xref: /linux/security/keys/key.c (revision 8ec3b8432e4fe8d452f88f1ed9a3450e715bb797)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
23 
24 static struct kmem_cache	*key_jar;
25 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
27 
28 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
30 
31 unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
33 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
34 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
35 
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
38 
39 static void key_cleanup(struct work_struct *work);
40 static DECLARE_WORK(key_cleanup_task, key_cleanup);
41 
42 /* We serialise key instantiation and link */
43 DEFINE_MUTEX(key_construction_mutex);
44 
45 /* Any key who's type gets unegistered will be re-typed to this */
46 static struct key_type key_type_dead = {
47 	.name		= "dead",
48 };
49 
50 #ifdef KEY_DEBUGGING
51 void __key_check(const struct key *key)
52 {
53 	printk("__key_check: key %p {%08x} should be {%08x}\n",
54 	       key, key->magic, KEY_DEBUG_MAGIC);
55 	BUG();
56 }
57 #endif
58 
59 /*
60  * Get the key quota record for a user, allocating a new record if one doesn't
61  * already exist.
62  */
63 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
64 {
65 	struct key_user *candidate = NULL, *user;
66 	struct rb_node *parent = NULL;
67 	struct rb_node **p;
68 
69 try_again:
70 	p = &key_user_tree.rb_node;
71 	spin_lock(&key_user_lock);
72 
73 	/* search the tree for a user record with a matching UID */
74 	while (*p) {
75 		parent = *p;
76 		user = rb_entry(parent, struct key_user, node);
77 
78 		if (uid < user->uid)
79 			p = &(*p)->rb_left;
80 		else if (uid > user->uid)
81 			p = &(*p)->rb_right;
82 		else if (user_ns < user->user_ns)
83 			p = &(*p)->rb_left;
84 		else if (user_ns > user->user_ns)
85 			p = &(*p)->rb_right;
86 		else
87 			goto found;
88 	}
89 
90 	/* if we get here, we failed to find a match in the tree */
91 	if (!candidate) {
92 		/* allocate a candidate user record if we don't already have
93 		 * one */
94 		spin_unlock(&key_user_lock);
95 
96 		user = NULL;
97 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
98 		if (unlikely(!candidate))
99 			goto out;
100 
101 		/* the allocation may have scheduled, so we need to repeat the
102 		 * search lest someone else added the record whilst we were
103 		 * asleep */
104 		goto try_again;
105 	}
106 
107 	/* if we get here, then the user record still hadn't appeared on the
108 	 * second pass - so we use the candidate record */
109 	atomic_set(&candidate->usage, 1);
110 	atomic_set(&candidate->nkeys, 0);
111 	atomic_set(&candidate->nikeys, 0);
112 	candidate->uid = uid;
113 	candidate->user_ns = get_user_ns(user_ns);
114 	candidate->qnkeys = 0;
115 	candidate->qnbytes = 0;
116 	spin_lock_init(&candidate->lock);
117 	mutex_init(&candidate->cons_lock);
118 
119 	rb_link_node(&candidate->node, parent, p);
120 	rb_insert_color(&candidate->node, &key_user_tree);
121 	spin_unlock(&key_user_lock);
122 	user = candidate;
123 	goto out;
124 
125 	/* okay - we found a user record for this UID */
126 found:
127 	atomic_inc(&user->usage);
128 	spin_unlock(&key_user_lock);
129 	kfree(candidate);
130 out:
131 	return user;
132 }
133 
134 /*
135  * Dispose of a user structure
136  */
137 void key_user_put(struct key_user *user)
138 {
139 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
140 		rb_erase(&user->node, &key_user_tree);
141 		spin_unlock(&key_user_lock);
142 		put_user_ns(user->user_ns);
143 
144 		kfree(user);
145 	}
146 }
147 
148 /*
149  * Allocate a serial number for a key.  These are assigned randomly to avoid
150  * security issues through covert channel problems.
