xref: /linux/security/keys/encrypted-keys/encrypted.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Copyright (C) 2010 IBM Corporation
3  * Copyright (C) 2010 Politecnico di Torino, Italy
4  *                    TORSEC group -- http://security.polito.it
5  *
6  * Authors:
7  * Mimi Zohar <zohar@us.ibm.com>
8  * Roberto Sassu <roberto.sassu@polito.it>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, version 2 of the License.
13  *
14  * See Documentation/security/keys/trusted-encrypted.rst
15  */
16 
17 #include <linux/uaccess.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/parser.h>
22 #include <linux/string.h>
23 #include <linux/err.h>
24 #include <keys/user-type.h>
25 #include <keys/trusted-type.h>
26 #include <keys/encrypted-type.h>
27 #include <linux/key-type.h>
28 #include <linux/random.h>
29 #include <linux/rcupdate.h>
30 #include <linux/scatterlist.h>
31 #include <linux/ctype.h>
32 #include <crypto/aes.h>
33 #include <crypto/algapi.h>
34 #include <crypto/hash.h>
35 #include <crypto/sha.h>
36 #include <crypto/skcipher.h>
37 
38 #include "encrypted.h"
39 #include "ecryptfs_format.h"
40 
41 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
42 static const char KEY_USER_PREFIX[] = "user:";
43 static const char hash_alg[] = "sha256";
44 static const char hmac_alg[] = "hmac(sha256)";
45 static const char blkcipher_alg[] = "cbc(aes)";
46 static const char key_format_default[] = "default";
47 static const char key_format_ecryptfs[] = "ecryptfs";
48 static unsigned int ivsize;
49 static int blksize;
50 
51 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
52 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
53 #define KEY_ECRYPTFS_DESC_LEN 16
54 #define HASH_SIZE SHA256_DIGEST_SIZE
55 #define MAX_DATA_SIZE 4096
56 #define MIN_DATA_SIZE  20
57 
58 static struct crypto_shash *hash_tfm;
59 
60 enum {
61 	Opt_err = -1, Opt_new, Opt_load, Opt_update
62 };
63 
64 enum {
65 	Opt_error = -1, Opt_default, Opt_ecryptfs
66 };
67 
68 static const match_table_t key_format_tokens = {
69 	{Opt_default, "default"},
70 	{Opt_ecryptfs, "ecryptfs"},
71 	{Opt_error, NULL}
72 };
73 
74 static const match_table_t key_tokens = {
75 	{Opt_new, "new"},
76 	{Opt_load, "load"},
77 	{Opt_update, "update"},
78 	{Opt_err, NULL}
79 };
80 
81 static int aes_get_sizes(void)
82 {
83 	struct crypto_skcipher *tfm;
84 
85 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
86 	if (IS_ERR(tfm)) {
87 		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
88 		       PTR_ERR(tfm));
89 		return PTR_ERR(tfm);
90 	}
91 	ivsize = crypto_skcipher_ivsize(tfm);
92 	blksize = crypto_skcipher_blocksize(tfm);
93 	crypto_free_skcipher(tfm);
94 	return 0;
95 }
96 
97 /*
98  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
99  *
100  * The description of a encrypted key with format 'ecryptfs' must contain
101  * exactly 16 hexadecimal characters.
102  *
103  */
104 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
105 {
106 	int i;
107 
108 	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
109 		pr_err("encrypted_key: key description must be %d hexadecimal "
110 		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
111 		return -EINVAL;
112 	}
113 
114 	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
115 		if (!isxdigit(ecryptfs_desc[i])) {
116 			pr_err("encrypted_key: key description must contain "
117 			       "only hexadecimal characters\n");
118 			return -EINVAL;
119 		}
120 	}
121 
122 	return 0;
123 }
124 
125 /*
126  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
127  *
128  * key-type:= "trusted:" | "user:"
129  * desc:= master-key description
130  *
131  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
132  * only the master key description is permitted to change, not the key-type.
133  * The key-type remains constant.
