1 /* Basic authentication token and access key management 2 * 3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/poison.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/security.h> 18 #include <linux/workqueue.h> 19 #include <linux/random.h> 20 #include <linux/err.h> 21 #include <linux/user_namespace.h> 22 #include "internal.h" 23 24 struct kmem_cache *key_jar; 25 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 26 DEFINE_SPINLOCK(key_serial_lock); 27 28 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 29 DEFINE_SPINLOCK(key_user_lock); 30 31 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */ 32 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */ 33 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 34 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 35 36 static LIST_HEAD(key_types_list); 37 static DECLARE_RWSEM(key_types_sem); 38 39 /* We serialise key instantiation and link */ 40 DEFINE_MUTEX(key_construction_mutex); 41 42 #ifdef KEY_DEBUGGING 43 void __key_check(const struct key *key) 44 { 45 printk("__key_check: key %p {%08x} should be {%08x}\n", 46 key, key->magic, KEY_DEBUG_MAGIC); 47 BUG(); 48 } 49 #endif 50 51 /* 52 * Get the key quota record for a user, allocating a new record if one doesn't 53 * already exist. 54 */ 55 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns) 56 { 57 struct key_user *candidate = NULL, *user; 58 struct rb_node *parent = NULL; 59 struct rb_node **p; 60 61 try_again: 62 p = &key_user_tree.rb_node; 63 spin_lock(&key_user_lock); 64 65 /* search the tree for a user record with a matching UID */ 66 while (*p) { 67 parent = *p; 68 user = rb_entry(parent, struct key_user, node); 69 70 if (uid < user->uid) 71 p = &(*p)->rb_left; 72 else if (uid > user->uid) 73 p = &(*p)->rb_right; 74 else if (user_ns < user->user_ns) 75 p = &(*p)->rb_left; 76 else if (user_ns > user->user_ns) 77 p = &(*p)->rb_right; 78 else 79 goto found; 80 } 81 82 /* if we get here, we failed to find a match in the tree */ 83 if (!candidate) { 84 /* allocate a candidate user record if we don't already have 85 * one */ 86 spin_unlock(&key_user_lock); 87 88 user = NULL; 89 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 90 if (unlikely(!candidate)) 91 goto out; 92 93 /* the allocation may have scheduled, so we need to repeat the 94 * search lest someone else added the record whilst we were 95 * asleep */ 96 goto try_again; 97 } 98 99 /* if we get here, then the user record still hadn't appeared on the 100 * second pass - so we use the candidate record */ 101 atomic_set(&candidate->usage, 1); 102 atomic_set(&candidate->nkeys, 0); 103 atomic_set(&candidate->nikeys, 0); 104 candidate->uid = uid; 105 candidate->user_ns = get_user_ns(user_ns); 106 candidate->qnkeys = 0; 107 candidate->qnbytes = 0; 108 spin_lock_init(&candidate->lock); 109 mutex_init(&candidate->cons_lock); 110 111 rb_link_node(&candidate->node, parent, p); 112 rb_insert_color(&candidate->node, &key_user_tree); 113 spin_unlock(&key_user_lock); 114 user = candidate; 115 goto out; 116 117 /* okay - we found a user record for this UID */ 118 found: 119 atomic_inc(&user->usage); 120 spin_unlock(&key_user_lock); 121 kfree(candidate); 122 out: 123 return user; 124 } 125 126 /* 127 * Dispose of a user structure 128 */ 129 void key_user_put(struct key_user *user) 130 { 131 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { 132 rb_erase(&user->node, &key_user_tree); 133 spin_unlock(&key_user_lock); 134 put_user_ns(user->user_ns); 135 136 kfree(user); 137 } 138 } 139 140 /* 141 * Allocate a serial number for a key. These are assigned randomly to avoid 142 * security issues through covert channel problems. 