xref: /linux/security/keys/key.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3  *
4  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
18 #include "internal.h"
19 
20 struct kmem_cache *key_jar;
21 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
23 
24 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
26 
27 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
30 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
31 
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
34 
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
37 
38 #ifdef KEY_DEBUGGING
39 void __key_check(const struct key *key)
40 {
41 	printk("__key_check: key %p {%08x} should be {%08x}\n",
42 	       key, key->magic, KEY_DEBUG_MAGIC);
43 	BUG();
44 }
45 #endif
46 
47 /*
48  * Get the key quota record for a user, allocating a new record if one doesn't
49  * already exist.
50  */
51 struct key_user *key_user_lookup(kuid_t uid)
52 {
53 	struct key_user *candidate = NULL, *user;
54 	struct rb_node *parent, **p;
55 
56 try_again:
57 	parent = NULL;
58 	p = &key_user_tree.rb_node;
59 	spin_lock(&key_user_lock);
60 
61 	/* search the tree for a user record with a matching UID */
62 	while (*p) {
63 		parent = *p;
64 		user = rb_entry(parent, struct key_user, node);
65 
66 		if (uid_lt(uid, user->uid))
67 			p = &(*p)->rb_left;
68 		else if (uid_gt(uid, user->uid))
69 			p = &(*p)->rb_right;
70 		else
71 			goto found;
72 	}
73 
74 	/* if we get here, we failed to find a match in the tree */
75 	if (!candidate) {
76 		/* allocate a candidate user record if we don't already have
77 		 * one */
78 		spin_unlock(&key_user_lock);
79 
80 		user = NULL;
81 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 		if (unlikely(!candidate))
83 			goto out;
84 
85 		/* the allocation may have scheduled, so we need to repeat the
86 		 * search lest someone else added the record whilst we were
87 		 * asleep */
88 		goto try_again;
89 	}
90 
91 	/* if we get here, then the user record still hadn't appeared on the
92 	 * second pass - so we use the candidate record */
93 	refcount_set(&candidate->usage, 1);
94 	atomic_set(&candidate->nkeys, 0);
95 	atomic_set(&candidate->nikeys, 0);
96 	candidate->uid = uid;
97 	candidate->qnkeys = 0;
98 	candidate->qnbytes = 0;
99 	spin_lock_init(&candidate->lock);
100 	mutex_init(&candidate->cons_lock);
101 
102 	rb_link_node(&candidate->node, parent, p);
103 	rb_insert_color(&candidate->node, &key_user_tree);
104 	spin_unlock(&key_user_lock);
105 	user = candidate;
106 	goto out;
107 
108 	/* okay - we found a user record for this UID */
109 found:
110 	refcount_inc(&user->usage);
111 	spin_unlock(&key_user_lock);
112 	kfree(candidate);
113 out:
114 	return user;
115 }
116 
117 /*
118  * Dispose of a user structure
119  */
120 void key_user_put(struct key_user *user)
121 {
122 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 		rb_erase(&user->node, &key_user_tree);
124 		spin_unlock(&key_user_lock);
125 
126 		kfree(user);
127 	}
128 }
129 
130 /*
131  * Allocate a serial number for a key.  These are assigned randomly to avoid
132  * security issues through covert channel problems.
133  */
134 static inline void key_alloc_serial(struct key *key)
135 {
136 	struct rb_node *parent, **p;
137 	struct key *xkey;
138 
139 	/* propose a random serial number and look for a hole for it in the
140 	 * serial number tree */
141 	do {
142 		get_random_bytes(&key->serial, sizeof(key->serial));
143 
144 		key->serial >>= 1; /* negative numbers are not permitted */
145 	} while (key->serial < 3);
146 
147 	spin_lock(&key_serial_lock);
148 
149 attempt_insertion:
150 	parent = NULL;
151 	p = &key_serial_tree.rb_node;
152 
153 	while (*p) {
154 		parent = *p;
155 		xkey = rb_entry(parent, struct key, serial_node);
156 
157 		if (key->serial < xkey->serial)
158 			p = &(*p)->rb_left;
159 		else if (key->serial > xkey->serial)
160 			p = &(*p)->rb_right;
161 		else
162 			goto serial_exists;
163 	}
164 
165 	/* we've found a suitable hole - arrange for this key to occupy it */
166 	rb_link_node(&key->serial_node, parent, p);
167 	rb_insert_color(&key->serial_node, &key_serial_tree);
168 
169 	spin_unlock(&key_serial_lock);
170 	return;
171 
172 	/* we found a key with the proposed serial number - walk the tree from
173 	 * that point looking for the next unused serial number */
174 serial_exists:
175 	for (;;) {
176 		key->serial++;
177 		if (key->serial < 3) {
178 			key->serial = 3;
179 			goto attempt_insertion;
180 		}
181 
182 		parent = rb_next(parent);
183 		if (!parent)
184 			goto attempt_insertion;
185 
186 		xkey = rb_entry(parent, struct key, serial_node);
187 		if (key->serial < xkey->serial)
188 			goto attempt_insertion;
189 	}
190 }
191 
192 /**
193  * key_alloc - Allocate a key of the specified type.
