xref: /linux/security/keys/key.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent = NULL;
58 	struct rb_node **p;
59 
60 try_again:
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	refcount_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	refcount_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  * @restrict_link: Optional link restriction for new keyrings.
205  *
206  * Allocate a key of the specified type with the attributes given.  The key is
207  * returned in an uninstantiated state and the caller needs to instantiate the
208  * key before returning.
209  *
210  * The restrict_link structure (if not NULL) will be freed when the
211  * keyring is destroyed, so it must be dynamically allocated.
212  *
213  * The user's key count quota is updated to reflect the creation of the key and
214  * the user's key data quota has the default for the key type reserved.  The
215  * instantiation function should amend this as necessary.  If insufficient
216  * quota is available, -EDQUOT will be returned.
217  *
218  * The LSM security modules can prevent a key being created, in which case
219  * -EACCES will be returned.
220  *
221  * Returns a pointer to the new key if successful and an error code otherwise.
222  *
223  * Note that the caller needs to ensure the key type isn't uninstantiated.
224  * Internally this can be done by locking key_types_sem.  Externally, this can
225  * be done by either never unregistering the key type, or making sure
226  * key_alloc() calls don't race with module unloading.
227  */
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 		      kuid_t uid, kgid_t gid, const struct cred *cred,
230 		      key_perm_t perm, unsigned long flags,
231 		      struct key_restriction *restrict_link)
232 {
233 	struct key_user *user = NULL;
234 	struct key *key;
235 	size_t desclen, quotalen;
236 	int ret;
237 
238 	key = ERR_PTR(-EINVAL);
239 	if (!desc || !*desc)
240 		goto error;
241 
242 	if (type->vet_description) {
243 		ret = type->vet_description(desc);
244 		if (ret < 0) {
245 			key = ERR_PTR(ret);
246 			goto error;
247 		}
248 	}
249 
250 	desclen = strlen(desc);
251 	quotalen = desclen + 1 + type->def_datalen;
252 
253 	/* get hold of the key tracking for this user */
254 	user = key_user_lookup(uid);
255 	if (!user)
256 		goto no_memory_1;
257 
258 	/* check that the user's quota permits allocation of another key and
259 	 * its description */
260 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 			key_quota_root_maxkeys : key_quota_maxkeys;
263 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 			key_quota_root_maxbytes : key_quota_maxbytes;
265 
266 		spin_lock(&user->lock);
267 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 			if (user->qnkeys + 1 >= maxkeys ||
269 			    user->qnbytes + quotalen >= maxbytes ||
270 			    user->qnbytes + quotalen < user->qnbytes)
271 				goto no_quota;
272 		}
273 
274 		user->qnkeys++;
275 		user->qnbytes += quotalen;
276 		spin_unlock(&user->lock);
277 	}
278 
279 	/* allocate and initialise the key and its description */
280 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 	if (!key)
282 		goto no_memory_2;
283 
284 	key->index_key.desc_len = desclen;
285 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 	if (!key->index_key.description)
287 		goto no_memory_3;
288 
289 	refcount_set(&key->usage, 1);
290 	init_rwsem(&key->sem);
291 	lockdep_set_class(&key->sem, &type->lock_class);
292 	key->index_key.type = type;
293 	key->user = user;
294 	key->quotalen = quotalen;
295 	key->datalen = type->def_datalen;
296 	key->uid = uid;
297 	key->gid = gid;
298 	key->perm = perm;
299 	key->restrict_link = restrict_link;
300 
301 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 	if (flags & KEY_ALLOC_BUILT_IN)
304 		key->flags |= 1 << KEY_FLAG_BUILTIN;
305 
306 #ifdef KEY_DEBUGGING
307 	key->magic = KEY_DEBUG_MAGIC;
308 #endif
309 
310 	/* let the security module know about the key */
311 	ret = security_key_alloc(key, cred, flags);
312 	if (ret < 0)
313 		goto security_error;
314 
315 	/* publish the key by giving it a serial number */
316 	atomic_inc(&user->nkeys);
317 	key_alloc_serial(key);
318 
