xref: /linux/security/keys/encrypted-keys/encrypted.c (revision 7181e5590e5ba898804aef3ee6be7f27606e6f8b)
1 /*
2  * Copyright (C) 2010 IBM Corporation
3  * Copyright (C) 2010 Politecnico di Torino, Italy
4  *                    TORSEC group -- http://security.polito.it
5  *
6  * Authors:
7  * Mimi Zohar <zohar@us.ibm.com>
8  * Roberto Sassu <roberto.sassu@polito.it>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, version 2 of the License.
13  *
14  * See Documentation/security/keys-trusted-encrypted.txt
15  */
16 
17 #include <linux/uaccess.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/parser.h>
22 #include <linux/string.h>
23 #include <linux/err.h>
24 #include <keys/user-type.h>
25 #include <keys/trusted-type.h>
26 #include <keys/encrypted-type.h>
27 #include <linux/key-type.h>
28 #include <linux/random.h>
29 #include <linux/rcupdate.h>
30 #include <linux/scatterlist.h>
31 #include <linux/ctype.h>
32 #include <crypto/aes.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha.h>
35 #include <crypto/skcipher.h>
36 
37 #include "encrypted.h"
38 #include "ecryptfs_format.h"
39 
40 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
41 static const char KEY_USER_PREFIX[] = "user:";
42 static const char hash_alg[] = "sha256";
43 static const char hmac_alg[] = "hmac(sha256)";
44 static const char blkcipher_alg[] = "cbc(aes)";
45 static const char key_format_default[] = "default";
46 static const char key_format_ecryptfs[] = "ecryptfs";
47 static unsigned int ivsize;
48 static int blksize;
49 
50 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
51 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
52 #define KEY_ECRYPTFS_DESC_LEN 16
53 #define HASH_SIZE SHA256_DIGEST_SIZE
54 #define MAX_DATA_SIZE 4096
55 #define MIN_DATA_SIZE  20
56 
57 struct sdesc {
58 	struct shash_desc shash;
59 	char ctx[];
60 };
61 
62 static struct crypto_shash *hashalg;
63 static struct crypto_shash *hmacalg;
64 
65 enum {
66 	Opt_err = -1, Opt_new, Opt_load, Opt_update
67 };
68 
69 enum {
70 	Opt_error = -1, Opt_default, Opt_ecryptfs
71 };
72 
73 static const match_table_t key_format_tokens = {
74 	{Opt_default, "default"},
75 	{Opt_ecryptfs, "ecryptfs"},
76 	{Opt_error, NULL}
77 };
78 
79 static const match_table_t key_tokens = {
80 	{Opt_new, "new"},
81 	{Opt_load, "load"},
82 	{Opt_update, "update"},
83 	{Opt_err, NULL}
84 };
85 
86 static int aes_get_sizes(void)
87 {
88 	struct crypto_skcipher *tfm;
89 
90 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91 	if (IS_ERR(tfm)) {
92 		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93 		       PTR_ERR(tfm));
94 		return PTR_ERR(tfm);
95 	}
96 	ivsize = crypto_skcipher_ivsize(tfm);
97 	blksize = crypto_skcipher_blocksize(tfm);
98 	crypto_free_skcipher(tfm);
99 	return 0;
100 }
101 
102 /*
103  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
104  *
105  * The description of a encrypted key with format 'ecryptfs' must contain
106  * exactly 16 hexadecimal characters.
107  *
108  */
109 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
110 {
111 	int i;
112 
113 	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114 		pr_err("encrypted_key: key description must be %d hexadecimal "
115 		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
116 		return -EINVAL;
117 	}
118 
119 	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120 		if (!isxdigit(ecryptfs_desc[i])) {
121 			pr_err("encrypted_key: key description must contain "
122 			       "only hexadecimal characters\n");
123 			return -EINVAL;
124 		}
125 	}
126 
127 	return 0;
128 }
129 
130 /*
131  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
132  *
133  * key-type:= "trusted:" | "user:"
134  * desc:= master-key description
135  *
136  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
137  * only the master key description is permitted to change, not the key-type.
138  * The key-type remains constant.