143 */ 144 static inline void key_alloc_serial(struct key *key) 145 { 146 struct rb_node *parent, **p; 147 struct key *xkey; 148 149 /* propose a random serial number and look for a hole for it in the 150 * serial number tree */ 151 do { 152 get_random_bytes(&key->serial, sizeof(key->serial)); 153 154 key->serial >>= 1; /* negative numbers are not permitted */ 155 } while (key->serial < 3); 156 157 spin_lock(&key_serial_lock); 158 159 attempt_insertion: 160 parent = NULL; 161 p = &key_serial_tree.rb_node; 162 163 while (*p) { 164 parent = *p; 165 xkey = rb_entry(parent, struct key, serial_node); 166 167 if (key->serial < xkey->serial) 168 p = &(*p)->rb_left; 169 else if (key->serial > xkey->serial) 170 p = &(*p)->rb_right; 171 else 172 goto serial_exists; 173 } 174 175 /* we've found a suitable hole - arrange for this key to occupy it */ 176 rb_link_node(&key->serial_node, parent, p); 177 rb_insert_color(&key->serial_node, &key_serial_tree); 178 179 spin_unlock(&key_serial_lock); 180 return; 181 182 /* we found a key with the proposed serial number - walk the tree from 183 * that point looking for the next unused serial number */ 184 serial_exists: 185 for (;;) { 186 key->serial++; 187 if (key->serial < 3) { 188 key->serial = 3; 189 goto attempt_insertion; 190 } 191 192 parent = rb_next(parent); 193 if (!parent) 194 goto attempt_insertion; 195 196 xkey = rb_entry(parent, struct key, serial_node); 197 if (key->serial < xkey->serial) 198 goto attempt_insertion; 199 } 200 } 201 202 /** 203 * key_alloc - Allocate a key of the specified type. 204 * @type: The type of key to allocate. 205 * @desc: The key description to allow the key to be searched out. 206 * @uid: The owner of the new key. 207 * @gid: The group ID for the new key's group permissions. 208 * @cred: The credentials specifying UID namespace. 209 * @perm: The permissions mask of the new key. 210 * @flags: Flags specifying quota properties. 211 * 212 * Allocate a key of the specified type with the attributes given. The key is 213 * returned in an uninstantiated state and the caller needs to instantiate the 214 * key before returning. 215 * 216 * The user's key count quota is updated to reflect the creation of the key and 217 * the user's key data quota has the default for the key type reserved. The 218 * instantiation function should amend this as necessary. If insufficient 219 * quota is available, -EDQUOT will be returned. 220 * 221 * The LSM security modules can prevent a key being created, in which case 222 * -EACCES will be returned. 223 * 224 * Returns a pointer to the new key if successful and an error code otherwise. 225 * 226 * Note that the caller needs to ensure the key type isn't uninstantiated. 227 * Internally this can be done by locking key_types_sem. Externally, this can 228 * be done by either never unregistering the key type, or making sure 229 * key_alloc() calls don't race with module unloading. 230 */ 231 struct key *key_alloc(struct key_type *type, const char *desc, 232 uid_t uid, gid_t gid, const struct cred *cred, 233 key_perm_t perm, unsigned long flags) 234 { 235 struct key_user *user = NULL; 236 struct key *key; 237 size_t desclen, quotalen; 238 int ret; 239 240 key = ERR_PTR(-EINVAL); 241 if (!desc || !*desc) 242 goto error; 243 244 if (type->vet_description) { 245 ret = type->vet_description(desc); 246 if (ret < 0) { 247 key = ERR_PTR(ret); 248 goto error; 249 } 250 } 251 252 desclen = strlen(desc) + 1; 253 quotalen = desclen + type->def_datalen; 254 255 /* get hold of the key tracking for this user */ 256 user = key_user_lookup(uid, cred->user->user_ns); 257 if (!user) 258 goto no_memory_1; 259 260 /* check that the user's quota permits allocation of another key and 261 * its description */ 262 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 263 unsigned maxkeys = (uid == 0) ? 264 key_quota_root_maxkeys : key_quota_maxkeys; 265 unsigned maxbytes = (uid == 0) ? 