xref: /linux/security/keys/key.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /* key.c: basic authentication token and access key management
2  *
3  * Copyright (C) 2004-6 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 static kmem_cache_t	*key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 static LIST_HEAD(key_types_list);
31 static DECLARE_RWSEM(key_types_sem);
32 
33 static void key_cleanup(void *data);
34 static DECLARE_WORK(key_cleanup_task, key_cleanup, NULL);
35 
36 /* we serialise key instantiation and link */
37 DECLARE_RWSEM(key_construction_sem);
38 
39 /* any key who's type gets unegistered will be re-typed to this */
40 static struct key_type key_type_dead = {
41 	.name		= "dead",
42 };
43 
44 #ifdef KEY_DEBUGGING
45 void __key_check(const struct key *key)
46 {
47 	printk("__key_check: key %p {%08x} should be {%08x}\n",
48 	       key, key->magic, KEY_DEBUG_MAGIC);
49 	BUG();
50 }
51 #endif
52 
53 /*****************************************************************************/
54 /*
55  * get the key quota record for a user, allocating a new record if one doesn't
56  * already exist
57  */
58 struct key_user *key_user_lookup(uid_t uid)
59 {
60 	struct key_user *candidate = NULL, *user;
61 	struct rb_node *parent = NULL;
62 	struct rb_node **p;
63 
64  try_again:
65 	p = &key_user_tree.rb_node;
66 	spin_lock(&key_user_lock);
67 
68 	/* search the tree for a user record with a matching UID */
69 	while (*p) {
70 		parent = *p;
71 		user = rb_entry(parent, struct key_user, node);
72 
73 		if (uid < user->uid)
74 			p = &(*p)->rb_left;
75 		else if (uid > user->uid)
76 			p = &(*p)->rb_right;
77 		else
78 			goto found;
79 	}
80 
81 	/* if we get here, we failed to find a match in the tree */
82 	if (!candidate) {
83 		/* allocate a candidate user record if we don't already have
84 		 * one */
85 		spin_unlock(&key_user_lock);
86 
87 		user = NULL;
88 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
89 		if (unlikely(!candidate))
90 			goto out;
91 
92 		/* the allocation may have scheduled, so we need to repeat the
93 		 * search lest someone else added the record whilst we were
94 		 * asleep */
95 		goto try_again;
96 	}
97 
98 	/* if we get here, then the user record still hadn't appeared on the
99 	 * second pass - so we use the candidate record */
100 	atomic_set(&candidate->usage, 1);
101 	atomic_set(&candidate->nkeys, 0);
102 	atomic_set(&candidate->nikeys, 0);
103 	candidate->uid = uid;
104 	candidate->qnkeys = 0;
105 	candidate->qnbytes = 0;
106 	spin_lock_init(&candidate->lock);
107 	INIT_LIST_HEAD(&candidate->consq);
108 
109 	rb_link_node(&candidate->node, parent, p);
110 	rb_insert_color(&candidate->node, &key_user_tree);
111 	spin_unlock(&key_user_lock);
112 	user = candidate;
113 	goto out;
114 
115 	/* okay - we found a user record for this UID */
116  found:
117 	atomic_inc(&user->usage);
118 	spin_unlock(&key_user_lock);
119 	kfree(candidate);
120  out:
121 	return user;
122 
123 } /* end key_user_lookup() */
124 
125 /*****************************************************************************/
126 /*
127  * dispose of a user structure
128  */
129 void key_user_put(struct key_user *user)
130 {
131 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
132 		rb_erase(&user->node, &key_user_tree);
133 		spin_unlock(&key_user_lock);
134 
135 		kfree(user);
136 	}
137 
138 } /* end key_user_put() */
139 
140 /*****************************************************************************/
141 /*
142  * insert a key with a fixed serial number
143  */
144 static void __init __key_insert_serial(struct key *key)
145 {
146 	struct rb_node *parent, **p;
147 	struct key *xkey;
148 
149 	parent = NULL;
150 	p = &key_serial_tree.rb_node;
151 
152 	while (*p) {
153 		parent = *p;
154 		xkey = rb_entry(parent, struct key, serial_node);
155 
156 		if (key->serial < xkey->serial)
157 			p = &(*p)->rb_left;
158 		else if (key->serial > xkey->serial)
159 			p = &(*p)->rb_right;
160 		else
161 			BUG();