139  *
140  * On success returns 0, otherwise -EINVAL.
141  */
142 static int valid_master_desc(const char *new_desc, const char *orig_desc)
143 {
144 	if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
145 		if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
146 			goto out;
147 		if (orig_desc)
148 			if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
149 				goto out;
150 	} else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
151 		if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
152 			goto out;
153 		if (orig_desc)
154 			if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
155 				goto out;
156 	} else
157 		goto out;
158 	return 0;
159 out:
160 	return -EINVAL;
161 }
162 
163 /*
164  * datablob_parse - parse the keyctl data
165  *
166  * datablob format:
167  * new [<format>] <master-key name> <decrypted data length>
168  * load [<format>] <master-key name> <decrypted data length>
169  *     <encrypted iv + data>
170  * update <new-master-key name>
171  *
172  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
173  * which is null terminated.
174  *
175  * On success returns 0, otherwise -EINVAL.
176  */
177 static int datablob_parse(char *datablob, const char **format,
178 			  char **master_desc, char **decrypted_datalen,
179 			  char **hex_encoded_iv)
180 {
181 	substring_t args[MAX_OPT_ARGS];
182 	int ret = -EINVAL;
183 	int key_cmd;
184 	int key_format;
185 	char *p, *keyword;
186 
187 	keyword = strsep(&datablob, " \t");
188 	if (!keyword) {
189 		pr_info("encrypted_key: insufficient parameters specified\n");
190 		return ret;
191 	}
192 	key_cmd = match_token(keyword, key_tokens, args);
193 
194 	/* Get optional format: default | ecryptfs */
195 	p = strsep(&datablob, " \t");
196 	if (!p) {
197 		pr_err("encrypted_key: insufficient parameters specified\n");
198 		return ret;
199 	}
200 
201 	key_format = match_token(p, key_format_tokens, args);
202 	switch (key_format) {
203 	case Opt_ecryptfs:
204 	case Opt_default:
205 		*format = p;
206 		*master_desc = strsep(&datablob, " \t");
207 		break;
208 	case Opt_error:
209 		*master_desc = p;
210 		break;
211 	}
212 
213 	if (!*master_desc) {
214 		pr_info("encrypted_key: master key parameter is missing\n");
215 		goto out;
216 	}
217 
218 	if (valid_master_desc(*master_desc, NULL) < 0) {
219 		pr_info("encrypted_key: master key parameter \'%s\' "
220 			"is invalid\n", *master_desc);
221 		goto out;
222 	}
223 
224 	if (decrypted_datalen) {
225 		*decrypted_datalen = strsep(&datablob, " \t");
226 		if (!*decrypted_datalen) {
227 			pr_info("encrypted_key: keylen parameter is missing\n");
228 			goto out;
229 		}
230 	}
231 
232 	switch (key_cmd) {
233 	case Opt_new:
234 		if (!decrypted_datalen) {
235 			pr_info("encrypted_key: keyword \'%s\' not allowed "
236 				"when called from .update method\n", keyword);
237 			break;
238 		}
239 		ret = 0;
240 		break;
241 	case Opt_load:
242 		if (!decrypted_datalen) {
243 			pr_info("encrypted_key: keyword \'%s\' not allowed "
244 				"when called from .update method\n", keyword);
245 			break;
246 		}
247 		*hex_encoded_iv = strsep(&datablob, " \t");
248 		if (!*hex_encoded_iv) {
249 			pr_info("encrypted_key: hex blob is missing\n");
250 			break;
251 		}
252 		ret = 0;
253 		break;
254 	case Opt_update:
255 		if (decrypted_datalen) {
256 			pr_info("encrypted_key: keyword \'%s\' not allowed "
257 				"when called from .instantiate method\n",
258 				keyword);
259 			break;
260 		}
261 		ret = 0;
262 		break;
263 	case Opt_err:
264 		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
265 			keyword);
266 		break;
267 	}
268 out:
269 	return ret;
270 }
271 
272 /*
273  * datablob_format - format as an ascii string, before copying to userspace
274  */
275 static char *datablob_format(struct encrypted_key_payload *epayload,
276 			     size_t asciiblob_len)
277 {
278 	char *ascii_buf, *bufp;
279 	u8 *iv = epayload->iv;
280 	int len;
281 	int i;
282 
283 	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
284 	if (!ascii_buf)
285 		goto out;
286 
287 	ascii_buf[asciiblob_len] = '\0';
288 
289 	/* copy datablob master_desc and datalen strings */
290 	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
291 		      epayload->master_desc, epayload->datalen);
292 
293 	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
294 	bufp = &ascii_buf[len];
295 	for (i = 0; i < (asciiblob_len - len) / 2; i++)
296 		bufp = hex_byte_pack(bufp, iv[i]);
297 out:
298 	return ascii_buf;
299 }
300 
301 /*
302  * request_user_key - request the user key
303  *
304  * Use a user provided key to encrypt/decrypt an encrypted-key.