266 key_quota_root_maxbytes : key_quota_maxbytes; 267 268 spin_lock(&user->lock); 269 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 270 if (user->qnkeys + 1 >= maxkeys || 271 user->qnbytes + quotalen >= maxbytes || 272 user->qnbytes + quotalen < user->qnbytes) 273 goto no_quota; 274 } 275 276 user->qnkeys++; 277 user->qnbytes += quotalen; 278 spin_unlock(&user->lock); 279 } 280 281 /* allocate and initialise the key and its description */ 282 key = kmem_cache_alloc(key_jar, GFP_KERNEL); 283 if (!key) 284 goto no_memory_2; 285 286 if (desc) { 287 key->description = kmemdup(desc, desclen, GFP_KERNEL); 288 if (!key->description) 289 goto no_memory_3; 290 } 291 292 atomic_set(&key->usage, 1); 293 init_rwsem(&key->sem); 294 key->type = type; 295 key->user = user; 296 key->quotalen = quotalen; 297 key->datalen = type->def_datalen; 298 key->uid = uid; 299 key->gid = gid; 300 key->perm = perm; 301 key->flags = 0; 302 key->expiry = 0; 303 key->payload.data = NULL; 304 key->security = NULL; 305 306 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 307 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 308 309 memset(&key->type_data, 0, sizeof(key->type_data)); 310 311 #ifdef KEY_DEBUGGING 312 key->magic = KEY_DEBUG_MAGIC; 313 #endif 314 315 /* let the security module know about the key */ 316 ret = security_key_alloc(key, cred, flags); 317 if (ret < 0) 318 goto security_error; 319 320 /* publish the key by giving it a serial number */ 321 atomic_inc(&user->nkeys); 322 key_alloc_serial(key); 323 324 error: 325 return key; 326 327 security_error: 328 kfree(key->description); 329 kmem_cache_free(key_jar, key); 330 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 331 spin_lock(&user->lock); 332 user->qnkeys--; 333 user->qnbytes -= quotalen; 334 spin_unlock(&user->lock); 335 } 336 key_user_put(user); 337 key = ERR_PTR(ret); 338 goto error; 339 340 no_memory_3: 341 kmem_cache_free(key_jar, key); 342 no_memory_2: 343 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 344 spin_lock(&user->lock); 345 user->qnkeys--; 346 user->qnbytes -= quotalen; 347 spin_unlock(&user->lock); 348 } 349 key_user_put(user); 350 no_memory_1: 351 key = ERR_PTR(-ENOMEM); 352 goto error; 353 354 no_quota: 355 spin_unlock(&user->lock); 356 key_user_put(user); 357 key = ERR_PTR(-EDQUOT); 358 goto error; 359 } 360 EXPORT_SYMBOL(key_alloc); 361 362 /** 363 * key_payload_reserve - Adjust data quota reservation for the key's payload 364 * @key: The key to make the reservation for. 365 * @datalen: The amount of data payload the caller now wants. 366 * 367 * Adjust the amount of the owning user's key data quota that a key reserves. 368 * If the amount is increased, then -EDQUOT may be returned if there isn't 369 * enough free quota available. 370 * 371 * If successful, 0 is returned. 372 */ 373 int key_payload_reserve(struct key *key, size_t datalen) 374 { 375 int delta = (int)datalen - key->datalen; 376 int ret = 0; 377 378 key_check(key); 379 380 /* contemplate the quota adjustment */ 381 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 382 unsigned maxbytes = (key->user->uid == 0) ? 383 key_quota_root_maxbytes : key_quota_maxbytes; 384 385 spin_lock(&key->user->lock); 386 387 if (delta > 0 && 388 (key->user->qnbytes + delta >= maxbytes || 389 key->user->qnbytes + delta < key->user->qnbytes)) { 390 ret = -EDQUOT; 391 } 392 else { 393 key->user->qnbytes += delta; 394 key->quotalen += delta; 395 } 396 spin_unlock(&key->user->lock); 397 } 398 399 /* change the recorded data length if that didn't generate an error */ 400 if (ret == 0) 401 key->datalen = datalen; 402 403 return ret; 404 } 405 EXPORT_SYMBOL(key_payload_reserve); 406 407 /* 408 * Instantiate a key and link it into the target keyring atomically. Must be 409 * called with the target keyring's semaphore writelocked. The target key's 410 * semaphore need not be locked as instantiation is serialised by 411 * key_construction_mutex. 