xref: /linux/security/keys/encrypted-keys/encrypted.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010 IBM Corporation
4  * Copyright (C) 2010 Politecnico di Torino, Italy
5  *                    TORSEC group -- https://security.polito.it
6  *
7  * Authors:
8  * Mimi Zohar <zohar@us.ibm.com>
9  * Roberto Sassu <roberto.sassu@polito.it>
10  *
11  * See Documentation/security/keys/trusted-encrypted.rst
12  */
13 
14 #include <linux/uaccess.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/parser.h>
19 #include <linux/string.h>
20 #include <linux/err.h>
21 #include <keys/user-type.h>
22 #include <keys/trusted-type.h>
23 #include <keys/encrypted-type.h>
24 #include <linux/key-type.h>
25 #include <linux/random.h>
26 #include <linux/rcupdate.h>
27 #include <linux/scatterlist.h>
28 #include <linux/ctype.h>
29 #include <crypto/aes.h>
30 #include <crypto/hash.h>
31 #include <crypto/sha2.h>
32 #include <crypto/skcipher.h>
33 #include <crypto/utils.h>
34 
35 #include "encrypted.h"
36 #include "ecryptfs_format.h"
37 
38 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
39 static const char KEY_USER_PREFIX[] = "user:";
40 static const char hash_alg[] = "sha256";
41 static const char hmac_alg[] = "hmac(sha256)";
42 static const char blkcipher_alg[] = "cbc(aes)";
43 static const char key_format_default[] = "default";
44 static const char key_format_ecryptfs[] = "ecryptfs";
45 static const char key_format_enc32[] = "enc32";
46 static unsigned int ivsize;
47 static int blksize;
48 
49 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
50 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
51 #define KEY_ECRYPTFS_DESC_LEN 16
52 #define HASH_SIZE SHA256_DIGEST_SIZE
53 #define MAX_DATA_SIZE 4096
54 #define MIN_DATA_SIZE  20
55 #define KEY_ENC32_PAYLOAD_LEN 32
56 
57 static struct crypto_shash *hash_tfm;
58 
59 enum {
60 	Opt_new, Opt_load, Opt_update, Opt_err
61 };
62 
63 enum {
64 	Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
65 };
66 
67 static const match_table_t key_format_tokens = {
68 	{Opt_default, "default"},
69 	{Opt_ecryptfs, "ecryptfs"},
70 	{Opt_enc32, "enc32"},
71 	{Opt_error, NULL}
72 };
73 
74 static const match_table_t key_tokens = {
75 	{Opt_new, "new"},
76 	{Opt_load, "load"},
77 	{Opt_update, "update"},
78 	{Opt_err, NULL}
79 };
80 
81 static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA);
82 module_param(user_decrypted_data, bool, 0);
83 MODULE_PARM_DESC(user_decrypted_data,
84 	"Allow instantiation of encrypted keys using provided decrypted data");
85 
86 static int aes_get_sizes(void)
87 {
88 	struct crypto_skcipher *tfm;
89 
90 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91 	if (IS_ERR(tfm)) {
92 		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93 		       PTR_ERR(tfm));
94 		return PTR_ERR(tfm);
95 	}
96 	ivsize = crypto_skcipher_ivsize(tfm);
97 	blksize = crypto_skcipher_blocksize(tfm);
98 	crypto_free_skcipher(tfm);
99 	return 0;
100 }
101 
102 /*
103  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
104  *
105  * The description of a encrypted key with format 'ecryptfs' must contain
106  * exactly 16 hexadecimal characters.
107  *
108  */
109 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
110 {
111 	int i;
112 
113 	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114 		pr_err("encrypted_key: key description must be %d hexadecimal "
115 		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
116 		return -EINVAL;
117 	}
118 
119 	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120 		if (!isxdigit(ecryptfs_desc[i])) {
121 			pr_err("encrypted_key: key description must contain "
122 			       "only hexadecimal characters\n");
123 			return -EINVAL;
124 		}
125 	}
126 
127 	return 0;
128 }
129 
130 /*
131  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
132  *
133  * key-type:= "trusted:" | "user:"
134  * desc:= master-key description
135  *
136  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
137  * only the master key description is permitted to change, not the key-type.