134  *
135  * On success returns 0, otherwise -EINVAL.
136  */
137 static int valid_master_desc(const char *new_desc, const char *orig_desc)
138 {
139 	int prefix_len;
140 
141 	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
142 		prefix_len = KEY_TRUSTED_PREFIX_LEN;
143 	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
144 		prefix_len = KEY_USER_PREFIX_LEN;
145 	else
146 		return -EINVAL;
147 
148 	if (!new_desc[prefix_len])
149 		return -EINVAL;
150 
151 	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 
157 /*
158  * datablob_parse - parse the keyctl data
159  *
160  * datablob format:
161  * new [<format>] <master-key name> <decrypted data length>
162  * load [<format>] <master-key name> <decrypted data length>
163  *     <encrypted iv + data>
164  * update <new-master-key name>
165  *
166  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
167  * which is null terminated.
168  *
169  * On success returns 0, otherwise -EINVAL.
170  */
171 static int datablob_parse(char *datablob, const char **format,
172 			  char **master_desc, char **decrypted_datalen,
173 			  char **hex_encoded_iv)
174 {
175 	substring_t args[MAX_OPT_ARGS];
176 	int ret = -EINVAL;
177 	int key_cmd;
178 	int key_format;
179 	char *p, *keyword;
180 
181 	keyword = strsep(&datablob, " \t");
182 	if (!keyword) {
183 		pr_info("encrypted_key: insufficient parameters specified\n");
184 		return ret;
185 	}
186 	key_cmd = match_token(keyword, key_tokens, args);
187 
188 	/* Get optional format: default | ecryptfs */
189 	p = strsep(&datablob, " \t");
190 	if (!p) {
191 		pr_err("encrypted_key: insufficient parameters specified\n");
192 		return ret;
193 	}
194 
195 	key_format = match_token(p, key_format_tokens, args);
196 	switch (key_format) {
197 	case Opt_ecryptfs:
198 	case Opt_default:
199 		*format = p;
200 		*master_desc = strsep(&datablob, " \t");
201 		break;
202 	case Opt_error:
203 		*master_desc = p;
204 		break;
205 	}
206 
207 	if (!*master_desc) {
208 		pr_info("encrypted_key: master key parameter is missing\n");
209 		goto out;
210 	}
211 
212 	if (valid_master_desc(*master_desc, NULL) < 0) {
213 		pr_info("encrypted_key: master key parameter \'%s\' "
214 			"is invalid\n", *master_desc);
215 		goto out;
216 	}
217 
218 	if (decrypted_datalen) {
219 		*decrypted_datalen = strsep(&datablob, " \t");
220 		if (!*decrypted_datalen) {
221 			pr_info("encrypted_key: keylen parameter is missing\n");
222 			goto out;
223 		}
224 	}
225 
226 	switch (key_cmd) {
227 	case Opt_new:
228 		if (!decrypted_datalen) {
229 			pr_info("encrypted_key: keyword \'%s\' not allowed "
230 				"when called from .update method\n", keyword);
231 			break;
232 		}
233 		ret = 0;
234 		break;
235 	case Opt_load:
236 		if (!decrypted_datalen) {
237 			pr_info("encrypted_key: keyword \'%s\' not allowed "
238 				"when called from .update method\n", keyword);
239 			break;
240 		}
241 		*hex_encoded_iv = strsep(&datablob, " \t");
242 		if (!*hex_encoded_iv) {
243 			pr_info("encrypted_key: hex blob is missing\n");
244 			break;
245 		}
246 		ret = 0;
247 		break;
248 	case Opt_update:
249 		if (decrypted_datalen) {
250 			pr_info("encrypted_key: keyword \'%s\' not allowed "
251 				"when called from .instantiate method\n",
252 				keyword);
253 			break;
254 		}
255 		ret = 0;
256 		break;
257 	case Opt_err:
258 		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
259 			keyword);
260 		break;
261 	}
262 out:
263 	return ret;
264 }
265 
266 /*
267  * datablob_format - format as an ascii string, before copying to userspace
268  */
269 static char *datablob_format(struct encrypted_key_payload *epayload,
270 			     size_t asciiblob_len)
271 {
272 	char *ascii_buf, *bufp;
273 	u8 *iv = epayload->iv;
274 	int len;
275 	int i;
276 
277 	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
278 	if (!ascii_buf)
279 		goto out;
280 
281 	ascii_buf[asciiblob_len] = '\0';
282 
283 	/* copy datablob master_desc and datalen strings */
284 	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
285 		      epayload->master_desc, epayload->datalen);
286 
287 	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
288 	bufp = &ascii_buf[len];
289 	for (i = 0; i < (asciiblob_len - len) / 2; i++)
290 		bufp = hex_byte_pack(bufp, iv[i]);
291 out:
292 	return ascii_buf;
293 }
294 
295 /*
296  * request_user_key - request the user key
297  *
298  * Use a user provided key to encrypt/decrypt an encrypted-key.