319 error:
320 	return key;
321 
322 security_error:
323 	kfree(key->description);
324 	kmem_cache_free(key_jar, key);
325 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
326 		spin_lock(&user->lock);
327 		user->qnkeys--;
328 		user->qnbytes -= quotalen;
329 		spin_unlock(&user->lock);
330 	}
331 	key_user_put(user);
332 	key = ERR_PTR(ret);
333 	goto error;
334 
335 no_memory_3:
336 	kmem_cache_free(key_jar, key);
337 no_memory_2:
338 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
339 		spin_lock(&user->lock);
340 		user->qnkeys--;
341 		user->qnbytes -= quotalen;
342 		spin_unlock(&user->lock);
343 	}
344 	key_user_put(user);
345 no_memory_1:
346 	key = ERR_PTR(-ENOMEM);
347 	goto error;
348 
349 no_quota:
350 	spin_unlock(&user->lock);
351 	key_user_put(user);
352 	key = ERR_PTR(-EDQUOT);
353 	goto error;
354 }
355 EXPORT_SYMBOL(key_alloc);
356 
357 /**
358  * key_payload_reserve - Adjust data quota reservation for the key's payload
359  * @key: The key to make the reservation for.
360  * @datalen: The amount of data payload the caller now wants.
361  *
362  * Adjust the amount of the owning user's key data quota that a key reserves.
363  * If the amount is increased, then -EDQUOT may be returned if there isn't
364  * enough free quota available.
365  *
366  * If successful, 0 is returned.
367  */
368 int key_payload_reserve(struct key *key, size_t datalen)
369 {
370 	int delta = (int)datalen - key->datalen;
371 	int ret = 0;
372 
373 	key_check(key);
374 
375 	/* contemplate the quota adjustment */
376 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
377 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
378 			key_quota_root_maxbytes : key_quota_maxbytes;
379 
380 		spin_lock(&key->user->lock);
381 
382 		if (delta > 0 &&
383 		    (key->user->qnbytes + delta >= maxbytes ||
384 		     key->user->qnbytes + delta < key->user->qnbytes)) {
385 			ret = -EDQUOT;
386 		}
387 		else {
388 			key->user->qnbytes += delta;
389 			key->quotalen += delta;
390 		}
391 		spin_unlock(&key->user->lock);
392 	}
393 
394 	/* change the recorded data length if that didn't generate an error */
395 	if (ret == 0)
396 		key->datalen = datalen;
397 
398 	return ret;
399 }
400 EXPORT_SYMBOL(key_payload_reserve);
401 
402 /*
403  * Instantiate a key and link it into the target keyring atomically.  Must be
404  * called with the target keyring's semaphore writelocked.  The target key's
405  * semaphore need not be locked as instantiation is serialised by
406  * key_construction_mutex.
407  */
408 static int __key_instantiate_and_link(struct key *key,
409 				      struct key_preparsed_payload *prep,
410 				      struct key *keyring,
411 				      struct key *authkey,
412 				      struct assoc_array_edit **_edit)
413 {
414 	int ret, awaken;
415 
416 	key_check(key);
417 	key_check(keyring);
418 
419 	awaken = 0;
420 	ret = -EBUSY;
421 
422 	mutex_lock(&key_construction_mutex);
423 
424 	/* can't instantiate twice */
425 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
426 		/* instantiate the key */
427 		ret = key->type->instantiate(key, prep);
428 
429 		if (ret == 0) {
430 			/* mark the key as being instantiated */
431 			atomic_inc(&key->user->nikeys);
432 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
433 
434 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
435 				awaken = 1;
436 
437 			/* and link it into the destination keyring */
438 			if (keyring) {
439 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
440 					set_bit(KEY_FLAG_KEEP, &key->flags);
441 
442 				__key_link(key, _edit);
443 			}
444 
445 			/* disable the authorisation key */
446 			if (authkey)
447 				key_revoke(authkey);
448 
449 			if (prep->expiry != TIME_T_MAX) {
450 				key->expiry = prep->expiry;
451 				key_schedule_gc(prep->expiry + key_gc_delay);
452 			}
453 		}
454 	}
455 
456 	mutex_unlock(&key_construction_mutex);
457 
458 	/* wake up anyone waiting for a key to be constructed */
459 	if (awaken)
460 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
461 
462 	return ret;
463 }
464 
465 /**
466  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
467  * @key: The key to instantiate.