162 	}
163 
164 	/* we've found a suitable hole - arrange for this key to occupy it */
165 	rb_link_node(&key->serial_node, parent, p);
166 	rb_insert_color(&key->serial_node, &key_serial_tree);
167 
168 } /* end __key_insert_serial() */
169 
170 /*****************************************************************************/
171 /*
172  * assign a key the next unique serial number
173  * - these are assigned randomly to avoid security issues through covert
174  *   channel problems
175  */
176 static inline void key_alloc_serial(struct key *key)
177 {
178 	struct rb_node *parent, **p;
179 	struct key *xkey;
180 
181 	/* propose a random serial number and look for a hole for it in the
182 	 * serial number tree */
183 	do {
184 		get_random_bytes(&key->serial, sizeof(key->serial));
185 
186 		key->serial >>= 1; /* negative numbers are not permitted */
187 	} while (key->serial < 3);
188 
189 	spin_lock(&key_serial_lock);
190 
191 	parent = NULL;
192 	p = &key_serial_tree.rb_node;
193 
194 	while (*p) {
195 		parent = *p;
196 		xkey = rb_entry(parent, struct key, serial_node);
197 
198 		if (key->serial < xkey->serial)
199 			p = &(*p)->rb_left;
200 		else if (key->serial > xkey->serial)
201 			p = &(*p)->rb_right;
202 		else
203 			goto serial_exists;
204 	}
205 	goto insert_here;
206 
207 	/* we found a key with the proposed serial number - walk the tree from
208 	 * that point looking for the next unused serial number */
209 serial_exists:
210 	for (;;) {
211 		key->serial++;
212 		if (key->serial < 2)
213 			key->serial = 2;
214 
215 		if (!rb_parent(parent))
216 			p = &key_serial_tree.rb_node;
217 		else if (rb_parent(parent)->rb_left == parent)
218 			p = &(rb_parent(parent)->rb_left);
219 		else
220 			p = &(rb_parent(parent)->rb_right);
221 
222 		parent = rb_next(parent);
223 		if (!parent)
224 			break;
225 
226 		xkey = rb_entry(parent, struct key, serial_node);
227 		if (key->serial < xkey->serial)
228 			goto insert_here;
229 	}
230 
231 	/* we've found a suitable hole - arrange for this key to occupy it */
232 insert_here:
233 	rb_link_node(&key->serial_node, parent, p);
234 	rb_insert_color(&key->serial_node, &key_serial_tree);
235 
236 	spin_unlock(&key_serial_lock);
237 
238 } /* end key_alloc_serial() */
239 
240 /*****************************************************************************/
241 /*
242  * allocate a key of the specified type
243  * - update the user's quota to reflect the existence of the key
244  * - called from a key-type operation with key_types_sem read-locked by
245  *   key_create_or_update()
246  *   - this prevents unregistration of the key type
247  * - upon return the key is as yet uninstantiated; the caller needs to either
248  *   instantiate the key or discard it before returning
249  */
250 struct key *key_alloc(struct key_type *type, const char *desc,
251 		      uid_t uid, gid_t gid, struct task_struct *ctx,
252 		      key_perm_t perm, unsigned long flags)
253 {
254 	struct key_user *user = NULL;
255 	struct key *key;
256 	size_t desclen, quotalen;
257 	int ret;
258 
259 	key = ERR_PTR(-EINVAL);
260 	if (!desc || !*desc)
261 		goto error;
262 
263 	desclen = strlen(desc) + 1;
264 	quotalen = desclen + type->def_datalen;
265 
266 	/* get hold of the key tracking for this user */
267 	user = key_user_lookup(uid);
268 	if (!user)
269 		goto no_memory_1;
270 
271 	/* check that the user's quota permits allocation of another key and
272 	 * its description */
273 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
274 		spin_lock(&user->lock);
275 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
276 			if (user->qnkeys + 1 >= KEYQUOTA_MAX_KEYS ||
277 			    user->qnbytes + quotalen >= KEYQUOTA_MAX_BYTES
278 			    )
279 				goto no_quota;
280 		}
281 
282 		user->qnkeys++;
283 		user->qnbytes += quotalen;
284 		spin_unlock(&user->lock);
285 	}
286 
287 	/* allocate and initialise the key and its description */
288 	key = kmem_cache_alloc(key_jar, SLAB_KERNEL);
289 	if (!key)