138  * The key-type remains constant.
139  *
140  * On success returns 0, otherwise -EINVAL.
141  */
142 static int valid_master_desc(const char *new_desc, const char *orig_desc)
143 {
144 	int prefix_len;
145 
146 	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
147 		prefix_len = KEY_TRUSTED_PREFIX_LEN;
148 	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
149 		prefix_len = KEY_USER_PREFIX_LEN;
150 	else
151 		return -EINVAL;
152 
153 	if (!new_desc[prefix_len])
154 		return -EINVAL;
155 
156 	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
157 		return -EINVAL;
158 
159 	return 0;
160 }
161 
162 /*
163  * datablob_parse - parse the keyctl data
164  *
165  * datablob format:
166  * new [<format>] <master-key name> <decrypted data length> [<decrypted data>]
167  * load [<format>] <master-key name> <decrypted data length>
168  *     <encrypted iv + data>
169  * update <new-master-key name>
170  *
171  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
172  * which is null terminated.
173  *
174  * On success returns 0, otherwise -EINVAL.
175  */
176 static int datablob_parse(char *datablob, const char **format,
177 			  char **master_desc, char **decrypted_datalen,
178 			  char **hex_encoded_iv, char **decrypted_data)
179 {
180 	substring_t args[MAX_OPT_ARGS];
181 	int ret = -EINVAL;
182 	int key_cmd;
183 	int key_format;
184 	char *p, *keyword;
185 
186 	keyword = strsep(&datablob, " \t");
187 	if (!keyword) {
188 		pr_info("encrypted_key: insufficient parameters specified\n");
189 		return ret;
190 	}
191 	key_cmd = match_token(keyword, key_tokens, args);
192 
193 	/* Get optional format: default | ecryptfs */
194 	p = strsep(&datablob, " \t");
195 	if (!p) {
196 		pr_err("encrypted_key: insufficient parameters specified\n");
197 		return ret;
198 	}
199 
200 	key_format = match_token(p, key_format_tokens, args);
201 	switch (key_format) {
202 	case Opt_ecryptfs:
203 	case Opt_enc32:
204 	case Opt_default:
205 		*format = p;
206 		*master_desc = strsep(&datablob, " \t");
207 		break;
208 	case Opt_error:
209 		*master_desc = p;
210 		break;
211 	}
212 
213 	if (!*master_desc) {
214 		pr_info("encrypted_key: master key parameter is missing\n");
215 		goto out;
216 	}
217 
218 	if (valid_master_desc(*master_desc, NULL) < 0) {
219 		pr_info("encrypted_key: master key parameter \'%s\' "
220 			"is invalid\n", *master_desc);
221 		goto out;
222 	}
223 
224 	if (decrypted_datalen) {
225 		*decrypted_datalen = strsep(&datablob, " \t");
226 		if (!*decrypted_datalen) {
227 			pr_info("encrypted_key: keylen parameter is missing\n");
228 			goto out;
229 		}
230 	}
231 
232 	switch (key_cmd) {
233 	case Opt_new:
234 		if (!decrypted_datalen) {
235 			pr_info("encrypted_key: keyword \'%s\' not allowed "
236 				"when called from .update method\n", keyword);
237 			break;
238 		}
239 		*decrypted_data = strsep(&datablob, " \t");
240 		ret = 0;
241 		break;
242 	case Opt_load:
243 		if (!decrypted_datalen) {
244 			pr_info("encrypted_key: keyword \'%s\' not allowed "
245 				"when called from .update method\n", keyword);
246 			break;
247 		}
248 		*hex_encoded_iv = strsep(&datablob, " \t");
249 		if (!*hex_encoded_iv) {
250 			pr_info("encrypted_key: hex blob is missing\n");
251 			break;
252 		}
253 		ret = 0;
254 		break;
255 	case Opt_update:
256 		if (decrypted_datalen) {
257 			pr_info("encrypted_key: keyword \'%s\' not allowed "
258 				"when called from .instantiate method\n",
259 				keyword);
260 			break;
261 		}
262 		ret = 0;
263 		break;
264 	case Opt_err:
265 		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
266 			keyword);
267 		break;
268 	}
269 out:
270 	return ret;
271 }
272 
273 /*
274  * datablob_format - format as an ascii string, before copying to userspace
275  */
276 static char *datablob_format(struct encrypted_key_payload *epayload,
277 			     size_t asciiblob_len)
278 {
279 	char *ascii_buf, *bufp;
280 	u8 *iv = epayload->iv;
281 	int len;
282 	int i;
283 
284 	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
285 	if (!ascii_buf)
286 		goto out;
287 
288 	ascii_buf[asciiblob_len] = '\0';
289 
290 	/* copy datablob master_desc and datalen strings */
291 	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
292 		      epayload->master_desc, epayload->datalen);
293 
294 	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
295 	bufp = &ascii_buf[len];
296 	for (i = 0; i < (asciiblob_len - len) / 2; i++)
297 		bufp = hex_byte_pack(bufp, iv[i]);
298 out:
299 	return ascii_buf;
300 }
301 
302 /*
303  * request_user_key - request the user key
304  *
305  * Use a user provided key to encrypt/decrypt an encrypted-key.