194  * @type: The type of key to allocate.
195  * @desc: The key description to allow the key to be searched out.
196  * @uid: The owner of the new key.
197  * @gid: The group ID for the new key's group permissions.
198  * @cred: The credentials specifying UID namespace.
199  * @perm: The permissions mask of the new key.
200  * @flags: Flags specifying quota properties.
201  * @restrict_link: Optional link restriction for new keyrings.
202  *
203  * Allocate a key of the specified type with the attributes given.  The key is
204  * returned in an uninstantiated state and the caller needs to instantiate the
205  * key before returning.
206  *
207  * The restrict_link structure (if not NULL) will be freed when the
208  * keyring is destroyed, so it must be dynamically allocated.
209  *
210  * The user's key count quota is updated to reflect the creation of the key and
211  * the user's key data quota has the default for the key type reserved.  The
212  * instantiation function should amend this as necessary.  If insufficient
213  * quota is available, -EDQUOT will be returned.
214  *
215  * The LSM security modules can prevent a key being created, in which case
216  * -EACCES will be returned.
217  *
218  * Returns a pointer to the new key if successful and an error code otherwise.
219  *
220  * Note that the caller needs to ensure the key type isn't uninstantiated.
221  * Internally this can be done by locking key_types_sem.  Externally, this can
222  * be done by either never unregistering the key type, or making sure
223  * key_alloc() calls don't race with module unloading.
224  */
225 struct key *key_alloc(struct key_type *type, const char *desc,
226 		      kuid_t uid, kgid_t gid, const struct cred *cred,
227 		      key_perm_t perm, unsigned long flags,
228 		      struct key_restriction *restrict_link)
229 {
230 	struct key_user *user = NULL;
231 	struct key *key;
232 	size_t desclen, quotalen;
233 	int ret;
234 
235 	key = ERR_PTR(-EINVAL);
236 	if (!desc || !*desc)
237 		goto error;
238 
239 	if (type->vet_description) {
240 		ret = type->vet_description(desc);
241 		if (ret < 0) {
242 			key = ERR_PTR(ret);
243 			goto error;
244 		}
245 	}
246 
247 	desclen = strlen(desc);
248 	quotalen = desclen + 1 + type->def_datalen;
249 
250 	/* get hold of the key tracking for this user */
251 	user = key_user_lookup(uid);
252 	if (!user)
253 		goto no_memory_1;
254 
255 	/* check that the user's quota permits allocation of another key and
256 	 * its description */
257 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxkeys : key_quota_maxkeys;
260 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 			key_quota_root_maxbytes : key_quota_maxbytes;
262 
263 		spin_lock(&user->lock);
264 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 			if (user->qnkeys + 1 > maxkeys ||
266 			    user->qnbytes + quotalen > maxbytes ||
267 			    user->qnbytes + quotalen < user->qnbytes)
268 				goto no_quota;
269 		}
270 
271 		user->qnkeys++;
272 		user->qnbytes += quotalen;
273 		spin_unlock(&user->lock);
274 	}
275 
276 	/* allocate and initialise the key and its description */
277 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 	if (!key)
279 		goto no_memory_2;
280 
281 	key->index_key.desc_len = desclen;
282 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 	if (!key->index_key.description)
284 		goto no_memory_3;
285 	key->index_key.type = type;
286 	key_set_index_key(&key->index_key);
287 
288 	refcount_set(&key->usage, 1);
289 	init_rwsem(&key->sem);
290 	lockdep_set_class(&key->sem, &type->lock_class);
291 	key->user = user;
292 	key->quotalen = quotalen;
293 	key->datalen = type->def_datalen;
294 	key->uid = uid;
295 	key->gid = gid;
296 	key->perm = perm;
297 	key->restrict_link = restrict_link;
298 	key->last_used_at = ktime_get_real_seconds();
299 
300 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 	if (flags & KEY_ALLOC_BUILT_IN)
303 		key->flags |= 1 << KEY_FLAG_BUILTIN;
304 	if (flags & KEY_ALLOC_UID_KEYRING)
305 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
306 
307 #ifdef KEY_DEBUGGING
308 	key->magic = KEY_DEBUG_MAGIC;
309 #endif
310 
311 	/* let the security module know about the key */
312 	ret = security_key_alloc(key, cred, flags);
313 	if (ret < 0)
314 		goto security_error;
315 
316 	/* publish the key by giving it a serial number */
317 	refcount_inc(&key->domain_tag->usage);
318 	atomic_inc(&user->nkeys);
319 	key_alloc_serial(key);
320 
321 error:
322 	return key;
323 
324 security_error:
325 	kfree(key->description);
326 	kmem_cache_free(key_jar, key);
327 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 		spin_lock(&user->lock);
329 		user->qnkeys--;
330 		user->qnbytes -= quotalen;
331 		spin_unlock(&user->lock);
332 	}
333 	key_user_put(user);
334 	key = ERR_PTR(ret);
335 	goto error;
336 
337 no_memory_3:
338 	kmem_cache_free(key_jar, key);
339 no_memory_2:
340 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 		spin_lock(&user->lock);
342 		user->qnkeys--;
343 		user->qnbytes -= quotalen;
344 		spin_unlock(&user->lock);
345 	}
346 	key_user_put(user);
347 no_memory_1:
348 	key = ERR_PTR(-ENOMEM);
349 	goto error;
350 
351 no_quota:
352 	spin_unlock(&user->lock);
353 	key_user_put(user);
354 	key = ERR_PTR(-EDQUOT);
355 	goto error;
356 }
357 EXPORT_SYMBOL(key_alloc);
358 
359 /**
360  * key_payload_reserve - Adjust data quota reservation for the key's payload
361  * @key: The key to make the reservation for.
