xref: /linux/security/keys/key.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3  *
4  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/err.h>
17 #include "internal.h"
18 
19 struct kmem_cache *key_jar;
20 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
21 DEFINE_SPINLOCK(key_serial_lock);
22 
23 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
24 DEFINE_SPINLOCK(key_user_lock);
25 
26 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
27 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
28 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
29 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
30 
31 static LIST_HEAD(key_types_list);
32 static DECLARE_RWSEM(key_types_sem);
33 
34 /* We serialise key instantiation and link */
35 DEFINE_MUTEX(key_construction_mutex);
36 
37 #ifdef KEY_DEBUGGING
38 void __key_check(const struct key *key)
39 {
40 	printk("__key_check: key %p {%08x} should be {%08x}\n",
41 	       key, key->magic, KEY_DEBUG_MAGIC);
42 	BUG();
43 }
44 #endif
45 
46 /*
47  * Get the key quota record for a user, allocating a new record if one doesn't
48  * already exist.
49  */
50 struct key_user *key_user_lookup(kuid_t uid)
51 {
52 	struct key_user *candidate = NULL, *user;
53 	struct rb_node *parent, **p;
54 
55 try_again:
56 	parent = NULL;
57 	p = &key_user_tree.rb_node;
58 	spin_lock(&key_user_lock);
59 
60 	/* search the tree for a user record with a matching UID */
61 	while (*p) {
62 		parent = *p;
63 		user = rb_entry(parent, struct key_user, node);
64 
65 		if (uid_lt(uid, user->uid))
66 			p = &(*p)->rb_left;
67 		else if (uid_gt(uid, user->uid))
68 			p = &(*p)->rb_right;
69 		else
70 			goto found;
71 	}
72 
73 	/* if we get here, we failed to find a match in the tree */
74 	if (!candidate) {
75 		/* allocate a candidate user record if we don't already have
76 		 * one */
77 		spin_unlock(&key_user_lock);
78 
79 		user = NULL;
80 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
81 		if (unlikely(!candidate))
82 			goto out;
83 
84 		/* the allocation may have scheduled, so we need to repeat the
85 		 * search lest someone else added the record whilst we were
86 		 * asleep */
87 		goto try_again;
88 	}
89 
90 	/* if we get here, then the user record still hadn't appeared on the
91 	 * second pass - so we use the candidate record */
92 	refcount_set(&candidate->usage, 1);
93 	atomic_set(&candidate->nkeys, 0);
94 	atomic_set(&candidate->nikeys, 0);
95 	candidate->uid = uid;
96 	candidate->qnkeys = 0;
97 	candidate->qnbytes = 0;
98 	spin_lock_init(&candidate->lock);
99 	mutex_init(&candidate->cons_lock);
100 
101 	rb_link_node(&candidate->node, parent, p);
102 	rb_insert_color(&candidate->node, &key_user_tree);
103 	spin_unlock(&key_user_lock);
104 	user = candidate;
105 	goto out;
106 
107 	/* okay - we found a user record for this UID */
108 found:
109 	refcount_inc(&user->usage);
110 	spin_unlock(&key_user_lock);
111 	kfree(candidate);
112 out:
113 	return user;
114 }
115 
116 /*
117  * Dispose of a user structure
118  */
119 void key_user_put(struct key_user *user)
120 {
121 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
122 		rb_erase(&user->node, &key_user_tree);
123 		spin_unlock(&key_user_lock);
124 
125 		kfree(user);
126 	}
127 }
128 
129 /*
130  * Allocate a serial number for a key.  These are assigned randomly to avoid
131  * security issues through covert channel problems.
132  */
133 static inline void key_alloc_serial(struct key *key)
134 {
135 	struct rb_node *parent, **p;
136 	struct key *xkey;
137 
138 	/* propose a random serial number and look for a hole for it in the
139 	 * serial number tree */
140 	do {
141 		get_random_bytes(&key->serial, sizeof(key->serial));
142 
143 		key->serial >>= 1; /* negative numbers are not permitted */
144 	} while (key->serial < 3);
145 
146 	spin_lock(&key_serial_lock);
147 
148 attempt_insertion:
149 	parent = NULL;
150 	p = &key_serial_tree.rb_node;
151 
152 	while (*p) {
153 		parent = *p;
154 		xkey = rb_entry(parent, struct key, serial_node);
155 
156 		if (key->serial < xkey->serial)
157 			p = &(*p)->rb_left;
158 		else if (key->serial > xkey->serial)
159 			p = &(*p)->rb_right;
160 		else
161 			goto serial_exists;
162 	}
163 
164 	/* we've found a suitable hole - arrange for this key to occupy it */
165 	rb_link_node(&key->serial_node, parent, p);
166 	rb_insert_color(&key->serial_node, &key_serial_tree);
167 
168 	spin_unlock(&key_serial_lock);
169 	return;
170 
171 	/* we found a key with the proposed serial number - walk the tree from
172 	 * that point looking for the next unused serial number */
173 serial_exists:
174 	for (;;) {
175 		key->serial++;
176 		if (key->serial < 3) {
177 			key->serial = 3;
178 			goto attempt_insertion;
179 		}
180 
181 		parent = rb_next(parent);
182 		if (!parent)
183 			goto attempt_insertion;
184 
185 		xkey = rb_entry(parent, struct key, serial_node);
186 		if (key->serial < xkey->serial)
187 			goto attempt_insertion;
188 	}
189 }
190 
191 /**
192  * key_alloc - Allocate a key of the specified type.
