xref: /linux/security/keys/key.c (revision b7df4cc3a088a8ce6973c96731bc792dbf54ce28)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3  *
4  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/err.h>
17 #include "internal.h"
18 
19 struct kmem_cache *key_jar;
20 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
21 DEFINE_SPINLOCK(key_serial_lock);
22 
23 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
24 DEFINE_SPINLOCK(key_user_lock);
25 
26 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
27 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
28 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
29 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
30 
31 static LIST_HEAD(key_types_list);
32 static DECLARE_RWSEM(key_types_sem);
33 
34 /* We serialise key instantiation and link */
35 DEFINE_MUTEX(key_construction_mutex);
36 
37 #ifdef KEY_DEBUGGING
38 void __key_check(const struct key *key)
39 {
40 	printk("__key_check: key %p {%08x} should be {%08x}\n",
41 	       key, key->magic, KEY_DEBUG_MAGIC);
42 	BUG();
43 }
44 #endif
45 
46 /*
47  * Get the key quota record for a user, allocating a new record if one doesn't
48  * already exist.
49  */
50 struct key_user *key_user_lookup(kuid_t uid)
51 {
52 	struct key_user *candidate = NULL, *user;
53 	struct rb_node *parent, **p;
54 
55 try_again:
56 	parent = NULL;
57 	p = &key_user_tree.rb_node;
58 	spin_lock(&key_user_lock);
59 
60 	/* search the tree for a user record with a matching UID */
61 	while (*p) {
62 		parent = *p;
63 		user = rb_entry(parent, struct key_user, node);
64 
65 		if (uid_lt(uid, user->uid))
66 			p = &(*p)->rb_left;
67 		else if (uid_gt(uid, user->uid))
68 			p = &(*p)->rb_right;
69 		else
70 			goto found;
71 	}
72 
73 	/* if we get here, we failed to find a match in the tree */
74 	if (!candidate) {
75 		/* allocate a candidate user record if we don't already have
76 		 * one */
77 		spin_unlock(&key_user_lock);
78 
79 		user = NULL;
80 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
81 		if (unlikely(!candidate))
82 			goto out;
83 
84 		/* the allocation may have scheduled, so we need to repeat the
85 		 * search lest someone else added the record whilst we were
86 		 * asleep */
87 		goto try_again;
88 	}
89 
90 	/* if we get here, then the user record still hadn't appeared on the
91 	 * second pass - so we use the candidate record */
92 	refcount_set(&candidate->usage, 1);
93 	atomic_set(&candidate->nkeys, 0);
94 	atomic_set(&candidate->nikeys, 0);
95 	candidate->uid = uid;
96 	candidate->qnkeys = 0;
97 	candidate->qnbytes = 0;
98 	spin_lock_init(&candidate->lock);
99 	mutex_init(&candidate->cons_lock);
100 
101 	rb_link_node(&candidate->node, parent, p);
102 	rb_insert_color(&candidate->node, &key_user_tree);
103 	spin_unlock(&key_user_lock);
104 	user = candidate;
105 	goto out;
106 
107 	/* okay - we found a user record for this UID */
108 found:
109 	refcount_inc(&user->usage);
110 	spin_unlock(&key_user_lock);
111 	kfree(candidate);
112 out:
113 	return user;
114 }
115 
116 /*
117  * Dispose of a user structure
118  */
119 void key_user_put(struct key_user *user)
120 {
121 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
122 		rb_erase(&user->node, &key_user_tree);
123 		spin_unlock(&key_user_lock);
124 
125 		kfree(user);
126 	}
127 }
128 
129 /*
130  * Allocate a serial number for a key.  These are assigned randomly to avoid
131  * security issues through covert channel problems.
132  */
133 static inline void key_alloc_serial(struct key *key)
134 {
135 	struct rb_node *parent, **p;
136 	struct key *xkey;
137 
138 	/* propose a random serial number and look for a hole for it in the
139 	 * serial number tree */
140 	do {
141 		get_random_bytes(&key->serial, sizeof(key->serial));
142 
143 		key->serial >>= 1; /* negative numbers are not permitted */
144 	} while (key->serial < 3);
145 
146 	spin_lock(&key_serial_lock);
147 
148 attempt_insertion:
149 	parent = NULL;
150 	p = &key_serial_tree.rb_node;
151 
152 	while (*p) {
153 		parent = *p;
154 		xkey = rb_entry(parent, struct key, serial_node);
155 
156 		if (key->serial < xkey->serial)
157 			p = &(*p)->rb_left;
158 		else if (key->serial > xkey->serial)
159 			p = &(*p)->rb_right;
160 		else
161 			goto serial_exists;
162 	}
163 
164 	/* we've found a suitable hole - arrange for this key to occupy it */
165 	rb_link_node(&key->serial_node, parent, p);
166 	rb_insert_color(&key->serial_node, &key_serial_tree);
167 
168 	spin_unlock(&key_serial_lock);
169 	return;
170 
171 	/* we found a key with the proposed serial number - walk the tree from
172 	 * that point looking for the next unused serial number */
173 serial_exists:
174 	for (;;) {
175 		key->serial++;
176 		if (key->serial < 3) {
177 			key->serial = 3;
178 			goto attempt_insertion;
179 		}
180 
181 		parent = rb_next(parent);
182 		if (!parent)
183 			goto attempt_insertion;
184 
185 		xkey = rb_entry(parent, struct key, serial_node);
186 		if (key->serial < xkey->serial)
187 			goto attempt_insertion;
188 	}
189 }
190 
191 /**
192  * key_alloc - Allocate a key of the specified type.