306  */
307 static struct key *request_user_key(const char *master_desc, const u8 **master_key,
308 				    size_t *master_keylen)
309 {
310 	const struct user_key_payload *upayload;
311 	struct key *ukey;
312 
313 	ukey = request_key(&key_type_user, master_desc, NULL);
314 	if (IS_ERR(ukey))
315 		goto error;
316 
317 	down_read(&ukey->sem);
318 	upayload = user_key_payload_locked(ukey);
319 	if (!upayload) {
320 		/* key was revoked before we acquired its semaphore */
321 		up_read(&ukey->sem);
322 		key_put(ukey);
323 		ukey = ERR_PTR(-EKEYREVOKED);
324 		goto error;
325 	}
326 	*master_key = upayload->data;
327 	*master_keylen = upayload->datalen;
328 error:
329 	return ukey;
330 }
331 
332 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
333 		     const u8 *buf, unsigned int buflen)
334 {
335 	struct crypto_shash *tfm;
336 	int err;
337 
338 	tfm = crypto_alloc_shash(hmac_alg, 0, 0);
339 	if (IS_ERR(tfm)) {
340 		pr_err("encrypted_key: can't alloc %s transform: %ld\n",
341 		       hmac_alg, PTR_ERR(tfm));
342 		return PTR_ERR(tfm);
343 	}
344 
345 	err = crypto_shash_setkey(tfm, key, keylen);
346 	if (!err)
347 		err = crypto_shash_tfm_digest(tfm, buf, buflen, digest);
348 	crypto_free_shash(tfm);
349 	return err;
350 }
351 
352 enum derived_key_type { ENC_KEY, AUTH_KEY };
353 
354 /* Derive authentication/encryption key from trusted key */
355 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
356 			   const u8 *master_key, size_t master_keylen)
357 {
358 	u8 *derived_buf;
359 	unsigned int derived_buf_len;
360 	int ret;
361 
362 	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
363 	if (derived_buf_len < HASH_SIZE)
364 		derived_buf_len = HASH_SIZE;
365 
366 	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
367 	if (!derived_buf)
368 		return -ENOMEM;
369 
370 	if (key_type)
371 		strcpy(derived_buf, "AUTH_KEY");
372 	else
373 		strcpy(derived_buf, "ENC_KEY");
374 
375 	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
376 	       master_keylen);
377 	ret = crypto_shash_tfm_digest(hash_tfm, derived_buf, derived_buf_len,
378 				      derived_key);
379 	kfree_sensitive(derived_buf);
380 	return ret;
381 }
382 
383 static struct skcipher_request *init_skcipher_req(const u8 *key,
384 						  unsigned int key_len)
385 {
386 	struct skcipher_request *req;
387 	struct crypto_skcipher *tfm;
388 	int ret;
389 
390 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
391 	if (IS_ERR(tfm)) {
392 		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
393 		       blkcipher_alg, PTR_ERR(tfm));
394 		return ERR_CAST(tfm);
395 	}
396 
397 	ret = crypto_skcipher_setkey(tfm, key, key_len);
398 	if (ret < 0) {
399 		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
400 		crypto_free_skcipher(tfm);
401 		return ERR_PTR(ret);
402 	}
403 
404 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
405 	if (!req) {
406 		pr_err("encrypted_key: failed to allocate request for %s\n",
407 		       blkcipher_alg);
408 		crypto_free_skcipher(tfm);
409 		return ERR_PTR(-ENOMEM);
410 	}
411 
412 	skcipher_request_set_callback(req, 0, NULL, NULL);
413 	return req;
414 }
415 
416 static struct key *request_master_key(struct encrypted_key_payload *epayload,
417 				      const u8 **master_key, size_t *master_keylen)
418 {
419 	struct key *mkey = ERR_PTR(-EINVAL);
420 
421 	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
422 		     KEY_TRUSTED_PREFIX_LEN)) {
423 		mkey = request_trusted_key(epayload->master_desc +
424 					   KEY_TRUSTED_PREFIX_LEN,
425 					   master_key, master_keylen);
426 	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
427 			    KEY_USER_PREFIX_LEN)) {
428 		mkey = request_user_key(epayload->master_desc +
429 					KEY_USER_PREFIX_LEN,
430 					master_key, master_keylen);
431 	} else
432 		goto out;
433 
434 	if (IS_ERR(mkey)) {
435 		int ret = PTR_ERR(mkey);
436 
437 		if (ret == -ENOTSUPP)