468  * @data: The data to use to instantiate the keyring.
469  * @datalen: The length of @data.
470  * @keyring: Keyring to create a link in on success (or NULL).
471  * @authkey: The authorisation token permitting instantiation.
472  *
473  * Instantiate a key that's in the uninstantiated state using the provided data
474  * and, if successful, link it in to the destination keyring if one is
475  * supplied.
476  *
477  * If successful, 0 is returned, the authorisation token is revoked and anyone
478  * waiting for the key is woken up.  If the key was already instantiated,
479  * -EBUSY will be returned.
480  */
481 int key_instantiate_and_link(struct key *key,
482 			     const void *data,
483 			     size_t datalen,
484 			     struct key *keyring,
485 			     struct key *authkey)
486 {
487 	struct key_preparsed_payload prep;
488 	struct assoc_array_edit *edit;
489 	int ret;
490 
491 	memset(&prep, 0, sizeof(prep));
492 	prep.data = data;
493 	prep.datalen = datalen;
494 	prep.quotalen = key->type->def_datalen;
495 	prep.expiry = TIME_T_MAX;
496 	if (key->type->preparse) {
497 		ret = key->type->preparse(&prep);
498 		if (ret < 0)
499 			goto error;
500 	}
501 
502 	if (keyring) {
503 		ret = __key_link_begin(keyring, &key->index_key, &edit);
504 		if (ret < 0)
505 			goto error;
506 
507 		if (keyring->restrict_link && keyring->restrict_link->check) {
508 			struct key_restriction *keyres = keyring->restrict_link;
509 
510 			ret = keyres->check(keyring, key->type, &prep.payload,
511 					    keyres->key);
512 			if (ret < 0)
513 				goto error_link_end;
514 		}
515 	}
516 
517 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
518 
519 error_link_end:
520 	if (keyring)
521 		__key_link_end(keyring, &key->index_key, edit);
522 
523 error:
524 	if (key->type->preparse)
525 		key->type->free_preparse(&prep);
526 	return ret;
527 }
528 
529 EXPORT_SYMBOL(key_instantiate_and_link);
530 
531 /**
532  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
533  * @key: The key to instantiate.
534  * @timeout: The timeout on the negative key.
535  * @error: The error to return when the key is hit.
536  * @keyring: Keyring to create a link in on success (or NULL).
537  * @authkey: The authorisation token permitting instantiation.
538  *
539  * Negatively instantiate a key that's in the uninstantiated state and, if
540  * successful, set its timeout and stored error and link it in to the
541  * destination keyring if one is supplied.  The key and any links to the key
542  * will be automatically garbage collected after the timeout expires.
543  *
544  * Negative keys are used to rate limit repeated request_key() calls by causing
545  * them to return the stored error code (typically ENOKEY) until the negative
546  * key expires.
547  *
548  * If successful, 0 is returned, the authorisation token is revoked and anyone
549  * waiting for the key is woken up.  If the key was already instantiated,
550  * -EBUSY will be returned.