299  */
300 static struct key *request_user_key(const char *master_desc, const u8 **master_key,
301 				    size_t *master_keylen)
302 {
303 	const struct user_key_payload *upayload;
304 	struct key *ukey;
305 
306 	ukey = request_key(&key_type_user, master_desc, NULL);
307 	if (IS_ERR(ukey))
308 		goto error;
309 
310 	down_read(&ukey->sem);
311 	upayload = user_key_payload_locked(ukey);
312 	if (!upayload) {
313 		/* key was revoked before we acquired its semaphore */
314 		up_read(&ukey->sem);
315 		key_put(ukey);
316 		ukey = ERR_PTR(-EKEYREVOKED);
317 		goto error;
318 	}
319 	*master_key = upayload->data;
320 	*master_keylen = upayload->datalen;
321 error:
322 	return ukey;
323 }
324 
325 static int calc_hash(struct crypto_shash *tfm, u8 *digest,
326 		     const u8 *buf, unsigned int buflen)
327 {
328 	SHASH_DESC_ON_STACK(desc, tfm);
329 	int err;
330 
331 	desc->tfm = tfm;
332 	desc->flags = 0;
333 
334 	err = crypto_shash_digest(desc, buf, buflen, digest);
335 	shash_desc_zero(desc);
336 	return err;
337 }
338 
339 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
340 		     const u8 *buf, unsigned int buflen)
341 {
342 	struct crypto_shash *tfm;
343 	int err;
344 
345 	tfm = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
346 	if (IS_ERR(tfm)) {
347 		pr_err("encrypted_key: can't alloc %s transform: %ld\n",
348 		       hmac_alg, PTR_ERR(tfm));
349 		return PTR_ERR(tfm);
350 	}
351 
352 	err = crypto_shash_setkey(tfm, key, keylen);
353 	if (!err)
354 		err = calc_hash(tfm, digest, buf, buflen);
355 	crypto_free_shash(tfm);
356 	return err;
357 }
358 
359 enum derived_key_type { ENC_KEY, AUTH_KEY };
360 
361 /* Derive authentication/encryption key from trusted key */
362 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
363 			   const u8 *master_key, size_t master_keylen)
364 {
365 	u8 *derived_buf;
366 	unsigned int derived_buf_len;
367 	int ret;
368 
369 	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
370 	if (derived_buf_len < HASH_SIZE)
371 		derived_buf_len = HASH_SIZE;
372 
373 	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
374 	if (!derived_buf)
375 		return -ENOMEM;
376 
377 	if (key_type)
378 		strcpy(derived_buf, "AUTH_KEY");
379 	else
380 		strcpy(derived_buf, "ENC_KEY");
381 
382 	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
383 	       master_keylen);
384 	ret = calc_hash(hash_tfm, derived_key, derived_buf, derived_buf_len);
385 	kzfree(derived_buf);
386 	return ret;
387 }
388 
389 static struct skcipher_request *init_skcipher_req(const u8 *key,
390 						  unsigned int key_len)
391 {
392 	struct skcipher_request *req;
393 	struct crypto_skcipher *tfm;
394 	int ret;
395 
396 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
397 	if (IS_ERR(tfm)) {
398 		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
399 		       blkcipher_alg, PTR_ERR(tfm));
400 		return ERR_CAST(tfm);
401 	}
402 
403 	ret = crypto_skcipher_setkey(tfm, key, key_len);
404 	if (ret < 0) {
405 		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
406 		crypto_free_skcipher(tfm);
407 		return ERR_PTR(ret);
408 	}
409 
410 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
411 	if (!req) {
412 		pr_err("encrypted_key: failed to allocate request for %s\n",
413 		       blkcipher_alg);
414 		crypto_free_skcipher(tfm);
415 		return ERR_PTR(-ENOMEM);
416 	}
417 
418 	skcipher_request_set_callback(req, 0, NULL, NULL);
419 	return req;
420 }
421 
422 static struct key *request_master_key(struct encrypted_key_payload *epayload,
423 				      const u8 **master_key, size_t *master_keylen)
424 {
425 	struct key *mkey = ERR_PTR(-EINVAL);
426 
427 	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