305  */
306 static struct key *request_user_key(const char *master_desc, const u8 **master_key,
307 				    size_t *master_keylen)
308 {
309 	const struct user_key_payload *upayload;
310 	struct key *ukey;
311 
312 	ukey = request_key(&key_type_user, master_desc, NULL);
313 	if (IS_ERR(ukey))
314 		goto error;
315 
316 	down_read(&ukey->sem);
317 	upayload = user_key_payload(ukey);
318 	*master_key = upayload->data;
319 	*master_keylen = upayload->datalen;
320 error:
321 	return ukey;
322 }
323 
324 static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
325 {
326 	struct sdesc *sdesc;
327 	int size;
328 
329 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
330 	sdesc = kmalloc(size, GFP_KERNEL);
331 	if (!sdesc)
332 		return ERR_PTR(-ENOMEM);
333 	sdesc->shash.tfm = alg;
334 	sdesc->shash.flags = 0x0;
335 	return sdesc;
336 }
337 
338 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
339 		     const u8 *buf, unsigned int buflen)
340 {
341 	struct sdesc *sdesc;
342 	int ret;
343 
344 	sdesc = alloc_sdesc(hmacalg);
345 	if (IS_ERR(sdesc)) {
346 		pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
347 		return PTR_ERR(sdesc);
348 	}
349 
350 	ret = crypto_shash_setkey(hmacalg, key, keylen);
351 	if (!ret)
352 		ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
353 	kfree(sdesc);
354 	return ret;
355 }
356 
357 static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
358 {
359 	struct sdesc *sdesc;
360 	int ret;
361 
362 	sdesc = alloc_sdesc(hashalg);
363 	if (IS_ERR(sdesc)) {
364 		pr_info("encrypted_key: can't alloc %s\n", hash_alg);
365 		return PTR_ERR(sdesc);
366 	}
367 
368 	ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
369 	kfree(sdesc);
370 	return ret;
371 }
372 
373 enum derived_key_type { ENC_KEY, AUTH_KEY };
374 
375 /* Derive authentication/encryption key from trusted key */
376 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
377 			   const u8 *master_key, size_t master_keylen)
378 {
379 	u8 *derived_buf;
380 	unsigned int derived_buf_len;
381 	int ret;
382 
383 	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
384 	if (derived_buf_len < HASH_SIZE)
385 		derived_buf_len = HASH_SIZE;
386 
387 	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
388 	if (!derived_buf) {
389 		pr_err("encrypted_key: out of memory\n");
390 		return -ENOMEM;
391 	}
392 	if (key_type)
393 		strcpy(derived_buf, "AUTH_KEY");
394 	else
395 		strcpy(derived_buf, "ENC_KEY");
396 
397 	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
398 	       master_keylen);
399 	ret = calc_hash(derived_key, derived_buf, derived_buf_len);
400 	kfree(derived_buf);
401 	return ret;
402 }
403 
404 static struct skcipher_request *init_skcipher_req(const u8 *key,
405 						  unsigned int key_len)
406 {
407 	struct skcipher_request *req;
408 	struct crypto_skcipher *tfm;
409 	int ret;
410 
411 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
412 	if (IS_ERR(tfm)) {
413 		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
414 		       blkcipher_alg, PTR_ERR(tfm));
415 		return ERR_CAST(tfm);
416 	}
417 
418 	ret = crypto_skcipher_setkey(tfm, key, key_len);
419 	if (ret < 0) {
420 		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
421 		crypto_free_skcipher(tfm);
422 		return ERR_PTR(ret);
423 	}
424 
425 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
426 	if (!req) {
427 		pr_err("encrypted_key: failed to allocate request for %s\n",
428 		       blkcipher_alg);
429 		crypto_free_skcipher(tfm);
430 		return ERR_PTR(-ENOMEM);
431 	}
432 
433 	skcipher_request_set_callback(req, 0, NULL, NULL);
434 	return req;
435 }
436 
437 static struct key *request_master_key(struct encrypted_key_payload *epayload,