551  */
552 int key_reject_and_link(struct key *key,
553 			unsigned timeout,
554 			unsigned error,
555 			struct key *keyring,
556 			struct key *authkey)
557 {
558 	struct assoc_array_edit *edit;
559 	struct timespec now;
560 	int ret, awaken, link_ret = 0;
561 
562 	key_check(key);
563 	key_check(keyring);
564 
565 	awaken = 0;
566 	ret = -EBUSY;
567 
568 	if (keyring) {
569 		if (keyring->restrict_link)
570 			return -EPERM;
571 
572 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
573 	}
574 
575 	mutex_lock(&key_construction_mutex);
576 
577 	/* can't instantiate twice */
578 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
579 		/* mark the key as being negatively instantiated */
580 		atomic_inc(&key->user->nikeys);
581 		key->reject_error = -error;
582 		smp_wmb();
583 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
584 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
585 		now = current_kernel_time();
586 		key->expiry = now.tv_sec + timeout;
587 		key_schedule_gc(key->expiry + key_gc_delay);
588 
589 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
590 			awaken = 1;
591 
592 		ret = 0;
593 
594 		/* and link it into the destination keyring */
595 		if (keyring && link_ret == 0)
596 			__key_link(key, &edit);
597 
598 		/* disable the authorisation key */
599 		if (authkey)
600 			key_revoke(authkey);
601 	}
602 
603 	mutex_unlock(&key_construction_mutex);
604 
605 	if (keyring && link_ret == 0)
606 		__key_link_end(keyring, &key->index_key, edit);
607 
608 	/* wake up anyone waiting for a key to be constructed */
609 	if (awaken)
610 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
611 
612 	return ret == 0 ? link_ret : ret;
613 }
614 EXPORT_SYMBOL(key_reject_and_link);
615 
616 /**
617  * key_put - Discard a reference to a key.
618  * @key: The key to discard a reference from.
619  *
620  * Discard a reference to a key, and when all the references are gone, we
621  * schedule the cleanup task to come and pull it out of the tree in process
622  * context at some later time.
623  */
624 void key_put(struct key *key)
625 {
626 	if (key) {
627 		key_check(key);
628 
629 		if (refcount_dec_and_test(&key->usage))
630 			schedule_work(&key_gc_work);
631 	}
632 }
633 EXPORT_SYMBOL(key_put);
634 
635 /*
636  * Find a key by its serial number.
637  */
638 struct key *key_lookup(key_serial_t id)
639 {
640 	struct rb_node *n;
641 	struct key *key;
642 
643 	spin_lock(&key_serial_lock);
644 
645 	/* search the tree for the specified key */
646 	n = key_serial_tree.rb_node;
647 	while (n) {
648 		key = rb_entry(n, struct key, serial_node);
649 
650 		if (id < key->serial)
651 			n = n->rb_left;
652 		else if (id > key->serial)
653 			n = n->rb_right;
654 		else
655 			goto found;
656 	}
657 
658 not_found:
659 	key = ERR_PTR(-ENOKEY);
660 	goto error;
661 
662 found:
663 	/* A key is allowed to be looked up only if someone still owns a
664 	 * reference to it - otherwise it's awaiting the gc.
665 	 */
666 	if (!refcount_inc_not_zero(&key->usage))
667 		goto not_found;
668 
669 error:
670 	spin_unlock(&key_serial_lock);
671 	return key;
672 }
673 
674 /*
675  * Find and lock the specified key type against removal.
676  *
677  * We return with the sem read-locked if successful.  If the type wasn't
678  * available -ENOKEY is returned instead.
