xref: /linux/security/keys/key.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
23 
24 static struct kmem_cache	*key_jar;
25 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
27 
28 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
30 
31 unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
33 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
34 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
35 
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
38 
39 static void key_cleanup(struct work_struct *work);
40 static DECLARE_WORK(key_cleanup_task, key_cleanup);
41 
42 /* We serialise key instantiation and link */
43 DEFINE_MUTEX(key_construction_mutex);
44 
45 /* Any key who's type gets unegistered will be re-typed to this */
46 static struct key_type key_type_dead = {
47 	.name		= "dead",
48 };
49 
50 #ifdef KEY_DEBUGGING
51 void __key_check(const struct key *key)
52 {
53 	printk("__key_check: key %p {%08x} should be {%08x}\n",
54 	       key, key->magic, KEY_DEBUG_MAGIC);
55 	BUG();
56 }
57 #endif
58 
59 /*
60  * Get the key quota record for a user, allocating a new record if one doesn't
61  * already exist.
62  */
63 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
64 {
65 	struct key_user *candidate = NULL, *user;
66 	struct rb_node *parent = NULL;
67 	struct rb_node **p;
68 
69 try_again:
70 	p = &key_user_tree.rb_node;
71 	spin_lock(&key_user_lock);
72 
73 	/* search the tree for a user record with a matching UID */
74 	while (*p) {
75 		parent = *p;
76 		user = rb_entry(parent, struct key_user, node);
77 
78 		if (uid < user->uid)
79 			p = &(*p)->rb_left;
80 		else if (uid > user->uid)
81 			p = &(*p)->rb_right;
82 		else if (user_ns < user->user_ns)
83 			p = &(*p)->rb_left;
84 		else if (user_ns > user->user_ns)
85 			p = &(*p)->rb_right;
86 		else
87 			goto found;
88 	}
89 
90 	/* if we get here, we failed to find a match in the tree */
91 	if (!candidate) {
92 		/* allocate a candidate user record if we don't already have
93 		 * one */
94 		spin_unlock(&key_user_lock);
95 
96 		user = NULL;
97 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
98 		if (unlikely(!candidate))
99 			goto out;
100 
101 		/* the allocation may have scheduled, so we need to repeat the
102 		 * search lest someone else added the record whilst we were
103 		 * asleep */
104 		goto try_again;
105 	}
106 
107 	/* if we get here, then the user record still hadn't appeared on the
108 	 * second pass - so we use the candidate record */
109 	atomic_set(&candidate->usage, 1);
110 	atomic_set(&candidate->nkeys, 0);
111 	atomic_set(&candidate->nikeys, 0);
112 	candidate->uid = uid;
113 	candidate->user_ns = get_user_ns(user_ns);
114 	candidate->qnkeys = 0;
115 	candidate->qnbytes = 0;
116 	spin_lock_init(&candidate->lock);
117 	mutex_init(&candidate->cons_lock);
118 
119 	rb_link_node(&candidate->node, parent, p);
120 	rb_insert_color(&candidate->node, &key_user_tree);
121 	spin_unlock(&key_user_lock);
122 	user = candidate;
123 	goto out;
124 
125 	/* okay - we found a user record for this UID */
126 found:
127 	atomic_inc(&user->usage);
128 	spin_unlock(&key_user_lock);
129 	kfree(candidate);
130 out:
131 	return user;
132 }
133 
134 /*
135  * Dispose of a user structure
136  */
137 void key_user_put(struct key_user *user)
138 {
139 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
140 		rb_erase(&user->node, &key_user_tree);
141 		spin_unlock(&key_user_lock);
142 		put_user_ns(user->user_ns);
143 
144 		kfree(user);
145 	}
146 }
147 
148 /*
149  * Allocate a serial number for a key.  These are assigned randomly to avoid
150  * security issues through covert channel problems.