438 				      const u8 **master_key, size_t *master_keylen)
439 {
440 	struct key *mkey = NULL;
441 
442 	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
443 		     KEY_TRUSTED_PREFIX_LEN)) {
444 		mkey = request_trusted_key(epayload->master_desc +
445 					   KEY_TRUSTED_PREFIX_LEN,
446 					   master_key, master_keylen);
447 	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
448 			    KEY_USER_PREFIX_LEN)) {
449 		mkey = request_user_key(epayload->master_desc +
450 					KEY_USER_PREFIX_LEN,
451 					master_key, master_keylen);
452 	} else
453 		goto out;
454 
455 	if (IS_ERR(mkey)) {
456 		int ret = PTR_ERR(mkey);
457 
458 		if (ret == -ENOTSUPP)
459 			pr_info("encrypted_key: key %s not supported",
460 				epayload->master_desc);
461 		else
462 			pr_info("encrypted_key: key %s not found",
463 				epayload->master_desc);
464 		goto out;
465 	}
466 
467 	dump_master_key(*master_key, *master_keylen);
468 out:
469 	return mkey;
470 }
471 
472 /* Before returning data to userspace, encrypt decrypted data. */
473 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
474 			       const u8 *derived_key,
475 			       unsigned int derived_keylen)
476 {
477 	struct scatterlist sg_in[2];
478 	struct scatterlist sg_out[1];
479 	struct crypto_skcipher *tfm;
480 	struct skcipher_request *req;
481 	unsigned int encrypted_datalen;
482 	u8 iv[AES_BLOCK_SIZE];
483 	unsigned int padlen;
484 	char pad[16];
485 	int ret;
486 
487 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
488 	padlen = encrypted_datalen - epayload->decrypted_datalen;
489 
490 	req = init_skcipher_req(derived_key, derived_keylen);
491 	ret = PTR_ERR(req);
492 	if (IS_ERR(req))
493 		goto out;
494 	dump_decrypted_data(epayload);
495 
496 	memset(pad, 0, sizeof pad);
497 	sg_init_table(sg_in, 2);
498 	sg_set_buf(&sg_in[0], epayload->decrypted_data,
499 		   epayload->decrypted_datalen);
500 	sg_set_buf(&sg_in[1], pad, padlen);
501 
502 	sg_init_table(sg_out, 1);
503 	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
504 
505 	memcpy(iv, epayload->iv, sizeof(iv));
506 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
507 	ret = crypto_skcipher_encrypt(req);
508 	tfm = crypto_skcipher_reqtfm(req);
509 	skcipher_request_free(req);
510 	crypto_free_skcipher(tfm);
511 	if (ret < 0)
512 		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
513 	else
514 		dump_encrypted_data(epayload, encrypted_datalen);
515 out:
516 	return ret;
517 }
518 
519 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
520 				const u8 *master_key, size_t master_keylen)
521 {
522 	u8 derived_key[HASH_SIZE];
523 	u8 *digest;
524 	int ret;
525 
526 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
527 	if (ret < 0)
528 		goto out;
529 
530 	digest = epayload->format + epayload->datablob_len;
531 	ret = calc_hmac(digest, derived_key, sizeof derived_key,
532 			epayload->format, epayload->datablob_len);
533 	if (!ret)
534 		dump_hmac(NULL, digest, HASH_SIZE);
535 out:
536 	return ret;
537 }
538 
539 /* verify HMAC before decrypting encrypted key */
540 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
541 				const u8 *format, const u8 *master_key,
542 				size_t master_keylen)
543 {
544 	u8 derived_key[HASH_SIZE];
545 	u8 digest[HASH_SIZE];
546 	int ret;
547 	char *p;
548 	unsigned short len;
549 
550 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
551 	if (ret < 0)
552 		goto out;
553 
554 	len = epayload->datablob_len;
555 	if (!format) {
556 		p = epayload->master_desc;
557 		len -= strlen(epayload->format) + 1;
558 	} else
559 		p = epayload->format;
560 
561 	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
562 	if (ret < 0)
563 		goto out;