679  */
680 struct key_type *key_type_lookup(const char *type)
681 {
682 	struct key_type *ktype;
683 
684 	down_read(&key_types_sem);
685 
686 	/* look up the key type to see if it's one of the registered kernel
687 	 * types */
688 	list_for_each_entry(ktype, &key_types_list, link) {
689 		if (strcmp(ktype->name, type) == 0)
690 			goto found_kernel_type;
691 	}
692 
693 	up_read(&key_types_sem);
694 	ktype = ERR_PTR(-ENOKEY);
695 
696 found_kernel_type:
697 	return ktype;
698 }
699 
700 void key_set_timeout(struct key *key, unsigned timeout)
701 {
702 	struct timespec now;
703 	time_t expiry = 0;
704 
705 	/* make the changes with the locks held to prevent races */
706 	down_write(&key->sem);
707 
708 	if (timeout > 0) {
709 		now = current_kernel_time();
710 		expiry = now.tv_sec + timeout;
711 	}
712 
713 	key->expiry = expiry;
714 	key_schedule_gc(key->expiry + key_gc_delay);
715 
716 	up_write(&key->sem);
717 }
718 EXPORT_SYMBOL_GPL(key_set_timeout);
719 
720 /*
721  * Unlock a key type locked by key_type_lookup().
722  */
723 void key_type_put(struct key_type *ktype)
724 {
725 	up_read(&key_types_sem);
726 }
727 
728 /*
729  * Attempt to update an existing key.
730  *
731  * The key is given to us with an incremented refcount that we need to discard
732  * if we get an error.
733  */
734 static inline key_ref_t __key_update(key_ref_t key_ref,
735 				     struct key_preparsed_payload *prep)
736 {
737 	struct key *key = key_ref_to_ptr(key_ref);
738 	int ret;
739 
740 	/* need write permission on the key to update it */
741 	ret = key_permission(key_ref, KEY_NEED_WRITE);
742 	if (ret < 0)
743 		goto error;
744 
745 	ret = -EEXIST;
746 	if (!key->type->update)
747 		goto error;
748 
749 	down_write(&key->sem);
750 
751 	ret = key->type->update(key, prep);
752 	if (ret == 0)
753 		/* updating a negative key instantiates it */
754 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
755 
756 	up_write(&key->sem);
757 
758 	if (ret < 0)
759 		goto error;
760 out:
761 	return key_ref;
762 
763 error:
764 	key_put(key);
765 	key_ref = ERR_PTR(ret);
766 	goto out;
767 }
768 
769 /**
770  * key_create_or_update - Update or create and instantiate a key.
771  * @keyring_ref: A pointer to the destination keyring with possession flag.
772  * @type: The type of key.
773  * @description: The searchable description for the key.
774  * @payload: The data to use to instantiate or update the key.
775  * @plen: The length of @payload.
776  * @perm: The permissions mask for a new key.
777  * @flags: The quota flags for a new key.
778  *
779  * Search the destination keyring for a key of the same description and if one
780  * is found, update it, otherwise create and instantiate a new one and create a
781  * link to it from that keyring.
782  *
783  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
784  * concocted.
785  *
786  * Returns a pointer to the new key if successful, -ENODEV if the key type
787  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
788  * caller isn't permitted to modify the keyring or the LSM did not permit
789  * creation of the key.
790  *
791  * On success, the possession flag from the keyring ref will be tacked on to
792  * the key ref before it is returned.