428 		     KEY_TRUSTED_PREFIX_LEN)) {
429 		mkey = request_trusted_key(epayload->master_desc +
430 					   KEY_TRUSTED_PREFIX_LEN,
431 					   master_key, master_keylen);
432 	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
433 			    KEY_USER_PREFIX_LEN)) {
434 		mkey = request_user_key(epayload->master_desc +
435 					KEY_USER_PREFIX_LEN,
436 					master_key, master_keylen);
437 	} else
438 		goto out;
439 
440 	if (IS_ERR(mkey)) {
441 		int ret = PTR_ERR(mkey);
442 
443 		if (ret == -ENOTSUPP)
444 			pr_info("encrypted_key: key %s not supported",
445 				epayload->master_desc);
446 		else
447 			pr_info("encrypted_key: key %s not found",
448 				epayload->master_desc);
449 		goto out;
450 	}
451 
452 	dump_master_key(*master_key, *master_keylen);
453 out:
454 	return mkey;
455 }
456 
457 /* Before returning data to userspace, encrypt decrypted data. */
458 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
459 			       const u8 *derived_key,
460 			       unsigned int derived_keylen)
461 {
462 	struct scatterlist sg_in[2];
463 	struct scatterlist sg_out[1];
464 	struct crypto_skcipher *tfm;
465 	struct skcipher_request *req;
466 	unsigned int encrypted_datalen;
467 	u8 iv[AES_BLOCK_SIZE];
468 	int ret;
469 
470 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
471 
472 	req = init_skcipher_req(derived_key, derived_keylen);
473 	ret = PTR_ERR(req);
474 	if (IS_ERR(req))
475 		goto out;
476 	dump_decrypted_data(epayload);
477 
478 	sg_init_table(sg_in, 2);
479 	sg_set_buf(&sg_in[0], epayload->decrypted_data,
480 		   epayload->decrypted_datalen);
481 	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
482 
483 	sg_init_table(sg_out, 1);
484 	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
485 
486 	memcpy(iv, epayload->iv, sizeof(iv));
487 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
488 	ret = crypto_skcipher_encrypt(req);
489 	tfm = crypto_skcipher_reqtfm(req);
490 	skcipher_request_free(req);
491 	crypto_free_skcipher(tfm);
492 	if (ret < 0)
493 		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
494 	else
495 		dump_encrypted_data(epayload, encrypted_datalen);
496 out:
497 	return ret;
498 }
499 
500 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
501 				const u8 *master_key, size_t master_keylen)
502 {
503 	u8 derived_key[HASH_SIZE];
504 	u8 *digest;
505 	int ret;
506 
507 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
508 	if (ret < 0)
509 		goto out;
510 
511 	digest = epayload->format + epayload->datablob_len;
512 	ret = calc_hmac(digest, derived_key, sizeof derived_key,
513 			epayload->format, epayload->datablob_len);
514 	if (!ret)
515 		dump_hmac(NULL, digest, HASH_SIZE);
516 out:
517 	memzero_explicit(derived_key, sizeof(derived_key));
518 	return ret;
519 }
520 
521 /* verify HMAC before decrypting encrypted key */
522 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
523 				const u8 *format, const u8 *master_key,
524 				size_t master_keylen)
525 {
526 	u8 derived_key[HASH_SIZE];
527 	u8 digest[HASH_SIZE];
528 	int ret;
529 	char *p;
530 	unsigned short len;
531 
532 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
533 	if (ret < 0)
534 		goto out;
535 
536 	len = epayload->datablob_len;
537 	if (!format) {
538 		p = epayload->master_desc;
539 		len -= strlen(epayload->format) + 1;
540 	} else
541 		p = epayload->format;
542 
543 	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
544 	if (ret < 0)
545 		goto out;
546 	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
547 			    sizeof(digest));
548 	if (ret) {
549 		ret = -EINVAL;
550 		dump_hmac("datablob",
551 			  epayload->format + epayload->datablob_len,
552 			  HASH_SIZE);
553 		dump_hmac("calc", digest, HASH_SIZE);