151  */
152 static inline void key_alloc_serial(struct key *key)
153 {
154 	struct rb_node *parent, **p;
155 	struct key *xkey;
156 
157 	/* propose a random serial number and look for a hole for it in the
158 	 * serial number tree */
159 	do {
160 		get_random_bytes(&key->serial, sizeof(key->serial));
161 
162 		key->serial >>= 1; /* negative numbers are not permitted */
163 	} while (key->serial < 3);
164 
165 	spin_lock(&key_serial_lock);
166 
167 attempt_insertion:
168 	parent = NULL;
169 	p = &key_serial_tree.rb_node;
170 
171 	while (*p) {
172 		parent = *p;
173 		xkey = rb_entry(parent, struct key, serial_node);
174 
175 		if (key->serial < xkey->serial)
176 			p = &(*p)->rb_left;
177 		else if (key->serial > xkey->serial)
178 			p = &(*p)->rb_right;
179 		else
180 			goto serial_exists;
181 	}
182 
183 	/* we've found a suitable hole - arrange for this key to occupy it */
184 	rb_link_node(&key->serial_node, parent, p);
185 	rb_insert_color(&key->serial_node, &key_serial_tree);
186 
187 	spin_unlock(&key_serial_lock);
188 	return;
189 
190 	/* we found a key with the proposed serial number - walk the tree from
191 	 * that point looking for the next unused serial number */
192 serial_exists:
193 	for (;;) {
194 		key->serial++;
195 		if (key->serial < 3) {
196 			key->serial = 3;
197 			goto attempt_insertion;
198 		}
199 
200 		parent = rb_next(parent);
201 		if (!parent)
202 			goto attempt_insertion;
203 
204 		xkey = rb_entry(parent, struct key, serial_node);
205 		if (key->serial < xkey->serial)
206 			goto attempt_insertion;
207 	}
208 }
209 
210 /**
211  * key_alloc - Allocate a key of the specified type.
212  * @type: The type of key to allocate.
213  * @desc: The key description to allow the key to be searched out.
214  * @uid: The owner of the new key.
215  * @gid: The group ID for the new key's group permissions.
216  * @cred: The credentials specifying UID namespace.
217  * @perm: The permissions mask of the new key.
218  * @flags: Flags specifying quota properties.
219  *
220  * Allocate a key of the specified type with the attributes given.  The key is
221  * returned in an uninstantiated state and the caller needs to instantiate the
222  * key before returning.
223  *
224  * The user's key count quota is updated to reflect the creation of the key and
225  * the user's key data quota has the default for the key type reserved.  The
226  * instantiation function should amend this as necessary.  If insufficient
227  * quota is available, -EDQUOT will be returned.
228  *
229  * The LSM security modules can prevent a key being created, in which case
230  * -EACCES will be returned.
231  *
232  * Returns a pointer to the new key if successful and an error code otherwise.
233  *
234  * Note that the caller needs to ensure the key type isn't uninstantiated.
235  * Internally this can be done by locking key_types_sem.  Externally, this can
236  * be done by either never unregistering the key type, or making sure
237  * key_alloc() calls don't race with module unloading.
238  */
239 struct key *key_alloc(struct key_type *type, const char *desc,
240 		      uid_t uid, gid_t gid, const struct cred *cred,
241 		      key_perm_t perm, unsigned long flags)
242 {
243 	struct key_user *user = NULL;
244 	struct key *key;
245 	size_t desclen, quotalen;
246 	int ret;
247 
248 	key = ERR_PTR(-EINVAL);
249 	if (!desc || !*desc)
250 		goto error;
251 
252 	desclen = strlen(desc) + 1;
253 	quotalen = desclen + type->def_datalen;
254 
255 	/* get hold of the key tracking for this user */
256 	user = key_user_lookup(uid, cred->user->user_ns);
257 	if (!user)
258 		goto no_memory_1;
259 
260 	/* check that the user's quota permits allocation of another key and
261 	 * its description */
262 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
263 		unsigned maxkeys = (uid == 0) ?
264 			key_quota_root_maxkeys : key_quota_maxkeys;
265 		unsigned maxbytes = (uid == 0) ?