193  * @type: The type of key to allocate.
194  * @desc: The key description to allow the key to be searched out.
195  * @uid: The owner of the new key.
196  * @gid: The group ID for the new key's group permissions.
197  * @cred: The credentials specifying UID namespace.
198  * @perm: The permissions mask of the new key.
199  * @flags: Flags specifying quota properties.
200  * @restrict_link: Optional link restriction for new keyrings.
201  *
202  * Allocate a key of the specified type with the attributes given.  The key is
203  * returned in an uninstantiated state and the caller needs to instantiate the
204  * key before returning.
205  *
206  * The restrict_link structure (if not NULL) will be freed when the
207  * keyring is destroyed, so it must be dynamically allocated.
208  *
209  * The user's key count quota is updated to reflect the creation of the key and
210  * the user's key data quota has the default for the key type reserved.  The
211  * instantiation function should amend this as necessary.  If insufficient
212  * quota is available, -EDQUOT will be returned.
213  *
214  * The LSM security modules can prevent a key being created, in which case
215  * -EACCES will be returned.
216  *
217  * Returns a pointer to the new key if successful and an error code otherwise.
218  *
219  * Note that the caller needs to ensure the key type isn't uninstantiated.
220  * Internally this can be done by locking key_types_sem.  Externally, this can
221  * be done by either never unregistering the key type, or making sure
222  * key_alloc() calls don't race with module unloading.
223  */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 		      kuid_t uid, kgid_t gid, const struct cred *cred,
226 		      key_perm_t perm, unsigned long flags,
227 		      struct key_restriction *restrict_link)
228 {
229 	struct key_user *user = NULL;
230 	struct key *key;
231 	size_t desclen, quotalen;
232 	int ret;
233 
234 	key = ERR_PTR(-EINVAL);
235 	if (!desc || !*desc)
236 		goto error;
237 
238 	if (type->vet_description) {
239 		ret = type->vet_description(desc);
240 		if (ret < 0) {
241 			key = ERR_PTR(ret);
242 			goto error;
243 		}
244 	}
245 
246 	desclen = strlen(desc);
247 	quotalen = desclen + 1 + type->def_datalen;
248 
249 	/* get hold of the key tracking for this user */
250 	user = key_user_lookup(uid);
251 	if (!user)
252 		goto no_memory_1;
253 
254 	/* check that the user's quota permits allocation of another key and
255 	 * its description */
256 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
257 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
258 			key_quota_root_maxkeys : key_quota_maxkeys;
259 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
260 			key_quota_root_maxbytes : key_quota_maxbytes;
261 
262 		spin_lock(&user->lock);
263 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
264 			if (user->qnkeys + 1 > maxkeys ||
265 			    user->qnbytes + quotalen > maxbytes ||
266 			    user->qnbytes + quotalen < user->qnbytes)
267 				goto no_quota;
268 		}
269 
270 		user->qnkeys++;
271 		user->qnbytes += quotalen;
272 		spin_unlock(&user->lock);
273 	}
274 
275 	/* allocate and initialise the key and its description */
276 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
277 	if (!key)
278 		goto no_memory_2;
279 
280 	key->index_key.desc_len = desclen;
281 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282 	if (!key->index_key.description)
283 		goto no_memory_3;
284 	key->index_key.type = type;
285 	key_set_index_key(&key->index_key);
286 
287 	refcount_set(&key->usage, 1);
288 	init_rwsem(&key->sem);
289 	lockdep_set_class(&key->sem, &type->lock_class);
290 	key->user = user;
291 	key->quotalen = quotalen;
292 	key->datalen = type->def_datalen;
293 	key->uid = uid;
294 	key->gid = gid;
295 	key->perm = perm;
296 	key->expiry = TIME64_MAX;
297 	key->restrict_link = restrict_link;
298 	key->last_used_at = ktime_get_real_seconds();
299 
300 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 	if (flags & KEY_ALLOC_BUILT_IN)
303 		key->flags |= 1 << KEY_FLAG_BUILTIN;
304 	if (flags & KEY_ALLOC_UID_KEYRING)
305 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
306 	if (flags & KEY_ALLOC_SET_KEEP)
307 		key->flags |= 1 << KEY_FLAG_KEEP;
308 
309 #ifdef KEY_DEBUGGING
310 	key->magic = KEY_DEBUG_MAGIC;
311 #endif
312 
313 	/* let the security module know about the key */
314 	ret = security_key_alloc(key, cred, flags);
315 	if (ret < 0)
316 		goto security_error;
317 
318 	/* publish the key by giving it a serial number */
319 	refcount_inc(&key->domain_tag->usage);
320 	atomic_inc(&user->nkeys);
321 	key_alloc_serial(key);
322 
323 error:
324 	return key;
325 
326 security_error:
327 	kfree(key->description);
328 	kmem_cache_free(key_jar, key);
329 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
330 		spin_lock(&user->lock);
331 		user->qnkeys--;
332 		user->qnbytes -= quotalen;
333 		spin_unlock(&user->lock);
334 	}
335 	key_user_put(user);
336 	key = ERR_PTR(ret);
337 	goto error;
338 
339 no_memory_3:
340 	kmem_cache_free(key_jar, key);
341 no_memory_2:
342 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
343 		spin_lock(&user->lock);
344 		user->qnkeys--;
345 		user->qnbytes -= quotalen;
346 		spin_unlock(&user->lock);
347 	}
348 	key_user_put(user);
349 no_memory_1:
350 	key = ERR_PTR(-ENOMEM);
351 	goto error;
352 
353 no_quota:
354 	spin_unlock(&user->lock);
355 	key_user_put(user);
356 	key = ERR_PTR(-EDQUOT);
357 	goto error;
358 }
359 EXPORT_SYMBOL(key_alloc);
360 
361 /**
362  * key_payload_reserve - Adjust data quota reservation for the key's payload
363  * @key: The key to make the reservation for.
