xref: /linux/security/integrity/ima/ima_crypto.c (revision e21f9e2e862e9eb3dd64eaddb6256b3e5098660f)
1 /*
2  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
3  *
4  * Authors:
5  * Mimi Zohar <zohar@us.ibm.com>
6  * Kylene Hall <kjhall@us.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, version 2 of the License.
11  *
12  * File: ima_crypto.c
13  *	Calculates md5/sha1 file hash, template hash, boot-aggreate hash
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/moduleparam.h>
20 #include <linux/ratelimit.h>
21 #include <linux/file.h>
22 #include <linux/crypto.h>
23 #include <linux/scatterlist.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <crypto/hash.h>
27 
28 #include "ima.h"
29 
30 /* minimum file size for ahash use */
31 static unsigned long ima_ahash_minsize;
32 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
33 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
34 
35 /* default is 0 - 1 page. */
36 static int ima_maxorder;
37 static unsigned int ima_bufsize = PAGE_SIZE;
38 
39 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
40 {
41 	unsigned long long size;
42 	int order;
43 
44 	size = memparse(val, NULL);
45 	order = get_order(size);
46 	if (order >= MAX_ORDER)
47 		return -EINVAL;
48 	ima_maxorder = order;
49 	ima_bufsize = PAGE_SIZE << order;
50 	return 0;
51 }
52 
53 static const struct kernel_param_ops param_ops_bufsize = {
54 	.set = param_set_bufsize,
55 	.get = param_get_uint,
56 };
57 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
58 
59 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
60 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
61 
62 static struct crypto_shash *ima_shash_tfm;
63 static struct crypto_ahash *ima_ahash_tfm;
64 
65 int __init ima_init_crypto(void)
66 {
67 	long rc;
68 
69 	ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
70 	if (IS_ERR(ima_shash_tfm)) {
71 		rc = PTR_ERR(ima_shash_tfm);
72 		pr_err("Can not allocate %s (reason: %ld)\n",
73 		       hash_algo_name[ima_hash_algo], rc);
74 		return rc;
75 	}
76 	pr_info("Allocated hash algorithm: %s\n",
77 		hash_algo_name[ima_hash_algo]);
78 	return 0;
79 }
80 
81 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
82 {
83 	struct crypto_shash *tfm = ima_shash_tfm;
84 	int rc;
85 
86 	if (algo < 0 || algo >= HASH_ALGO__LAST)
87 		algo = ima_hash_algo;
88 
89 	if (algo != ima_hash_algo) {
90 		tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
91 		if (IS_ERR(tfm)) {
92 			rc = PTR_ERR(tfm);
93 			pr_err("Can not allocate %s (reason: %d)\n",
94 			       hash_algo_name[algo], rc);
95 		}
96 	}
97 	return tfm;
98 }
99 
100 static void ima_free_tfm(struct crypto_shash *tfm)
101 {
102 	if (tfm != ima_shash_tfm)
103 		crypto_free_shash(tfm);
104 }
105 
106 /**
107  * ima_alloc_pages() - Allocate contiguous pages.
108  * @max_size:       Maximum amount of memory to allocate.
109  * @allocated_size: Returned size of actual allocation.
110  * @last_warn:      Should the min_size allocation warn or not.
111  *
112  * Tries to do opportunistic allocation for memory first trying to allocate
113  * max_size amount of memory and then splitting that until zero order is
114  * reached. Allocation is tried without generating allocation warnings unless
115  * last_warn is set. Last_warn set affects only last allocation of zero order.
116  *
117  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
118  *
119  * Return pointer to allocated memory, or NULL on failure.
120  */
121 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
122 			     int last_warn)
123 {
124 	void *ptr;
125 	int order = ima_maxorder;
126 	gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
127 
128 	if (order)
129 		order = min(get_order(max_size), order);
130 
131 	for (; order; order--) {
132 		ptr = (void *)__get_free_pages(gfp_mask, order);
133 		if (ptr) {
134 			*allocated_size = PAGE_SIZE << order;
135 			return ptr;
136 		}
137 	}
138 
139 	/* order is zero - one page */
140 
141 	gfp_mask = GFP_KERNEL;
142 
143 	if (!last_warn)
144 		gfp_mask |= __GFP_NOWARN;
145 
146 	ptr = (void *)__get_free_pages(gfp_mask, 0);
147 	if (ptr) {
148 		*allocated_size = PAGE_SIZE;
149 		return ptr;
150 	}
151 
152 	*allocated_size = 0;
153 	return NULL;
154 }
155 
156 /**
157  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
158  * @ptr:  Pointer to allocated pages.
159  * @size: Size of allocated buffer.