554 	}
555 out:
556 	memzero_explicit(derived_key, sizeof(derived_key));
557 	return ret;
558 }
559 
560 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
561 			       const u8 *derived_key,
562 			       unsigned int derived_keylen)
563 {
564 	struct scatterlist sg_in[1];
565 	struct scatterlist sg_out[2];
566 	struct crypto_skcipher *tfm;
567 	struct skcipher_request *req;
568 	unsigned int encrypted_datalen;
569 	u8 iv[AES_BLOCK_SIZE];
570 	u8 *pad;
571 	int ret;
572 
573 	/* Throwaway buffer to hold the unused zero padding at the end */
574 	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
575 	if (!pad)
576 		return -ENOMEM;
577 
578 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
579 	req = init_skcipher_req(derived_key, derived_keylen);
580 	ret = PTR_ERR(req);
581 	if (IS_ERR(req))
582 		goto out;
583 	dump_encrypted_data(epayload, encrypted_datalen);
584 
585 	sg_init_table(sg_in, 1);
586 	sg_init_table(sg_out, 2);
587 	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
588 	sg_set_buf(&sg_out[0], epayload->decrypted_data,
589 		   epayload->decrypted_datalen);
590 	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
591 
592 	memcpy(iv, epayload->iv, sizeof(iv));
593 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
594 	ret = crypto_skcipher_decrypt(req);
595 	tfm = crypto_skcipher_reqtfm(req);
596 	skcipher_request_free(req);
597 	crypto_free_skcipher(tfm);
598 	if (ret < 0)
599 		goto out;
600 	dump_decrypted_data(epayload);
601 out:
602 	kfree(pad);
603 	return ret;
604 }
605 
606 /* Allocate memory for decrypted key and datablob. */
607 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
608 							 const char *format,
609 							 const char *master_desc,
610 							 const char *datalen)
611 {
612 	struct encrypted_key_payload *epayload = NULL;
613 	unsigned short datablob_len;
614 	unsigned short decrypted_datalen;
615 	unsigned short payload_datalen;
616 	unsigned int encrypted_datalen;
617 	unsigned int format_len;
618 	long dlen;
619 	int ret;
620 
621 	ret = kstrtol(datalen, 10, &dlen);
622 	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
623 		return ERR_PTR(-EINVAL);
624 
625 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
626 	decrypted_datalen = dlen;
627 	payload_datalen = decrypted_datalen;
628 	if (format && !strcmp(format, key_format_ecryptfs)) {
629 		if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
630 			pr_err("encrypted_key: keylen for the ecryptfs format "
631 			       "must be equal to %d bytes\n",
632 			       ECRYPTFS_MAX_KEY_BYTES);
633 			return ERR_PTR(-EINVAL);
634 		}
635 		decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
636 		payload_datalen = sizeof(struct ecryptfs_auth_tok);
637 	}
638 
639 	encrypted_datalen = roundup(decrypted_datalen, blksize);
640 
641 	datablob_len = format_len + 1 + strlen(master_desc) + 1
642 	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
643 
644 	ret = key_payload_reserve(key, payload_datalen + datablob_len
645 				  + HASH_SIZE + 1);
646 	if (ret < 0)
647 		return ERR_PTR(ret);
648 
649 	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
650 			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
651 	if (!epayload)
652 		return ERR_PTR(-ENOMEM);
653 
654 	epayload->payload_datalen = payload_datalen;
655 	epayload->decrypted_datalen = decrypted_datalen;
656 	epayload->datablob_len = datablob_len;
657 	return epayload;
658 }
659 
660 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
661 				 const char *format, const char *hex_encoded_iv)
662 {
663 	struct key *mkey;
664 	u8 derived_key[HASH_SIZE];
665 	const u8 *master_key;
666 	u8 *hmac;
667 	const char *hex_encoded_data;