362  * @datalen: The amount of data payload the caller now wants.
363  *
364  * Adjust the amount of the owning user's key data quota that a key reserves.
365  * If the amount is increased, then -EDQUOT may be returned if there isn't
366  * enough free quota available.
367  *
368  * If successful, 0 is returned.
369  */
370 int key_payload_reserve(struct key *key, size_t datalen)
371 {
372 	int delta = (int)datalen - key->datalen;
373 	int ret = 0;
374 
375 	key_check(key);
376 
377 	/* contemplate the quota adjustment */
378 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 			key_quota_root_maxbytes : key_quota_maxbytes;
381 
382 		spin_lock(&key->user->lock);
383 
384 		if (delta > 0 &&
385 		    (key->user->qnbytes + delta >= maxbytes ||
386 		     key->user->qnbytes + delta < key->user->qnbytes)) {
387 			ret = -EDQUOT;
388 		}
389 		else {
390 			key->user->qnbytes += delta;
391 			key->quotalen += delta;
392 		}
393 		spin_unlock(&key->user->lock);
394 	}
395 
396 	/* change the recorded data length if that didn't generate an error */
397 	if (ret == 0)
398 		key->datalen = datalen;
399 
400 	return ret;
401 }
402 EXPORT_SYMBOL(key_payload_reserve);
403 
404 /*
405  * Change the key state to being instantiated.
406  */
407 static void mark_key_instantiated(struct key *key, int reject_error)
408 {
409 	/* Commit the payload before setting the state; barrier versus
410 	 * key_read_state().
411 	 */
412 	smp_store_release(&key->state,
413 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
414 }
415 
416 /*
417  * Instantiate a key and link it into the target keyring atomically.  Must be
418  * called with the target keyring's semaphore writelocked.  The target key's
419  * semaphore need not be locked as instantiation is serialised by
420  * key_construction_mutex.
421  */
422 static int __key_instantiate_and_link(struct key *key,
423 				      struct key_preparsed_payload *prep,
424 				      struct key *keyring,
425 				      struct key *authkey,
426 				      struct assoc_array_edit **_edit)
427 {
428 	int ret, awaken;
429 
430 	key_check(key);
431 	key_check(keyring);
432 
433 	awaken = 0;
434 	ret = -EBUSY;
435 
436 	mutex_lock(&key_construction_mutex);
437 
438 	/* can't instantiate twice */
439 	if (key->state == KEY_IS_UNINSTANTIATED) {
440 		/* instantiate the key */
441 		ret = key->type->instantiate(key, prep);
442 
443 		if (ret == 0) {
444 			/* mark the key as being instantiated */
445 			atomic_inc(&key->user->nikeys);
446 			mark_key_instantiated(key, 0);
447 
448 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
449 				awaken = 1;
450 
451 			/* and link it into the destination keyring */
452 			if (keyring) {
453 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
454 					set_bit(KEY_FLAG_KEEP, &key->flags);
455 
456 				__key_link(key, _edit);
457 			}
458 
459 			/* disable the authorisation key */
460 			if (authkey)
461 				key_invalidate(authkey);
462 
463 			if (prep->expiry != TIME64_MAX) {
464 				key->expiry = prep->expiry;
465 				key_schedule_gc(prep->expiry + key_gc_delay);
466 			}
467 		}
468 	}
469 
470 	mutex_unlock(&key_construction_mutex);
471 
472 	/* wake up anyone waiting for a key to be constructed */
473 	if (awaken)
474 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
475 
476 	return ret;
477 }
478 
479 /**
480  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
481  * @key: The key to instantiate.