364  * @datalen: The amount of data payload the caller now wants.
365  *
366  * Adjust the amount of the owning user's key data quota that a key reserves.
367  * If the amount is increased, then -EDQUOT may be returned if there isn't
368  * enough free quota available.
369  *
370  * If successful, 0 is returned.
371  */
372 int key_payload_reserve(struct key *key, size_t datalen)
373 {
374 	int delta = (int)datalen - key->datalen;
375 	int ret = 0;
376 
377 	key_check(key);
378 
379 	/* contemplate the quota adjustment */
380 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
381 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
382 			key_quota_root_maxbytes : key_quota_maxbytes;
383 
384 		spin_lock(&key->user->lock);
385 
386 		if (delta > 0 &&
387 		    (key->user->qnbytes + delta > maxbytes ||
388 		     key->user->qnbytes + delta < key->user->qnbytes)) {
389 			ret = -EDQUOT;
390 		}
391 		else {
392 			key->user->qnbytes += delta;
393 			key->quotalen += delta;
394 		}
395 		spin_unlock(&key->user->lock);
396 	}
397 
398 	/* change the recorded data length if that didn't generate an error */
399 	if (ret == 0)
400 		key->datalen = datalen;
401 
402 	return ret;
403 }
404 EXPORT_SYMBOL(key_payload_reserve);
405 
406 /*
407  * Change the key state to being instantiated.
408  */
409 static void mark_key_instantiated(struct key *key, int reject_error)
410 {
411 	/* Commit the payload before setting the state; barrier versus
412 	 * key_read_state().
413 	 */
414 	smp_store_release(&key->state,
415 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
416 }
417 
418 /*
419  * Instantiate a key and link it into the target keyring atomically.  Must be
420  * called with the target keyring's semaphore writelocked.  The target key's
421  * semaphore need not be locked as instantiation is serialised by
422  * key_construction_mutex.
423  */
424 static int __key_instantiate_and_link(struct key *key,
425 				      struct key_preparsed_payload *prep,
426 				      struct key *keyring,
427 				      struct key *authkey,
428 				      struct assoc_array_edit **_edit)
429 {
430 	int ret, awaken;
431 
432 	key_check(key);
433 	key_check(keyring);
434 
435 	awaken = 0;
436 	ret = -EBUSY;
437 
438 	mutex_lock(&key_construction_mutex);
439 
440 	/* can't instantiate twice */
441 	if (key->state == KEY_IS_UNINSTANTIATED) {
442 		/* instantiate the key */
443 		ret = key->type->instantiate(key, prep);
444 
445 		if (ret == 0) {
446 			/* mark the key as being instantiated */
447 			atomic_inc(&key->user->nikeys);
448 			mark_key_instantiated(key, 0);
449 			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
450 
451 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
452 				awaken = 1;
453 
454 			/* and link it into the destination keyring */
455 			if (keyring) {
456 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
457 					set_bit(KEY_FLAG_KEEP, &key->flags);
458 
459 				__key_link(keyring, key, _edit);
460 			}
461 
462 			/* disable the authorisation key */
463 			if (authkey)
464 				key_invalidate(authkey);
465 
466 			key_set_expiry(key, prep->expiry);
467 		}
468 	}
469 
470 	mutex_unlock(&key_construction_mutex);
471 
472 	/* wake up anyone waiting for a key to be constructed */
473 	if (awaken)
474 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
475 
476 	return ret;
477 }
478 
479 /**
480  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
481  * @key: The key to instantiate.
482  * @data: The data to use to instantiate the keyring.
483  * @datalen: The length of @data.
484  * @keyring: Keyring to create a link in on success (or NULL).
485  * @authkey: The authorisation token permitting instantiation.
486  *
487  * Instantiate a key that's in the uninstantiated state using the provided data
488  * and, if successful, link it in to the destination keyring if one is
489  * supplied.