793  */
794 key_ref_t key_create_or_update(key_ref_t keyring_ref,
795 			       const char *type,
796 			       const char *description,
797 			       const void *payload,
798 			       size_t plen,
799 			       key_perm_t perm,
800 			       unsigned long flags)
801 {
802 	struct keyring_index_key index_key = {
803 		.description	= description,
804 	};
805 	struct key_preparsed_payload prep;
806 	struct assoc_array_edit *edit;
807 	const struct cred *cred = current_cred();
808 	struct key *keyring, *key = NULL;
809 	key_ref_t key_ref;
810 	int ret;
811 	struct key_restriction *restrict_link = NULL;
812 
813 	/* look up the key type to see if it's one of the registered kernel
814 	 * types */
815 	index_key.type = key_type_lookup(type);
816 	if (IS_ERR(index_key.type)) {
817 		key_ref = ERR_PTR(-ENODEV);
818 		goto error;
819 	}
820 
821 	key_ref = ERR_PTR(-EINVAL);
822 	if (!index_key.type->instantiate ||
823 	    (!index_key.description && !index_key.type->preparse))
824 		goto error_put_type;
825 
826 	keyring = key_ref_to_ptr(keyring_ref);
827 
828 	key_check(keyring);
829 
830 	key_ref = ERR_PTR(-EPERM);
831 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
832 		restrict_link = keyring->restrict_link;
833 
834 	key_ref = ERR_PTR(-ENOTDIR);
835 	if (keyring->type != &key_type_keyring)
836 		goto error_put_type;
837 
838 	memset(&prep, 0, sizeof(prep));
839 	prep.data = payload;
840 	prep.datalen = plen;
841 	prep.quotalen = index_key.type->def_datalen;
842 	prep.expiry = TIME_T_MAX;
843 	if (index_key.type->preparse) {
844 		ret = index_key.type->preparse(&prep);
845 		if (ret < 0) {
846 			key_ref = ERR_PTR(ret);
847 			goto error_free_prep;
848 		}
849 		if (!index_key.description)
850 			index_key.description = prep.description;
851 		key_ref = ERR_PTR(-EINVAL);
852 		if (!index_key.description)
853 			goto error_free_prep;
854 	}
855 	index_key.desc_len = strlen(index_key.description);
856 
857 	ret = __key_link_begin(keyring, &index_key, &edit);
858 	if (ret < 0) {
859 		key_ref = ERR_PTR(ret);
860 		goto error_free_prep;
861 	}
862 
863 	if (restrict_link && restrict_link->check) {
864 		ret = restrict_link->check(keyring, index_key.type,
865 					   &prep.payload, restrict_link->key);
866 		if (ret < 0) {
867 			key_ref = ERR_PTR(ret);
868 			goto error_link_end;
869 		}
870 	}
871 
872 	/* if we're going to allocate a new key, we're going to have
873 	 * to modify the keyring */
874 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
875 	if (ret < 0) {
876 		key_ref = ERR_PTR(ret);
877 		goto error_link_end;
878 	}
879 
880 	/* if it's possible to update this type of key, search for an existing
881 	 * key of the same type and description in the destination keyring and
882 	 * update that instead if possible
883 	 */
884 	if (index_key.type->update) {
885 		key_ref = find_key_to_update(keyring_ref, &index_key);
886 		if (key_ref)
887 			goto found_matching_key;
888 	}
889 
890 	/* if the client doesn't provide, decide on the permissions we want */
891 	if (perm == KEY_PERM_UNDEF) {
892 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
893 		perm |= KEY_USR_VIEW;
894 
895 		if (index_key.type->read)
896 			perm |= KEY_POS_READ;
897 
898 		if (index_key.type == &key_type_keyring ||
899 		    index_key.type->update)
900 			perm |= KEY_POS_WRITE;
901 	}
902 
903 	/* allocate a new key */
904 	key = key_alloc(index_key.type, index_key.description,
905 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
906 	if (IS_ERR(key)) {
907 		key_ref = ERR_CAST(key);
908 		goto error_link_end;
909 	}
910 
911 	/* instantiate it and link it into the target keyring */
912 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
913 	if (ret < 0) {
914 		key_put(key);
915 		key_ref = ERR_PTR(ret);
916 		goto error_link_end;
917 	}
918 
919 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
920 
921 error_link_end:
922 	__key_link_end(keyring, &index_key, edit);
923 error_free_prep:
924 	if (index_key.type->preparse)
925 		index_key.type->free_preparse(&prep);
926 error_put_type:
927 	key_type_put(index_key.type);
928 error:
929 	return key_ref;
930 
931  found_matching_key:
932 	/* we found a matching key, so we're going to try to update it
933 	 * - we can drop the locks first as we have the key pinned
934 	 */
935 	__key_link_end(keyring, &index_key, edit);
936 
937 	key_ref = __key_update(key_ref, &prep);
938 	goto error_free_prep;
939 }
940 EXPORT_SYMBOL(key_create_or_update);
941 
942 /**
943  * key_update - Update a key's contents.