266 			key_quota_root_maxbytes : key_quota_maxbytes;
267 
268 		spin_lock(&user->lock);
269 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
270 			if (user->qnkeys + 1 >= maxkeys ||
271 			    user->qnbytes + quotalen >= maxbytes ||
272 			    user->qnbytes + quotalen < user->qnbytes)
273 				goto no_quota;
274 		}
275 
276 		user->qnkeys++;
277 		user->qnbytes += quotalen;
278 		spin_unlock(&user->lock);
279 	}
280 
281 	/* allocate and initialise the key and its description */
282 	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
283 	if (!key)
284 		goto no_memory_2;
285 
286 	if (desc) {
287 		key->description = kmemdup(desc, desclen, GFP_KERNEL);
288 		if (!key->description)
289 			goto no_memory_3;
290 	}
291 
292 	atomic_set(&key->usage, 1);
293 	init_rwsem(&key->sem);
294 	key->type = type;
295 	key->user = user;
296 	key->quotalen = quotalen;
297 	key->datalen = type->def_datalen;
298 	key->uid = uid;
299 	key->gid = gid;
300 	key->perm = perm;
301 	key->flags = 0;
302 	key->expiry = 0;
303 	key->payload.data = NULL;
304 	key->security = NULL;
305 
306 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
307 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
308 
309 	memset(&key->type_data, 0, sizeof(key->type_data));
310 
311 #ifdef KEY_DEBUGGING
312 	key->magic = KEY_DEBUG_MAGIC;
313 #endif
314 
315 	/* let the security module know about the key */
316 	ret = security_key_alloc(key, cred, flags);
317 	if (ret < 0)
318 		goto security_error;
319 
320 	/* publish the key by giving it a serial number */
321 	atomic_inc(&user->nkeys);
322 	key_alloc_serial(key);
323 
324 error:
325 	return key;
326 
327 security_error:
328 	kfree(key->description);
329 	kmem_cache_free(key_jar, key);
330 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
331 		spin_lock(&user->lock);
332 		user->qnkeys--;
333 		user->qnbytes -= quotalen;
334 		spin_unlock(&user->lock);
335 	}
336 	key_user_put(user);
337 	key = ERR_PTR(ret);
338 	goto error;
339 
340 no_memory_3:
341 	kmem_cache_free(key_jar, key);
342 no_memory_2:
343 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
344 		spin_lock(&user->lock);
345 		user->qnkeys--;
346 		user->qnbytes -= quotalen;
347 		spin_unlock(&user->lock);
348 	}
349 	key_user_put(user);
350 no_memory_1:
351 	key = ERR_PTR(-ENOMEM);
352 	goto error;
353 
354 no_quota:
355 	spin_unlock(&user->lock);
356 	key_user_put(user);
357 	key = ERR_PTR(-EDQUOT);
358 	goto error;
359 }
360 EXPORT_SYMBOL(key_alloc);
361 
362 /**
363  * key_payload_reserve - Adjust data quota reservation for the key's payload
364  * @key: The key to make the reservation for.
365  * @datalen: The amount of data payload the caller now wants.
366  *
367  * Adjust the amount of the owning user's key data quota that a key reserves.
368  * If the amount is increased, then -EDQUOT may be returned if there isn't
369  * enough free quota available.
370  *
371  * If successful, 0 is returned.
372  */
373 int key_payload_reserve(struct key *key, size_t datalen)
374 {
375 	int delta = (int)datalen - key->datalen;
376 	int ret = 0;
377 
378 	key_check(key);
379 
380 	/* contemplate the quota adjustment */
381 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
382 		unsigned maxbytes = (key->user->uid == 0) ?
383 			key_quota_root_maxbytes : key_quota_maxbytes;
384 
385 		spin_lock(&key->user->lock);
386 
387 		if (delta > 0 &&
388 		    (key->user->qnbytes + delta >= maxbytes ||
389 		     key->user->qnbytes + delta < key->user->qnbytes)) {
390 			ret = -EDQUOT;
391 		}
392 		else {
393 			key->user->qnbytes += delta;
394 			key->quotalen += delta;
395 		}
396 		spin_unlock(&key->user->lock);
397 	}
398 
399 	/* change the recorded data length if that didn't generate an error */
400 	if (ret == 0)
401 		key->datalen = datalen;
402 
403 	return ret;
404 }
405 EXPORT_SYMBOL(key_payload_reserve);
406 
407 /*
408  * Instantiate a key and link it into the target keyring atomically.  Must be
409  * called with the target keyring's semaphore writelocked.  The target key's
410  * semaphore need not be locked as instantiation is serialised by
411  * key_construction_mutex.