412 */ 413 static int __key_instantiate_and_link(struct key *key, 414 const void *data, 415 size_t datalen, 416 struct key *keyring, 417 struct key *authkey, 418 unsigned long *_prealloc) 419 { 420 int ret, awaken; 421 422 key_check(key); 423 key_check(keyring); 424 425 awaken = 0; 426 ret = -EBUSY; 427 428 mutex_lock(&key_construction_mutex); 429 430 /* can't instantiate twice */ 431 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 432 /* instantiate the key */ 433 ret = key->type->instantiate(key, data, datalen); 434 435 if (ret == 0) { 436 /* mark the key as being instantiated */ 437 atomic_inc(&key->user->nikeys); 438 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 439 440 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 441 awaken = 1; 442 443 /* and link it into the destination keyring */ 444 if (keyring) 445 __key_link(keyring, key, _prealloc); 446 447 /* disable the authorisation key */ 448 if (authkey) 449 key_revoke(authkey); 450 } 451 } 452 453 mutex_unlock(&key_construction_mutex); 454 455 /* wake up anyone waiting for a key to be constructed */ 456 if (awaken) 457 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 458 459 return ret; 460 } 461 462 /** 463 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 464 * @key: The key to instantiate. 465 * @data: The data to use to instantiate the keyring. 466 * @datalen: The length of @data. 467 * @keyring: Keyring to create a link in on success (or NULL). 468 * @authkey: The authorisation token permitting instantiation. 469 * 470 * Instantiate a key that's in the uninstantiated state using the provided data 471 * and, if successful, link it in to the destination keyring if one is 472 * supplied. 473 * 474 * If successful, 0 is returned, the authorisation token is revoked and anyone 475 * waiting for the key is woken up. If the key was already instantiated, 476 * -EBUSY will be returned. 477 */ 478 int key_instantiate_and_link(struct key *key, 479 const void *data, 480 size_t datalen, 481 struct key *keyring, 482 struct key *authkey) 483 { 484 unsigned long prealloc; 485 int ret; 486 487 if (keyring) { 488 ret = __key_link_begin(keyring, key->type, key->description, 489 &prealloc); 490 if (ret < 0) 491 return ret; 492 } 493 494 ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey, 495 &prealloc); 496 497 if (keyring) 498 __key_link_end(keyring, key->type, prealloc); 499 500 return ret; 501 } 502 503 EXPORT_SYMBOL(key_instantiate_and_link); 504 505 /** 506 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 507 * @key: The key to instantiate. 508 * @timeout: The timeout on the negative key. 509 * @error: The error to return when the key is hit. 510 * @keyring: Keyring to create a link in on success (or NULL). 511 * @authkey: The authorisation token permitting instantiation. 512 * 513 * Negatively instantiate a key that's in the uninstantiated state and, if 514 * successful, set its timeout and stored error and link it in to the 515 * destination keyring if one is supplied. The key and any links to the key 516 * will be automatically garbage collected after the timeout expires. 517 * 518 * Negative keys are used to rate limit repeated request_key() calls by causing 519 * them to return the stored error code (typically ENOKEY) until the negative 520 * key expires. 521 * 522 * If successful, 0 is returned, the authorisation token is revoked and anyone 523 * waiting for the key is woken up. If the key was already instantiated, 524 * -EBUSY will be returned. 525 */ 526 int key_reject_and_link(struct key *key, 527 unsigned timeout, 528 unsigned error, 529 struct key *keyring, 530 struct key *authkey) 531 { 532 unsigned long prealloc; 533 struct timespec now; 534 int ret, awaken, link_ret = 0; 535 536 key_check(key); 537 key_check(keyring); 538 539 awaken = 0; 540 ret = -EBUSY; 541 542 if (keyring) 543 link_ret = __key_link_begin(keyring, key->type, 544 key->description, &prealloc); 545 546 mutex_lock(&key_construction_mutex); 547 548 /* can't instantiate twice */ 549 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 550 /* mark the key as being negatively instantiated */ 551 atomic_inc(&key->user->nikeys); 552 set_bit(KEY_FLAG_NEGATIVE, &key->flags); 553 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 554 key->type_data.reject_error = -error; 555 now = current_kernel_time(); 556 key->expiry = now.tv_sec + timeout; 557 key_schedule_gc(key->expiry + key_gc_delay); 558 559 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 560 awaken = 1; 561 562 ret = 0; 563 564 /* and link it into the destination keyring */ 565 if (keyring && link_ret == 