564 	ret = memcmp(digest, epayload->format + epayload->datablob_len,
565 		     sizeof digest);
566 	if (ret) {
567 		ret = -EINVAL;
568 		dump_hmac("datablob",
569 			  epayload->format + epayload->datablob_len,
570 			  HASH_SIZE);
571 		dump_hmac("calc", digest, HASH_SIZE);
572 	}
573 out:
574 	return ret;
575 }
576 
577 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
578 			       const u8 *derived_key,
579 			       unsigned int derived_keylen)
580 {
581 	struct scatterlist sg_in[1];
582 	struct scatterlist sg_out[2];
583 	struct crypto_skcipher *tfm;
584 	struct skcipher_request *req;
585 	unsigned int encrypted_datalen;
586 	u8 iv[AES_BLOCK_SIZE];
587 	char pad[16];
588 	int ret;
589 
590 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
591 	req = init_skcipher_req(derived_key, derived_keylen);
592 	ret = PTR_ERR(req);
593 	if (IS_ERR(req))
594 		goto out;
595 	dump_encrypted_data(epayload, encrypted_datalen);
596 
597 	memset(pad, 0, sizeof pad);
598 	sg_init_table(sg_in, 1);
599 	sg_init_table(sg_out, 2);
600 	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
601 	sg_set_buf(&sg_out[0], epayload->decrypted_data,
602 		   epayload->decrypted_datalen);
603 	sg_set_buf(&sg_out[1], pad, sizeof pad);
604 
605 	memcpy(iv, epayload->iv, sizeof(iv));
606 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
607 	ret = crypto_skcipher_decrypt(req);
608 	tfm = crypto_skcipher_reqtfm(req);
609 	skcipher_request_free(req);
610 	crypto_free_skcipher(tfm);
611 	if (ret < 0)
612 		goto out;
613 	dump_decrypted_data(epayload);
614 out:
615 	return ret;
616 }
617 
618 /* Allocate memory for decrypted key and datablob. */
619 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
620 							 const char *format,
621 							 const char *master_desc,
622 							 const char *datalen)
623 {
624 	struct encrypted_key_payload *epayload = NULL;
625 	unsigned short datablob_len;
626 	unsigned short decrypted_datalen;
627 	unsigned short payload_datalen;
628 	unsigned int encrypted_datalen;
629 	unsigned int format_len;
630 	long dlen;
631 	int ret;
632 
633 	ret = kstrtol(datalen, 10, &dlen);
634 	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
635 		return ERR_PTR(-EINVAL);
636 
637 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
638 	decrypted_datalen = dlen;
639 	payload_datalen = decrypted_datalen;
640 	if (format && !strcmp(format, key_format_ecryptfs)) {
641 		if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
642 			pr_err("encrypted_key: keylen for the ecryptfs format "
643 			       "must be equal to %d bytes\n",
644 			       ECRYPTFS_MAX_KEY_BYTES);
645 			return ERR_PTR(-EINVAL);
646 		}
647 		decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
648 		payload_datalen = sizeof(struct ecryptfs_auth_tok);
649 	}
650 
651 	encrypted_datalen = roundup(decrypted_datalen, blksize);
652 
653 	datablob_len = format_len + 1 + strlen(master_desc) + 1
654 	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
655 
656 	ret = key_payload_reserve(key, payload_datalen + datablob_len
657 				  + HASH_SIZE + 1);
658 	if (ret < 0)
659 		return ERR_PTR(ret);
660 
661 	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
662 			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
663 	if (!epayload)
664 		return ERR_PTR(-ENOMEM);
665 
666 	epayload->payload_datalen = payload_datalen;
667 	epayload->decrypted_datalen = decrypted_datalen;
668 	epayload->datablob_len = datablob_len;
669 	return epayload;
670 }
671 
672 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
673 				 const char *format, const char *hex_encoded_iv)
674 {
675 	struct key *mkey;
676 	u8 derived_key[HASH_SIZE];
677 	const u8 *master_key;
678 	u8 *hmac;
679 	const char *hex_encoded_data;