412  */
413 static int __key_instantiate_and_link(struct key *key,
414 				      const void *data,
415 				      size_t datalen,
416 				      struct key *keyring,
417 				      struct key *authkey,
418 				      unsigned long *_prealloc)
419 {
420 	int ret, awaken;
421 
422 	key_check(key);
423 	key_check(keyring);
424 
425 	awaken = 0;
426 	ret = -EBUSY;
427 
428 	mutex_lock(&key_construction_mutex);
429 
430 	/* can't instantiate twice */
431 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
432 		/* instantiate the key */
433 		ret = key->type->instantiate(key, data, datalen);
434 
435 		if (ret == 0) {
436 			/* mark the key as being instantiated */
437 			atomic_inc(&key->user->nikeys);
438 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
439 
440 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
441 				awaken = 1;
442 
443 			/* and link it into the destination keyring */
444 			if (keyring)
445 				__key_link(keyring, key, _prealloc);
446 
447 			/* disable the authorisation key */
448 			if (authkey)
449 				key_revoke(authkey);
450 		}
451 	}
452 
453 	mutex_unlock(&key_construction_mutex);
454 
455 	/* wake up anyone waiting for a key to be constructed */
456 	if (awaken)
457 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
458 
459 	return ret;
460 }
461 
462 /**
463  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
464  * @key: The key to instantiate.
465  * @data: The data to use to instantiate the keyring.
466  * @datalen: The length of @data.
467  * @keyring: Keyring to create a link in on success (or NULL).
468  * @authkey: The authorisation token permitting instantiation.
469  *
470  * Instantiate a key that's in the uninstantiated state using the provided data
471  * and, if successful, link it in to the destination keyring if one is
472  * supplied.
473  *
474  * If successful, 0 is returned, the authorisation token is revoked and anyone
475  * waiting for the key is woken up.  If the key was already instantiated,
476  * -EBUSY will be returned.
477  */
478 int key_instantiate_and_link(struct key *key,
479 			     const void *data,
480 			     size_t datalen,
481 			     struct key *keyring,
482 			     struct key *authkey)
483 {
484 	unsigned long prealloc;
485 	int ret;
486 
487 	if (keyring) {
488 		ret = __key_link_begin(keyring, key->type, key->description,
489 				       &prealloc);
490 		if (ret < 0)
491 			return ret;
492 	}
493 
494 	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
495 					 &prealloc);
496 
497 	if (keyring)
498 		__key_link_end(keyring, key->type, prealloc);
499 
500 	return ret;
501 }
502 
503 EXPORT_SYMBOL(key_instantiate_and_link);
504 
505 /**
506  * key_negate_and_link - Negatively instantiate a key and link it into the keyring.
507  * @key: The key to instantiate.
508  * @timeout: The timeout on the negative key.
509  * @keyring: Keyring to create a link in on success (or NULL).
510  * @authkey: The authorisation token permitting instantiation.
511  *
512  * Negatively instantiate a key that's in the uninstantiated state and, if
513  * successful, set its timeout and link it in to the destination keyring if one
514  * is supplied.  The key and any links to the key will be automatically garbage
515  * collected after the timeout expires.
516  *
517  * Negative keys are used to rate limit repeated request_key() calls by causing
518  * them to return -ENOKEY until the negative key expires.
519  *
520  * If successful, 0 is returned, the authorisation token is revoked and anyone
521  * waiting for the key is woken up.  If the key was already instantiated,
522  * -EBUSY will be returned.