193  * @type: The type of key to allocate.
194  * @desc: The key description to allow the key to be searched out.
195  * @uid: The owner of the new key.
196  * @gid: The group ID for the new key's group permissions.
197  * @cred: The credentials specifying UID namespace.
198  * @perm: The permissions mask of the new key.
199  * @flags: Flags specifying quota properties.
200  * @restrict_link: Optional link restriction for new keyrings.
201  *
202  * Allocate a key of the specified type with the attributes given.  The key is
203  * returned in an uninstantiated state and the caller needs to instantiate the
204  * key before returning.
205  *
206  * The restrict_link structure (if not NULL) will be freed when the
207  * keyring is destroyed, so it must be dynamically allocated.
208  *
209  * The user's key count quota is updated to reflect the creation of the key and
210  * the user's key data quota has the default for the key type reserved.  The
211  * instantiation function should amend this as necessary.  If insufficient
212  * quota is available, -EDQUOT will be returned.
213  *
214  * The LSM security modules can prevent a key being created, in which case
215  * -EACCES will be returned.
216  *
217  * Returns a pointer to the new key if successful and an error code otherwise.
218  *
219  * Note that the caller needs to ensure the key type isn't uninstantiated.
220  * Internally this can be done by locking key_types_sem.  Externally, this can
221  * be done by either never unregistering the key type, or making sure
222  * key_alloc() calls don't race with module unloading.
223  */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 		      kuid_t uid, kgid_t gid, const struct cred *cred,
226 		      key_perm_t perm, unsigned long flags,
227 		      struct key_restriction *restrict_link)
228 {
229 	struct key_user *user = NULL;
230 	struct key *key;
231 	size_t desclen, quotalen;
232 	int ret;
233 
234 	key = ERR_PTR(-EINVAL);
235 	if (!desc || !*desc)
236 		goto error;
237 
238 	if (type->vet_description) {
239 		ret = type->vet_description(desc);
240 		if (ret < 0) {
241 			key = ERR_PTR(ret);
242 			goto error;
243 		}
244 	}
245 
246 	desclen = strlen(desc);
247 	quotalen = desclen + 1 + type->def_datalen;
248 
249 	/* get hold of the key tracking for this user */
250 	user = key_user_lookup(uid);
251 	if (!user)
252 		goto no_memory_1;
253 
254 	/* check that the user's quota permits allocation of another key and
255 	 * its description */
256 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
257 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
258 			key_quota_root_maxkeys : key_quota_maxkeys;
259 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
260 			key_quota_root_maxbytes : key_quota_maxbytes;
261 
262 		spin_lock(&user->lock);
263 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
264 			if (user->qnkeys + 1 > maxkeys ||
265 			    user->qnbytes + quotalen > maxbytes ||
266 			    user->qnbytes + quotalen < user->qnbytes)
267 				goto no_quota;
268 		}
269 
270 		user->qnkeys++;
271 		user->qnbytes += quotalen;
272 		spin_unlock(&user->lock);
273 	}
274 
275 	/* allocate and initialise the key and its description */
276 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
277 	if (!key)
278 		goto no_memory_2;
279 
280 	key->index_key.desc_len = desclen;
281 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282 	if (!key->index_key.description)
283 		goto no_memory_3;
284 
285 	refcount_set(&key->usage, 1);
286 	init_rwsem(&key->sem);
287 	lockdep_set_class(&key->sem, &type->lock_class);
288 	key->index_key.type = type;
289 	key->user = user;
290 	key->quotalen = quotalen;
291 	key->datalen = type->def_datalen;
292 	key->uid = uid;
293 	key->gid = gid;
294 	key->perm = perm;
295 	key->restrict_link = restrict_link;
296 	key->last_used_at = ktime_get_real_seconds();
297 
298 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
299 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
300 	if (flags & KEY_ALLOC_BUILT_IN)
301 		key->flags |= 1 << KEY_FLAG_BUILTIN;
302 	if (flags & KEY_ALLOC_UID_KEYRING)
303 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
304 
305 #ifdef KEY_DEBUGGING
306 	key->magic = KEY_DEBUG_MAGIC;
307 #endif
308 
309 	/* let the security module know about the key */
310 	ret = security_key_alloc(key, cred, flags);
311 	if (ret < 0)
312 		goto security_error;
313 
314 	/* publish the key by giving it a serial number */
315 	atomic_inc(&user->nkeys);
316 	key_alloc_serial(key);