438 			pr_info("encrypted_key: key %s not supported",
439 				epayload->master_desc);
440 		else
441 			pr_info("encrypted_key: key %s not found",
442 				epayload->master_desc);
443 		goto out;
444 	}
445 
446 	dump_master_key(*master_key, *master_keylen);
447 out:
448 	return mkey;
449 }
450 
451 /* Before returning data to userspace, encrypt decrypted data. */
452 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
453 			       const u8 *derived_key,
454 			       unsigned int derived_keylen)
455 {
456 	struct scatterlist sg_in[2];
457 	struct scatterlist sg_out[1];
458 	struct crypto_skcipher *tfm;
459 	struct skcipher_request *req;
460 	unsigned int encrypted_datalen;
461 	u8 iv[AES_BLOCK_SIZE];
462 	int ret;
463 
464 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
465 
466 	req = init_skcipher_req(derived_key, derived_keylen);
467 	ret = PTR_ERR(req);
468 	if (IS_ERR(req))
469 		goto out;
470 	dump_decrypted_data(epayload);
471 
472 	sg_init_table(sg_in, 2);
473 	sg_set_buf(&sg_in[0], epayload->decrypted_data,
474 		   epayload->decrypted_datalen);
475 	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
476 
477 	sg_init_table(sg_out, 1);
478 	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
479 
480 	memcpy(iv, epayload->iv, sizeof(iv));
481 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
482 	ret = crypto_skcipher_encrypt(req);
483 	tfm = crypto_skcipher_reqtfm(req);
484 	skcipher_request_free(req);
485 	crypto_free_skcipher(tfm);
486 	if (ret < 0)
487 		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
488 	else
489 		dump_encrypted_data(epayload, encrypted_datalen);
490 out:
491 	return ret;
492 }
493 
494 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
495 				const u8 *master_key, size_t master_keylen)
496 {
497 	u8 derived_key[HASH_SIZE];
498 	u8 *digest;
499 	int ret;
500 
501 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
502 	if (ret < 0)
503 		goto out;
504 
505 	digest = epayload->format + epayload->datablob_len;
506 	ret = calc_hmac(digest, derived_key, sizeof derived_key,
507 			epayload->format, epayload->datablob_len);
508 	if (!ret)
509 		dump_hmac(NULL, digest, HASH_SIZE);
510 out:
511 	memzero_explicit(derived_key, sizeof(derived_key));
512 	return ret;
513 }
514 
515 /* verify HMAC before decrypting encrypted key */
516 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
517 				const u8 *format, const u8 *master_key,
518 				size_t master_keylen)
519 {
520 	u8 derived_key[HASH_SIZE];
521 	u8 digest[HASH_SIZE];
522 	int ret;
523 	char *p;
524 	unsigned short len;
525 
526 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
527 	if (ret < 0)
528 		goto out;
529 
530 	len = epayload->datablob_len;
531 	if (!format) {
532 		p = epayload->master_desc;
533 		len -= strlen(epayload->format) + 1;
534 	} else
535 		p = epayload->format;
536 
537 	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
538 	if (ret < 0)
539 		goto out;
540 	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
541 			    sizeof(digest));
542 	if (ret) {
543 		ret = -EINVAL;
544 		dump_hmac("datablob",
545 			  epayload->format + epayload->datablob_len,
546 			  HASH_SIZE);
547 		dump_hmac("calc", digest, HASH_SIZE);
548 	}
549 out:
550 	memzero_explicit(derived_key, sizeof(derived_key));
551 	return ret;
552 }
553 
554 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
555 			       const u8 *derived_key,
556 			       unsigned int derived_keylen)
557 {
558 	struct scatterlist sg_in[1];
559 	struct scatterlist sg_out[2];
560 	struct crypto_skcipher *tfm;
561 	struct skcipher_request *req;
562 	unsigned int encrypted_datalen;
563 	u8 iv[AES_BLOCK_SIZE];
564 	u8 *pad;
565 	int ret;
566 
567 	/* Throwaway buffer to hold the unused zero padding at the end */
568 	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
569 	if (!pad)
570 		return -ENOMEM;
571 
572 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