290 		goto no_memory_2;
291 
292 	if (desc) {
293 		key->description = kmalloc(desclen, GFP_KERNEL);
294 		if (!key->description)
295 			goto no_memory_3;
296 
297 		memcpy(key->description, desc, desclen);
298 	}
299 
300 	atomic_set(&key->usage, 1);
301 	init_rwsem(&key->sem);
302 	key->type = type;
303 	key->user = user;
304 	key->quotalen = quotalen;
305 	key->datalen = type->def_datalen;
306 	key->uid = uid;
307 	key->gid = gid;
308 	key->perm = perm;
309 	key->flags = 0;
310 	key->expiry = 0;
311 	key->payload.data = NULL;
312 	key->security = NULL;
313 
314 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
315 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
316 
317 	memset(&key->type_data, 0, sizeof(key->type_data));
318 
319 #ifdef KEY_DEBUGGING
320 	key->magic = KEY_DEBUG_MAGIC;
321 #endif
322 
323 	/* let the security module know about the key */
324 	ret = security_key_alloc(key, ctx, flags);
325 	if (ret < 0)
326 		goto security_error;
327 
328 	/* publish the key by giving it a serial number */
329 	atomic_inc(&user->nkeys);
330 	key_alloc_serial(key);
331 
332 error:
333 	return key;
334 
335 security_error:
336 	kfree(key->description);
337 	kmem_cache_free(key_jar, key);
338 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
339 		spin_lock(&user->lock);
340 		user->qnkeys--;
341 		user->qnbytes -= quotalen;
342 		spin_unlock(&user->lock);
343 	}
344 	key_user_put(user);
345 	key = ERR_PTR(ret);
346 	goto error;
347 
348 no_memory_3:
349 	kmem_cache_free(key_jar, key);
350 no_memory_2:
351 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
352 		spin_lock(&user->lock);
353 		user->qnkeys--;
354 		user->qnbytes -= quotalen;
355 		spin_unlock(&user->lock);
356 	}
357 	key_user_put(user);
358 no_memory_1:
359 	key = ERR_PTR(-ENOMEM);
360 	goto error;
361 
362 no_quota:
363 	spin_unlock(&user->lock);
364 	key_user_put(user);
365 	key = ERR_PTR(-EDQUOT);
366 	goto error;
367 
368 } /* end key_alloc() */
369 
370 EXPORT_SYMBOL(key_alloc);
371 
372 /*****************************************************************************/
373 /*
374  * reserve an amount of quota for the key's payload
375  */
376 int key_payload_reserve(struct key *key, size_t datalen)
377 {
378 	int delta = (int) datalen - key->datalen;
379 	int ret = 0;
380 
381 	key_check(key);
382 
383 	/* contemplate the quota adjustment */
384 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
385 		spin_lock(&key->user->lock);
386 
387 		if (delta > 0 &&
388 		    key->user->qnbytes + delta > KEYQUOTA_MAX_BYTES
389 		    ) {
390 			ret = -EDQUOT;
391 		}
392 		else {
393 			key->user->qnbytes += delta;
394 			key->quotalen += delta;
395 		}
396 		spin_unlock(&key->user->lock);
397 	}
398 
399 	/* change the recorded data length if that didn't generate an error */
400 	if (ret == 0)
401 		key->datalen = datalen;
402 
403 	return ret;
404 
405 } /* end key_payload_reserve() */
406 
407 EXPORT_SYMBOL(key_payload_reserve);
408 
409 /*****************************************************************************/
410 /*
411  * instantiate a key and link it into the target keyring atomically
412  * - called with the target keyring's semaphore writelocked
413  */
414 static int __key_instantiate_and_link(struct key *key,
415 				      const void *data,
416 				      size_t datalen,
417 				      struct key *keyring,
418 				      struct key *instkey)
419 {
420 	int ret, awaken;
421 
422 	key_check(key);
423 	key_check(keyring);
424 
425 	awaken = 0;
426 	ret = -EBUSY;
427 
428 	down_write(&key_construction_sem);
429 
430 	/* can't instantiate twice */
431 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
432 		/* instantiate the key */
433 		ret = key->type->instantiate(key, data, datalen);
434 
435 		if (ret == 0) {
436 			/* mark the key as being instantiated */
437 			atomic_inc(&key->user->nikeys);
438 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
439 
440 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
441 				awaken = 1;
442 