0) 566 __key_link(keyring, key, &prealloc); 567 568 /* disable the authorisation key */ 569 if (authkey) 570 key_revoke(authkey); 571 } 572 573 mutex_unlock(&key_construction_mutex); 574 575 if (keyring) 576 __key_link_end(keyring, key->type, prealloc); 577 578 /* wake up anyone waiting for a key to be constructed */ 579 if (awaken) 580 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 581 582 return ret == 0 ? link_ret : ret; 583 } 584 EXPORT_SYMBOL(key_reject_and_link); 585 586 /** 587 * key_put - Discard a reference to a key. 588 * @key: The key to discard a reference from. 589 * 590 * Discard a reference to a key, and when all the references are gone, we 591 * schedule the cleanup task to come and pull it out of the tree in process 592 * context at some later time. 593 */ 594 void key_put(struct key *key) 595 { 596 if (key) { 597 key_check(key); 598 599 if (atomic_dec_and_test(&key->usage)) 600 queue_work(system_nrt_wq, &key_gc_work); 601 } 602 } 603 EXPORT_SYMBOL(key_put); 604 605 /* 606 * Find a key by its serial number. 607 */ 608 struct key *key_lookup(key_serial_t id) 609 { 610 struct rb_node *n; 611 struct key *key; 612 613 spin_lock(&key_serial_lock); 614 615 /* search the tree for the specified key */ 616 n = key_serial_tree.rb_node; 617 while (n) { 618 key = rb_entry(n, struct key, serial_node); 619 620 if (id < key->serial) 621 n = n->rb_left; 622 else if (id > key->serial) 623 n = n->rb_right; 624 else 625 goto found; 626 } 627 628 not_found: 629 key = ERR_PTR(-ENOKEY); 630 goto error; 631 632 found: 633 /* pretend it doesn't exist if it is awaiting deletion */ 634 if (atomic_read(&key->usage) == 0) 635 goto not_found; 636 637 /* this races with key_put(), but that doesn't matter since key_put() 638 * doesn't actually change the key 639 */ 640 atomic_inc(&key->usage); 641 642 error: 643 spin_unlock(&key_serial_lock); 644 return key; 645 } 646 647 /* 648 * Find and lock the specified key type against removal. 649 * 650 * We return with the sem read-locked if successful. If the type wasn't 651 * available -ENOKEY is returned instead. 652 */ 653 struct key_type *key_type_lookup(const char *type) 654 { 655 struct key_type *ktype; 656 657 down_read(&key_types_sem); 658 659 /* look up the key type to see if it's one of the registered kernel 660 * types */ 661 list_for_each_entry(ktype, &key_types_list, link) { 662 if (strcmp(ktype->name, type) == 0) 663 goto found_kernel_type; 664 } 665 666 up_read(&key_types_sem); 667 ktype = ERR_PTR(-ENOKEY); 668 669 found_kernel_type: 670 return ktype; 671 } 672 673 /* 674 * Unlock a key type locked by key_type_lookup(). 675 */ 676 void key_type_put(struct key_type *ktype) 677 { 678 up_read(&key_types_sem); 679 } 680 681 /* 682 * Attempt to update an existing key. 683 * 684 * The key is given to us with an incremented refcount that we need to discard 685 * if we get an error. 686 */ 687 static inline key_ref_t __key_update(key_ref_t key_ref, 688 const void *payload, size_t plen) 689 { 690 struct key *key = key_ref_to_ptr(key_ref); 691 int ret; 692 693 /* need write permission on the key to update it */ 694 ret = key_permission(key_ref, KEY_WRITE); 695 if (ret < 0) 696 goto error; 697 698 ret = -EEXIST; 699 if (!key->type->update) 700 goto error; 701 702 down_write(&key->sem); 703 704 ret = key->type->update(key, payload, plen); 705 if (ret == 0) 706 /* updating a negative key instantiates it */ 707 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 708 709 up_write(&key->sem); 710 711 if (ret < 0) 712 goto error; 713 out: 714 return key_ref; 715 716 error: 717 key_put(key); 718 key_ref = ERR_PTR(ret); 719 goto out; 720 } 721 722 /** 723 * key_create_or_update - Update or create and instantiate a key. 724 * @keyring_ref: A pointer to the destination keyring with possession flag. 725 * @type: The type of key. 726 * @description: The searchable description for the key. 727 * @payload: The data to use to instantiate or update the key. 728 * @plen: The length of @payload. 