317 
318 error:
319 	return key;
320 
321 security_error:
322 	kfree(key->description);
323 	kmem_cache_free(key_jar, key);
324 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
325 		spin_lock(&user->lock);
326 		user->qnkeys--;
327 		user->qnbytes -= quotalen;
328 		spin_unlock(&user->lock);
329 	}
330 	key_user_put(user);
331 	key = ERR_PTR(ret);
332 	goto error;
333 
334 no_memory_3:
335 	kmem_cache_free(key_jar, key);
336 no_memory_2:
337 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
338 		spin_lock(&user->lock);
339 		user->qnkeys--;
340 		user->qnbytes -= quotalen;
341 		spin_unlock(&user->lock);
342 	}
343 	key_user_put(user);
344 no_memory_1:
345 	key = ERR_PTR(-ENOMEM);
346 	goto error;
347 
348 no_quota:
349 	spin_unlock(&user->lock);
350 	key_user_put(user);
351 	key = ERR_PTR(-EDQUOT);
352 	goto error;
353 }
354 EXPORT_SYMBOL(key_alloc);
355 
356 /**
357  * key_payload_reserve - Adjust data quota reservation for the key's payload
358  * @key: The key to make the reservation for.
359  * @datalen: The amount of data payload the caller now wants.
360  *
361  * Adjust the amount of the owning user's key data quota that a key reserves.
362  * If the amount is increased, then -EDQUOT may be returned if there isn't
363  * enough free quota available.
364  *
365  * If successful, 0 is returned.
366  */
367 int key_payload_reserve(struct key *key, size_t datalen)
368 {
369 	int delta = (int)datalen - key->datalen;
370 	int ret = 0;
371 
372 	key_check(key);
373 
374 	/* contemplate the quota adjustment */
375 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
376 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
377 			key_quota_root_maxbytes : key_quota_maxbytes;
378 
379 		spin_lock(&key->user->lock);
380 
381 		if (delta > 0 &&
382 		    (key->user->qnbytes + delta >= maxbytes ||
383 		     key->user->qnbytes + delta < key->user->qnbytes)) {
384 			ret = -EDQUOT;
385 		}
386 		else {
387 			key->user->qnbytes += delta;
388 			key->quotalen += delta;
389 		}
390 		spin_unlock(&key->user->lock);
391 	}
392 
393 	/* change the recorded data length if that didn't generate an error */
394 	if (ret == 0)
395 		key->datalen = datalen;
396 
397 	return ret;
398 }
399 EXPORT_SYMBOL(key_payload_reserve);
400 
401 /*
402  * Change the key state to being instantiated.
403  */
404 static void mark_key_instantiated(struct key *key, int reject_error)
405 {
406 	/* Commit the payload before setting the state; barrier versus
407 	 * key_read_state().
408 	 */
409 	smp_store_release(&key->state,
410 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
411 }
412 
413 /*
414  * Instantiate a key and link it into the target keyring atomically.  Must be
415  * called with the target keyring's semaphore writelocked.  The target key's
416  * semaphore need not be locked as instantiation is serialised by
417  * key_construction_mutex.
418  */
419 static int __key_instantiate_and_link(struct key *key,
420 				      struct key_preparsed_payload *prep,
421 				      struct key *keyring,
422 				      struct key *authkey,
423 				      struct assoc_array_edit **_edit)
424 {
425 	int ret, awaken;
426 
427 	key_check(key);
428 	key_check(keyring);
429 
430 	awaken = 0;
431 	ret = -EBUSY;
432 
433 	mutex_lock(&key_construction_mutex);
434 
435 	/* can't instantiate twice */
436 	if (key->state == KEY_IS_UNINSTANTIATED) {
437 		/* instantiate the key */
438 		ret = key->type->instantiate(key, prep);
439 
440 		if (ret == 0) {
441 			/* mark the key as being instantiated */
442 			atomic_inc(&key->user->nikeys);
443 			mark_key_instantiated(key, 0);
444 
445 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
446 				awaken = 1;
447 
448 			/* and link it into the destination keyring */
449 			if (keyring) {
450 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
451 					set_bit(KEY_FLAG_KEEP, &key->flags);
452 
453 				__key_link(key, _edit);
454 			}
455 
456 			/* disable the authorisation key */
457 			if (authkey)
458 				key_revoke(authkey);
459 
460 			if (prep->expiry != TIME64_MAX) {
461 				key->expiry = prep->expiry;
462 				key_schedule_gc(prep->expiry + key_gc_delay);
463 			}
464 		}
465 	}
466 
467 	mutex_unlock(&key_construction_mutex);
468 
469 	/* wake up anyone waiting for a key to be constructed */
470 	if (awaken)
471 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
472 
473 	return ret;
474 }
475 
476 /**
477  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
478  * @key: The key to instantiate.