490  *
491  * If successful, 0 is returned, the authorisation token is revoked and anyone
492  * waiting for the key is woken up.  If the key was already instantiated,
493  * -EBUSY will be returned.
494  */
495 int key_instantiate_and_link(struct key *key,
496 			     const void *data,
497 			     size_t datalen,
498 			     struct key *keyring,
499 			     struct key *authkey)
500 {
501 	struct key_preparsed_payload prep;
502 	struct assoc_array_edit *edit = NULL;
503 	int ret;
504 
505 	memset(&prep, 0, sizeof(prep));
506 	prep.orig_description = key->description;
507 	prep.data = data;
508 	prep.datalen = datalen;
509 	prep.quotalen = key->type->def_datalen;
510 	prep.expiry = TIME64_MAX;
511 	if (key->type->preparse) {
512 		ret = key->type->preparse(&prep);
513 		if (ret < 0)
514 			goto error;
515 	}
516 
517 	if (keyring) {
518 		ret = __key_link_lock(keyring, &key->index_key);
519 		if (ret < 0)
520 			goto error;
521 
522 		ret = __key_link_begin(keyring, &key->index_key, &edit);
523 		if (ret < 0)
524 			goto error_link_end;
525 
526 		if (keyring->restrict_link && keyring->restrict_link->check) {
527 			struct key_restriction *keyres = keyring->restrict_link;
528 
529 			ret = keyres->check(keyring, key->type, &prep.payload,
530 					    keyres->key);
531 			if (ret < 0)
532 				goto error_link_end;
533 		}
534 	}
535 
536 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
537 
538 error_link_end:
539 	if (keyring)
540 		__key_link_end(keyring, &key->index_key, edit);
541 
542 error:
543 	if (key->type->preparse)
544 		key->type->free_preparse(&prep);
545 	return ret;
546 }
547 
548 EXPORT_SYMBOL(key_instantiate_and_link);
549 
550 /**
551  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
552  * @key: The key to instantiate.
553  * @timeout: The timeout on the negative key.
554  * @error: The error to return when the key is hit.
555  * @keyring: Keyring to create a link in on success (or NULL).
556  * @authkey: The authorisation token permitting instantiation.
557  *
558  * Negatively instantiate a key that's in the uninstantiated state and, if
559  * successful, set its timeout and stored error and link it in to the
560  * destination keyring if one is supplied.  The key and any links to the key
561  * will be automatically garbage collected after the timeout expires.
562  *
563  * Negative keys are used to rate limit repeated request_key() calls by causing
564  * them to return the stored error code (typically ENOKEY) until the negative
565  * key expires.
566  *
567  * If successful, 0 is returned, the authorisation token is revoked and anyone
568  * waiting for the key is woken up.  If the key was already instantiated,
569  * -EBUSY will be returned.
570  */
571 int key_reject_and_link(struct key *key,
572 			unsigned timeout,
573 			unsigned error,
574 			struct key *keyring,
575 			struct key *authkey)
576 {
577 	struct assoc_array_edit *edit = NULL;
578 	int ret, awaken, link_ret = 0;
579 
580 	key_check(key);
581 	key_check(keyring);
582 
583 	awaken = 0;
584 	ret = -EBUSY;
585 
586 	if (keyring) {
587 		if (keyring->restrict_link)
588 			return -EPERM;
589 
590 		link_ret = __key_link_lock(keyring, &key->index_key);
591 		if (link_ret == 0) {
592 			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
593 			if (link_ret < 0)
594 				__key_link_end(keyring, &key->index_key, edit);
595 		}
596 	}
597 
598 	mutex_lock(&key_construction_mutex);
599 
600 	/* can't instantiate twice */
601 	if (key->state == KEY_IS_UNINSTANTIATED) {
602 		/* mark the key as being negatively instantiated */
603 		atomic_inc(&key->user->nikeys);
604 		mark_key_instantiated(key, -error);
605 		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
606 		key_set_expiry(key, ktime_get_real_seconds() + timeout);
607 
608 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
609 			awaken = 1;
610 
611 		ret = 0;
612 
613 		/* and link it into the destination keyring */
614 		if (keyring && link_ret == 0)
615 			__key_link(keyring, key, &edit);
616 
617 		/* disable the authorisation key */
618 		if (authkey)
619 			key_invalidate(authkey);
620 	}
621 
622 	mutex_unlock(&key_construction_mutex);
623 
624 	if (keyring && link_ret == 0)
625 		__key_link_end(keyring, &key->index_key, edit);
626 
627 	/* wake up anyone waiting for a key to be constructed */
628 	if (awaken)
629 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
630 
631 	return ret == 0 ? link_ret : ret;
632 }
633 EXPORT_SYMBOL(key_reject_and_link);
634 
635 /**
636  * key_put - Discard a reference to a key.
637  * @key: The key to discard a reference from.
638  *
639  * Discard a reference to a key, and when all the references are gone, we
640  * schedule the cleanup task to come and pull it out of the tree in process
641  * context at some later time.