944  * @key_ref: The pointer (plus possession flag) to the key.
945  * @payload: The data to be used to update the key.
946  * @plen: The length of @payload.
947  *
948  * Attempt to update the contents of a key with the given payload data.  The
949  * caller must be granted Write permission on the key.  Negative keys can be
950  * instantiated by this method.
951  *
952  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
953  * type does not support updating.  The key type may return other errors.
954  */
955 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
956 {
957 	struct key_preparsed_payload prep;
958 	struct key *key = key_ref_to_ptr(key_ref);
959 	int ret;
960 
961 	key_check(key);
962 
963 	/* the key must be writable */
964 	ret = key_permission(key_ref, KEY_NEED_WRITE);
965 	if (ret < 0)
966 		return ret;
967 
968 	/* attempt to update it if supported */
969 	if (!key->type->update)
970 		return -EOPNOTSUPP;
971 
972 	memset(&prep, 0, sizeof(prep));
973 	prep.data = payload;
974 	prep.datalen = plen;
975 	prep.quotalen = key->type->def_datalen;
976 	prep.expiry = TIME_T_MAX;
977 	if (key->type->preparse) {
978 		ret = key->type->preparse(&prep);
979 		if (ret < 0)
980 			goto error;
981 	}
982 
983 	down_write(&key->sem);
984 
985 	ret = key->type->update(key, &prep);
986 	if (ret == 0)
987 		/* updating a negative key instantiates it */
988 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
989 
990 	up_write(&key->sem);
991 
992 error:
993 	if (key->type->preparse)
994 		key->type->free_preparse(&prep);
995 	return ret;
996 }
997 EXPORT_SYMBOL(key_update);
998 
999 /**
1000  * key_revoke - Revoke a key.
1001  * @key: The key to be revoked.
1002  *
1003  * Mark a key as being revoked and ask the type to free up its resources.  The
1004  * revocation timeout is set and the key and all its links will be
1005  * automatically garbage collected after key_gc_delay amount of time if they
1006  * are not manually dealt with first.
1007  */
1008 void key_revoke(struct key *key)
1009 {
1010 	struct timespec now;
1011 	time_t time;
1012 
1013 	key_check(key);
1014 
1015 	/* make sure no one's trying to change or use the key when we mark it
1016 	 * - we tell lockdep that we might nest because we might be revoking an
1017 	 *   authorisation key whilst holding the sem on a key we've just
1018 	 *   instantiated
1019 	 */
1020 	down_write_nested(&key->sem, 1);
1021 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1022 	    key->type->revoke)
1023 		key->type->revoke(key);
1024 
1025 	/* set the death time to no more than the expiry time */
1026 	now = current_kernel_time();
1027 	time = now.tv_sec;
1028 	if (key->revoked_at == 0 || key->revoked_at > time) {
1029 		key->revoked_at = time;
1030 		key_schedule_gc(key->revoked_at + key_gc_delay);
1031 	}
1032 
1033 	up_write(&key->sem);
1034 }
1035 EXPORT_SYMBOL(key_revoke);
1036 
1037 /**
1038  * key_invalidate - Invalidate a key.
1039  * @key: The key to be invalidated.
1040  *
1041  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1042  * is ignored by all searches and other operations from this point.
1043  */
1044 void key_invalidate(struct key *key)
1045 {
1046 	kenter("%d", key_serial(key));
1047 
1048 	key_check(key);
1049 
1050 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1051 		down_write_nested(&key->sem, 1);
1052 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1053 			key_schedule_gc_links();
1054 		up_write(&key->sem);
1055 	}
1056 }
1057 EXPORT_SYMBOL(key_invalidate);
1058 
1059 /**
1060  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1061  * @key: The key to be instantiated
1062  * @prep: The preparsed data to load.