479  * @data: The data to use to instantiate the keyring.
480  * @datalen: The length of @data.
481  * @keyring: Keyring to create a link in on success (or NULL).
482  * @authkey: The authorisation token permitting instantiation.
483  *
484  * Instantiate a key that's in the uninstantiated state using the provided data
485  * and, if successful, link it in to the destination keyring if one is
486  * supplied.
487  *
488  * If successful, 0 is returned, the authorisation token is revoked and anyone
489  * waiting for the key is woken up.  If the key was already instantiated,
490  * -EBUSY will be returned.
491  */
492 int key_instantiate_and_link(struct key *key,
493 			     const void *data,
494 			     size_t datalen,
495 			     struct key *keyring,
496 			     struct key *authkey)
497 {
498 	struct key_preparsed_payload prep;
499 	struct assoc_array_edit *edit;
500 	int ret;
501 
502 	memset(&prep, 0, sizeof(prep));
503 	prep.data = data;
504 	prep.datalen = datalen;
505 	prep.quotalen = key->type->def_datalen;
506 	prep.expiry = TIME64_MAX;
507 	if (key->type->preparse) {
508 		ret = key->type->preparse(&prep);
509 		if (ret < 0)
510 			goto error;
511 	}
512 
513 	if (keyring) {
514 		ret = __key_link_begin(keyring, &key->index_key, &edit);
515 		if (ret < 0)
516 			goto error;
517 
518 		if (keyring->restrict_link && keyring->restrict_link->check) {
519 			struct key_restriction *keyres = keyring->restrict_link;
520 
521 			ret = keyres->check(keyring, key->type, &prep.payload,
522 					    keyres->key);
523 			if (ret < 0)
524 				goto error_link_end;
525 		}
526 	}
527 
528 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
529 
530 error_link_end:
531 	if (keyring)
532 		__key_link_end(keyring, &key->index_key, edit);
533 
534 error:
535 	if (key->type->preparse)
536 		key->type->free_preparse(&prep);
537 	return ret;
538 }
539 
540 EXPORT_SYMBOL(key_instantiate_and_link);
541 
542 /**
543  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
544  * @key: The key to instantiate.
545  * @timeout: The timeout on the negative key.
546  * @error: The error to return when the key is hit.
547  * @keyring: Keyring to create a link in on success (or NULL).
548  * @authkey: The authorisation token permitting instantiation.
549  *
550  * Negatively instantiate a key that's in the uninstantiated state and, if
551  * successful, set its timeout and stored error and link it in to the
552  * destination keyring if one is supplied.  The key and any links to the key
553  * will be automatically garbage collected after the timeout expires.
554  *
555  * Negative keys are used to rate limit repeated request_key() calls by causing
556  * them to return the stored error code (typically ENOKEY) until the negative
557  * key expires.
558  *
559  * If successful, 0 is returned, the authorisation token is revoked and anyone
560  * waiting for the key is woken up.  If the key was already instantiated,
561  * -EBUSY will be returned.
562  */
563 int key_reject_and_link(struct key *key,
564 			unsigned timeout,
565 			unsigned error,
566 			struct key *keyring,
567 			struct key *authkey)
568 {
569 	struct assoc_array_edit *edit;
570 	int ret, awaken, link_ret = 0;
571 
572 	key_check(key);
573 	key_check(keyring);
574 
575 	awaken = 0;
576 	ret = -EBUSY;
577 
578 	if (keyring) {
579 		if (keyring->restrict_link)
580 			return -EPERM;
581 
582 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
583 	}
584 
585 	mutex_lock(&key_construction_mutex);
586 
587 	/* can't instantiate twice */
588 	if (key->state == KEY_IS_UNINSTANTIATED) {
589 		/* mark the key as being negatively instantiated */
590 		atomic_inc(&key->user->nikeys);
591 		mark_key_instantiated(key, -error);
592 		key->expiry = ktime_get_real_seconds() + timeout;
593 		key_schedule_gc(key->expiry + key_gc_delay);
594 
595 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
596 			awaken = 1;
597 
598 		ret = 0;
599 
600 		/* and link it into the destination keyring */
601 		if (keyring && link_ret == 0)
602 			__key_link(key, &edit);
603 
604 		/* disable the authorisation key */
605 		if (authkey)
606 			key_revoke(authkey);
607 	}
608 
609 	mutex_unlock(&key_construction_mutex);
610 
611 	if (keyring && link_ret == 0)
612 		__key_link_end(keyring, &key->index_key, edit);
613 
614 	/* wake up anyone waiting for a key to be constructed */
615 	if (awaken)
616 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
617 
618 	return ret == 0 ? link_ret : ret;
619 }
620 EXPORT_SYMBOL(key_reject_and_link);
621 
622 /**
623  * key_put - Discard a reference to a key.