680 	unsigned int encrypted_datalen;
681 	size_t master_keylen;
682 	size_t asciilen;
683 	int ret;
684 
685 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
686 	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
687 	if (strlen(hex_encoded_iv) != asciilen)
688 		return -EINVAL;
689 
690 	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
691 	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
692 	if (ret < 0)
693 		return -EINVAL;
694 	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
695 		      encrypted_datalen);
696 	if (ret < 0)
697 		return -EINVAL;
698 
699 	hmac = epayload->format + epayload->datablob_len;
700 	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
701 		      HASH_SIZE);
702 	if (ret < 0)
703 		return -EINVAL;
704 
705 	mkey = request_master_key(epayload, &master_key, &master_keylen);
706 	if (IS_ERR(mkey))
707 		return PTR_ERR(mkey);
708 
709 	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
710 	if (ret < 0) {
711 		pr_err("encrypted_key: bad hmac (%d)\n", ret);
712 		goto out;
713 	}
714 
715 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
716 	if (ret < 0)
717 		goto out;
718 
719 	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
720 	if (ret < 0)
721 		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
722 out:
723 	up_read(&mkey->sem);
724 	key_put(mkey);
725 	return ret;
726 }
727 
728 static void __ekey_init(struct encrypted_key_payload *epayload,
729 			const char *format, const char *master_desc,
730 			const char *datalen)
731 {
732 	unsigned int format_len;
733 
734 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
735 	epayload->format = epayload->payload_data + epayload->payload_datalen;
736 	epayload->master_desc = epayload->format + format_len + 1;
737 	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
738 	epayload->iv = epayload->datalen + strlen(datalen) + 1;
739 	epayload->encrypted_data = epayload->iv + ivsize + 1;
740 	epayload->decrypted_data = epayload->payload_data;
741 
742 	if (!format)
743 		memcpy(epayload->format, key_format_default, format_len);
744 	else {
745 		if (!strcmp(format, key_format_ecryptfs))
746 			epayload->decrypted_data =
747 				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
748 
749 		memcpy(epayload->format, format, format_len);
750 	}
751 
752 	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
753 	memcpy(epayload->datalen, datalen, strlen(datalen));
754 }
755 
756 /*
757  * encrypted_init - initialize an encrypted key
758  *
759  * For a new key, use a random number for both the iv and data
760  * itself.  For an old key, decrypt the hex encoded data.
761  */
762 static int encrypted_init(struct encrypted_key_payload *epayload,
763 			  const char *key_desc, const char *format,
764 			  const char *master_desc, const char *datalen,
765 			  const char *hex_encoded_iv)
766 {
767 	int ret = 0;
768 
769 	if (format && !strcmp(format, key_format_ecryptfs)) {
770 		ret = valid_ecryptfs_desc(key_desc);
771 		if (ret < 0)
772 			return ret;
773 
774 		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
775 				       key_desc);
776 	}
777 
778 	__ekey_init(epayload, format, master_desc, datalen);
779 	if (!hex_encoded_iv) {
780 		get_random_bytes(epayload->iv, ivsize);
781 
782 		get_random_bytes(epayload->decrypted_data,
783 				 epayload->decrypted_datalen);
784 	} else
785 		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
786 	return ret;
787 }
788 
789 /*
790  * encrypted_instantiate - instantiate an encrypted key
791  *
792  * Decrypt an existing encrypted datablob or create a new encrypted key
793  * based on a kernel random number.
794  *
795  * On success, return 0. Otherwise return errno.