482  * @data: The data to use to instantiate the keyring.
483  * @datalen: The length of @data.
484  * @keyring: Keyring to create a link in on success (or NULL).
485  * @authkey: The authorisation token permitting instantiation.
486  *
487  * Instantiate a key that's in the uninstantiated state using the provided data
488  * and, if successful, link it in to the destination keyring if one is
489  * supplied.
490  *
491  * If successful, 0 is returned, the authorisation token is revoked and anyone
492  * waiting for the key is woken up.  If the key was already instantiated,
493  * -EBUSY will be returned.
494  */
495 int key_instantiate_and_link(struct key *key,
496 			     const void *data,
497 			     size_t datalen,
498 			     struct key *keyring,
499 			     struct key *authkey)
500 {
501 	struct key_preparsed_payload prep;
502 	struct assoc_array_edit *edit = NULL;
503 	int ret;
504 
505 	memset(&prep, 0, sizeof(prep));
506 	prep.data = data;
507 	prep.datalen = datalen;
508 	prep.quotalen = key->type->def_datalen;
509 	prep.expiry = TIME64_MAX;
510 	if (key->type->preparse) {
511 		ret = key->type->preparse(&prep);
512 		if (ret < 0)
513 			goto error;
514 	}
515 
516 	if (keyring) {
517 		ret = __key_link_lock(keyring, &key->index_key);
518 		if (ret < 0)
519 			goto error;
520 
521 		ret = __key_link_begin(keyring, &key->index_key, &edit);
522 		if (ret < 0)
523 			goto error_link_end;
524 
525 		if (keyring->restrict_link && keyring->restrict_link->check) {
526 			struct key_restriction *keyres = keyring->restrict_link;
527 
528 			ret = keyres->check(keyring, key->type, &prep.payload,
529 					    keyres->key);
530 			if (ret < 0)
531 				goto error_link_end;
532 		}
533 	}
534 
535 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
536 
537 error_link_end:
538 	if (keyring)
539 		__key_link_end(keyring, &key->index_key, edit);
540 
541 error:
542 	if (key->type->preparse)
543 		key->type->free_preparse(&prep);
544 	return ret;
545 }
546 
547 EXPORT_SYMBOL(key_instantiate_and_link);
548 
549 /**
550  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
551  * @key: The key to instantiate.
552  * @timeout: The timeout on the negative key.
553  * @error: The error to return when the key is hit.
554  * @keyring: Keyring to create a link in on success (or NULL).
555  * @authkey: The authorisation token permitting instantiation.
556  *
557  * Negatively instantiate a key that's in the uninstantiated state and, if
558  * successful, set its timeout and stored error and link it in to the
559  * destination keyring if one is supplied.  The key and any links to the key
560  * will be automatically garbage collected after the timeout expires.
561  *
562  * Negative keys are used to rate limit repeated request_key() calls by causing
563  * them to return the stored error code (typically ENOKEY) until the negative
564  * key expires.
565  *
566  * If successful, 0 is returned, the authorisation token is revoked and anyone
567  * waiting for the key is woken up.  If the key was already instantiated,
568  * -EBUSY will be returned.
569  */
570 int key_reject_and_link(struct key *key,
571 			unsigned timeout,
572 			unsigned error,
573 			struct key *keyring,
574 			struct key *authkey)
575 {
576 	struct assoc_array_edit *edit = NULL;
577 	int ret, awaken, link_ret = 0;
578 
579 	key_check(key);
580 	key_check(keyring);
581 
582 	awaken = 0;
583 	ret = -EBUSY;
584 
585 	if (keyring) {
586 		if (keyring->restrict_link)
587 			return -EPERM;
588 
589 		link_ret = __key_link_lock(keyring, &key->index_key);
590 		if (link_ret == 0) {
591 			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
592 			if (link_ret < 0)
593 				__key_link_end(keyring, &key->index_key, edit);
594 		}
595 	}
596 
597 	mutex_lock(&key_construction_mutex);
598 
599 	/* can't instantiate twice */
600 	if (key->state == KEY_IS_UNINSTANTIATED) {
601 		/* mark the key as being negatively instantiated */
602 		atomic_inc(&key->user->nikeys);
603 		mark_key_instantiated(key, -error);
604 		key->expiry = ktime_get_real_seconds() + timeout;
605 		key_schedule_gc(key->expiry + key_gc_delay);
606 
607 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
608 			awaken = 1;
609 
610 		ret = 0;
611 
612 		/* and link it into the destination keyring */
613 		if (keyring && link_ret == 0)
614 			__key_link(key, &edit);
615 
616 		/* disable the authorisation key */
617 		if (authkey)
618 			key_invalidate(authkey);
619 	}
620 
621 	mutex_unlock(&key_construction_mutex);
622 
623 	if (keyring && link_ret == 0)
624 		__key_link_end(keyring, &key->index_key, edit);
625 
626 	/* wake up anyone waiting for a key to be constructed */
627 	if (awaken)
628 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
629 
630 	return ret == 0 ? link_ret : ret;
631 }
632 EXPORT_SYMBOL(key_reject_and_link);
633 
634 /**
635  * key_put - Discard a reference to a key.