624  * @key: The key to discard a reference from.
625  *
626  * Discard a reference to a key, and when all the references are gone, we
627  * schedule the cleanup task to come and pull it out of the tree in process
628  * context at some later time.
629  */
630 void key_put(struct key *key)
631 {
632 	if (key) {
633 		key_check(key);
634 
635 		if (refcount_dec_and_test(&key->usage))
636 			schedule_work(&key_gc_work);
637 	}
638 }
639 EXPORT_SYMBOL(key_put);
640 
641 /*
642  * Find a key by its serial number.
643  */
644 struct key *key_lookup(key_serial_t id)
645 {
646 	struct rb_node *n;
647 	struct key *key;
648 
649 	spin_lock(&key_serial_lock);
650 
651 	/* search the tree for the specified key */
652 	n = key_serial_tree.rb_node;
653 	while (n) {
654 		key = rb_entry(n, struct key, serial_node);
655 
656 		if (id < key->serial)
657 			n = n->rb_left;
658 		else if (id > key->serial)
659 			n = n->rb_right;
660 		else
661 			goto found;
662 	}
663 
664 not_found:
665 	key = ERR_PTR(-ENOKEY);
666 	goto error;
667 
668 found:
669 	/* A key is allowed to be looked up only if someone still owns a
670 	 * reference to it - otherwise it's awaiting the gc.
671 	 */
672 	if (!refcount_inc_not_zero(&key->usage))
673 		goto not_found;
674 
675 error:
676 	spin_unlock(&key_serial_lock);
677 	return key;
678 }
679 
680 /*
681  * Find and lock the specified key type against removal.
682  *
683  * We return with the sem read-locked if successful.  If the type wasn't
684  * available -ENOKEY is returned instead.
685  */
686 struct key_type *key_type_lookup(const char *type)
687 {
688 	struct key_type *ktype;
689 
690 	down_read(&key_types_sem);
691 
692 	/* look up the key type to see if it's one of the registered kernel
693 	 * types */
694 	list_for_each_entry(ktype, &key_types_list, link) {
695 		if (strcmp(ktype->name, type) == 0)
696 			goto found_kernel_type;
697 	}
698 
699 	up_read(&key_types_sem);
700 	ktype = ERR_PTR(-ENOKEY);
701 
702 found_kernel_type:
703 	return ktype;
704 }
705 
706 void key_set_timeout(struct key *key, unsigned timeout)
707 {
708 	time64_t expiry = 0;
709 
710 	/* make the changes with the locks held to prevent races */
711 	down_write(&key->sem);
712 
713 	if (timeout > 0)
714 		expiry = ktime_get_real_seconds() + timeout;
715 
716 	key->expiry = expiry;
717 	key_schedule_gc(key->expiry + key_gc_delay);
718 
719 	up_write(&key->sem);
720 }
721 EXPORT_SYMBOL_GPL(key_set_timeout);
722 
723 /*
724  * Unlock a key type locked by key_type_lookup().
725  */
726 void key_type_put(struct key_type *ktype)
727 {
728 	up_read(&key_types_sem);
729 }
730 
731 /*
732  * Attempt to update an existing key.
733  *
734  * The key is given to us with an incremented refcount that we need to discard
735  * if we get an error.
736  */
737 static inline key_ref_t __key_update(key_ref_t key_ref,
738 				     struct key_preparsed_payload *prep)
739 {
740 	struct key *key = key_ref_to_ptr(key_ref);
741 	int ret;
742 
743 	/* need write permission on the key to update it */
744 	ret = key_permission(key_ref, KEY_NEED_WRITE);
745 	if (ret < 0)
746 		goto error;
747 
748 	ret = -EEXIST;
749 	if (!key->type->update)
750 		goto error;
751 
752 	down_write(&key->sem);
753 
754 	ret = key->type->update(key, prep);
755 	if (ret == 0)
756 		/* Updating a negative key positively instantiates it */
757 		mark_key_instantiated(key, 0);
758 
759 	up_write(&key->sem);
760 
761 	if (ret < 0)
762 		goto error;
763 out:
764 	return key_ref;
765 
766 error:
767 	key_put(key);
768 	key_ref = ERR_PTR(ret);
769 	goto out;
770 }
771 
772 /**
773  * key_create_or_update - Update or create and instantiate a key.