642  */
643 void key_put(struct key *key)
644 {
645 	if (key) {
646 		key_check(key);
647 
648 		if (refcount_dec_and_test(&key->usage))
649 			schedule_work(&key_gc_work);
650 	}
651 }
652 EXPORT_SYMBOL(key_put);
653 
654 /*
655  * Find a key by its serial number.
656  */
657 struct key *key_lookup(key_serial_t id)
658 {
659 	struct rb_node *n;
660 	struct key *key;
661 
662 	spin_lock(&key_serial_lock);
663 
664 	/* search the tree for the specified key */
665 	n = key_serial_tree.rb_node;
666 	while (n) {
667 		key = rb_entry(n, struct key, serial_node);
668 
669 		if (id < key->serial)
670 			n = n->rb_left;
671 		else if (id > key->serial)
672 			n = n->rb_right;
673 		else
674 			goto found;
675 	}
676 
677 not_found:
678 	key = ERR_PTR(-ENOKEY);
679 	goto error;
680 
681 found:
682 	/* A key is allowed to be looked up only if someone still owns a
683 	 * reference to it - otherwise it's awaiting the gc.
684 	 */
685 	if (!refcount_inc_not_zero(&key->usage))
686 		goto not_found;
687 
688 error:
689 	spin_unlock(&key_serial_lock);
690 	return key;
691 }
692 EXPORT_SYMBOL(key_lookup);
693 
694 /*
695  * Find and lock the specified key type against removal.
696  *
697  * We return with the sem read-locked if successful.  If the type wasn't
698  * available -ENOKEY is returned instead.
699  */
700 struct key_type *key_type_lookup(const char *type)
701 {
702 	struct key_type *ktype;
703 
704 	down_read(&key_types_sem);
705 
706 	/* look up the key type to see if it's one of the registered kernel
707 	 * types */
708 	list_for_each_entry(ktype, &key_types_list, link) {
709 		if (strcmp(ktype->name, type) == 0)
710 			goto found_kernel_type;
711 	}
712 
713 	up_read(&key_types_sem);
714 	ktype = ERR_PTR(-ENOKEY);
715 
716 found_kernel_type:
717 	return ktype;
718 }
719 
720 void key_set_timeout(struct key *key, unsigned timeout)
721 {
722 	time64_t expiry = TIME64_MAX;
723 
724 	/* make the changes with the locks held to prevent races */
725 	down_write(&key->sem);
726 
727 	if (timeout > 0)
728 		expiry = ktime_get_real_seconds() + timeout;
729 	key_set_expiry(key, expiry);
730 
731 	up_write(&key->sem);
732 }
733 EXPORT_SYMBOL_GPL(key_set_timeout);
734 
735 /*
736  * Unlock a key type locked by key_type_lookup().
737  */
738 void key_type_put(struct key_type *ktype)
739 {
740 	up_read(&key_types_sem);
741 }
742 
743 /*
744  * Attempt to update an existing key.
745  *
746  * The key is given to us with an incremented refcount that we need to discard
747  * if we get an error.
748  */
749 static inline key_ref_t __key_update(key_ref_t key_ref,
750 				     struct key_preparsed_payload *prep)
751 {
752 	struct key *key = key_ref_to_ptr(key_ref);
753 	int ret;
754 
755 	/* need write permission on the key to update it */
756 	ret = key_permission(key_ref, KEY_NEED_WRITE);
757 	if (ret < 0)
758 		goto error;
759 
760 	ret = -EEXIST;
761 	if (!key->type->update)
762 		goto error;
763 
764 	down_write(&key->sem);
765 
766 	ret = key->type->update(key, prep);
767 	if (ret == 0) {
768 		/* Updating a negative key positively instantiates it */
769 		mark_key_instantiated(key, 0);
770 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
771 	}
772 
773 	up_write(&key->sem);
774 
775 	if (ret < 0)
776 		goto error;
777 out:
778 	return key_ref;
779 
780 error:
781 	key_put(key);
782 	key_ref = ERR_PTR(ret);
783 	goto out;
784 }
785 
786 /*
787  * Create or potentially update a key. The combined logic behind
788  * key_create_or_update() and key_create()
789  */
790 static key_ref_t __key_create_or_update(key_ref_t keyring_ref,
791 					const char *type,
792 					const char *description,
793 					const void *payload,
794 					size_t plen,
795 					key_perm_t perm,
796 					unsigned long flags,
797 					bool allow_update)
798 {
799 	struct keyring_index_key index_key = {
800 		.description	= description,
801 	};
802 	struct key_preparsed_payload prep;
803 	struct assoc_array_edit *edit = NULL;
804 	const struct cred *cred = current_cred();
805 	struct key *keyring, *key = NULL;
806 	key_ref_t key_ref;
807 	int ret;
808 	struct key_restriction *restrict_link = NULL;
809 
810 	/* look up the key type to see if it's one of the registered kernel
811 	 * types */
812 	index_key.type = key_type_lookup(type);
813 	if (IS_ERR(index_key.type)) {
814 		key_ref = ERR_PTR(-ENODEV);
815 		goto error;
816 	}
817 
818 	key_ref = ERR_PTR(-EINVAL);
819 	if (!index_key.type->instantiate ||
820 	    (!index_key.description && !index_key.type->preparse))
821 		goto error_put_type;
822 