729 * @perm: The permissions mask for a new key. 730 * @flags: The quota flags for a new key. 731 * 732 * Search the destination keyring for a key of the same description and if one 733 * is found, update it, otherwise create and instantiate a new one and create a 734 * link to it from that keyring. 735 * 736 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 737 * concocted. 738 * 739 * Returns a pointer to the new key if successful, -ENODEV if the key type 740 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 741 * caller isn't permitted to modify the keyring or the LSM did not permit 742 * creation of the key. 743 * 744 * On success, the possession flag from the keyring ref will be tacked on to 745 * the key ref before it is returned. 746 */ 747 key_ref_t key_create_or_update(key_ref_t keyring_ref, 748 const char *type, 749 const char *description, 750 const void *payload, 751 size_t plen, 752 key_perm_t perm, 753 unsigned long flags) 754 { 755 unsigned long prealloc; 756 const struct cred *cred = current_cred(); 757 struct key_type *ktype; 758 struct key *keyring, *key = NULL; 759 key_ref_t key_ref; 760 int ret; 761 762 /* look up the key type to see if it's one of the registered kernel 763 * types */ 764 ktype = key_type_lookup(type); 765 if (IS_ERR(ktype)) { 766 key_ref = ERR_PTR(-ENODEV); 767 goto error; 768 } 769 770 key_ref = ERR_PTR(-EINVAL); 771 if (!ktype->match || !ktype->instantiate) 772 goto error_2; 773 774 keyring = key_ref_to_ptr(keyring_ref); 775 776 key_check(keyring); 777 778 key_ref = ERR_PTR(-ENOTDIR); 779 if (keyring->type != &key_type_keyring) 780 goto error_2; 781 782 ret = __key_link_begin(keyring, ktype, description, &prealloc); 783 if (ret < 0) 784 goto error_2; 785 786 /* if we're going to allocate a new key, we're going to have 787 * to modify the keyring */ 788 ret = key_permission(keyring_ref, KEY_WRITE); 789 if (ret < 0) { 790 key_ref = ERR_PTR(ret); 791 goto error_3; 792 } 793 794 /* if it's possible to update this type of key, search for an existing 795 * key of the same type and description in the destination keyring and 796 * update that instead if possible 797 */ 798 if (ktype->update) { 799 key_ref = __keyring_search_one(keyring_ref, ktype, description, 800 0); 801 if (!IS_ERR(key_ref)) 802 goto found_matching_key; 803 } 804 805 /* if the client doesn't provide, decide on the permissions we want */ 806 if (perm == KEY_PERM_UNDEF) { 807 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 808 perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR; 809 810 if (ktype->read) 811 perm |= KEY_POS_READ | KEY_USR_READ; 812 813 if (ktype == &key_type_keyring || ktype->update) 814 perm |= KEY_USR_WRITE; 815 } 816 817 /* allocate a new key */ 818 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred, 819 perm, flags); 820 if (IS_ERR(key)) { 821 key_ref = ERR_CAST(key); 822 goto error_3; 823 } 824 825 /* instantiate it and link it into the target keyring */ 826 ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL, 827 &prealloc); 828 if (ret < 0) { 829 key_put(key); 830 key_ref = ERR_PTR(ret); 831 goto error_3; 832 } 833 834 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 835 836 error_3: 837 __key_link_end(keyring, ktype, prealloc); 838 error_2: 839 key_type_put(ktype); 840 error: 841 return key_ref; 842 843 found_matching_key: 844 /* we found a matching key, so we're going to try to update it 845 * - we can drop the locks first as we have the key pinned 846 */ 847 __key_link_end(keyring, ktype, prealloc); 848 key_type_put(ktype); 849 850 key_ref = __key_update(key_ref, payload, plen); 851 goto error; 852 } 853 EXPORT_SYMBOL(key_create_or_update); 854 855 /** 856 * key_update - Update a key's contents. 857 * @key_ref: The pointer (plus possession flag) to the key. 858 * @payload: The data to be used to update the key. 859 * @plen: The length of @payload. 860 * 861 * Attempt to update the contents of a key with the given payload data. The 862 * caller must be granted Write permission on the key. Negative keys can be 863 * instantiated by this method. 