774  * @keyring_ref: A pointer to the destination keyring with possession flag.
775  * @type: The type of key.
776  * @description: The searchable description for the key.
777  * @payload: The data to use to instantiate or update the key.
778  * @plen: The length of @payload.
779  * @perm: The permissions mask for a new key.
780  * @flags: The quota flags for a new key.
781  *
782  * Search the destination keyring for a key of the same description and if one
783  * is found, update it, otherwise create and instantiate a new one and create a
784  * link to it from that keyring.
785  *
786  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
787  * concocted.
788  *
789  * Returns a pointer to the new key if successful, -ENODEV if the key type
790  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
791  * caller isn't permitted to modify the keyring or the LSM did not permit
792  * creation of the key.
793  *
794  * On success, the possession flag from the keyring ref will be tacked on to
795  * the key ref before it is returned.
796  */
797 key_ref_t key_create_or_update(key_ref_t keyring_ref,
798 			       const char *type,
799 			       const char *description,
800 			       const void *payload,
801 			       size_t plen,
802 			       key_perm_t perm,
803 			       unsigned long flags)
804 {
805 	struct keyring_index_key index_key = {
806 		.description	= description,
807 	};
808 	struct key_preparsed_payload prep;
809 	struct assoc_array_edit *edit;
810 	const struct cred *cred = current_cred();
811 	struct key *keyring, *key = NULL;
812 	key_ref_t key_ref;
813 	int ret;
814 	struct key_restriction *restrict_link = NULL;
815 
816 	/* look up the key type to see if it's one of the registered kernel
817 	 * types */
818 	index_key.type = key_type_lookup(type);
819 	if (IS_ERR(index_key.type)) {
820 		key_ref = ERR_PTR(-ENODEV);
821 		goto error;
822 	}
823 
824 	key_ref = ERR_PTR(-EINVAL);
825 	if (!index_key.type->instantiate ||
826 	    (!index_key.description && !index_key.type->preparse))
827 		goto error_put_type;
828 
829 	keyring = key_ref_to_ptr(keyring_ref);
830 
831 	key_check(keyring);
832 
833 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
834 		restrict_link = keyring->restrict_link;
835 
836 	key_ref = ERR_PTR(-ENOTDIR);
837 	if (keyring->type != &key_type_keyring)
838 		goto error_put_type;
839 
840 	memset(&prep, 0, sizeof(prep));
841 	prep.data = payload;
842 	prep.datalen = plen;
843 	prep.quotalen = index_key.type->def_datalen;
844 	prep.expiry = TIME64_MAX;
845 	if (index_key.type->preparse) {
846 		ret = index_key.type->preparse(&prep);
847 		if (ret < 0) {
848 			key_ref = ERR_PTR(ret);
849 			goto error_free_prep;
850 		}
851 		if (!index_key.description)
852 			index_key.description = prep.description;
853 		key_ref = ERR_PTR(-EINVAL);
854 		if (!index_key.description)
855 			goto error_free_prep;
856 	}
857 	index_key.desc_len = strlen(index_key.description);
858 
859 	ret = __key_link_begin(keyring, &index_key, &edit);
860 	if (ret < 0) {
861 		key_ref = ERR_PTR(ret);
862 		goto error_free_prep;
863 	}
864 
865 	if (restrict_link && restrict_link->check) {
866 		ret = restrict_link->check(keyring, index_key.type,
867 					   &prep.payload, restrict_link->key);
868 		if (ret < 0) {
869 			key_ref = ERR_PTR(ret);
870 			goto error_link_end;
871 		}
872 	}
873 
874 	/* if we're going to allocate a new key, we're going to have
875 	 * to modify the keyring */
876 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
877 	if (ret < 0) {
878 		key_ref = ERR_PTR(ret);
879 		goto error_link_end;
880 	}
881 
882 	/* if it's possible to update this type of key, search for an existing
883 	 * key of the same type and description in the destination keyring and
884 	 * update that instead if possible
885 	 */
886 	if (index_key.type->update) {
887 		key_ref = find_key_to_update(keyring_ref, &index_key);
888 		if (key_ref)
889 			goto found_matching_key;
890 	}
891 
892 	/* if the client doesn't provide, decide on the permissions we want */
893 	if (perm == KEY_PERM_UNDEF) {
894 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
895 		perm |= KEY_USR_VIEW;
896 
897 		if (index_key.type->read)
898 			perm |= KEY_POS_READ;
899 
900 		if (index_key.type == &key_type_keyring ||
901 		    index_key.type->update)
902 			perm |= KEY_POS_WRITE;
903 	}
904 