151  */
152 static inline void key_alloc_serial(struct key *key)
153 {
154 	struct rb_node *parent, **p;
155 	struct key *xkey;
156 
157 	/* propose a random serial number and look for a hole for it in the
158 	 * serial number tree */
159 	do {
160 		get_random_bytes(&key->serial, sizeof(key->serial));
161 
162 		key->serial >>= 1; /* negative numbers are not permitted */
163 	} while (key->serial < 3);
164 
165 	spin_lock(&key_serial_lock);
166 
167 attempt_insertion:
168 	parent = NULL;
169 	p = &key_serial_tree.rb_node;
170 
171 	while (*p) {
172 		parent = *p;
173 		xkey = rb_entry(parent, struct key, serial_node);
174 
175 		if (key->serial < xkey->serial)
176 			p = &(*p)->rb_left;
177 		else if (key->serial > xkey->serial)
178 			p = &(*p)->rb_right;
179 		else
180 			goto serial_exists;
181 	}
182 
183 	/* we've found a suitable hole - arrange for this key to occupy it */
184 	rb_link_node(&key->serial_node, parent, p);
185 	rb_insert_color(&key->serial_node, &key_serial_tree);
186 
187 	spin_unlock(&key_serial_lock);
188 	return;
189 
190 	/* we found a key with the proposed serial number - walk the tree from
191 	 * that point looking for the next unused serial number */
192 serial_exists:
193 	for (;;) {
194 		key->serial++;
195 		if (key->serial < 3) {
196 			key->serial = 3;
197 			goto attempt_insertion;
198 		}
199 
200 		parent = rb_next(parent);
201 		if (!parent)
202 			goto attempt_insertion;
203 
204 		xkey = rb_entry(parent, struct key, serial_node);
205 		if (key->serial < xkey->serial)
206 			goto attempt_insertion;
207 	}
208 }
209 
210 /**
211  * key_alloc - Allocate a key of the specified type.
212  * @type: The type of key to allocate.
213  * @desc: The key description to allow the key to be searched out.
214  * @uid: The owner of the new key.
215  * @gid: The group ID for the new key's group permissions.
216  * @cred: The credentials specifying UID namespace.
217  * @perm: The permissions mask of the new key.
218  * @flags: Flags specifying quota properties.
219  *
220  * Allocate a key of the specified type with the attributes given.  The key is
221  * returned in an uninstantiated state and the caller needs to instantiate the
222  * key before returning.
223  *
224  * The user's key count quota is updated to reflect the creation of the key and
225  * the user's key data quota has the default for the key type reserved.  The
226  * instantiation function should amend this as necessary.  If insufficient
227  * quota is available, -EDQUOT will be returned.
228  *
229  * The LSM security modules can prevent a key being created, in which case
230  * -EACCES will be returned.
231  *
232  * Returns a pointer to the new key if successful and an error code otherwise.
233  *
234  * Note that the caller needs to ensure the key type isn't uninstantiated.
235  * Internally this can be done by locking key_types_sem.  Externally, this can
236  * be done by either never unregistering the key type, or making sure
237  * key_alloc() calls don't race with module unloading.
238  */
239 struct key *key_alloc(struct key_type *type, const char *desc,
240 		      uid_t uid, gid_t gid, const struct cred *cred,
241 		      key_perm_t perm, unsigned long flags)
242 {
243 	struct key_user *user = NULL;
244 	struct key *key;
245 	size_t desclen, quotalen;
246 	int ret;
247 
248 	key = ERR_PTR(-EINVAL);
249 	if (!desc || !*desc)
250 		goto error;
251 
252 	if (type->vet_description) {
253 		ret = type->vet_description(desc);
254 		if (ret < 0) {
255 			key = ERR_PTR(ret);
256 			goto error;
257 		}
258 	}
259 
260 	desclen = strlen(desc) + 1;
261 	quotalen = desclen + type->def_datalen;
262 
263 	/* get hold of the key tracking for this user */
264 	user = key_user_lookup(uid, cred->user->user_ns);
265 	if (!user)
266 		goto no_memory_1;
267 
268 	/* check that the user's quota permits allocation of another key and
269 	 * its description */
270 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
271 		unsigned maxkeys = (uid == 0) ?
272 			key_quota_root_maxkeys : key_quota_maxkeys;
273 		unsigned maxbytes = (uid == 0) ?