523  */
524 int key_negate_and_link(struct key *key,
525 			unsigned timeout,
526 			struct key *keyring,
527 			struct key *authkey)
528 {
529 	unsigned long prealloc;
530 	struct timespec now;
531 	int ret, awaken, link_ret = 0;
532 
533 	key_check(key);
534 	key_check(keyring);
535 
536 	awaken = 0;
537 	ret = -EBUSY;
538 
539 	if (keyring)
540 		link_ret = __key_link_begin(keyring, key->type,
541 					    key->description, &prealloc);
542 
543 	mutex_lock(&key_construction_mutex);
544 
545 	/* can't instantiate twice */
546 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
547 		/* mark the key as being negatively instantiated */
548 		atomic_inc(&key->user->nikeys);
549 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
550 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
551 		now = current_kernel_time();
552 		key->expiry = now.tv_sec + timeout;
553 		key_schedule_gc(key->expiry + key_gc_delay);
554 
555 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
556 			awaken = 1;
557 
558 		ret = 0;
559 
560 		/* and link it into the destination keyring */
561 		if (keyring && link_ret == 0)
562 			__key_link(keyring, key, &prealloc);
563 
564 		/* disable the authorisation key */
565 		if (authkey)
566 			key_revoke(authkey);
567 	}
568 
569 	mutex_unlock(&key_construction_mutex);
570 
571 	if (keyring)
572 		__key_link_end(keyring, key->type, prealloc);
573 
574 	/* wake up anyone waiting for a key to be constructed */
575 	if (awaken)
576 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
577 
578 	return ret == 0 ? link_ret : ret;
579 }
580 
581 EXPORT_SYMBOL(key_negate_and_link);
582 
583 /*
584  * Garbage collect keys in process context so that we don't have to disable
585  * interrupts all over the place.
586  *
587  * key_put() schedules this rather than trying to do the cleanup itself, which
588  * means key_put() doesn't have to sleep.
589  */
590 static void key_cleanup(struct work_struct *work)
591 {
592 	struct rb_node *_n;
593 	struct key *key;
594 
595 go_again:
596 	/* look for a dead key in the tree */
597 	spin_lock(&key_serial_lock);
598 
599 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
600 		key = rb_entry(_n, struct key, serial_node);
601 
602 		if (atomic_read(&key->usage) == 0)
603 			goto found_dead_key;
604 	}
605 
606 	spin_unlock(&key_serial_lock);
607 	return;
608 
609 found_dead_key:
610 	/* we found a dead key - once we've removed it from the tree, we can
611 	 * drop the lock */
612 	rb_erase(&key->serial_node, &key_serial_tree);
613 	spin_unlock(&key_serial_lock);
614 
615 	key_check(key);
616 
617 	security_key_free(key);
618 
619 	/* deal with the user's key tracking and quota */
620 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
621 		spin_lock(&key->user->lock);
622 		key->user->qnkeys--;
623 		key->user->qnbytes -= key->quotalen;
624 		spin_unlock(&key->user->lock);
625 	}
626 
627 	atomic_dec(&key->user->nkeys);
628 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
629 		atomic_dec(&key->user->nikeys);
630 
631 	key_user_put(key->user);
632 
633 	/* now throw away the key memory */
634 	if (key->type->destroy)
635 		key->type->destroy(key);
636 
637 	kfree(key->description);
638 
639 #ifdef KEY_DEBUGGING
640 	key->magic = KEY_DEBUG_MAGIC_X;
641 #endif
642 	kmem_cache_free(key_jar, key);
643 
644 	/* there may, of course, be more than one key to destroy */
645 	goto go_again;
646 }
647 
648 /**
649  * key_put - Discard a reference to a key.
650  * @key: The key to discard a reference from.
651  *
652  * Discard a reference to a key, and when all the references are gone, we
653  * schedule the cleanup task to come and pull it out of the tree in process
654  * context at some later time.
655  */
656 void key_put(struct key *key)
657 {
658 	if (key) {
659 		key_check(key);
660 
661 		if (atomic_dec_and_test(&key->usage))
662 			schedule_work(&key_cleanup_task);
663 	}
664 }
665 EXPORT_SYMBOL(key_put);
666 
667 /*
668  * Find a key by its serial number.
669  */
670 struct key *key_lookup(key_serial_t id)
671 {
672 	struct rb_node *n;
673 	struct key *key;
674 
675 	spin_lock(&key_serial_lock);
676 
677 	/* search the tree for the specified key */
678 	n = key_serial_tree.rb_node;
679 	while (n) {
680 		key = rb_entry(n, struct key, serial_node);
681 
682 		if (id < key->serial)
683 			n = n->rb_left;
684 		else if (id > key->serial)
685 			n = n->rb_right;
686 		else
687 			goto found;
688 	}
689 
690 not_found:
691 	key = ERR_PTR(-ENOKEY);
692 	goto error;
693 
694 found:
695 	/* pretend it doesn't exist if it is awaiting deletion */
696 	if (atomic_read(&key->usage) == 0)
697 		goto not_found;
698 
699 	/* this races with key_put(), but that doesn't matter since key_put()
700 	 * doesn't actually change the key
701 	 */
702 	atomic_inc(&key->usage);
703 
704 error:
705 	spin_unlock(&key_serial_lock);
706 	return key;
707 }
708 
709 /*
710  * Find and lock the specified key type against removal.