668 	unsigned int encrypted_datalen;
669 	size_t master_keylen;
670 	size_t asciilen;
671 	int ret;
672 
673 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
674 	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
675 	if (strlen(hex_encoded_iv) != asciilen)
676 		return -EINVAL;
677 
678 	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
679 	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
680 	if (ret < 0)
681 		return -EINVAL;
682 	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
683 		      encrypted_datalen);
684 	if (ret < 0)
685 		return -EINVAL;
686 
687 	hmac = epayload->format + epayload->datablob_len;
688 	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
689 		      HASH_SIZE);
690 	if (ret < 0)
691 		return -EINVAL;
692 
693 	mkey = request_master_key(epayload, &master_key, &master_keylen);
694 	if (IS_ERR(mkey))
695 		return PTR_ERR(mkey);
696 
697 	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
698 	if (ret < 0) {
699 		pr_err("encrypted_key: bad hmac (%d)\n", ret);
700 		goto out;
701 	}
702 
703 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
704 	if (ret < 0)
705 		goto out;
706 
707 	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
708 	if (ret < 0)
709 		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
710 out:
711 	up_read(&mkey->sem);
712 	key_put(mkey);
713 	memzero_explicit(derived_key, sizeof(derived_key));
714 	return ret;
715 }
716 
717 static void __ekey_init(struct encrypted_key_payload *epayload,
718 			const char *format, const char *master_desc,
719 			const char *datalen)
720 {
721 	unsigned int format_len;
722 
723 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
724 	epayload->format = epayload->payload_data + epayload->payload_datalen;
725 	epayload->master_desc = epayload->format + format_len + 1;
726 	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
727 	epayload->iv = epayload->datalen + strlen(datalen) + 1;
728 	epayload->encrypted_data = epayload->iv + ivsize + 1;
729 	epayload->decrypted_data = epayload->payload_data;
730 
731 	if (!format)
732 		memcpy(epayload->format, key_format_default, format_len);
733 	else {
734 		if (!strcmp(format, key_format_ecryptfs))
735 			epayload->decrypted_data =
736 				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
737 
738 		memcpy(epayload->format, format, format_len);
739 	}
740 
741 	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
742 	memcpy(epayload->datalen, datalen, strlen(datalen));
743 }
744 
745 /*
746  * encrypted_init - initialize an encrypted key
747  *
748  * For a new key, use a random number for both the iv and data
749  * itself.  For an old key, decrypt the hex encoded data.
750  */
751 static int encrypted_init(struct encrypted_key_payload *epayload,
752 			  const char *key_desc, const char *format,
753 			  const char *master_desc, const char *datalen,
754 			  const char *hex_encoded_iv)
755 {
756 	int ret = 0;
757 
758 	if (format && !strcmp(format, key_format_ecryptfs)) {
759 		ret = valid_ecryptfs_desc(key_desc);
760 		if (ret < 0)
761 			return ret;
762 
763 		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
764 				       key_desc);
765 	}
766 
767 	__ekey_init(epayload, format, master_desc, datalen);
768 	if (!hex_encoded_iv) {
769 		get_random_bytes(epayload->iv, ivsize);
770 
771 		get_random_bytes(epayload->decrypted_data,
772 				 epayload->decrypted_datalen);
773 	} else
774 		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
775 	return ret;
776 }
777 
778 /*
779  * encrypted_instantiate - instantiate an encrypted key
780  *
781  * Decrypt an existing encrypted datablob or create a new encrypted key
782  * based on a kernel random number.