443 			/* and link it into the destination keyring */
444 			if (keyring)
445 				ret = __key_link(keyring, key);
446 
447 			/* disable the authorisation key */
448 			if (instkey)
449 				key_revoke(instkey);
450 		}
451 	}
452 
453 	up_write(&key_construction_sem);
454 
455 	/* wake up anyone waiting for a key to be constructed */
456 	if (awaken)
457 		wake_up_all(&request_key_conswq);
458 
459 	return ret;
460 
461 } /* end __key_instantiate_and_link() */
462 
463 /*****************************************************************************/
464 /*
465  * instantiate a key and link it into the target keyring atomically
466  */
467 int key_instantiate_and_link(struct key *key,
468 			     const void *data,
469 			     size_t datalen,
470 			     struct key *keyring,
471 			     struct key *instkey)
472 {
473 	int ret;
474 
475 	if (keyring)
476 		down_write(&keyring->sem);
477 
478 	ret = __key_instantiate_and_link(key, data, datalen, keyring, instkey);
479 
480 	if (keyring)
481 		up_write(&keyring->sem);
482 
483 	return ret;
484 
485 } /* end key_instantiate_and_link() */
486 
487 EXPORT_SYMBOL(key_instantiate_and_link);
488 
489 /*****************************************************************************/
490 /*
491  * negatively instantiate a key and link it into the target keyring atomically
492  */
493 int key_negate_and_link(struct key *key,
494 			unsigned timeout,
495 			struct key *keyring,
496 			struct key *instkey)
497 {
498 	struct timespec now;
499 	int ret, awaken;
500 
501 	key_check(key);
502 	key_check(keyring);
503 
504 	awaken = 0;
505 	ret = -EBUSY;
506 
507 	if (keyring)
508 		down_write(&keyring->sem);
509 
510 	down_write(&key_construction_sem);
511 
512 	/* can't instantiate twice */
513 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
514 		/* mark the key as being negatively instantiated */
515 		atomic_inc(&key->user->nikeys);
516 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
517 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
518 		now = current_kernel_time();
519 		key->expiry = now.tv_sec + timeout;
520 
521 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
522 			awaken = 1;
523 
524 		ret = 0;
525 
526 		/* and link it into the destination keyring */
527 		if (keyring)
528 			ret = __key_link(keyring, key);
529 
530 		/* disable the authorisation key */
531 		if (instkey)
532 			key_revoke(instkey);
533 	}
534 
535 	up_write(&key_construction_sem);
536 
537 	if (keyring)
538 		up_write(&keyring->sem);
539 
540 	/* wake up anyone waiting for a key to be constructed */
541 	if (awaken)
542 		wake_up_all(&request_key_conswq);
543 
544 	return ret;
545 
546 } /* end key_negate_and_link() */
547 
548 EXPORT_SYMBOL(key_negate_and_link);
549 
550 /*****************************************************************************/
551 /*
552  * do cleaning up in process context so that we don't have to disable
553  * interrupts all over the place
554  */
555 static void key_cleanup(void *data)
556 {
557 	struct rb_node *_n;
558 	struct key *key;
559 
560  go_again:
561 	/* look for a dead key in the tree */
562 	spin_lock(&key_serial_lock);
563 
564 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
565 		key = rb_entry(_n, struct key, serial_node);
566 
567 		if (atomic_read(&key->usage) == 0)
568 			goto found_dead_key;
569 	}
570 
571 	spin_unlock(&key_serial_lock);
572 	return;
573 
574  found_dead_key:
575 	/* we found a dead key - once we've removed it from the tree, we can
576 	 * drop the lock */
577 	rb_erase(&key->serial_node, &key_serial_tree);
578 	spin_unlock(&key_serial_lock);
579 
580 	key_check(key);
581 
582 	security_key_free(key);
583 
584 	/* deal with the user's key tracking and quota */
585 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
586 		spin_lock(&key->user->lock);
587 		key->user->qnkeys--;
588 		key->user->qnbytes -= key->quotalen;
589 		spin_unlock(&key->user->lock);
590 	}
591 
592 	atomic_dec(&key->user->nkeys);