274 			key_quota_root_maxbytes : key_quota_maxbytes;
275 
276 		spin_lock(&user->lock);
277 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
278 			if (user->qnkeys + 1 >= maxkeys ||
279 			    user->qnbytes + quotalen >= maxbytes ||
280 			    user->qnbytes + quotalen < user->qnbytes)
281 				goto no_quota;
282 		}
283 
284 		user->qnkeys++;
285 		user->qnbytes += quotalen;
286 		spin_unlock(&user->lock);
287 	}
288 
289 	/* allocate and initialise the key and its description */
290 	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
291 	if (!key)
292 		goto no_memory_2;
293 
294 	if (desc) {
295 		key->description = kmemdup(desc, desclen, GFP_KERNEL);
296 		if (!key->description)
297 			goto no_memory_3;
298 	}
299 
300 	atomic_set(&key->usage, 1);
301 	init_rwsem(&key->sem);
302 	key->type = type;
303 	key->user = user;
304 	key->quotalen = quotalen;
305 	key->datalen = type->def_datalen;
306 	key->uid = uid;
307 	key->gid = gid;
308 	key->perm = perm;
309 	key->flags = 0;
310 	key->expiry = 0;
311 	key->payload.data = NULL;
312 	key->security = NULL;
313 
314 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
315 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
316 
317 	memset(&key->type_data, 0, sizeof(key->type_data));
318 
319 #ifdef KEY_DEBUGGING
320 	key->magic = KEY_DEBUG_MAGIC;
321 #endif
322 
323 	/* let the security module know about the key */
324 	ret = security_key_alloc(key, cred, flags);
325 	if (ret < 0)
326 		goto security_error;
327 
328 	/* publish the key by giving it a serial number */
329 	atomic_inc(&user->nkeys);
330 	key_alloc_serial(key);
331 
332 error:
333 	return key;
334 
335 security_error:
336 	kfree(key->description);
337 	kmem_cache_free(key_jar, key);
338 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
339 		spin_lock(&user->lock);
340 		user->qnkeys--;
341 		user->qnbytes -= quotalen;
342 		spin_unlock(&user->lock);
343 	}
344 	key_user_put(user);
345 	key = ERR_PTR(ret);
346 	goto error;
347 
348 no_memory_3:
349 	kmem_cache_free(key_jar, key);
350 no_memory_2:
351 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
352 		spin_lock(&user->lock);
353 		user->qnkeys--;
354 		user->qnbytes -= quotalen;
355 		spin_unlock(&user->lock);
356 	}
357 	key_user_put(user);
358 no_memory_1:
359 	key = ERR_PTR(-ENOMEM);
360 	goto error;
361 
362 no_quota:
363 	spin_unlock(&user->lock);
364 	key_user_put(user);
365 	key = ERR_PTR(-EDQUOT);
366 	goto error;
367 }
368 EXPORT_SYMBOL(key_alloc);
369 
370 /**
371  * key_payload_reserve - Adjust data quota reservation for the key's payload
372  * @key: The key to make the reservation for.
373  * @datalen: The amount of data payload the caller now wants.
374  *
375  * Adjust the amount of the owning user's key data quota that a key reserves.
376  * If the amount is increased, then -EDQUOT may be returned if there isn't
377  * enough free quota available.
378  *
379  * If successful, 0 is returned.
380  */
381 int key_payload_reserve(struct key *key, size_t datalen)
382 {
383 	int delta = (int)datalen - key->datalen;
384 	int ret = 0;
385 
386 	key_check(key);
387 
388 	/* contemplate the quota adjustment */
389 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
390 		unsigned maxbytes = (key->user->uid == 0) ?
391 			key_quota_root_maxbytes : key_quota_maxbytes;
392 
393 		spin_lock(&key->user->lock);
394 
395 		if (delta > 0 &&
396 		    (key->user->qnbytes + delta >= maxbytes ||
397 		     key->user->qnbytes + delta < key->user->qnbytes)) {
398 			ret = -EDQUOT;
399 		}
400 		else {
401 			key->user->qnbytes += delta;
402 			key->quotalen += delta;
403 		}
404 		spin_unlock(&key->user->lock);
405 	}
406 
407 	/* change the recorded data length if that didn't generate an error */
408 	if (ret == 0)
409 		key->datalen = datalen;
410 
411 	return ret;
412 }
413 EXPORT_SYMBOL(key_payload_reserve);
414 
415 /*
416  * Instantiate a key and link it into the target keyring atomically.  Must be
417  * called with the target keyring's semaphore writelocked.  The target key's
418  * semaphore need not be locked as instantiation is serialised by
419  * key_construction_mutex.