573 	req = init_skcipher_req(derived_key, derived_keylen);
574 	ret = PTR_ERR(req);
575 	if (IS_ERR(req))
576 		goto out;
577 	dump_encrypted_data(epayload, encrypted_datalen);
578 
579 	sg_init_table(sg_in, 1);
580 	sg_init_table(sg_out, 2);
581 	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
582 	sg_set_buf(&sg_out[0], epayload->decrypted_data,
583 		   epayload->decrypted_datalen);
584 	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
585 
586 	memcpy(iv, epayload->iv, sizeof(iv));
587 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
588 	ret = crypto_skcipher_decrypt(req);
589 	tfm = crypto_skcipher_reqtfm(req);
590 	skcipher_request_free(req);
591 	crypto_free_skcipher(tfm);
592 	if (ret < 0)
593 		goto out;
594 	dump_decrypted_data(epayload);
595 out:
596 	kfree(pad);
597 	return ret;
598 }
599 
600 /* Allocate memory for decrypted key and datablob. */
601 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
602 							 const char *format,
603 							 const char *master_desc,
604 							 const char *datalen,
605 							 const char *decrypted_data)
606 {
607 	struct encrypted_key_payload *epayload = NULL;
608 	unsigned short datablob_len;
609 	unsigned short decrypted_datalen;
610 	unsigned short payload_datalen;
611 	unsigned int encrypted_datalen;
612 	unsigned int format_len;
613 	long dlen;
614 	int i;
615 	int ret;
616 
617 	ret = kstrtol(datalen, 10, &dlen);
618 	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
619 		return ERR_PTR(-EINVAL);
620 
621 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
622 	decrypted_datalen = dlen;
623 	payload_datalen = decrypted_datalen;
624 
625 	if (decrypted_data) {
626 		if (!user_decrypted_data) {
627 			pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n");
628 			return ERR_PTR(-EINVAL);
629 		}
630 		if (strlen(decrypted_data) != decrypted_datalen * 2) {
631 			pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n");
632 			return ERR_PTR(-EINVAL);
633 		}
634 		for (i = 0; i < strlen(decrypted_data); i++) {
635 			if (!isxdigit(decrypted_data[i])) {
636 				pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n");
637 				return ERR_PTR(-EINVAL);
638 			}
639 		}
640 	}
641 
642 	if (format) {
643 		if (!strcmp(format, key_format_ecryptfs)) {
644 			if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
645 				pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
646 					ECRYPTFS_MAX_KEY_BYTES);
647 				return ERR_PTR(-EINVAL);
648 			}
649 			decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
650 			payload_datalen = sizeof(struct ecryptfs_auth_tok);
651 		} else if (!strcmp(format, key_format_enc32)) {
652 			if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
653 				pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
654 						decrypted_datalen);
655 				return ERR_PTR(-EINVAL);
656 			}
657 		}
658 	}
659 
660 	encrypted_datalen = roundup(decrypted_datalen, blksize);
661 
662 	datablob_len = format_len + 1 + strlen(master_desc) + 1
663 	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
664 
665 	ret = key_payload_reserve(key, payload_datalen + datablob_len
666 				  + HASH_SIZE + 1);
667 	if (ret < 0)
668 		return ERR_PTR(ret);
669 
670 	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
671 			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
672 	if (!epayload)
673 		return ERR_PTR(-ENOMEM);
674 
675 	epayload->payload_datalen = payload_datalen;
676 	epayload->decrypted_datalen = decrypted_datalen;
677 	epayload->datablob_len = datablob_len;
678 	return epayload;
679 }
680 
681 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
682 				 const char *format, const char *hex_encoded_iv)
683 {
684 	struct key *mkey;
685 	u8 derived_key[HASH_SIZE];
686 	const u8 *master_key;
687 	u8 *hmac;
688 	const char *hex_encoded_data;
689 	unsigned int encrypted_datalen;
690 	size_t master_keylen;
691 	size_t asciilen;
692 	int ret;
693 
694 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