636  * @key: The key to discard a reference from.
637  *
638  * Discard a reference to a key, and when all the references are gone, we
639  * schedule the cleanup task to come and pull it out of the tree in process
640  * context at some later time.
641  */
642 void key_put(struct key *key)
643 {
644 	if (key) {
645 		key_check(key);
646 
647 		if (refcount_dec_and_test(&key->usage))
648 			schedule_work(&key_gc_work);
649 	}
650 }
651 EXPORT_SYMBOL(key_put);
652 
653 /*
654  * Find a key by its serial number.
655  */
656 struct key *key_lookup(key_serial_t id)
657 {
658 	struct rb_node *n;
659 	struct key *key;
660 
661 	spin_lock(&key_serial_lock);
662 
663 	/* search the tree for the specified key */
664 	n = key_serial_tree.rb_node;
665 	while (n) {
666 		key = rb_entry(n, struct key, serial_node);
667 
668 		if (id < key->serial)
669 			n = n->rb_left;
670 		else if (id > key->serial)
671 			n = n->rb_right;
672 		else
673 			goto found;
674 	}
675 
676 not_found:
677 	key = ERR_PTR(-ENOKEY);
678 	goto error;
679 
680 found:
681 	/* A key is allowed to be looked up only if someone still owns a
682 	 * reference to it - otherwise it's awaiting the gc.
683 	 */
684 	if (!refcount_inc_not_zero(&key->usage))
685 		goto not_found;
686 
687 error:
688 	spin_unlock(&key_serial_lock);
689 	return key;
690 }
691 
692 /*
693  * Find and lock the specified key type against removal.
694  *
695  * We return with the sem read-locked if successful.  If the type wasn't
696  * available -ENOKEY is returned instead.
697  */
698 struct key_type *key_type_lookup(const char *type)
699 {
700 	struct key_type *ktype;
701 
702 	down_read(&key_types_sem);
703 
704 	/* look up the key type to see if it's one of the registered kernel
705 	 * types */
706 	list_for_each_entry(ktype, &key_types_list, link) {
707 		if (strcmp(ktype->name, type) == 0)
708 			goto found_kernel_type;
709 	}
710 
711 	up_read(&key_types_sem);
712 	ktype = ERR_PTR(-ENOKEY);
713 
714 found_kernel_type:
715 	return ktype;
716 }
717 
718 void key_set_timeout(struct key *key, unsigned timeout)
719 {
720 	time64_t expiry = 0;
721 
722 	/* make the changes with the locks held to prevent races */
723 	down_write(&key->sem);
724 
725 	if (timeout > 0)
726 		expiry = ktime_get_real_seconds() + timeout;
727 
728 	key->expiry = expiry;
729 	key_schedule_gc(key->expiry + key_gc_delay);
730 
731 	up_write(&key->sem);
732 }
733 EXPORT_SYMBOL_GPL(key_set_timeout);
734 
735 /*
736  * Unlock a key type locked by key_type_lookup().
737  */
738 void key_type_put(struct key_type *ktype)
739 {
740 	up_read(&key_types_sem);
741 }
742 
743 /*
744  * Attempt to update an existing key.
745  *
746  * The key is given to us with an incremented refcount that we need to discard
747  * if we get an error.
748  */
749 static inline key_ref_t __key_update(key_ref_t key_ref,
750 				     struct key_preparsed_payload *prep)
751 {
752 	struct key *key = key_ref_to_ptr(key_ref);
753 	int ret;
754 
755 	/* need write permission on the key to update it */
756 	ret = key_permission(key_ref, KEY_NEED_WRITE);
757 	if (ret < 0)
758 		goto error;
759 
760 	ret = -EEXIST;
761 	if (!key->type->update)
762 		goto error;
763 
764 	down_write(&key->sem);
765 
766 	ret = key->type->update(key, prep);
767 	if (ret == 0)
768 		/* Updating a negative key positively instantiates it */
769 		mark_key_instantiated(key, 0);
770 
771 	up_write(&key->sem);
772 
773 	if (ret < 0)
774 		goto error;
775 out:
776 	return key_ref;
777 
778 error:
779 	key_put(key);
780 	key_ref = ERR_PTR(ret);
781 	goto out;
782 }
783 
784 /**
785  * key_create_or_update - Update or create and instantiate a key.