823 	keyring = key_ref_to_ptr(keyring_ref);
824 
825 	key_check(keyring);
826 
827 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
828 		restrict_link = keyring->restrict_link;
829 
830 	key_ref = ERR_PTR(-ENOTDIR);
831 	if (keyring->type != &key_type_keyring)
832 		goto error_put_type;
833 
834 	memset(&prep, 0, sizeof(prep));
835 	prep.orig_description = description;
836 	prep.data = payload;
837 	prep.datalen = plen;
838 	prep.quotalen = index_key.type->def_datalen;
839 	prep.expiry = TIME64_MAX;
840 	if (index_key.type->preparse) {
841 		ret = index_key.type->preparse(&prep);
842 		if (ret < 0) {
843 			key_ref = ERR_PTR(ret);
844 			goto error_free_prep;
845 		}
846 		if (!index_key.description)
847 			index_key.description = prep.description;
848 		key_ref = ERR_PTR(-EINVAL);
849 		if (!index_key.description)
850 			goto error_free_prep;
851 	}
852 	index_key.desc_len = strlen(index_key.description);
853 	key_set_index_key(&index_key);
854 
855 	ret = __key_link_lock(keyring, &index_key);
856 	if (ret < 0) {
857 		key_ref = ERR_PTR(ret);
858 		goto error_free_prep;
859 	}
860 
861 	ret = __key_link_begin(keyring, &index_key, &edit);
862 	if (ret < 0) {
863 		key_ref = ERR_PTR(ret);
864 		goto error_link_end;
865 	}
866 
867 	if (restrict_link && restrict_link->check) {
868 		ret = restrict_link->check(keyring, index_key.type,
869 					   &prep.payload, restrict_link->key);
870 		if (ret < 0) {
871 			key_ref = ERR_PTR(ret);
872 			goto error_link_end;
873 		}
874 	}
875 
876 	/* if we're going to allocate a new key, we're going to have
877 	 * to modify the keyring */
878 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
879 	if (ret < 0) {
880 		key_ref = ERR_PTR(ret);
881 		goto error_link_end;
882 	}
883 
884 	/* if it's requested and possible to update this type of key, search
885 	 * for an existing key of the same type and description in the
886 	 * destination keyring and update that instead if possible
887 	 */
888 	if (allow_update) {
889 		if (index_key.type->update) {
890 			key_ref = find_key_to_update(keyring_ref, &index_key);
891 			if (key_ref)
892 				goto found_matching_key;
893 		}
894 	} else {
895 		key_ref = find_key_to_update(keyring_ref, &index_key);
896 		if (key_ref) {
897 			key_ref_put(key_ref);
898 			key_ref = ERR_PTR(-EEXIST);
899 			goto error_link_end;
900 		}
901 	}
902 
903 	/* if the client doesn't provide, decide on the permissions we want */
904 	if (perm == KEY_PERM_UNDEF) {
905 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
906 		perm |= KEY_USR_VIEW;
907 
908 		if (index_key.type->read)
909 			perm |= KEY_POS_READ;
910 
911 		if (index_key.type == &key_type_keyring ||
912 		    index_key.type->update)
913 			perm |= KEY_POS_WRITE;
914 	}
915 
916 	/* allocate a new key */
917 	key = key_alloc(index_key.type, index_key.description,
918 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
919 	if (IS_ERR(key)) {
920 		key_ref = ERR_CAST(key);
921 		goto error_link_end;
922 	}
923 
924 	/* instantiate it and link it into the target keyring */
925 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
926 	if (ret < 0) {
927 		key_put(key);
928 		key_ref = ERR_PTR(ret);
929 		goto error_link_end;
930 	}
931 
932 	security_key_post_create_or_update(keyring, key, payload, plen, flags,
933 					   true);
934 
935 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
936 
937 error_link_end:
938 	__key_link_end(keyring, &index_key, edit);
939 error_free_prep:
940 	if (index_key.type->preparse)
941 		index_key.type->free_preparse(&prep);
942 error_put_type:
943 	key_type_put(index_key.type);
944 error:
945 	return key_ref;
946 
947  found_matching_key:
948 	/* we found a matching key, so we're going to try to update it
949 	 * - we can drop the locks first as we have the key pinned
950 	 */
951 	__key_link_end(keyring, &index_key, edit);
952 
953 	key = key_ref_to_ptr(key_ref);
954 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
955 		ret = wait_for_key_construction(key, true);
956 		if (ret < 0) {
957 			key_ref_put(key_ref);
958 			key_ref = ERR_PTR(ret);
959 			goto error_free_prep;
960 		}
961 	}
962 
963 	key_ref = __key_update(key_ref, &prep);
964 
965 	if (!IS_ERR(key_ref))
966 		security_key_post_create_or_update(keyring, key, payload, plen,
967 						   flags, false);
968 
969 	goto error_free_prep;
970 }
971 
972 /**
973  * key_create_or_update - Update or create and instantiate a key.
974  * @keyring_ref: A pointer to the destination keyring with possession flag.
975  * @type: The type of key.