695 	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
696 	if (strlen(hex_encoded_iv) != asciilen)
697 		return -EINVAL;
698 
699 	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
700 	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
701 	if (ret < 0)
702 		return -EINVAL;
703 	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
704 		      encrypted_datalen);
705 	if (ret < 0)
706 		return -EINVAL;
707 
708 	hmac = epayload->format + epayload->datablob_len;
709 	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
710 		      HASH_SIZE);
711 	if (ret < 0)
712 		return -EINVAL;
713 
714 	mkey = request_master_key(epayload, &master_key, &master_keylen);
715 	if (IS_ERR(mkey))
716 		return PTR_ERR(mkey);
717 
718 	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
719 	if (ret < 0) {
720 		pr_err("encrypted_key: bad hmac (%d)\n", ret);
721 		goto out;
722 	}
723 
724 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
725 	if (ret < 0)
726 		goto out;
727 
728 	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
729 	if (ret < 0)
730 		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
731 out:
732 	up_read(&mkey->sem);
733 	key_put(mkey);
734 	memzero_explicit(derived_key, sizeof(derived_key));
735 	return ret;
736 }
737 
738 static void __ekey_init(struct encrypted_key_payload *epayload,
739 			const char *format, const char *master_desc,
740 			const char *datalen)
741 {
742 	unsigned int format_len;
743 
744 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
745 	epayload->format = epayload->payload_data + epayload->payload_datalen;
746 	epayload->master_desc = epayload->format + format_len + 1;
747 	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
748 	epayload->iv = epayload->datalen + strlen(datalen) + 1;
749 	epayload->encrypted_data = epayload->iv + ivsize + 1;
750 	epayload->decrypted_data = epayload->payload_data;
751 
752 	if (!format)
753 		memcpy(epayload->format, key_format_default, format_len);
754 	else {
755 		if (!strcmp(format, key_format_ecryptfs))
756 			epayload->decrypted_data =
757 				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
758 
759 		memcpy(epayload->format, format, format_len);
760 	}
761 
762 	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
763 	memcpy(epayload->datalen, datalen, strlen(datalen));
764 }
765 
766 /*
767  * encrypted_init - initialize an encrypted key
768  *
769  * For a new key, use either a random number or user-provided decrypted data in
770  * case it is provided. A random number is used for the iv in both cases. For
771  * an old key, decrypt the hex encoded data.
772  */
773 static int encrypted_init(struct encrypted_key_payload *epayload,
774 			  const char *key_desc, const char *format,
775 			  const char *master_desc, const char *datalen,
776 			  const char *hex_encoded_iv, const char *decrypted_data)
777 {
778 	int ret = 0;
779 
780 	if (format && !strcmp(format, key_format_ecryptfs)) {
781 		ret = valid_ecryptfs_desc(key_desc);
782 		if (ret < 0)
783 			return ret;
784 
785 		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
786 				       key_desc);
787 	}
788 
789 	__ekey_init(epayload, format, master_desc, datalen);
790 	if (hex_encoded_iv) {
791 		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
792 	} else if (decrypted_data) {
793 		get_random_bytes(epayload->iv, ivsize);
794 		ret = hex2bin(epayload->decrypted_data, decrypted_data,
795 			      epayload->decrypted_datalen);
796 	} else {
797 		get_random_bytes(epayload->iv, ivsize);
798 		get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen);
799 	}
800 	return ret;
801 }
802 
803 /*
804  * encrypted_instantiate - instantiate an encrypted key
805  *
806  * Instantiates the key:
807  * - by decrypting an existing encrypted datablob, or
808  * - by creating a new encrypted key based on a kernel random number, or
809  * - using provided decrypted data.