420  */
421 static int __key_instantiate_and_link(struct key *key,
422 				      const void *data,
423 				      size_t datalen,
424 				      struct key *keyring,
425 				      struct key *authkey,
426 				      unsigned long *_prealloc)
427 {
428 	int ret, awaken;
429 
430 	key_check(key);
431 	key_check(keyring);
432 
433 	awaken = 0;
434 	ret = -EBUSY;
435 
436 	mutex_lock(&key_construction_mutex);
437 
438 	/* can't instantiate twice */
439 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
440 		/* instantiate the key */
441 		ret = key->type->instantiate(key, data, datalen);
442 
443 		if (ret == 0) {
444 			/* mark the key as being instantiated */
445 			atomic_inc(&key->user->nikeys);
446 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
447 
448 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
449 				awaken = 1;
450 
451 			/* and link it into the destination keyring */
452 			if (keyring)
453 				__key_link(keyring, key, _prealloc);
454 
455 			/* disable the authorisation key */
456 			if (authkey)
457 				key_revoke(authkey);
458 		}
459 	}
460 
461 	mutex_unlock(&key_construction_mutex);
462 
463 	/* wake up anyone waiting for a key to be constructed */
464 	if (awaken)
465 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
466 
467 	return ret;
468 }
469 
470 /**
471  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
472  * @key: The key to instantiate.
473  * @data: The data to use to instantiate the keyring.
474  * @datalen: The length of @data.
475  * @keyring: Keyring to create a link in on success (or NULL).
476  * @authkey: The authorisation token permitting instantiation.
477  *
478  * Instantiate a key that's in the uninstantiated state using the provided data
479  * and, if successful, link it in to the destination keyring if one is
480  * supplied.
481  *
482  * If successful, 0 is returned, the authorisation token is revoked and anyone
483  * waiting for the key is woken up.  If the key was already instantiated,
484  * -EBUSY will be returned.
485  */
486 int key_instantiate_and_link(struct key *key,
487 			     const void *data,
488 			     size_t datalen,
489 			     struct key *keyring,
490 			     struct key *authkey)
491 {
492 	unsigned long prealloc;
493 	int ret;
494 
495 	if (keyring) {
496 		ret = __key_link_begin(keyring, key->type, key->description,
497 				       &prealloc);
498 		if (ret < 0)
499 			return ret;
500 	}
501 
502 	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
503 					 &prealloc);
504 
505 	if (keyring)
506 		__key_link_end(keyring, key->type, prealloc);
507 
508 	return ret;
509 }
510 
511 EXPORT_SYMBOL(key_instantiate_and_link);
512 
513 /**
514  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
515  * @key: The key to instantiate.
516  * @timeout: The timeout on the negative key.
517  * @error: The error to return when the key is hit.
518  * @keyring: Keyring to create a link in on success (or NULL).
519  * @authkey: The authorisation token permitting instantiation.
520  *
521  * Negatively instantiate a key that's in the uninstantiated state and, if
522  * successful, set its timeout and stored error and link it in to the
523  * destination keyring if one is supplied.  The key and any links to the key
524  * will be automatically garbage collected after the timeout expires.
525  *
526  * Negative keys are used to rate limit repeated request_key() calls by causing
527  * them to return the stored error code (typically ENOKEY) until the negative
528  * key expires.
529  *
530  * If successful, 0 is returned, the authorisation token is revoked and anyone
531  * waiting for the key is woken up.  If the key was already instantiated,
532  * -EBUSY will be returned.