711  *
712  * We return with the sem read-locked if successful.  If the type wasn't
713  * available -ENOKEY is returned instead.
714  */
715 struct key_type *key_type_lookup(const char *type)
716 {
717 	struct key_type *ktype;
718 
719 	down_read(&key_types_sem);
720 
721 	/* look up the key type to see if it's one of the registered kernel
722 	 * types */
723 	list_for_each_entry(ktype, &key_types_list, link) {
724 		if (strcmp(ktype->name, type) == 0)
725 			goto found_kernel_type;
726 	}
727 
728 	up_read(&key_types_sem);
729 	ktype = ERR_PTR(-ENOKEY);
730 
731 found_kernel_type:
732 	return ktype;
733 }
734 
735 /*
736  * Unlock a key type locked by key_type_lookup().
737  */
738 void key_type_put(struct key_type *ktype)
739 {
740 	up_read(&key_types_sem);
741 }
742 
743 /*
744  * Attempt to update an existing key.
745  *
746  * The key is given to us with an incremented refcount that we need to discard
747  * if we get an error.
748  */
749 static inline key_ref_t __key_update(key_ref_t key_ref,
750 				     const void *payload, size_t plen)
751 {
752 	struct key *key = key_ref_to_ptr(key_ref);
753 	int ret;
754 
755 	/* need write permission on the key to update it */
756 	ret = key_permission(key_ref, KEY_WRITE);
757 	if (ret < 0)
758 		goto error;
759 
760 	ret = -EEXIST;
761 	if (!key->type->update)
762 		goto error;
763 
764 	down_write(&key->sem);
765 
766 	ret = key->type->update(key, payload, plen);
767 	if (ret == 0)
768 		/* updating a negative key instantiates it */
769 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
770 
771 	up_write(&key->sem);
772 
773 	if (ret < 0)
774 		goto error;
775 out:
776 	return key_ref;
777 
778 error:
779 	key_put(key);
780 	key_ref = ERR_PTR(ret);
781 	goto out;
782 }
783 
784 /**
785  * key_create_or_update - Update or create and instantiate a key.
786  * @keyring_ref: A pointer to the destination keyring with possession flag.
787  * @type: The type of key.
788  * @description: The searchable description for the key.
789  * @payload: The data to use to instantiate or update the key.
790  * @plen: The length of @payload.
791  * @perm: The permissions mask for a new key.
792  * @flags: The quota flags for a new key.
793  *
794  * Search the destination keyring for a key of the same description and if one
795  * is found, update it, otherwise create and instantiate a new one and create a
796  * link to it from that keyring.
797  *
798  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
799  * concocted.
800  *
801  * Returns a pointer to the new key if successful, -ENODEV if the key type
802  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
803  * caller isn't permitted to modify the keyring or the LSM did not permit
804  * creation of the key.
805  *
806  * On success, the possession flag from the keyring ref will be tacked on to
807  * the key ref before it is returned.