810  *
811  * On success, return 0. Otherwise return errno.
812  */
813 static int encrypted_instantiate(struct key *key,
814 				 struct key_preparsed_payload *prep)
815 {
816 	struct encrypted_key_payload *epayload = NULL;
817 	char *datablob = NULL;
818 	const char *format = NULL;
819 	char *master_desc = NULL;
820 	char *decrypted_datalen = NULL;
821 	char *hex_encoded_iv = NULL;
822 	char *decrypted_data = NULL;
823 	size_t datalen = prep->datalen;
824 	int ret;
825 
826 	if (datalen <= 0 || datalen > 32767 || !prep->data)
827 		return -EINVAL;
828 
829 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
830 	if (!datablob)
831 		return -ENOMEM;
832 	datablob[datalen] = 0;
833 	memcpy(datablob, prep->data, datalen);
834 	ret = datablob_parse(datablob, &format, &master_desc,
835 			     &decrypted_datalen, &hex_encoded_iv, &decrypted_data);
836 	if (ret < 0)
837 		goto out;
838 
839 	epayload = encrypted_key_alloc(key, format, master_desc,
840 				       decrypted_datalen, decrypted_data);
841 	if (IS_ERR(epayload)) {
842 		ret = PTR_ERR(epayload);
843 		goto out;
844 	}
845 	ret = encrypted_init(epayload, key->description, format, master_desc,
846 			     decrypted_datalen, hex_encoded_iv, decrypted_data);
847 	if (ret < 0) {
848 		kfree_sensitive(epayload);
849 		goto out;
850 	}
851 
852 	rcu_assign_keypointer(key, epayload);
853 out:
854 	kfree_sensitive(datablob);
855 	return ret;
856 }
857 
858 static void encrypted_rcu_free(struct rcu_head *rcu)
859 {
860 	struct encrypted_key_payload *epayload;
861 
862 	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
863 	kfree_sensitive(epayload);
864 }
865 
866 /*
867  * encrypted_update - update the master key description
868  *
869  * Change the master key description for an existing encrypted key.
870  * The next read will return an encrypted datablob using the new
871  * master key description.
872  *
873  * On success, return 0. Otherwise return errno.
874  */
875 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
876 {
877 	struct encrypted_key_payload *epayload = key->payload.data[0];
878 	struct encrypted_key_payload *new_epayload;
879 	char *buf;
880 	char *new_master_desc = NULL;
881 	const char *format = NULL;
882 	size_t datalen = prep->datalen;
883 	int ret = 0;
884 
885 	if (key_is_negative(key))
886 		return -ENOKEY;
887 	if (datalen <= 0 || datalen > 32767 || !prep->data)
888 		return -EINVAL;
889 
890 	buf = kmalloc(datalen + 1, GFP_KERNEL);
891 	if (!buf)
892 		return -ENOMEM;
893 
894 	buf[datalen] = 0;
895 	memcpy(buf, prep->data, datalen);
896 	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL);
897 	if (ret < 0)
898 		goto out;
899 
900 	ret = valid_master_desc(new_master_desc, epayload->master_desc);
901 	if (ret < 0)
902 		goto out;
903 
904 	new_epayload = encrypted_key_alloc(key, epayload->format,
905 					   new_master_desc, epayload->datalen, NULL);
906 	if (IS_ERR(new_epayload)) {
907 		ret = PTR_ERR(new_epayload);
908 		goto out;
909 	}
910 
911 	__ekey_init(new_epayload, epayload->format, new_master_desc,
912 		    epayload->datalen);
913 
914 	memcpy(new_epayload->iv, epayload->iv, ivsize);
915 	memcpy(new_epayload->payload_data, epayload->payload_data,
916 	       epayload->payload_datalen);
917 
918 	rcu_assign_keypointer(key, new_epayload);
919 	call_rcu(&epayload->rcu, encrypted_rcu_free);
920 out:
921 	kfree_sensitive(buf);
922 	return ret;
923 }
924 
925 /*
926  * encrypted_read - format and copy out the encrypted data
927  *
928  * The resulting datablob format is:
929  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
930  *
931  * On success, return to userspace the encrypted key datablob size.