533  */
534 int key_reject_and_link(struct key *key,
535 			unsigned timeout,
536 			unsigned error,
537 			struct key *keyring,
538 			struct key *authkey)
539 {
540 	unsigned long prealloc;
541 	struct timespec now;
542 	int ret, awaken, link_ret = 0;
543 
544 	key_check(key);
545 	key_check(keyring);
546 
547 	awaken = 0;
548 	ret = -EBUSY;
549 
550 	if (keyring)
551 		link_ret = __key_link_begin(keyring, key->type,
552 					    key->description, &prealloc);
553 
554 	mutex_lock(&key_construction_mutex);
555 
556 	/* can't instantiate twice */
557 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
558 		/* mark the key as being negatively instantiated */
559 		atomic_inc(&key->user->nikeys);
560 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
561 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
562 		key->type_data.reject_error = -error;
563 		now = current_kernel_time();
564 		key->expiry = now.tv_sec + timeout;
565 		key_schedule_gc(key->expiry + key_gc_delay);
566 
567 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
568 			awaken = 1;
569 
570 		ret = 0;
571 
572 		/* and link it into the destination keyring */
573 		if (keyring && link_ret == 0)
574 			__key_link(keyring, key, &prealloc);
575 
576 		/* disable the authorisation key */
577 		if (authkey)
578 			key_revoke(authkey);
579 	}
580 
581 	mutex_unlock(&key_construction_mutex);
582 
583 	if (keyring)
584 		__key_link_end(keyring, key->type, prealloc);
585 
586 	/* wake up anyone waiting for a key to be constructed */
587 	if (awaken)
588 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
589 
590 	return ret == 0 ? link_ret : ret;
591 }
592 EXPORT_SYMBOL(key_reject_and_link);
593 
594 /*
595  * Garbage collect keys in process context so that we don't have to disable
596  * interrupts all over the place.
597  *
598  * key_put() schedules this rather than trying to do the cleanup itself, which
599  * means key_put() doesn't have to sleep.
600  */
601 static void key_cleanup(struct work_struct *work)
602 {
603 	struct rb_node *_n;
604 	struct key *key;
605 
606 go_again:
607 	/* look for a dead key in the tree */
608 	spin_lock(&key_serial_lock);
609 
610 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
611 		key = rb_entry(_n, struct key, serial_node);
612 
613 		if (atomic_read(&key->usage) == 0)
614 			goto found_dead_key;
615 	}
616 
617 	spin_unlock(&key_serial_lock);
618 	return;
619 
620 found_dead_key:
621 	/* we found a dead key - once we've removed it from the tree, we can
622 	 * drop the lock */
623 	rb_erase(&key->serial_node, &key_serial_tree);
624 	spin_unlock(&key_serial_lock);
625 
626 	key_check(key);
627 
628 	security_key_free(key);
629 
630 	/* deal with the user's key tracking and quota */
631 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
632 		spin_lock(&key->user->lock);
633 		key->user->qnkeys--;
634 		key->user->qnbytes -= key->quotalen;
635 		spin_unlock(&key->user->lock);
636 	}
637 
638 	atomic_dec(&key->user->nkeys);
639 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
640 		atomic_dec(&key->user->nikeys);
641 
642 	key_user_put(key->user);
643 
644 	/* now throw away the key memory */
645 	if (key->type->destroy)
646 		key->type->destroy(key);
647 
648 	kfree(key->description);
649 
650 #ifdef KEY_DEBUGGING
651 	key->magic = KEY_DEBUG_MAGIC_X;
652 #endif
653 	kmem_cache_free(key_jar, key);
654 
655 	/* there may, of course, be more than one key to destroy */
656 	goto go_again;
657 }
658 
659 /**
660  * key_put - Discard a reference to a key.
661  * @key: The key to discard a reference from.
662  *
663  * Discard a reference to a key, and when all the references are gone, we
664  * schedule the cleanup task to come and pull it out of the tree in process
665  * context at some later time.
666  */
667 void key_put(struct key *key)
668 {
669 	if (key) {
670 		key_check(key);
671 
672 		if (atomic_dec_and_test(&key->usage))
673 			schedule_work(&key_cleanup_task);
674 	}
675 }
676 EXPORT_SYMBOL(key_put);
677 
678 /*
679  * Find a key by its serial number.
680  */
681 struct key *key_lookup(key_serial_t id)
682 {
683 	struct rb_node *n;
684 	struct key *key;
685 
686 	spin_lock(&key_serial_lock);
687 
688 	/* search the tree for the specified key */
689 	n = key_serial_tree.rb_node;
690 	while (n) {
691 		key = rb_entry(n, struct key, serial_node);
692 
693 		if (id < key->serial)
694 			n = n->rb_left;
695 		else if (id > key->serial)
696 			n = n->rb_right;
697 		else
698 			goto found;
699 	}
700 
701 not_found:
702 	key = ERR_PTR(-ENOKEY);
703 	goto error;
704 
705 found:
706 	/* pretend it doesn't exist if it is awaiting deletion */
707 	if (atomic_read(&key->usage) == 0)
708 		goto not_found;
709 
710 	/* this races with key_put(), but that doesn't matter since key_put()
711 	 * doesn't actually change the key
712 	 */
713 	atomic_inc(&key->usage);
714 
715 error:
716 	spin_unlock(&key_serial_lock);
717 	return key;
718 }
719 
720 /*
721  * Find and lock the specified key type against removal.