796  */
797 static int encrypted_instantiate(struct key *key,
798 				 struct key_preparsed_payload *prep)
799 {
800 	struct encrypted_key_payload *epayload = NULL;
801 	char *datablob = NULL;
802 	const char *format = NULL;
803 	char *master_desc = NULL;
804 	char *decrypted_datalen = NULL;
805 	char *hex_encoded_iv = NULL;
806 	size_t datalen = prep->datalen;
807 	int ret;
808 
809 	if (datalen <= 0 || datalen > 32767 || !prep->data)
810 		return -EINVAL;
811 
812 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
813 	if (!datablob)
814 		return -ENOMEM;
815 	datablob[datalen] = 0;
816 	memcpy(datablob, prep->data, datalen);
817 	ret = datablob_parse(datablob, &format, &master_desc,
818 			     &decrypted_datalen, &hex_encoded_iv);
819 	if (ret < 0)
820 		goto out;
821 
822 	epayload = encrypted_key_alloc(key, format, master_desc,
823 				       decrypted_datalen);
824 	if (IS_ERR(epayload)) {
825 		ret = PTR_ERR(epayload);
826 		goto out;
827 	}
828 	ret = encrypted_init(epayload, key->description, format, master_desc,
829 			     decrypted_datalen, hex_encoded_iv);
830 	if (ret < 0) {
831 		kfree(epayload);
832 		goto out;
833 	}
834 
835 	rcu_assign_keypointer(key, epayload);
836 out:
837 	kfree(datablob);
838 	return ret;
839 }
840 
841 static void encrypted_rcu_free(struct rcu_head *rcu)
842 {
843 	struct encrypted_key_payload *epayload;
844 
845 	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
846 	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
847 	kfree(epayload);
848 }
849 
850 /*
851  * encrypted_update - update the master key description
852  *
853  * Change the master key description for an existing encrypted key.
854  * The next read will return an encrypted datablob using the new
855  * master key description.
856  *
857  * On success, return 0. Otherwise return errno.
858  */
859 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
860 {
861 	struct encrypted_key_payload *epayload = key->payload.data[0];
862 	struct encrypted_key_payload *new_epayload;
863 	char *buf;
864 	char *new_master_desc = NULL;
865 	const char *format = NULL;
866 	size_t datalen = prep->datalen;
867 	int ret = 0;
868 
869 	if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
870 		return -ENOKEY;
871 	if (datalen <= 0 || datalen > 32767 || !prep->data)
872 		return -EINVAL;
873 
874 	buf = kmalloc(datalen + 1, GFP_KERNEL);
875 	if (!buf)
876 		return -ENOMEM;
877 
878 	buf[datalen] = 0;
879 	memcpy(buf, prep->data, datalen);
880 	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
881 	if (ret < 0)
882 		goto out;
883 
884 	ret = valid_master_desc(new_master_desc, epayload->master_desc);
885 	if (ret < 0)
886 		goto out;
887 
888 	new_epayload = encrypted_key_alloc(key, epayload->format,
889 					   new_master_desc, epayload->datalen);
890 	if (IS_ERR(new_epayload)) {
891 		ret = PTR_ERR(new_epayload);
892 		goto out;
893 	}
894 
895 	__ekey_init(new_epayload, epayload->format, new_master_desc,
896 		    epayload->datalen);
897 
898 	memcpy(new_epayload->iv, epayload->iv, ivsize);
899 	memcpy(new_epayload->payload_data, epayload->payload_data,
900 	       epayload->payload_datalen);
901 
902 	rcu_assign_keypointer(key, new_epayload);
903 	call_rcu(&epayload->rcu, encrypted_rcu_free);
904 out:
905 	kfree(buf);
906 	return ret;
907 }
908 
909 /*
910  * encrypted_read - format and copy the encrypted data to userspace
911  *
912  * The resulting datablob format is:
913  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
914  *
915  * On success, return to userspace the encrypted key datablob size.