976  * @description: The searchable description for the key.
977  * @payload: The data to use to instantiate or update the key.
978  * @plen: The length of @payload.
979  * @perm: The permissions mask for a new key.
980  * @flags: The quota flags for a new key.
981  *
982  * Search the destination keyring for a key of the same description and if one
983  * is found, update it, otherwise create and instantiate a new one and create a
984  * link to it from that keyring.
985  *
986  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
987  * concocted.
988  *
989  * Returns a pointer to the new key if successful, -ENODEV if the key type
990  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
991  * caller isn't permitted to modify the keyring or the LSM did not permit
992  * creation of the key.
993  *
994  * On success, the possession flag from the keyring ref will be tacked on to
995  * the key ref before it is returned.
996  */
997 key_ref_t key_create_or_update(key_ref_t keyring_ref,
998 			       const char *type,
999 			       const char *description,
1000 			       const void *payload,
1001 			       size_t plen,
1002 			       key_perm_t perm,
1003 			       unsigned long flags)
1004 {
1005 	return __key_create_or_update(keyring_ref, type, description, payload,
1006 				      plen, perm, flags, true);
1007 }
1008 EXPORT_SYMBOL(key_create_or_update);
1009 
1010 /**
1011  * key_create - Create and instantiate a key.
1012  * @keyring_ref: A pointer to the destination keyring with possession flag.
1013  * @type: The type of key.
1014  * @description: The searchable description for the key.
1015  * @payload: The data to use to instantiate or update the key.
1016  * @plen: The length of @payload.
1017  * @perm: The permissions mask for a new key.
1018  * @flags: The quota flags for a new key.
1019  *
1020  * Create and instantiate a new key and link to it from the destination keyring.
1021  *
1022  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
1023  * concocted.
1024  *
1025  * Returns a pointer to the new key if successful, -EEXIST if a key with the
1026  * same description already exists, -ENODEV if the key type wasn't available,
1027  * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't
1028  * permitted to modify the keyring or the LSM did not permit creation of the
1029  * key.
1030  *
1031  * On success, the possession flag from the keyring ref will be tacked on to
1032  * the key ref before it is returned.
1033  */
1034 key_ref_t key_create(key_ref_t keyring_ref,
1035 		     const char *type,
1036 		     const char *description,
1037 		     const void *payload,
1038 		     size_t plen,
1039 		     key_perm_t perm,
1040 		     unsigned long flags)
1041 {
1042 	return __key_create_or_update(keyring_ref, type, description, payload,
1043 				      plen, perm, flags, false);
1044 }
1045 EXPORT_SYMBOL(key_create);
1046 
1047 /**
1048  * key_update - Update a key's contents.
1049  * @key_ref: The pointer (plus possession flag) to the key.
1050  * @payload: The data to be used to update the key.
1051  * @plen: The length of @payload.
1052  *
1053  * Attempt to update the contents of a key with the given payload data.  The
1054  * caller must be granted Write permission on the key.  Negative keys can be
1055  * instantiated by this method.
1056  *
1057  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1058  * type does not support updating.  The key type may return other errors.
1059  */
1060 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1061 {
1062 	struct key_preparsed_payload prep;
1063 	struct key *key = key_ref_to_ptr(key_ref);
1064 	int ret;
1065 
1066 	key_check(key);
1067 
1068 	/* the key must be writable */
1069 	ret = key_permission(key_ref, KEY_NEED_WRITE);
1070 	if (ret < 0)
1071 		return ret;
1072 
1073 	/* attempt to update it if supported */
1074 	if (!key->type->update)
1075 		return -EOPNOTSUPP;
1076 
1077 	memset(&prep, 0, sizeof(prep));
1078 	prep.data = payload;
1079 	prep.datalen = plen;
1080 	prep.quotalen = key->type->def_datalen;
1081 	prep.expiry = TIME64_MAX;
1082 	if (key->type->preparse) {
1083 		ret = key->type->preparse(&prep);
1084 		if (ret < 0)
1085 			goto error;
1086 	}
1087 
1088 	down_write(&key->sem);
1089 
1090 	ret = key->type->update(key, &prep);
1091 	if (ret == 0) {
1092 		/* Updating a negative key positively instantiates it */
1093 		mark_key_instantiated(key, 0);
1094 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1095 	}
1096 
1097 	up_write(&key->sem);
1098 
1099 error:
1100 	if (key->type->preparse)
1101 		key->type->free_preparse(&prep);
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL(key_update);
1105 
1106 /**
1107  * key_revoke - Revoke a key.
1108  * @key: The key to be revoked.
1109  *
1110  * Mark a key as being revoked and ask the type to free up its resources.  The
1111  * revocation timeout is set and the key and all its links will be
1112  * automatically garbage collected after key_gc_delay amount of time if they
1113  * are not manually dealt with first.