160  */
161 static void ima_free_pages(void *ptr, size_t size)
162 {
163 	if (!ptr)
164 		return;
165 	free_pages((unsigned long)ptr, get_order(size));
166 }
167 
168 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
169 {
170 	struct crypto_ahash *tfm = ima_ahash_tfm;
171 	int rc;
172 
173 	if (algo < 0 || algo >= HASH_ALGO__LAST)
174 		algo = ima_hash_algo;
175 
176 	if (algo != ima_hash_algo || !tfm) {
177 		tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
178 		if (!IS_ERR(tfm)) {
179 			if (algo == ima_hash_algo)
180 				ima_ahash_tfm = tfm;
181 		} else {
182 			rc = PTR_ERR(tfm);
183 			pr_err("Can not allocate %s (reason: %d)\n",
184 			       hash_algo_name[algo], rc);
185 		}
186 	}
187 	return tfm;
188 }
189 
190 static void ima_free_atfm(struct crypto_ahash *tfm)
191 {
192 	if (tfm != ima_ahash_tfm)
193 		crypto_free_ahash(tfm);
194 }
195 
196 static inline int ahash_wait(int err, struct crypto_wait *wait)
197 {
198 
199 	err = crypto_wait_req(err, wait);
200 
201 	if (err)
202 		pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
203 
204 	return err;
205 }
206 
207 static int ima_calc_file_hash_atfm(struct file *file,
208 				   struct ima_digest_data *hash,
209 				   struct crypto_ahash *tfm)
210 {
211 	loff_t i_size, offset;
212 	char *rbuf[2] = { NULL, };
213 	int rc, read = 0, rbuf_len, active = 0, ahash_rc = 0;
214 	struct ahash_request *req;
215 	struct scatterlist sg[1];
216 	struct crypto_wait wait;
217 	size_t rbuf_size[2];
218 
219 	hash->length = crypto_ahash_digestsize(tfm);
220 
221 	req = ahash_request_alloc(tfm, GFP_KERNEL);
222 	if (!req)
223 		return -ENOMEM;
224 
225 	crypto_init_wait(&wait);
226 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
227 				   CRYPTO_TFM_REQ_MAY_SLEEP,
228 				   crypto_req_done, &wait);
229 
230 	rc = ahash_wait(crypto_ahash_init(req), &wait);
231 	if (rc)
232 		goto out1;
233 
234 	i_size = i_size_read(file_inode(file));
235 
236 	if (i_size == 0)
237 		goto out2;
238 
239 	/*
240 	 * Try to allocate maximum size of memory.
241 	 * Fail if even a single page cannot be allocated.
242 	 */
243 	rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
244 	if (!rbuf[0]) {
245 		rc = -ENOMEM;
246 		goto out1;
247 	}
248 
249 	/* Only allocate one buffer if that is enough. */
250 	if (i_size > rbuf_size[0]) {
251 		/*
252 		 * Try to allocate secondary buffer. If that fails fallback to
253 		 * using single buffering. Use previous memory allocation size
254 		 * as baseline for possible allocation size.
255 		 */
256 		rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
257 					  &rbuf_size[1], 0);
258 	}
259 
260 	if (!(file->f_mode & FMODE_READ)) {
261 		file->f_mode |= FMODE_READ;
262 		read = 1;
263 	}
264 
265 	for (offset = 0; offset < i_size; offset += rbuf_len) {
266 		if (!rbuf[1] && offset) {
267 			/* Not using two buffers, and it is not the first
268 			 * read/request, wait for the completion of the
269 			 * previous ahash_update() request.
270 			 */
271 			rc = ahash_wait(ahash_rc, &wait);
272 			if (rc)
273 				goto out3;
274 		}
275 		/* read buffer */
276 		rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
277 		rc = integrity_kernel_read(file, offset, rbuf[active],
278 					   rbuf_len);
279 		if (rc != rbuf_len)
280 			goto out3;
281 
282 		if (rbuf[1] && offset) {
283 			/* Using two buffers, and it is not the first
284 			 * read/request, wait for the completion of the
285 			 * previous ahash_update() request.