593 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
594 		atomic_dec(&key->user->nikeys);
595 
596 	key_user_put(key->user);
597 
598 	/* now throw away the key memory */
599 	if (key->type->destroy)
600 		key->type->destroy(key);
601 
602 	kfree(key->description);
603 
604 #ifdef KEY_DEBUGGING
605 	key->magic = KEY_DEBUG_MAGIC_X;
606 #endif
607 	kmem_cache_free(key_jar, key);
608 
609 	/* there may, of course, be more than one key to destroy */
610 	goto go_again;
611 
612 } /* end key_cleanup() */
613 
614 /*****************************************************************************/
615 /*
616  * dispose of a reference to a key
617  * - when all the references are gone, we schedule the cleanup task to come and
618  *   pull it out of the tree in definite process context
619  */
620 void key_put(struct key *key)
621 {
622 	if (key) {
623 		key_check(key);
624 
625 		if (atomic_dec_and_test(&key->usage))
626 			schedule_work(&key_cleanup_task);
627 	}
628 
629 } /* end key_put() */
630 
631 EXPORT_SYMBOL(key_put);
632 
633 /*****************************************************************************/
634 /*
635  * find a key by its serial number
636  */
637 struct key *key_lookup(key_serial_t id)
638 {
639 	struct rb_node *n;
640 	struct key *key;
641 
642 	spin_lock(&key_serial_lock);
643 
644 	/* search the tree for the specified key */
645 	n = key_serial_tree.rb_node;
646 	while (n) {
647 		key = rb_entry(n, struct key, serial_node);
648 
649 		if (id < key->serial)
650 			n = n->rb_left;
651 		else if (id > key->serial)
652 			n = n->rb_right;
653 		else
654 			goto found;
655 	}
656 
657  not_found:
658 	key = ERR_PTR(-ENOKEY);
659 	goto error;
660 
661  found:
662 	/* pretend it doesn't exist if it's dead */
663 	if (atomic_read(&key->usage) == 0 ||
664 	    test_bit(KEY_FLAG_DEAD, &key->flags) ||
665 	    key->type == &key_type_dead)
666 		goto not_found;
667 
668 	/* this races with key_put(), but that doesn't matter since key_put()
669 	 * doesn't actually change the key
670 	 */
671 	atomic_inc(&key->usage);
672 
673  error:
674 	spin_unlock(&key_serial_lock);
675 	return key;
676 
677 } /* end key_lookup() */
678 
679 /*****************************************************************************/
680 /*
681  * find and lock the specified key type against removal
682  * - we return with the sem readlocked
683  */
684 struct key_type *key_type_lookup(const char *type)
685 {
686 	struct key_type *ktype;
687 
688 	down_read(&key_types_sem);
689 
690 	/* look up the key type to see if it's one of the registered kernel
691 	 * types */
692 	list_for_each_entry(ktype, &key_types_list, link) {
693 		if (strcmp(ktype->name, type) == 0)
694 			goto found_kernel_type;
695 	}
696 
697 	up_read(&key_types_sem);
698 	ktype = ERR_PTR(-ENOKEY);
699 
700  found_kernel_type:
701 	return ktype;
702 
703 } /* end key_type_lookup() */
704 
705 /*****************************************************************************/
706 /*
707  * unlock a key type
708  */
709 void key_type_put(struct key_type *ktype)
710 {
711 	up_read(&key_types_sem);
712 
713 } /* end key_type_put() */
714 
715 /*****************************************************************************/
716 /*
717  * attempt to update an existing key
718  * - the key has an incremented refcount
719  * - we need to put the key if we get an error
720  */
721 static inline key_ref_t __key_update(key_ref_t key_ref,
722 				     const void *payload, size_t plen)
723 {
724 	struct key *key = key_ref_to_ptr(key_ref);
725 	int ret;
726 
727 	/* need write permission on the key to update it */
728 	ret = key_permission(key_ref, KEY_WRITE);
729 	if (ret < 0)
730 		goto error;
731 
732 	ret = -EEXIST;
733 	if (!key->type->update)
734 		goto error;
735 
736 	down_write(&key->sem);
737 
738 	ret = key->type->update(key, payload, plen);
739 	if (ret == 0)
740 		/* updating a negative key instantiates it */
741 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
742 
743 	up_write(&key->sem);
744 
745 	if (ret < 0)