916  */
917 static long encrypted_read(const struct key *key, char __user *buffer,
918 			   size_t buflen)
919 {
920 	struct encrypted_key_payload *epayload;
921 	struct key *mkey;
922 	const u8 *master_key;
923 	size_t master_keylen;
924 	char derived_key[HASH_SIZE];
925 	char *ascii_buf;
926 	size_t asciiblob_len;
927 	int ret;
928 
929 	epayload = rcu_dereference_key(key);
930 
931 	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
932 	asciiblob_len = epayload->datablob_len + ivsize + 1
933 	    + roundup(epayload->decrypted_datalen, blksize)
934 	    + (HASH_SIZE * 2);
935 
936 	if (!buffer || buflen < asciiblob_len)
937 		return asciiblob_len;
938 
939 	mkey = request_master_key(epayload, &master_key, &master_keylen);
940 	if (IS_ERR(mkey))
941 		return PTR_ERR(mkey);
942 
943 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
944 	if (ret < 0)
945 		goto out;
946 
947 	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
948 	if (ret < 0)
949 		goto out;
950 
951 	ret = datablob_hmac_append(epayload, master_key, master_keylen);
952 	if (ret < 0)
953 		goto out;
954 
955 	ascii_buf = datablob_format(epayload, asciiblob_len);
956 	if (!ascii_buf) {
957 		ret = -ENOMEM;
958 		goto out;
959 	}
960 
961 	up_read(&mkey->sem);
962 	key_put(mkey);
963 
964 	if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
965 		ret = -EFAULT;
966 	kfree(ascii_buf);
967 
968 	return asciiblob_len;
969 out:
970 	up_read(&mkey->sem);
971 	key_put(mkey);
972 	return ret;
973 }
974 
975 /*
976  * encrypted_destroy - before freeing the key, clear the decrypted data
977  *
978  * Before freeing the key, clear the memory containing the decrypted
979  * key data.
980  */
981 static void encrypted_destroy(struct key *key)
982 {
983 	struct encrypted_key_payload *epayload = key->payload.data[0];
984 
985 	if (!epayload)
986 		return;
987 
988 	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
989 	kfree(key->payload.data[0]);
990 }
991 
992 struct key_type key_type_encrypted = {
993 	.name = "encrypted",
994 	.instantiate = encrypted_instantiate,
995 	.update = encrypted_update,
996 	.destroy = encrypted_destroy,
997 	.describe = user_describe,
998 	.read = encrypted_read,
999 };
1000 EXPORT_SYMBOL_GPL(key_type_encrypted);
1001 
1002 static void encrypted_shash_release(void)
1003 {
1004 	if (hashalg)
1005 		crypto_free_shash(hashalg);
1006 	if (hmacalg)
1007 		crypto_free_shash(hmacalg);
1008 }
1009 
1010 static int __init encrypted_shash_alloc(void)
1011 {
1012 	int ret;
1013 
1014 	hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1015 	if (IS_ERR(hmacalg)) {
1016 		pr_info("encrypted_key: could not allocate crypto %s\n",
1017 			hmac_alg);
1018 		return PTR_ERR(hmacalg);
1019 	}
1020 
1021 	hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1022 	if (IS_ERR(hashalg)) {
1023 		pr_info("encrypted_key: could not allocate crypto %s\n",
1024 			hash_alg);
1025 		ret = PTR_ERR(hashalg);
1026 		goto hashalg_fail;
1027 	}
1028 
1029 	return 0;
1030 
1031 hashalg_fail:
1032 	crypto_free_shash(hmacalg);
1033 	return ret;
1034 }
1035 
1036 static int __init init_encrypted(void)
1037 {
1038 	int ret;
1039 
1040 	ret = encrypted_shash_alloc();
1041 	if (ret < 0)
1042 		return ret;
1043 	ret = aes_get_sizes();
1044 	if (ret < 0)
1045 		goto out;
1046 	ret = register_key_type(&key_type_encrypted);
1047 	if (ret < 0)
1048 		goto out;
1049 	return 0;
1050 out:
1051 	encrypted_shash_release();
1052 	return ret;
1053 
1054 }
1055 
1056 static void __exit cleanup_encrypted(void)
1057 {
1058 	encrypted_shash_release();
1059 	unregister_key_type(&key_type_encrypted);
1060 }
1061 
1062 late_initcall(init_encrypted);
1063 module_exit(cleanup_encrypted);
1064 
1065 MODULE_LICENSE("GPL");
1066