808  */
809 key_ref_t key_create_or_update(key_ref_t keyring_ref,
810 			       const char *type,
811 			       const char *description,
812 			       const void *payload,
813 			       size_t plen,
814 			       key_perm_t perm,
815 			       unsigned long flags)
816 {
817 	unsigned long prealloc;
818 	const struct cred *cred = current_cred();
819 	struct key_type *ktype;
820 	struct key *keyring, *key = NULL;
821 	key_ref_t key_ref;
822 	int ret;
823 
824 	/* look up the key type to see if it's one of the registered kernel
825 	 * types */
826 	ktype = key_type_lookup(type);
827 	if (IS_ERR(ktype)) {
828 		key_ref = ERR_PTR(-ENODEV);
829 		goto error;
830 	}
831 
832 	key_ref = ERR_PTR(-EINVAL);
833 	if (!ktype->match || !ktype->instantiate)
834 		goto error_2;
835 
836 	keyring = key_ref_to_ptr(keyring_ref);
837 
838 	key_check(keyring);
839 
840 	key_ref = ERR_PTR(-ENOTDIR);
841 	if (keyring->type != &key_type_keyring)
842 		goto error_2;
843 
844 	ret = __key_link_begin(keyring, ktype, description, &prealloc);
845 	if (ret < 0)
846 		goto error_2;
847 
848 	/* if we're going to allocate a new key, we're going to have
849 	 * to modify the keyring */
850 	ret = key_permission(keyring_ref, KEY_WRITE);
851 	if (ret < 0) {
852 		key_ref = ERR_PTR(ret);
853 		goto error_3;
854 	}
855 
856 	/* if it's possible to update this type of key, search for an existing
857 	 * key of the same type and description in the destination keyring and
858 	 * update that instead if possible
859 	 */
860 	if (ktype->update) {
861 		key_ref = __keyring_search_one(keyring_ref, ktype, description,
862 					       0);
863 		if (!IS_ERR(key_ref))
864 			goto found_matching_key;
865 	}
866 
867 	/* if the client doesn't provide, decide on the permissions we want */
868 	if (perm == KEY_PERM_UNDEF) {
869 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
870 		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
871 
872 		if (ktype->read)
873 			perm |= KEY_POS_READ | KEY_USR_READ;
874 
875 		if (ktype == &key_type_keyring || ktype->update)
876 			perm |= KEY_USR_WRITE;
877 	}
878 
879 	/* allocate a new key */
880 	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
881 			perm, flags);
882 	if (IS_ERR(key)) {
883 		key_ref = ERR_CAST(key);
884 		goto error_3;
885 	}
886 
887 	/* instantiate it and link it into the target keyring */
888 	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
889 					 &prealloc);
890 	if (ret < 0) {
891 		key_put(key);
892 		key_ref = ERR_PTR(ret);
893 		goto error_3;
894 	}
895 
896 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
897 
898  error_3:
899 	__key_link_end(keyring, ktype, prealloc);
900  error_2:
901 	key_type_put(ktype);
902  error:
903 	return key_ref;
904 
905  found_matching_key:
906 	/* we found a matching key, so we're going to try to update it
907 	 * - we can drop the locks first as we have the key pinned
908 	 */
909 	__key_link_end(keyring, ktype, prealloc);
910 	key_type_put(ktype);
911 
912 	key_ref = __key_update(key_ref, payload, plen);
913 	goto error;
914 }
915 EXPORT_SYMBOL(key_create_or_update);
916 
917 /**
918  * key_update - Update a key's contents.
919  * @key_ref: The pointer (plus possession flag) to the key.
920  * @payload: The data to be used to update the key.
921  * @plen: The length of @payload.
922  *
923  * Attempt to update the contents of a key with the given payload data.  The
924  * caller must be granted Write permission on the key.  Negative keys can be
925  * instantiated by this method.
926  *
927  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
928  * type does not support updating.  The key type may return other errors.
929  */
930 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
931 {
932 	struct key *key = key_ref_to_ptr(key_ref);
933 	int ret;
934 
935 	key_check(key);
936 
937 	/* the key must be writable */
938 	ret = key_permission(key_ref, KEY_WRITE);
939 	if (ret < 0)
940 		goto error;
941 
942 	/* attempt to update it if supported */
943 	ret = -EOPNOTSUPP;
944 	if (key->type->update) {
945 		down_write(&key->sem);
946 
947 		ret = key->type->update(key, payload, plen);
948 		if (ret == 0)
949 			/* updating a negative key instantiates it */
950 			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
951 
952 		up_write(&key->sem);
953 	}
954 
955  error:
956 	return ret;
957 }
958 EXPORT_SYMBOL(key_update);
959 
960 /**
961  * key_revoke - Revoke a key.
962  * @key: The key to be revoked.
963  *
964  * Mark a key as being revoked and ask the type to free up its resources.  The
965  * revocation timeout is set and the key and all its links will be
966  * automatically garbage collected after key_gc_delay amount of time if they
967  * are not manually dealt with first.