786  * @keyring_ref: A pointer to the destination keyring with possession flag.
787  * @type: The type of key.
788  * @description: The searchable description for the key.
789  * @payload: The data to use to instantiate or update the key.
790  * @plen: The length of @payload.
791  * @perm: The permissions mask for a new key.
792  * @flags: The quota flags for a new key.
793  *
794  * Search the destination keyring for a key of the same description and if one
795  * is found, update it, otherwise create and instantiate a new one and create a
796  * link to it from that keyring.
797  *
798  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
799  * concocted.
800  *
801  * Returns a pointer to the new key if successful, -ENODEV if the key type
802  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
803  * caller isn't permitted to modify the keyring or the LSM did not permit
804  * creation of the key.
805  *
806  * On success, the possession flag from the keyring ref will be tacked on to
807  * the key ref before it is returned.
808  */
809 key_ref_t key_create_or_update(key_ref_t keyring_ref,
810 			       const char *type,
811 			       const char *description,
812 			       const void *payload,
813 			       size_t plen,
814 			       key_perm_t perm,
815 			       unsigned long flags)
816 {
817 	struct keyring_index_key index_key = {
818 		.description	= description,
819 	};
820 	struct key_preparsed_payload prep;
821 	struct assoc_array_edit *edit = NULL;
822 	const struct cred *cred = current_cred();
823 	struct key *keyring, *key = NULL;
824 	key_ref_t key_ref;
825 	int ret;
826 	struct key_restriction *restrict_link = NULL;
827 
828 	/* look up the key type to see if it's one of the registered kernel
829 	 * types */
830 	index_key.type = key_type_lookup(type);
831 	if (IS_ERR(index_key.type)) {
832 		key_ref = ERR_PTR(-ENODEV);
833 		goto error;
834 	}
835 
836 	key_ref = ERR_PTR(-EINVAL);
837 	if (!index_key.type->instantiate ||
838 	    (!index_key.description && !index_key.type->preparse))
839 		goto error_put_type;
840 
841 	keyring = key_ref_to_ptr(keyring_ref);
842 
843 	key_check(keyring);
844 
845 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
846 		restrict_link = keyring->restrict_link;
847 
848 	key_ref = ERR_PTR(-ENOTDIR);
849 	if (keyring->type != &key_type_keyring)
850 		goto error_put_type;
851 
852 	memset(&prep, 0, sizeof(prep));
853 	prep.data = payload;
854 	prep.datalen = plen;
855 	prep.quotalen = index_key.type->def_datalen;
856 	prep.expiry = TIME64_MAX;
857 	if (index_key.type->preparse) {
858 		ret = index_key.type->preparse(&prep);
859 		if (ret < 0) {
860 			key_ref = ERR_PTR(ret);
861 			goto error_free_prep;
862 		}
863 		if (!index_key.description)
864 			index_key.description = prep.description;
865 		key_ref = ERR_PTR(-EINVAL);
866 		if (!index_key.description)
867 			goto error_free_prep;
868 	}
869 	index_key.desc_len = strlen(index_key.description);
870 	key_set_index_key(&index_key);
871 
872 	ret = __key_link_lock(keyring, &index_key);
873 	if (ret < 0) {
874 		key_ref = ERR_PTR(ret);
875 		goto error_free_prep;
876 	}
877 
878 	ret = __key_link_begin(keyring, &index_key, &edit);
879 	if (ret < 0) {
880 		key_ref = ERR_PTR(ret);
881 		goto error_link_end;
882 	}
883 
884 	if (restrict_link && restrict_link->check) {
885 		ret = restrict_link->check(keyring, index_key.type,
886 					   &prep.payload, restrict_link->key);
887 		if (ret < 0) {
888 			key_ref = ERR_PTR(ret);
889 			goto error_link_end;
890 		}
891 	}
892 
893 	/* if we're going to allocate a new key, we're going to have
894 	 * to modify the keyring */
895 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
896 	if (ret < 0) {
897 		key_ref = ERR_PTR(ret);
898 		goto error_link_end;
899 	}
900 
901 	/* if it's possible to update this type of key, search for an existing
902 	 * key of the same type and description in the destination keyring and
903 	 * update that instead if possible
904 	 */
905 	if (index_key.type->update) {
906 		key_ref = find_key_to_update(keyring_ref, &index_key);
907 		if (key_ref)
908 			goto found_matching_key;
909 	}
910 
911 	/* if the client doesn't provide, decide on the permissions we want */
912 	if (perm == KEY_PERM_UNDEF) {
913 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
914 		perm |= KEY_USR_VIEW;
915 
916 		if (index_key.type->read)
917 			perm |= KEY_POS_READ;
918 
919 		if (index_key.type == &key_type_keyring ||
920 		    index_key.type->update)
921 			perm |= KEY_POS_WRITE;
922 	}
923 
924 	/* allocate a new key */