722  *
723  * We return with the sem read-locked if successful.  If the type wasn't
724  * available -ENOKEY is returned instead.
725  */
726 struct key_type *key_type_lookup(const char *type)
727 {
728 	struct key_type *ktype;
729 
730 	down_read(&key_types_sem);
731 
732 	/* look up the key type to see if it's one of the registered kernel
733 	 * types */
734 	list_for_each_entry(ktype, &key_types_list, link) {
735 		if (strcmp(ktype->name, type) == 0)
736 			goto found_kernel_type;
737 	}
738 
739 	up_read(&key_types_sem);
740 	ktype = ERR_PTR(-ENOKEY);
741 
742 found_kernel_type:
743 	return ktype;
744 }
745 
746 /*
747  * Unlock a key type locked by key_type_lookup().
748  */
749 void key_type_put(struct key_type *ktype)
750 {
751 	up_read(&key_types_sem);
752 }
753 
754 /*
755  * Attempt to update an existing key.
756  *
757  * The key is given to us with an incremented refcount that we need to discard
758  * if we get an error.
759  */
760 static inline key_ref_t __key_update(key_ref_t key_ref,
761 				     const void *payload, size_t plen)
762 {
763 	struct key *key = key_ref_to_ptr(key_ref);
764 	int ret;
765 
766 	/* need write permission on the key to update it */
767 	ret = key_permission(key_ref, KEY_WRITE);
768 	if (ret < 0)
769 		goto error;
770 
771 	ret = -EEXIST;
772 	if (!key->type->update)
773 		goto error;
774 
775 	down_write(&key->sem);
776 
777 	ret = key->type->update(key, payload, plen);
778 	if (ret == 0)
779 		/* updating a negative key instantiates it */
780 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
781 
782 	up_write(&key->sem);
783 
784 	if (ret < 0)
785 		goto error;
786 out:
787 	return key_ref;
788 
789 error:
790 	key_put(key);
791 	key_ref = ERR_PTR(ret);
792 	goto out;
793 }
794 
795 /**
796  * key_create_or_update - Update or create and instantiate a key.
797  * @keyring_ref: A pointer to the destination keyring with possession flag.
798  * @type: The type of key.
799  * @description: The searchable description for the key.
800  * @payload: The data to use to instantiate or update the key.
801  * @plen: The length of @payload.
802  * @perm: The permissions mask for a new key.
803  * @flags: The quota flags for a new key.
804  *
805  * Search the destination keyring for a key of the same description and if one
806  * is found, update it, otherwise create and instantiate a new one and create a
807  * link to it from that keyring.
808  *
809  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
810  * concocted.
811  *
812  * Returns a pointer to the new key if successful, -ENODEV if the key type
813  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
814  * caller isn't permitted to modify the keyring or the LSM did not permit
815  * creation of the key.
816  *
817  * On success, the possession flag from the keyring ref will be tacked on to
818  * the key ref before it is returned.