864 * 865 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 866 * type does not support updating. The key type may return other errors. 867 */ 868 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 869 { 870 struct key *key = key_ref_to_ptr(key_ref); 871 int ret; 872 873 key_check(key); 874 875 /* the key must be writable */ 876 ret = key_permission(key_ref, KEY_WRITE); 877 if (ret < 0) 878 goto error; 879 880 /* attempt to update it if supported */ 881 ret = -EOPNOTSUPP; 882 if (key->type->update) { 883 down_write(&key->sem); 884 885 ret = key->type->update(key, payload, plen); 886 if (ret == 0) 887 /* updating a negative key instantiates it */ 888 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 889 890 up_write(&key->sem); 891 } 892 893 error: 894 return ret; 895 } 896 EXPORT_SYMBOL(key_update); 897 898 /** 899 * key_revoke - Revoke a key. 900 * @key: The key to be revoked. 901 * 902 * Mark a key as being revoked and ask the type to free up its resources. The 903 * revocation timeout is set and the key and all its links will be 904 * automatically garbage collected after key_gc_delay amount of time if they 905 * are not manually dealt with first. 906 */ 907 void key_revoke(struct key *key) 908 { 909 struct timespec now; 910 time_t time; 911 912 key_check(key); 913 914 /* make sure no one's trying to change or use the key when we mark it 915 * - we tell lockdep that we might nest because we might be revoking an 916 * authorisation key whilst holding the sem on a key we've just 917 * instantiated 918 */ 919 down_write_nested(&key->sem, 1); 920 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 921 key->type->revoke) 922 key->type->revoke(key); 923 924 /* set the death time to no more than the expiry time */ 925 now = current_kernel_time(); 926 time = now.tv_sec; 927 if (key->revoked_at == 0 || key->revoked_at > time) { 928 key->revoked_at = time; 929 key_schedule_gc(key->revoked_at + key_gc_delay); 930 } 931 932 up_write(&key->sem); 933 } 934 EXPORT_SYMBOL(key_revoke); 935 936 /** 937 * register_key_type - Register a type of key. 938 * @ktype: The new key type. 939 * 940 * Register a new key type. 941 * 942 * Returns 0 on success or -EEXIST if a type of this name already exists. 943 */ 944 int register_key_type(struct key_type *ktype) 945 { 946 struct key_type *p; 947 int ret; 948 949 ret = -EEXIST; 950 down_write(&key_types_sem); 951 952 /* disallow key types with the same name */ 953 list_for_each_entry(p, &key_types_list, link) { 954 if (strcmp(p->name, ktype->name) == 0) 955 goto out; 956 } 957 958 /* store the type */ 959 list_add(&ktype->link, &key_types_list); 960 ret = 0; 961 962 out: 963 up_write(&key_types_sem); 964 return ret; 965 } 966 EXPORT_SYMBOL(register_key_type); 967 968 /** 969 * unregister_key_type - Unregister a type of key. 970 * @ktype: The key type. 971 * 972 * Unregister a key type and mark all the extant keys of this type as dead. 973 * Those keys of this type are then destroyed to get rid of their payloads and 974 * they and their links will be garbage collected as soon as possible. 975 */ 976 void unregister_key_type(struct key_type *ktype) 977 { 978 down_write(&key_types_sem); 979 list_del_init(&ktype->link); 980 downgrade_write(&key_types_sem); 981 key_gc_keytype(ktype); 982 up_read(&key_types_sem); 983 } 984 EXPORT_SYMBOL(unregister_key_type); 985 986 /* 987 * Initialise the key management state. 988 */ 989 void __init key_init(void) 990 { 991 /* allocate a slab in which we can store keys */ 992 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 993 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 994 995 /* add the special key types */ 996 list_add_tail(&key_type_keyring.link, &key_types_list); 997 list_add_tail(&key_type_dead.link, &key_types_list); 998 list_add_tail(&key_type_user.link, &key_types_list); 999 1000 /* record the root user tracking */ 1001 rb_link_node(&root_key_user.node, 1002 NULL, 1003 &key_user_tree.rb_node); 1004 1005 rb_insert_color(&root_key_user.node, 1006 &key_user_tree); 1007 } 1008