925 	key = key_alloc(index_key.type, index_key.description,
926 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
927 	if (IS_ERR(key)) {
928 		key_ref = ERR_CAST(key);
929 		goto error_link_end;
930 	}
931 
932 	/* instantiate it and link it into the target keyring */
933 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
934 	if (ret < 0) {
935 		key_put(key);
936 		key_ref = ERR_PTR(ret);
937 		goto error_link_end;
938 	}
939 
940 	ima_post_key_create_or_update(keyring, key, payload, plen,
941 				      flags, true);
942 
943 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
944 
945 error_link_end:
946 	__key_link_end(keyring, &index_key, edit);
947 error_free_prep:
948 	if (index_key.type->preparse)
949 		index_key.type->free_preparse(&prep);
950 error_put_type:
951 	key_type_put(index_key.type);
952 error:
953 	return key_ref;
954 
955  found_matching_key:
956 	/* we found a matching key, so we're going to try to update it
957 	 * - we can drop the locks first as we have the key pinned
958 	 */
959 	__key_link_end(keyring, &index_key, edit);
960 
961 	key = key_ref_to_ptr(key_ref);
962 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
963 		ret = wait_for_key_construction(key, true);
964 		if (ret < 0) {
965 			key_ref_put(key_ref);
966 			key_ref = ERR_PTR(ret);
967 			goto error_free_prep;
968 		}
969 	}
970 
971 	key_ref = __key_update(key_ref, &prep);
972 
973 	if (!IS_ERR(key_ref))
974 		ima_post_key_create_or_update(keyring, key,
975 					      payload, plen,
976 					      flags, false);
977 
978 	goto error_free_prep;
979 }
980 EXPORT_SYMBOL(key_create_or_update);
981 
982 /**
983  * key_update - Update a key's contents.
984  * @key_ref: The pointer (plus possession flag) to the key.
985  * @payload: The data to be used to update the key.
986  * @plen: The length of @payload.
987  *
988  * Attempt to update the contents of a key with the given payload data.  The
989  * caller must be granted Write permission on the key.  Negative keys can be
990  * instantiated by this method.
991  *
992  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
993  * type does not support updating.  The key type may return other errors.
994  */
995 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
996 {
997 	struct key_preparsed_payload prep;
998 	struct key *key = key_ref_to_ptr(key_ref);
999 	int ret;
1000 
1001 	key_check(key);
1002 
1003 	/* the key must be writable */
1004 	ret = key_permission(key_ref, KEY_NEED_WRITE);
1005 	if (ret < 0)
1006 		return ret;
1007 
1008 	/* attempt to update it if supported */
1009 	if (!key->type->update)
1010 		return -EOPNOTSUPP;
1011 
1012 	memset(&prep, 0, sizeof(prep));
1013 	prep.data = payload;
1014 	prep.datalen = plen;
1015 	prep.quotalen = key->type->def_datalen;
1016 	prep.expiry = TIME64_MAX;
1017 	if (key->type->preparse) {
1018 		ret = key->type->preparse(&prep);
1019 		if (ret < 0)
1020 			goto error;
1021 	}
1022 
1023 	down_write(&key->sem);
1024 
1025 	ret = key->type->update(key, &prep);
1026 	if (ret == 0)
1027 		/* Updating a negative key positively instantiates it */
1028 		mark_key_instantiated(key, 0);
1029 
1030 	up_write(&key->sem);
1031 
1032 error:
1033 	if (key->type->preparse)
1034 		key->type->free_preparse(&prep);
1035 	return ret;
1036 }
1037 EXPORT_SYMBOL(key_update);
1038 
1039 /**
1040  * key_revoke - Revoke a key.
1041  * @key: The key to be revoked.
1042  *
1043  * Mark a key as being revoked and ask the type to free up its resources.  The
1044  * revocation timeout is set and the key and all its links will be
1045  * automatically garbage collected after key_gc_delay amount of time if they
1046  * are not manually dealt with first.
1047  */
1048 void key_revoke(struct key *key)
1049 {
1050 	time64_t time;
1051 
1052 	key_check(key);
1053 
1054 	/* make sure no one's trying to change or use the key when we mark it
1055 	 * - we tell lockdep that we might nest because we might be revoking an
1056 	 *   authorisation key whilst holding the sem on a key we've just
1057 	 *   instantiated
1058 	 */
1059 	down_write_nested(&key->sem, 1);
1060 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1061 	    key->type->revoke)
1062 		key->type->revoke(key);
1063 
1064 	/* set the death time to no more than the expiry time */
1065 	time = ktime_get_real_seconds();
1066 	if (key->revoked_at == 0 || key->revoked_at > time) {
1067 		key->revoked_at = time;
1068 		key_schedule_gc(key->revoked_at + key_gc_delay);
1069 	}
1070 
1071 	up_write(&key->sem);
1072 }
1073 EXPORT_SYMBOL(key_revoke);
1074 
1075 /**
1076  * key_invalidate - Invalidate a key.