746 		goto error;
747 out:
748 	return key_ref;
749 
750 error:
751 	key_put(key);
752 	key_ref = ERR_PTR(ret);
753 	goto out;
754 
755 } /* end __key_update() */
756 
757 /*****************************************************************************/
758 /*
759  * search the specified keyring for a key of the same description; if one is
760  * found, update it, otherwise add a new one
761  */
762 key_ref_t key_create_or_update(key_ref_t keyring_ref,
763 			       const char *type,
764 			       const char *description,
765 			       const void *payload,
766 			       size_t plen,
767 			       unsigned long flags)
768 {
769 	struct key_type *ktype;
770 	struct key *keyring, *key = NULL;
771 	key_perm_t perm;
772 	key_ref_t key_ref;
773 	int ret;
774 
775 	/* look up the key type to see if it's one of the registered kernel
776 	 * types */
777 	ktype = key_type_lookup(type);
778 	if (IS_ERR(ktype)) {
779 		key_ref = ERR_PTR(-ENODEV);
780 		goto error;
781 	}
782 
783 	key_ref = ERR_PTR(-EINVAL);
784 	if (!ktype->match || !ktype->instantiate)
785 		goto error_2;
786 
787 	keyring = key_ref_to_ptr(keyring_ref);
788 
789 	key_check(keyring);
790 
791 	key_ref = ERR_PTR(-ENOTDIR);
792 	if (keyring->type != &key_type_keyring)
793 		goto error_2;
794 
795 	down_write(&keyring->sem);
796 
797 	/* if we're going to allocate a new key, we're going to have
798 	 * to modify the keyring */
799 	ret = key_permission(keyring_ref, KEY_WRITE);
800 	if (ret < 0) {
801 		key_ref = ERR_PTR(ret);
802 		goto error_3;
803 	}
804 
805 	/* if it's possible to update this type of key, search for an existing
806 	 * key of the same type and description in the destination keyring and
807 	 * update that instead if possible
808 	 */
809 	if (ktype->update) {
810 		key_ref = __keyring_search_one(keyring_ref, ktype, description,
811 					       0);
812 		if (!IS_ERR(key_ref))
813 			goto found_matching_key;
814 	}
815 
816 	/* decide on the permissions we want */
817 	perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
818 	perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
819 
820 	if (ktype->read)
821 		perm |= KEY_POS_READ | KEY_USR_READ;
822 
823 	if (ktype == &key_type_keyring || ktype->update)
824 		perm |= KEY_USR_WRITE;
825 
826 	/* allocate a new key */
827 	key = key_alloc(ktype, description, current->fsuid, current->fsgid,
828 			current, perm, flags);
829 	if (IS_ERR(key)) {
830 		key_ref = ERR_PTR(PTR_ERR(key));
831 		goto error_3;
832 	}
833 
834 	/* instantiate it and link it into the target keyring */
835 	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL);
836 	if (ret < 0) {
837 		key_put(key);
838 		key_ref = ERR_PTR(ret);
839 		goto error_3;
840 	}
841 
842 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
843 
844  error_3:
845 	up_write(&keyring->sem);
846  error_2:
847 	key_type_put(ktype);
848  error:
849 	return key_ref;
850 
851  found_matching_key:
852 	/* we found a matching key, so we're going to try to update it
853 	 * - we can drop the locks first as we have the key pinned
854 	 */
855 	up_write(&keyring->sem);
856 	key_type_put(ktype);
857 
858 	key_ref = __key_update(key_ref, payload, plen);
859 	goto error;
860 
861 } /* end key_create_or_update() */
862 
863 EXPORT_SYMBOL(key_create_or_update);
864 
865 /*****************************************************************************/
866 /*
867  * update a key
868  */
869 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
870 {
871 	struct key *key = key_ref_to_ptr(key_ref);
872 	int ret;
873 
874 	key_check(key);
875 
876 	/* the key must be writable */
877 	ret = key_permission(key_ref, KEY_WRITE);
878 	if (ret < 0)
879 		goto error;
880 
881 	/* attempt to update it if supported */
882 	ret = -EOPNOTSUPP;
883 	if (key->type->update) {
884 		down_write(&key->sem);
885 
886 		ret = key->type->update(key, payload, plen);
887 		if (ret == 0)
888 			/* updating a negative key instantiates it */
889 			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