783  *
784  * On success, return 0. Otherwise return errno.
785  */
786 static int encrypted_instantiate(struct key *key,
787 				 struct key_preparsed_payload *prep)
788 {
789 	struct encrypted_key_payload *epayload = NULL;
790 	char *datablob = NULL;
791 	const char *format = NULL;
792 	char *master_desc = NULL;
793 	char *decrypted_datalen = NULL;
794 	char *hex_encoded_iv = NULL;
795 	size_t datalen = prep->datalen;
796 	int ret;
797 
798 	if (datalen <= 0 || datalen > 32767 || !prep->data)
799 		return -EINVAL;
800 
801 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
802 	if (!datablob)
803 		return -ENOMEM;
804 	datablob[datalen] = 0;
805 	memcpy(datablob, prep->data, datalen);
806 	ret = datablob_parse(datablob, &format, &master_desc,
807 			     &decrypted_datalen, &hex_encoded_iv);
808 	if (ret < 0)
809 		goto out;
810 
811 	epayload = encrypted_key_alloc(key, format, master_desc,
812 				       decrypted_datalen);
813 	if (IS_ERR(epayload)) {
814 		ret = PTR_ERR(epayload);
815 		goto out;
816 	}
817 	ret = encrypted_init(epayload, key->description, format, master_desc,
818 			     decrypted_datalen, hex_encoded_iv);
819 	if (ret < 0) {
820 		kzfree(epayload);
821 		goto out;
822 	}
823 
824 	rcu_assign_keypointer(key, epayload);
825 out:
826 	kzfree(datablob);
827 	return ret;
828 }
829 
830 static void encrypted_rcu_free(struct rcu_head *rcu)
831 {
832 	struct encrypted_key_payload *epayload;
833 
834 	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
835 	kzfree(epayload);
836 }
837 
838 /*
839  * encrypted_update - update the master key description
840  *
841  * Change the master key description for an existing encrypted key.
842  * The next read will return an encrypted datablob using the new
843  * master key description.
844  *
845  * On success, return 0. Otherwise return errno.
846  */
847 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
848 {
849 	struct encrypted_key_payload *epayload = key->payload.data[0];
850 	struct encrypted_key_payload *new_epayload;
851 	char *buf;
852 	char *new_master_desc = NULL;
853 	const char *format = NULL;
854 	size_t datalen = prep->datalen;
855 	int ret = 0;
856 
857 	if (key_is_negative(key))
858 		return -ENOKEY;
859 	if (datalen <= 0 || datalen > 32767 || !prep->data)
860 		return -EINVAL;
861 
862 	buf = kmalloc(datalen + 1, GFP_KERNEL);
863 	if (!buf)
864 		return -ENOMEM;
865 
866 	buf[datalen] = 0;
867 	memcpy(buf, prep->data, datalen);
868 	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
869 	if (ret < 0)
870 		goto out;
871 
872 	ret = valid_master_desc(new_master_desc, epayload->master_desc);
873 	if (ret < 0)
874 		goto out;
875 
876 	new_epayload = encrypted_key_alloc(key, epayload->format,
877 					   new_master_desc, epayload->datalen);
878 	if (IS_ERR(new_epayload)) {
879 		ret = PTR_ERR(new_epayload);
880 		goto out;
881 	}
882 
883 	__ekey_init(new_epayload, epayload->format, new_master_desc,
884 		    epayload->datalen);
885 
886 	memcpy(new_epayload->iv, epayload->iv, ivsize);
887 	memcpy(new_epayload->payload_data, epayload->payload_data,
888 	       epayload->payload_datalen);
889 
890 	rcu_assign_keypointer(key, new_epayload);
891 	call_rcu(&epayload->rcu, encrypted_rcu_free);
892 out:
893 	kzfree(buf);
894 	return ret;
895 }
896 
897 /*
898  * encrypted_read - format and copy the encrypted data to userspace
899  *
900  * The resulting datablob format is:
901  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
902  *
903  * On success, return to userspace the encrypted key datablob size.