1114  */
1115 void key_revoke(struct key *key)
1116 {
1117 	time64_t time;
1118 
1119 	key_check(key);
1120 
1121 	/* make sure no one's trying to change or use the key when we mark it
1122 	 * - we tell lockdep that we might nest because we might be revoking an
1123 	 *   authorisation key whilst holding the sem on a key we've just
1124 	 *   instantiated
1125 	 */
1126 	down_write_nested(&key->sem, 1);
1127 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1128 		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1129 		if (key->type->revoke)
1130 			key->type->revoke(key);
1131 
1132 		/* set the death time to no more than the expiry time */
1133 		time = ktime_get_real_seconds();
1134 		if (key->revoked_at == 0 || key->revoked_at > time) {
1135 			key->revoked_at = time;
1136 			key_schedule_gc(key->revoked_at + key_gc_delay);
1137 		}
1138 	}
1139 
1140 	up_write(&key->sem);
1141 }
1142 EXPORT_SYMBOL(key_revoke);
1143 
1144 /**
1145  * key_invalidate - Invalidate a key.
1146  * @key: The key to be invalidated.
1147  *
1148  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1149  * is ignored by all searches and other operations from this point.
1150  */
1151 void key_invalidate(struct key *key)
1152 {
1153 	kenter("%d", key_serial(key));
1154 
1155 	key_check(key);
1156 
1157 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1158 		down_write_nested(&key->sem, 1);
1159 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1160 			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1161 			key_schedule_gc_links();
1162 		}
1163 		up_write(&key->sem);
1164 	}
1165 }
1166 EXPORT_SYMBOL(key_invalidate);
1167 
1168 /**
1169  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1170  * @key: The key to be instantiated
1171  * @prep: The preparsed data to load.
1172  *
1173  * Instantiate a key from preparsed data.  We assume we can just copy the data
1174  * in directly and clear the old pointers.
1175  *
1176  * This can be pointed to directly by the key type instantiate op pointer.
1177  */
1178 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1179 {
1180 	int ret;
1181 
1182 	pr_devel("==>%s()\n", __func__);
1183 
1184 	ret = key_payload_reserve(key, prep->quotalen);
1185 	if (ret == 0) {
1186 		rcu_assign_keypointer(key, prep->payload.data[0]);
1187 		key->payload.data[1] = prep->payload.data[1];
1188 		key->payload.data[2] = prep->payload.data[2];
1189 		key->payload.data[3] = prep->payload.data[3];
1190 		prep->payload.data[0] = NULL;
1191 		prep->payload.data[1] = NULL;
1192 		prep->payload.data[2] = NULL;
1193 		prep->payload.data[3] = NULL;
1194 	}
1195 	pr_devel("<==%s() = %d\n", __func__, ret);
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL(generic_key_instantiate);
1199 
1200 /**
1201  * register_key_type - Register a type of key.
1202  * @ktype: The new key type.
1203  *
1204  * Register a new key type.
1205  *
1206  * Returns 0 on success or -EEXIST if a type of this name already exists.
1207  */
1208 int register_key_type(struct key_type *ktype)
1209 {
1210 	struct key_type *p;
1211 	int ret;
1212 
1213 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1214 
1215 	ret = -EEXIST;
1216 	down_write(&key_types_sem);
1217 
1218 	/* disallow key types with the same name */
1219 	list_for_each_entry(p, &key_types_list, link) {
1220 		if (strcmp(p->name, ktype->name) == 0)
1221 			goto out;
1222 	}
1223 
1224 	/* store the type */
1225 	list_add(&ktype->link, &key_types_list);
1226 
1227 	pr_notice("Key type %s registered\n", ktype->name);
1228 	ret = 0;
1229 
1230 out:
1231 	up_write(&key_types_sem);
1232 	return ret;
1233 }
1234 EXPORT_SYMBOL(register_key_type);
1235 
1236 /**
1237  * unregister_key_type - Unregister a type of key.
1238  * @ktype: The key type.
1239  *
1240  * Unregister a key type and mark all the extant keys of this type as dead.
1241  * Those keys of this type are then destroyed to get rid of their payloads and
1242  * they and their links will be garbage collected as soon as possible.
1243  */
1244 void unregister_key_type(struct key_type *ktype)
1245 {
1246 	down_write(&key_types_sem);
1247 	list_del_init(&ktype->link);
1248 	downgrade_write(&key_types_sem);
1249 	key_gc_keytype(ktype);
1250 	pr_notice("Key type %s unregistered\n", ktype->name);
1251 	up_read(&key_types_sem);
1252 }
1253 EXPORT_SYMBOL(unregister_key_type);
1254 
1255 /*
1256  * Initialise the key management state.
1257  */
1258 void __init key_init(void)
1259 {
1260 	/* allocate a slab in which we can store keys */
1261 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1262 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1263 
1264 	/* add the special key types */
1265 	list_add_tail(&key_type_keyring.link, &key_types_list);
1266 	list_add_tail(&key_type_dead.link, &key_types_list);
1267 	list_add_tail(&key_type_user.link, &key_types_list);
1268 	list_add_tail(&key_type_logon.link, &key_types_list);
1269 
1270 	/* record the root user tracking */
1271 	rb_link_node(&root_key_user.node,
1272 		     NULL,
1273 		     &key_user_tree.rb_node);
1274 
1275 	rb_insert_color(&root_key_user.node,
1276 			&key_user_tree);
1277 }
1278