819  */
820 key_ref_t key_create_or_update(key_ref_t keyring_ref,
821 			       const char *type,
822 			       const char *description,
823 			       const void *payload,
824 			       size_t plen,
825 			       key_perm_t perm,
826 			       unsigned long flags)
827 {
828 	unsigned long prealloc;
829 	const struct cred *cred = current_cred();
830 	struct key_type *ktype;
831 	struct key *keyring, *key = NULL;
832 	key_ref_t key_ref;
833 	int ret;
834 
835 	/* look up the key type to see if it's one of the registered kernel
836 	 * types */
837 	ktype = key_type_lookup(type);
838 	if (IS_ERR(ktype)) {
839 		key_ref = ERR_PTR(-ENODEV);
840 		goto error;
841 	}
842 
843 	key_ref = ERR_PTR(-EINVAL);
844 	if (!ktype->match || !ktype->instantiate)
845 		goto error_2;
846 
847 	keyring = key_ref_to_ptr(keyring_ref);
848 
849 	key_check(keyring);
850 
851 	key_ref = ERR_PTR(-ENOTDIR);
852 	if (keyring->type != &key_type_keyring)
853 		goto error_2;
854 
855 	ret = __key_link_begin(keyring, ktype, description, &prealloc);
856 	if (ret < 0)
857 		goto error_2;
858 
859 	/* if we're going to allocate a new key, we're going to have
860 	 * to modify the keyring */
861 	ret = key_permission(keyring_ref, KEY_WRITE);
862 	if (ret < 0) {
863 		key_ref = ERR_PTR(ret);
864 		goto error_3;
865 	}
866 
867 	/* if it's possible to update this type of key, search for an existing
868 	 * key of the same type and description in the destination keyring and
869 	 * update that instead if possible
870 	 */
871 	if (ktype->update) {
872 		key_ref = __keyring_search_one(keyring_ref, ktype, description,
873 					       0);
874 		if (!IS_ERR(key_ref))
875 			goto found_matching_key;
876 	}
877 
878 	/* if the client doesn't provide, decide on the permissions we want */
879 	if (perm == KEY_PERM_UNDEF) {
880 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
881 		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
882 
883 		if (ktype->read)
884 			perm |= KEY_POS_READ | KEY_USR_READ;
885 
886 		if (ktype == &key_type_keyring || ktype->update)
887 			perm |= KEY_USR_WRITE;
888 	}
889 
890 	/* allocate a new key */
891 	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
892 			perm, flags);
893 	if (IS_ERR(key)) {
894 		key_ref = ERR_CAST(key);
895 		goto error_3;
896 	}
897 
898 	/* instantiate it and link it into the target keyring */
899 	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
900 					 &prealloc);
901 	if (ret < 0) {
902 		key_put(key);
903 		key_ref = ERR_PTR(ret);
904 		goto error_3;
905 	}
906 
907 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
908 
909  error_3:
910 	__key_link_end(keyring, ktype, prealloc);
911  error_2:
912 	key_type_put(ktype);
913  error:
914 	return key_ref;
915 
916  found_matching_key:
917 	/* we found a matching key, so we're going to try to update it
918 	 * - we can drop the locks first as we have the key pinned
919 	 */
920 	__key_link_end(keyring, ktype, prealloc);
921 	key_type_put(ktype);
922 
923 	key_ref = __key_update(key_ref, payload, plen);
924 	goto error;
925 }
926 EXPORT_SYMBOL(key_create_or_update);
927 
928 /**
929  * key_update - Update a key's contents.
930  * @key_ref: The pointer (plus possession flag) to the key.
931  * @payload: The data to be used to update the key.
932  * @plen: The length of @payload.
933  *
934  * Attempt to update the contents of a key with the given payload data.  The
935  * caller must be granted Write permission on the key.  Negative keys can be
936  * instantiated by this method.
937  *
938  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
939  * type does not support updating.  The key type may return other errors.
940  */
941 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
942 {
943 	struct key *key = key_ref_to_ptr(key_ref);
944 	int ret;
945 
946 	key_check(key);
947 
948 	/* the key must be writable */
949 	ret = key_permission(key_ref, KEY_WRITE);
950 	if (ret < 0)
951 		goto error;
952 
953 	/* attempt to update it if supported */
954 	ret = -EOPNOTSUPP;
955 	if (key->type->update) {
956 		down_write(&key->sem);
957 
958 		ret = key->type->update(key, payload, plen);
959 		if (ret == 0)
960 			/* updating a negative key instantiates it */
961 			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
962 
963 		up_write(&key->sem);
964 	}
965 
966  error:
967 	return ret;
968 }
969 EXPORT_SYMBOL(key_update);
970 
971 /**
972  * key_revoke - Revoke a key.
973  * @key: The key to be revoked.
974  *
975  * Mark a key as being revoked and ask the type to free up its resources.  The
976  * revocation timeout is set and the key and all its links will be
977  * automatically garbage collected after key_gc_delay amount of time if they
978  * are not manually dealt with first.