905 	/* allocate a new key */
906 	key = key_alloc(index_key.type, index_key.description,
907 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
908 	if (IS_ERR(key)) {
909 		key_ref = ERR_CAST(key);
910 		goto error_link_end;
911 	}
912 
913 	/* instantiate it and link it into the target keyring */
914 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
915 	if (ret < 0) {
916 		key_put(key);
917 		key_ref = ERR_PTR(ret);
918 		goto error_link_end;
919 	}
920 
921 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
922 
923 error_link_end:
924 	__key_link_end(keyring, &index_key, edit);
925 error_free_prep:
926 	if (index_key.type->preparse)
927 		index_key.type->free_preparse(&prep);
928 error_put_type:
929 	key_type_put(index_key.type);
930 error:
931 	return key_ref;
932 
933  found_matching_key:
934 	/* we found a matching key, so we're going to try to update it
935 	 * - we can drop the locks first as we have the key pinned
936 	 */
937 	__key_link_end(keyring, &index_key, edit);
938 
939 	key = key_ref_to_ptr(key_ref);
940 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
941 		ret = wait_for_key_construction(key, true);
942 		if (ret < 0) {
943 			key_ref_put(key_ref);
944 			key_ref = ERR_PTR(ret);
945 			goto error_free_prep;
946 		}
947 	}
948 
949 	key_ref = __key_update(key_ref, &prep);
950 	goto error_free_prep;
951 }
952 EXPORT_SYMBOL(key_create_or_update);
953 
954 /**
955  * key_update - Update a key's contents.
956  * @key_ref: The pointer (plus possession flag) to the key.
957  * @payload: The data to be used to update the key.
958  * @plen: The length of @payload.
959  *
960  * Attempt to update the contents of a key with the given payload data.  The
961  * caller must be granted Write permission on the key.  Negative keys can be
962  * instantiated by this method.
963  *
964  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
965  * type does not support updating.  The key type may return other errors.
966  */
967 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
968 {
969 	struct key_preparsed_payload prep;
970 	struct key *key = key_ref_to_ptr(key_ref);
971 	int ret;
972 
973 	key_check(key);
974 
975 	/* the key must be writable */
976 	ret = key_permission(key_ref, KEY_NEED_WRITE);
977 	if (ret < 0)
978 		return ret;
979 
980 	/* attempt to update it if supported */
981 	if (!key->type->update)
982 		return -EOPNOTSUPP;
983 
984 	memset(&prep, 0, sizeof(prep));
985 	prep.data = payload;
986 	prep.datalen = plen;
987 	prep.quotalen = key->type->def_datalen;
988 	prep.expiry = TIME64_MAX;
989 	if (key->type->preparse) {
990 		ret = key->type->preparse(&prep);
991 		if (ret < 0)
992 			goto error;
993 	}
994 
995 	down_write(&key->sem);
996 
997 	ret = key->type->update(key, &prep);
998 	if (ret == 0)
999 		/* Updating a negative key positively instantiates it */
1000 		mark_key_instantiated(key, 0);
1001 
1002 	up_write(&key->sem);
1003 
1004 error:
1005 	if (key->type->preparse)
1006 		key->type->free_preparse(&prep);
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL(key_update);
1010 
1011 /**
1012  * key_revoke - Revoke a key.
1013  * @key: The key to be revoked.
1014  *
1015  * Mark a key as being revoked and ask the type to free up its resources.  The
1016  * revocation timeout is set and the key and all its links will be
1017  * automatically garbage collected after key_gc_delay amount of time if they
1018  * are not manually dealt with first.
1019  */
1020 void key_revoke(struct key *key)
1021 {
1022 	time64_t time;
1023 
1024 	key_check(key);
1025 
1026 	/* make sure no one's trying to change or use the key when we mark it
1027 	 * - we tell lockdep that we might nest because we might be revoking an
1028 	 *   authorisation key whilst holding the sem on a key we've just
1029 	 *   instantiated
1030 	 */
1031 	down_write_nested(&key->sem, 1);
1032 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1033 	    key->type->revoke)
1034 		key->type->revoke(key);
1035 
1036 	/* set the death time to no more than the expiry time */
1037 	time = ktime_get_real_seconds();
1038 	if (key->revoked_at == 0 || key->revoked_at > time) {
1039 		key->revoked_at = time;
1040 		key_schedule_gc(key->revoked_at + key_gc_delay);
1041 	}
1042 
1043 	up_write(&key->sem);
1044 }
1045 EXPORT_SYMBOL(key_revoke);
1046 
1047 /**
1048  * key_invalidate - Invalidate a key.