968  */
969 void key_revoke(struct key *key)
970 {
971 	struct timespec now;
972 	time_t time;
973 
974 	key_check(key);
975 
976 	/* make sure no one's trying to change or use the key when we mark it
977 	 * - we tell lockdep that we might nest because we might be revoking an
978 	 *   authorisation key whilst holding the sem on a key we've just
979 	 *   instantiated
980 	 */
981 	down_write_nested(&key->sem, 1);
982 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
983 	    key->type->revoke)
984 		key->type->revoke(key);
985 
986 	/* set the death time to no more than the expiry time */
987 	now = current_kernel_time();
988 	time = now.tv_sec;
989 	if (key->revoked_at == 0 || key->revoked_at > time) {
990 		key->revoked_at = time;
991 		key_schedule_gc(key->revoked_at + key_gc_delay);
992 	}
993 
994 	up_write(&key->sem);
995 }
996 EXPORT_SYMBOL(key_revoke);
997 
998 /**
999  * register_key_type - Register a type of key.
1000  * @ktype: The new key type.
1001  *
1002  * Register a new key type.
1003  *
1004  * Returns 0 on success or -EEXIST if a type of this name already exists.
1005  */
1006 int register_key_type(struct key_type *ktype)
1007 {
1008 	struct key_type *p;
1009 	int ret;
1010 
1011 	ret = -EEXIST;
1012 	down_write(&key_types_sem);
1013 
1014 	/* disallow key types with the same name */
1015 	list_for_each_entry(p, &key_types_list, link) {
1016 		if (strcmp(p->name, ktype->name) == 0)
1017 			goto out;
1018 	}
1019 
1020 	/* store the type */
1021 	list_add(&ktype->link, &key_types_list);
1022 	ret = 0;
1023 
1024 out:
1025 	up_write(&key_types_sem);
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(register_key_type);
1029 
1030 /**
1031  * unregister_key_type - Unregister a type of key.
1032  * @ktype: The key type.
1033  *
1034  * Unregister a key type and mark all the extant keys of this type as dead.
1035  * Those keys of this type are then destroyed to get rid of their payloads and
1036  * they and their links will be garbage collected as soon as possible.
1037  */
1038 void unregister_key_type(struct key_type *ktype)
1039 {
1040 	struct rb_node *_n;
1041 	struct key *key;
1042 
1043 	down_write(&key_types_sem);
1044 
1045 	/* withdraw the key type */
1046 	list_del_init(&ktype->link);
1047 
1048 	/* mark all the keys of this type dead */
1049 	spin_lock(&key_serial_lock);
1050 
1051 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1052 		key = rb_entry(_n, struct key, serial_node);
1053 
1054 		if (key->type == ktype) {
1055 			key->type = &key_type_dead;
1056 			set_bit(KEY_FLAG_DEAD, &key->flags);
1057 		}
1058 	}
1059 
1060 	spin_unlock(&key_serial_lock);
1061 
1062 	/* make sure everyone revalidates their keys */
1063 	synchronize_rcu();
1064 
1065 	/* we should now be able to destroy the payloads of all the keys of
1066 	 * this type with impunity */
1067 	spin_lock(&key_serial_lock);
1068 
1069 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1070 		key = rb_entry(_n, struct key, serial_node);
1071 
1072 		if (key->type == ktype) {
1073 			if (ktype->destroy)
1074 				ktype->destroy(key);
1075 			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1076 		}
1077 	}
1078 
1079 	spin_unlock(&key_serial_lock);
1080 	up_write(&key_types_sem);
1081 
1082 	key_schedule_gc(0);
1083 }
1084 EXPORT_SYMBOL(unregister_key_type);
1085 
1086 /*
1087  * Initialise the key management state.
1088  */
1089 void __init key_init(void)
1090 {
1091 	/* allocate a slab in which we can store keys */
1092 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1093 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1094 
1095 	/* add the special key types */
1096 	list_add_tail(&key_type_keyring.link, &key_types_list);
1097 	list_add_tail(&key_type_dead.link, &key_types_list);
1098 	list_add_tail(&key_type_user.link, &key_types_list);
1099 
1100 	/* record the root user tracking */
1101 	rb_link_node(&root_key_user.node,
1102 		     NULL,
1103 		     &key_user_tree.rb_node);
1104 
1105 	rb_insert_color(&root_key_user.node,
1106 			&key_user_tree);
1107 }
1108