890 
891 		up_write(&key->sem);
892 	}
893 
894  error:
895 	return ret;
896 
897 } /* end key_update() */
898 
899 EXPORT_SYMBOL(key_update);
900 
901 /*****************************************************************************/
902 /*
903  * revoke a key
904  */
905 void key_revoke(struct key *key)
906 {
907 	key_check(key);
908 
909 	/* make sure no one's trying to change or use the key when we mark
910 	 * it */
911 	down_write(&key->sem);
912 	set_bit(KEY_FLAG_REVOKED, &key->flags);
913 
914 	if (key->type->revoke)
915 		key->type->revoke(key);
916 
917 	up_write(&key->sem);
918 
919 } /* end key_revoke() */
920 
921 EXPORT_SYMBOL(key_revoke);
922 
923 /*****************************************************************************/
924 /*
925  * register a type of key
926  */
927 int register_key_type(struct key_type *ktype)
928 {
929 	struct key_type *p;
930 	int ret;
931 
932 	ret = -EEXIST;
933 	down_write(&key_types_sem);
934 
935 	/* disallow key types with the same name */
936 	list_for_each_entry(p, &key_types_list, link) {
937 		if (strcmp(p->name, ktype->name) == 0)
938 			goto out;
939 	}
940 
941 	/* store the type */
942 	list_add(&ktype->link, &key_types_list);
943 	ret = 0;
944 
945  out:
946 	up_write(&key_types_sem);
947 	return ret;
948 
949 } /* end register_key_type() */
950 
951 EXPORT_SYMBOL(register_key_type);
952 
953 /*****************************************************************************/
954 /*
955  * unregister a type of key
956  */
957 void unregister_key_type(struct key_type *ktype)
958 {
959 	struct rb_node *_n;
960 	struct key *key;
961 
962 	down_write(&key_types_sem);
963 
964 	/* withdraw the key type */
965 	list_del_init(&ktype->link);
966 
967 	/* mark all the keys of this type dead */
968 	spin_lock(&key_serial_lock);
969 
970 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
971 		key = rb_entry(_n, struct key, serial_node);
972 
973 		if (key->type == ktype)
974 			key->type = &key_type_dead;
975 	}
976 
977 	spin_unlock(&key_serial_lock);
978 
979 	/* make sure everyone revalidates their keys */
980 	synchronize_rcu();
981 
982 	/* we should now be able to destroy the payloads of all the keys of
983 	 * this type with impunity */
984 	spin_lock(&key_serial_lock);
985 
986 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
987 		key = rb_entry(_n, struct key, serial_node);
988 
989 		if (key->type == ktype) {
990 			if (ktype->destroy)
991 				ktype->destroy(key);
992 			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
993 		}
994 	}
995 
996 	spin_unlock(&key_serial_lock);
997 	up_write(&key_types_sem);
998 
999 } /* end unregister_key_type() */
1000 
1001 EXPORT_SYMBOL(unregister_key_type);
1002 
1003 /*****************************************************************************/
1004 /*
1005  * initialise the key management stuff
1006  */
1007 void __init key_init(void)
1008 {
1009 	/* allocate a slab in which we can store keys */
1010 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1011 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1012 
1013 	/* add the special key types */
1014 	list_add_tail(&key_type_keyring.link, &key_types_list);
1015 	list_add_tail(&key_type_dead.link, &key_types_list);
1016 	list_add_tail(&key_type_user.link, &key_types_list);
1017 
1018 	/* record the root user tracking */
1019 	rb_link_node(&root_key_user.node,
1020 		     NULL,
1021 		     &key_user_tree.rb_node);
1022 
1023 	rb_insert_color(&root_key_user.node,
1024 			&key_user_tree);
1025 
1026 	/* record root's user standard keyrings */
1027 	key_check(&root_user_keyring);
1028 	key_check(&root_session_keyring);
1029 
1030 	__key_insert_serial(&root_user_keyring);
1031 	__key_insert_serial(&root_session_keyring);
1032 
1033 	keyring_publish_name(&root_user_keyring);
1034 	keyring_publish_name(&root_session_keyring);
1035 
1036 	/* link the two root keyrings together */
1037 	key_link(&root_session_keyring, &root_user_keyring);
1038 
1039 } /* end key_init() */
1040