932  */
933 static long encrypted_read(const struct key *key, char *buffer,
934 			   size_t buflen)
935 {
936 	struct encrypted_key_payload *epayload;
937 	struct key *mkey;
938 	const u8 *master_key;
939 	size_t master_keylen;
940 	char derived_key[HASH_SIZE];
941 	char *ascii_buf;
942 	size_t asciiblob_len;
943 	int ret;
944 
945 	epayload = dereference_key_locked(key);
946 
947 	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
948 	asciiblob_len = epayload->datablob_len + ivsize + 1
949 	    + roundup(epayload->decrypted_datalen, blksize)
950 	    + (HASH_SIZE * 2);
951 
952 	if (!buffer || buflen < asciiblob_len)
953 		return asciiblob_len;
954 
955 	mkey = request_master_key(epayload, &master_key, &master_keylen);
956 	if (IS_ERR(mkey))
957 		return PTR_ERR(mkey);
958 
959 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
960 	if (ret < 0)
961 		goto out;
962 
963 	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
964 	if (ret < 0)
965 		goto out;
966 
967 	ret = datablob_hmac_append(epayload, master_key, master_keylen);
968 	if (ret < 0)
969 		goto out;
970 
971 	ascii_buf = datablob_format(epayload, asciiblob_len);
972 	if (!ascii_buf) {
973 		ret = -ENOMEM;
974 		goto out;
975 	}
976 
977 	up_read(&mkey->sem);
978 	key_put(mkey);
979 	memzero_explicit(derived_key, sizeof(derived_key));
980 
981 	memcpy(buffer, ascii_buf, asciiblob_len);
982 	kfree_sensitive(ascii_buf);
983 
984 	return asciiblob_len;
985 out:
986 	up_read(&mkey->sem);
987 	key_put(mkey);
988 	memzero_explicit(derived_key, sizeof(derived_key));
989 	return ret;
990 }
991 
992 /*
993  * encrypted_destroy - clear and free the key's payload
994  */
995 static void encrypted_destroy(struct key *key)
996 {
997 	kfree_sensitive(key->payload.data[0]);
998 }
999 
1000 struct key_type key_type_encrypted = {
1001 	.name = "encrypted",
1002 	.instantiate = encrypted_instantiate,
1003 	.update = encrypted_update,
1004 	.destroy = encrypted_destroy,
1005 	.describe = user_describe,
1006 	.read = encrypted_read,
1007 };
1008 EXPORT_SYMBOL_GPL(key_type_encrypted);
1009 
1010 static int __init init_encrypted(void)
1011 {
1012 	int ret;
1013 
1014 	hash_tfm = crypto_alloc_shash(hash_alg, 0, 0);
1015 	if (IS_ERR(hash_tfm)) {
1016 		pr_err("encrypted_key: can't allocate %s transform: %ld\n",
1017 		       hash_alg, PTR_ERR(hash_tfm));
1018 		return PTR_ERR(hash_tfm);
1019 	}
1020 
1021 	ret = aes_get_sizes();
1022 	if (ret < 0)
1023 		goto out;
1024 	ret = register_key_type(&key_type_encrypted);
1025 	if (ret < 0)
1026 		goto out;
1027 	return 0;
1028 out:
1029 	crypto_free_shash(hash_tfm);
1030 	return ret;
1031 
1032 }
1033 
1034 static void __exit cleanup_encrypted(void)
1035 {
1036 	crypto_free_shash(hash_tfm);
1037 	unregister_key_type(&key_type_encrypted);
1038 }
1039 
1040 late_initcall(init_encrypted);
1041 module_exit(cleanup_encrypted);
1042 
1043 MODULE_DESCRIPTION("Encrypted key type");
1044 MODULE_LICENSE("GPL");
1045