1049  * @key: The key to be invalidated.
1050  *
1051  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1052  * is ignored by all searches and other operations from this point.
1053  */
1054 void key_invalidate(struct key *key)
1055 {
1056 	kenter("%d", key_serial(key));
1057 
1058 	key_check(key);
1059 
1060 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1061 		down_write_nested(&key->sem, 1);
1062 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1063 			key_schedule_gc_links();
1064 		up_write(&key->sem);
1065 	}
1066 }
1067 EXPORT_SYMBOL(key_invalidate);
1068 
1069 /**
1070  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1071  * @key: The key to be instantiated
1072  * @prep: The preparsed data to load.
1073  *
1074  * Instantiate a key from preparsed data.  We assume we can just copy the data
1075  * in directly and clear the old pointers.
1076  *
1077  * This can be pointed to directly by the key type instantiate op pointer.
1078  */
1079 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1080 {
1081 	int ret;
1082 
1083 	pr_devel("==>%s()\n", __func__);
1084 
1085 	ret = key_payload_reserve(key, prep->quotalen);
1086 	if (ret == 0) {
1087 		rcu_assign_keypointer(key, prep->payload.data[0]);
1088 		key->payload.data[1] = prep->payload.data[1];
1089 		key->payload.data[2] = prep->payload.data[2];
1090 		key->payload.data[3] = prep->payload.data[3];
1091 		prep->payload.data[0] = NULL;
1092 		prep->payload.data[1] = NULL;
1093 		prep->payload.data[2] = NULL;
1094 		prep->payload.data[3] = NULL;
1095 	}
1096 	pr_devel("<==%s() = %d\n", __func__, ret);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(generic_key_instantiate);
1100 
1101 /**
1102  * register_key_type - Register a type of key.
1103  * @ktype: The new key type.
1104  *
1105  * Register a new key type.
1106  *
1107  * Returns 0 on success or -EEXIST if a type of this name already exists.
1108  */
1109 int register_key_type(struct key_type *ktype)
1110 {
1111 	struct key_type *p;
1112 	int ret;
1113 
1114 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1115 
1116 	ret = -EEXIST;
1117 	down_write(&key_types_sem);
1118 
1119 	/* disallow key types with the same name */
1120 	list_for_each_entry(p, &key_types_list, link) {
1121 		if (strcmp(p->name, ktype->name) == 0)
1122 			goto out;
1123 	}
1124 
1125 	/* store the type */
1126 	list_add(&ktype->link, &key_types_list);
1127 
1128 	pr_notice("Key type %s registered\n", ktype->name);
1129 	ret = 0;
1130 
1131 out:
1132 	up_write(&key_types_sem);
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL(register_key_type);
1136 
1137 /**
1138  * unregister_key_type - Unregister a type of key.
1139  * @ktype: The key type.
1140  *
1141  * Unregister a key type and mark all the extant keys of this type as dead.
1142  * Those keys of this type are then destroyed to get rid of their payloads and
1143  * they and their links will be garbage collected as soon as possible.
1144  */
1145 void unregister_key_type(struct key_type *ktype)
1146 {
1147 	down_write(&key_types_sem);
1148 	list_del_init(&ktype->link);
1149 	downgrade_write(&key_types_sem);
1150 	key_gc_keytype(ktype);
1151 	pr_notice("Key type %s unregistered\n", ktype->name);
1152 	up_read(&key_types_sem);
1153 }
1154 EXPORT_SYMBOL(unregister_key_type);
1155 
1156 /*
1157  * Initialise the key management state.
1158  */
1159 void __init key_init(void)
1160 {
1161 	/* allocate a slab in which we can store keys */
1162 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1163 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1164 
1165 	/* add the special key types */
1166 	list_add_tail(&key_type_keyring.link, &key_types_list);
1167 	list_add_tail(&key_type_dead.link, &key_types_list);
1168 	list_add_tail(&key_type_user.link, &key_types_list);
1169 	list_add_tail(&key_type_logon.link, &key_types_list);
1170 
1171 	/* record the root user tracking */
1172 	rb_link_node(&root_key_user.node,
1173 		     NULL,
1174 		     &key_user_tree.rb_node);
1175 
1176 	rb_insert_color(&root_key_user.node,
1177 			&key_user_tree);
1178 }
1179