1063  *
1064  * Instantiate a key from preparsed data.  We assume we can just copy the data
1065  * in directly and clear the old pointers.
1066  *
1067  * This can be pointed to directly by the key type instantiate op pointer.
1068  */
1069 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1070 {
1071 	int ret;
1072 
1073 	pr_devel("==>%s()\n", __func__);
1074 
1075 	ret = key_payload_reserve(key, prep->quotalen);
1076 	if (ret == 0) {
1077 		rcu_assign_keypointer(key, prep->payload.data[0]);
1078 		key->payload.data[1] = prep->payload.data[1];
1079 		key->payload.data[2] = prep->payload.data[2];
1080 		key->payload.data[3] = prep->payload.data[3];
1081 		prep->payload.data[0] = NULL;
1082 		prep->payload.data[1] = NULL;
1083 		prep->payload.data[2] = NULL;
1084 		prep->payload.data[3] = NULL;
1085 	}
1086 	pr_devel("<==%s() = %d\n", __func__, ret);
1087 	return ret;
1088 }
1089 EXPORT_SYMBOL(generic_key_instantiate);
1090 
1091 /**
1092  * register_key_type - Register a type of key.
1093  * @ktype: The new key type.
1094  *
1095  * Register a new key type.
1096  *
1097  * Returns 0 on success or -EEXIST if a type of this name already exists.
1098  */
1099 int register_key_type(struct key_type *ktype)
1100 {
1101 	struct key_type *p;
1102 	int ret;
1103 
1104 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1105 
1106 	ret = -EEXIST;
1107 	down_write(&key_types_sem);
1108 
1109 	/* disallow key types with the same name */
1110 	list_for_each_entry(p, &key_types_list, link) {
1111 		if (strcmp(p->name, ktype->name) == 0)
1112 			goto out;
1113 	}
1114 
1115 	/* store the type */
1116 	list_add(&ktype->link, &key_types_list);
1117 
1118 	pr_notice("Key type %s registered\n", ktype->name);
1119 	ret = 0;
1120 
1121 out:
1122 	up_write(&key_types_sem);
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL(register_key_type);
1126 
1127 /**
1128  * unregister_key_type - Unregister a type of key.
1129  * @ktype: The key type.
1130  *
1131  * Unregister a key type and mark all the extant keys of this type as dead.
1132  * Those keys of this type are then destroyed to get rid of their payloads and
1133  * they and their links will be garbage collected as soon as possible.
1134  */
1135 void unregister_key_type(struct key_type *ktype)
1136 {
1137 	down_write(&key_types_sem);
1138 	list_del_init(&ktype->link);
1139 	downgrade_write(&key_types_sem);
1140 	key_gc_keytype(ktype);
1141 	pr_notice("Key type %s unregistered\n", ktype->name);
1142 	up_read(&key_types_sem);
1143 }
1144 EXPORT_SYMBOL(unregister_key_type);
1145 
1146 /*
1147  * Initialise the key management state.
1148  */
1149 void __init key_init(void)
1150 {
1151 	/* allocate a slab in which we can store keys */
1152 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1153 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1154 
1155 	/* add the special key types */
1156 	list_add_tail(&key_type_keyring.link, &key_types_list);
1157 	list_add_tail(&key_type_dead.link, &key_types_list);
1158 	list_add_tail(&key_type_user.link, &key_types_list);
1159 	list_add_tail(&key_type_logon.link, &key_types_list);
1160 
1161 	/* record the root user tracking */
1162 	rb_link_node(&root_key_user.node,
1163 		     NULL,
1164 		     &key_user_tree.rb_node);
1165 
1166 	rb_insert_color(&root_key_user.node,
1167 			&key_user_tree);
1168 }
1169