904  */
905 static long encrypted_read(const struct key *key, char __user *buffer,
906 			   size_t buflen)
907 {
908 	struct encrypted_key_payload *epayload;
909 	struct key *mkey;
910 	const u8 *master_key;
911 	size_t master_keylen;
912 	char derived_key[HASH_SIZE];
913 	char *ascii_buf;
914 	size_t asciiblob_len;
915 	int ret;
916 
917 	epayload = dereference_key_locked(key);
918 
919 	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
920 	asciiblob_len = epayload->datablob_len + ivsize + 1
921 	    + roundup(epayload->decrypted_datalen, blksize)
922 	    + (HASH_SIZE * 2);
923 
924 	if (!buffer || buflen < asciiblob_len)
925 		return asciiblob_len;
926 
927 	mkey = request_master_key(epayload, &master_key, &master_keylen);
928 	if (IS_ERR(mkey))
929 		return PTR_ERR(mkey);
930 
931 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
932 	if (ret < 0)
933 		goto out;
934 
935 	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
936 	if (ret < 0)
937 		goto out;
938 
939 	ret = datablob_hmac_append(epayload, master_key, master_keylen);
940 	if (ret < 0)
941 		goto out;
942 
943 	ascii_buf = datablob_format(epayload, asciiblob_len);
944 	if (!ascii_buf) {
945 		ret = -ENOMEM;
946 		goto out;
947 	}
948 
949 	up_read(&mkey->sem);
950 	key_put(mkey);
951 	memzero_explicit(derived_key, sizeof(derived_key));
952 
953 	if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
954 		ret = -EFAULT;
955 	kzfree(ascii_buf);
956 
957 	return asciiblob_len;
958 out:
959 	up_read(&mkey->sem);
960 	key_put(mkey);
961 	memzero_explicit(derived_key, sizeof(derived_key));
962 	return ret;
963 }
964 
965 /*
966  * encrypted_destroy - clear and free the key's payload
967  */
968 static void encrypted_destroy(struct key *key)
969 {
970 	kzfree(key->payload.data[0]);
971 }
972 
973 struct key_type key_type_encrypted = {
974 	.name = "encrypted",
975 	.instantiate = encrypted_instantiate,
976 	.update = encrypted_update,
977 	.destroy = encrypted_destroy,
978 	.describe = user_describe,
979 	.read = encrypted_read,
980 };
981 EXPORT_SYMBOL_GPL(key_type_encrypted);
982 
983 static int __init init_encrypted(void)
984 {
985 	int ret;
986 
987 	hash_tfm = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
988 	if (IS_ERR(hash_tfm)) {
989 		pr_err("encrypted_key: can't allocate %s transform: %ld\n",
990 		       hash_alg, PTR_ERR(hash_tfm));
991 		return PTR_ERR(hash_tfm);
992 	}
993 
994 	ret = aes_get_sizes();
995 	if (ret < 0)
996 		goto out;
997 	ret = register_key_type(&key_type_encrypted);
998 	if (ret < 0)
999 		goto out;
1000 	return 0;
1001 out:
1002 	crypto_free_shash(hash_tfm);
1003 	return ret;
1004 
1005 }
1006 
1007 static void __exit cleanup_encrypted(void)
1008 {
1009 	crypto_free_shash(hash_tfm);
1010 	unregister_key_type(&key_type_encrypted);
1011 }
1012 
1013 late_initcall(init_encrypted);
1014 module_exit(cleanup_encrypted);
1015 
1016 MODULE_LICENSE("GPL");
1017