1077  * @key: The key to be invalidated.
1078  *
1079  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1080  * is ignored by all searches and other operations from this point.
1081  */
1082 void key_invalidate(struct key *key)
1083 {
1084 	kenter("%d", key_serial(key));
1085 
1086 	key_check(key);
1087 
1088 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1089 		down_write_nested(&key->sem, 1);
1090 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1091 			key_schedule_gc_links();
1092 		up_write(&key->sem);
1093 	}
1094 }
1095 EXPORT_SYMBOL(key_invalidate);
1096 
1097 /**
1098  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1099  * @key: The key to be instantiated
1100  * @prep: The preparsed data to load.
1101  *
1102  * Instantiate a key from preparsed data.  We assume we can just copy the data
1103  * in directly and clear the old pointers.
1104  *
1105  * This can be pointed to directly by the key type instantiate op pointer.
1106  */
1107 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1108 {
1109 	int ret;
1110 
1111 	pr_devel("==>%s()\n", __func__);
1112 
1113 	ret = key_payload_reserve(key, prep->quotalen);
1114 	if (ret == 0) {
1115 		rcu_assign_keypointer(key, prep->payload.data[0]);
1116 		key->payload.data[1] = prep->payload.data[1];
1117 		key->payload.data[2] = prep->payload.data[2];
1118 		key->payload.data[3] = prep->payload.data[3];
1119 		prep->payload.data[0] = NULL;
1120 		prep->payload.data[1] = NULL;
1121 		prep->payload.data[2] = NULL;
1122 		prep->payload.data[3] = NULL;
1123 	}
1124 	pr_devel("<==%s() = %d\n", __func__, ret);
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL(generic_key_instantiate);
1128 
1129 /**
1130  * register_key_type - Register a type of key.
1131  * @ktype: The new key type.
1132  *
1133  * Register a new key type.
1134  *
1135  * Returns 0 on success or -EEXIST if a type of this name already exists.
1136  */
1137 int register_key_type(struct key_type *ktype)
1138 {
1139 	struct key_type *p;
1140 	int ret;
1141 
1142 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1143 
1144 	ret = -EEXIST;
1145 	down_write(&key_types_sem);
1146 
1147 	/* disallow key types with the same name */
1148 	list_for_each_entry(p, &key_types_list, link) {
1149 		if (strcmp(p->name, ktype->name) == 0)
1150 			goto out;
1151 	}
1152 
1153 	/* store the type */
1154 	list_add(&ktype->link, &key_types_list);
1155 
1156 	pr_notice("Key type %s registered\n", ktype->name);
1157 	ret = 0;
1158 
1159 out:
1160 	up_write(&key_types_sem);
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL(register_key_type);
1164 
1165 /**
1166  * unregister_key_type - Unregister a type of key.
1167  * @ktype: The key type.
1168  *
1169  * Unregister a key type and mark all the extant keys of this type as dead.
1170  * Those keys of this type are then destroyed to get rid of their payloads and
1171  * they and their links will be garbage collected as soon as possible.
1172  */
1173 void unregister_key_type(struct key_type *ktype)
1174 {
1175 	down_write(&key_types_sem);
1176 	list_del_init(&ktype->link);
1177 	downgrade_write(&key_types_sem);
1178 	key_gc_keytype(ktype);
1179 	pr_notice("Key type %s unregistered\n", ktype->name);
1180 	up_read(&key_types_sem);
1181 }
1182 EXPORT_SYMBOL(unregister_key_type);
1183 
1184 /*
1185  * Initialise the key management state.
1186  */
1187 void __init key_init(void)
1188 {
1189 	/* allocate a slab in which we can store keys */
1190 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1191 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1192 
1193 	/* add the special key types */
1194 	list_add_tail(&key_type_keyring.link, &key_types_list);
1195 	list_add_tail(&key_type_dead.link, &key_types_list);
1196 	list_add_tail(&key_type_user.link, &key_types_list);
1197 	list_add_tail(&key_type_logon.link, &key_types_list);
1198 
1199 	/* record the root user tracking */
1200 	rb_link_node(&root_key_user.node,
1201 		     NULL,
1202 		     &key_user_tree.rb_node);
1203 
1204 	rb_insert_color(&root_key_user.node,
1205 			&key_user_tree);
1206 }
1207