 1029 down_write(&key->sem); 1030 1031 ret = key->type->update(key, &prep); 1032 if (ret == 0) { 1033 /* Updating a negative key positively instantiates it */ 1034 mark_key_instantiated(key, 0); 1035 notify_key(key, NOTIFY_KEY_UPDATED, 0); 1036 } 1037 1038 up_write(&key->sem); 1039 1040 error: 1041 if (key->type->preparse) 1042 key->type->free_preparse(&prep); 1043 return ret; 1044 } 1045 EXPORT_SYMBOL(key_update); 1046 1047 /** 1048 * key_revoke - Revoke a key. 1049 * @key: The key to be revoked. 1050 * 1051 * Mark a key as being revoked and ask the type to free up its resources. The 1052 * revocation timeout is set and the key and all its links will be 1053 * automatically garbage collected after key_gc_delay amount of time if they 1054 * are not manually dealt with first. 1055 */ 1056 void key_revoke(struct key *key) 1057 { 1058 time64_t time; 1059 1060 key_check(key); 1061 1062 /* make sure no one's trying to change or use the key when we mark it 1063 * - we tell lockdep that we might nest because we might be revoking an 1064 * authorisation key whilst holding the sem on a key we've just 1065 * instantiated 1066 */ 1067 down_write_nested(&key->sem, 1); 1068 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) { 1069 notify_key(key, NOTIFY_KEY_REVOKED, 0); 1070 if (key->type->revoke) 1071 key->type->revoke(key); 1072 1073 /* set the death time to no more than the expiry time */ 1074 time = ktime_get_real_seconds(); 1075 if (key->revoked_at == 0 || key->revoked_at > time) { 1076 key->revoked_at = time; 1077 key_schedule_gc(key->revoked_at + key_gc_delay); 1078 } 1079 } 1080 1081 up_write(&key->sem); 1082 } 1083 EXPORT_SYMBOL(key_revoke); 1084 1085 /** 1086 * key_invalidate - Invalidate a key. 1087 * @key: The key to be invalidated. 1088 * 1089 * Mark a key as being invalidated and have it cleaned up immediately. The key 1090 * is ignored by all searches and other operations from this point. 1091 */ 1092 void key_invalidate(struct key *key) 1093 { 1094 kenter("%d", key_serial(key)); 1095 1096 key_check(key); 1097 1098 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1099 down_write_nested(&key->sem, 1); 1100 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1101 notify_key(key, NOTIFY_KEY_INVALIDATED, 0); 1102 key_schedule_gc_links(); 1103 } 1104 up_write(&key->sem); 1105 } 1106 } 1107 EXPORT_SYMBOL(key_invalidate); 1108 1109 /** 1110 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1111 * @key: The key to be instantiated 1112 * @prep: The preparsed data to load. 1113 * 1114 * Instantiate a key from preparsed data. We assume we can just copy the data 1115 * in directly and clear the old pointers. 1116 * 1117 * This can be pointed to directly by the key type instantiate op pointer. 1118 */ 1119 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1120 { 1121 int ret; 1122 1123 pr_devel("==>%s()\n", __func__); 1124 1125 ret = key_payload_reserve(key, prep->quotalen); 1126 if (ret == 0) { 1127 rcu_assign_keypointer(key, prep->payload.data[0]); 1128 key->payload.data[1] = prep->payload.data[1]; 1129 key->payload.data[2] = prep->payload.data[2]; 1130 key->payload.data[3] = prep->payload.data[3]; 1131 prep->payload.data[0] = NULL; 1132 prep->payload.data[1] = NULL; 1133 prep->payload.data[2] = NULL; 1134 prep->payload.data[3] = NULL; 1135 } 1136 pr_devel("<==%s() = %d\n", __func__, ret); 1137 return ret; 1138 } 1139 EXPORT_SYMBOL(generic_key_instantiate); 1140 1141 /** 1142 * register_key_type - Register a type of key. 1143 * @ktype: The new key type. 1144 * 1145 * Register a new key type. 1146 * 1147 * Returns 0 on success or -EEXIST if a type of this name already exists. 1148 */ 1149 int register_key_type(struct key_type *ktype) 1150 { 1151 struct key_type *p; 1152 int ret; 1153 1154 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1155 1156 ret = -EEXIST; 1157 down_write(&key_types_sem); 1158 1159 /* disallow key types with the same name */ 1160 list_for_each_entry(p, &key_types_list, link) { 1161 if (strcmp(p->name, ktype->name) == 0) 1162 goto out; 1163 } 1164 1165 /* store the type */ 1166 list_add(&ktype->link, &key_types_list); 1167 1168 pr_notice("Key type %s registered\n", ktype->name); 1169 ret = 0; 1170 1171 out: 1172 up_write(&key_types_sem); 1173 return ret; 1174 } 1175 EXPORT_SYMBOL(register_key_type); 1176 1177 /** 1178 * unregister_key_type - Unregister a type of key. 1179 * @ktype: The key type. 1180 * 1181 * Unregister a key type and mark all the extant keys of this type as dead. 1182 * Those keys of this type are then destroyed to get rid of their payloads and 1183 * they and their links will be garbage collected as soon as possible. 1184 */ 1185 void unregister_key_type(struct key_type *ktype) 1186 { 1187 down_write(&key_types_sem); 1188 list_del_init(&ktype->link); 1189 downgrade_write(&key_types_sem); 1190 key_gc_keytype(ktype); 1191 pr_notice("Key type %s unregistered\n", ktype->name); 1192 up_read(&key_types_sem); 1193 } 1194 EXPORT_SYMBOL(unregister_key_type); 1195 1196 /* 1197 * Initialise the key management state. 1198 */ 1199 void __init key_init(void) 1200 { 1201 /* allocate a slab in which we can store keys */ 1202 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1203 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1204 1205 /* add the special key types */ 1206 list_add_tail(&key_type_keyring.link, &key_types_list); 1207 list_add_tail(&key_type_dead.link, &key_types_list); 1208 list_add_tail(&key_type_user.link, &key_types_list); 1209 list_add_tail(&key_type_logon.link, &key_types_list); 1210 1211 /* record the root user tracking */ 1212 rb_link_node(&root_key_user.node, 1213 NULL, 1214 &key_user_tree.rb_node); 1215 1216 rb_insert_color(&root_key_user.node, 1217 &key_user_tree); 1218 } 1219