979  */
980 void key_revoke(struct key *key)
981 {
982 	struct timespec now;
983 	time_t time;
984 
985 	key_check(key);
986 
987 	/* make sure no one's trying to change or use the key when we mark it
988 	 * - we tell lockdep that we might nest because we might be revoking an
989 	 *   authorisation key whilst holding the sem on a key we've just
990 	 *   instantiated
991 	 */
992 	down_write_nested(&key->sem, 1);
993 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
994 	    key->type->revoke)
995 		key->type->revoke(key);
996 
997 	/* set the death time to no more than the expiry time */
998 	now = current_kernel_time();
999 	time = now.tv_sec;
1000 	if (key->revoked_at == 0 || key->revoked_at > time) {
1001 		key->revoked_at = time;
1002 		key_schedule_gc(key->revoked_at + key_gc_delay);
1003 	}
1004 
1005 	up_write(&key->sem);
1006 }
1007 EXPORT_SYMBOL(key_revoke);
1008 
1009 /**
1010  * register_key_type - Register a type of key.
1011  * @ktype: The new key type.
1012  *
1013  * Register a new key type.
1014  *
1015  * Returns 0 on success or -EEXIST if a type of this name already exists.
1016  */
1017 int register_key_type(struct key_type *ktype)
1018 {
1019 	struct key_type *p;
1020 	int ret;
1021 
1022 	ret = -EEXIST;
1023 	down_write(&key_types_sem);
1024 
1025 	/* disallow key types with the same name */
1026 	list_for_each_entry(p, &key_types_list, link) {
1027 		if (strcmp(p->name, ktype->name) == 0)
1028 			goto out;
1029 	}
1030 
1031 	/* store the type */
1032 	list_add(&ktype->link, &key_types_list);
1033 	ret = 0;
1034 
1035 out:
1036 	up_write(&key_types_sem);
1037 	return ret;
1038 }
1039 EXPORT_SYMBOL(register_key_type);
1040 
1041 /**
1042  * unregister_key_type - Unregister a type of key.
1043  * @ktype: The key type.
1044  *
1045  * Unregister a key type and mark all the extant keys of this type as dead.
1046  * Those keys of this type are then destroyed to get rid of their payloads and
1047  * they and their links will be garbage collected as soon as possible.
1048  */
1049 void unregister_key_type(struct key_type *ktype)
1050 {
1051 	struct rb_node *_n;
1052 	struct key *key;
1053 
1054 	down_write(&key_types_sem);
1055 
1056 	/* withdraw the key type */
1057 	list_del_init(&ktype->link);
1058 
1059 	/* mark all the keys of this type dead */
1060 	spin_lock(&key_serial_lock);
1061 
1062 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1063 		key = rb_entry(_n, struct key, serial_node);
1064 
1065 		if (key->type == ktype) {
1066 			key->type = &key_type_dead;
1067 			set_bit(KEY_FLAG_DEAD, &key->flags);
1068 		}
1069 	}
1070 
1071 	spin_unlock(&key_serial_lock);
1072 
1073 	/* make sure everyone revalidates their keys */
1074 	synchronize_rcu();
1075 
1076 	/* we should now be able to destroy the payloads of all the keys of
1077 	 * this type with impunity */
1078 	spin_lock(&key_serial_lock);
1079 
1080 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1081 		key = rb_entry(_n, struct key, serial_node);
1082 
1083 		if (key->type == ktype) {
1084 			if (ktype->destroy)
1085 				ktype->destroy(key);
1086 			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1087 		}
1088 	}
1089 
1090 	spin_unlock(&key_serial_lock);
1091 	up_write(&key_types_sem);
1092 
1093 	key_schedule_gc(0);
1094 }
1095 EXPORT_SYMBOL(unregister_key_type);
1096 
1097 /*
1098  * Initialise the key management state.
1099  */
1100 void __init key_init(void)
1101 {
1102 	/* allocate a slab in which we can store keys */
1103 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1104 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1105 
1106 	/* add the special key types */
1107 	list_add_tail(&key_type_keyring.link, &key_types_list);
1108 	list_add_tail(&key_type_dead.link, &key_types_list);
1109 	list_add_tail(&key_type_user.link, &key_types_list);
1110 
1111 	/* record the root user tracking */
1112 	rb_link_node(&root_key_user.node,
1113 		     NULL,
1114 		     &key_user_tree.rb_node);
1115 
1116 	rb_insert_color(&root_key_user.node,
1117 			&key_user_tree);
1118 }
1119