286 			 */
287 			rc = ahash_wait(ahash_rc, &wait);
288 			if (rc)
289 				goto out3;
290 		}
291 
292 		sg_init_one(&sg[0], rbuf[active], rbuf_len);
293 		ahash_request_set_crypt(req, sg, NULL, rbuf_len);
294 
295 		ahash_rc = crypto_ahash_update(req);
296 
297 		if (rbuf[1])
298 			active = !active; /* swap buffers, if we use two */
299 	}
300 	/* wait for the last update request to complete */
301 	rc = ahash_wait(ahash_rc, &wait);
302 out3:
303 	if (read)
304 		file->f_mode &= ~FMODE_READ;
305 	ima_free_pages(rbuf[0], rbuf_size[0]);
306 	ima_free_pages(rbuf[1], rbuf_size[1]);
307 out2:
308 	if (!rc) {
309 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
310 		rc = ahash_wait(crypto_ahash_final(req), &wait);
311 	}
312 out1:
313 	ahash_request_free(req);
314 	return rc;
315 }
316 
317 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
318 {
319 	struct crypto_ahash *tfm;
320 	int rc;
321 
322 	tfm = ima_alloc_atfm(hash->algo);
323 	if (IS_ERR(tfm))
324 		return PTR_ERR(tfm);
325 
326 	rc = ima_calc_file_hash_atfm(file, hash, tfm);
327 
328 	ima_free_atfm(tfm);
329 
330 	return rc;
331 }
332 
333 static int ima_calc_file_hash_tfm(struct file *file,
334 				  struct ima_digest_data *hash,
335 				  struct crypto_shash *tfm)
336 {
337 	loff_t i_size, offset = 0;
338 	char *rbuf;
339 	int rc, read = 0;
340 	SHASH_DESC_ON_STACK(shash, tfm);
341 
342 	shash->tfm = tfm;
343 	shash->flags = 0;
344 
345 	hash->length = crypto_shash_digestsize(tfm);
346 
347 	rc = crypto_shash_init(shash);
348 	if (rc != 0)
349 		return rc;
350 
351 	i_size = i_size_read(file_inode(file));
352 
353 	if (i_size == 0)
354 		goto out;
355 
356 	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
357 	if (!rbuf)
358 		return -ENOMEM;
359 
360 	if (!(file->f_mode & FMODE_READ)) {
361 		file->f_mode |= FMODE_READ;
362 		read = 1;
363 	}
364 
365 	while (offset < i_size) {
366 		int rbuf_len;
367 
368 		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
369 		if (rbuf_len < 0) {
370 			rc = rbuf_len;
371 			break;
372 		}
373 		if (rbuf_len == 0)
374 			break;
375 		offset += rbuf_len;
376 
377 		rc = crypto_shash_update(shash, rbuf, rbuf_len);
378 		if (rc)
379 			break;
380 	}
381 	if (read)
382 		file->f_mode &= ~FMODE_READ;
383 	kfree(rbuf);
384 out:
385 	if (!rc)
386 		rc = crypto_shash_final(shash, hash->digest);
387 	return rc;
388 }
389 
390 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
391 {
392 	struct crypto_shash *tfm;
393 	int rc;
394 
395 	tfm = ima_alloc_tfm(hash->algo);
396 	if (IS_ERR(tfm))
397 		return PTR_ERR(tfm);
398 
399 	rc = ima_calc_file_hash_tfm(file, hash, tfm);
400 
401 	ima_free_tfm(tfm);
402 
403 	return rc;
404 }
405 
406 /*
407  * ima_calc_file_hash - calculate file hash
408  *
409  * Asynchronous hash (ahash) allows using HW acceleration for calculating
410  * a hash. ahash performance varies for different data sizes on different
411  * crypto accelerators. shash performance might be better for smaller files.
412  * The 'ima.ahash_minsize' module parameter allows specifying the best
413  * minimum file size for using ahash on the system.
414  *
415  * If the ima.ahash_minsize parameter is not specified, this function uses
416  * shash for the hash calculation.  If ahash fails, it falls back to using
417  * shash.
418  */
419 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
420 {
421 	loff_t i_size;
422 	int rc;
423 
424 	/*
425 	 * For consistency, fail file's opened with the O_DIRECT flag on
426 	 * filesystems mounted with/without DAX option.
427 	 */
428 	if (file->f_flags & O_DIRECT) {
429 		hash->length = hash_digest_size[ima_hash_algo];
430 		hash->algo = ima_hash_algo;
431 		return -EINVAL;
432 	}
433 
434 	i_size = i_size_read(file_inode(file));
435 
436 	if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
437 		rc = ima_calc_file_ahash(file, hash);
438 		if (!rc)
439 			return 0;
440 	}
441 
442 	return ima_calc_file_shash(file, hash);
443 }
444 
445 /*
446  * Calculate the hash of template data
447  */
448 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
449 					 struct ima_template_desc *td,
450 					 int num_fields,
451 					 struct ima_digest_data *hash,
452 					 struct crypto_shash *tfm)
453 {
454 	SHASH_DESC_ON_STACK(shash, tfm);
455 	int rc, i;
456 
457 	shash->tfm = tfm;
458 	shash->flags = 0;
459 
460 	hash->length = crypto_shash_digestsize(tfm);
461 
462 	rc = crypto_shash_init(shash);
463 	if (rc != 0)
464 		return rc;
465 
466 	for (i = 0; i < num_fields; i++) {
467 		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
468 		u8 *data_to_hash = field_data[i].data;
469 		u32 datalen = field_data[i].len;
470 		u32 datalen_to_hash =
471 		    !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
472 
473 		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
474 			rc = crypto_shash_update(shash,
475 						(const u8 *) &datalen_to_hash,
476 						sizeof(datalen_to_hash));
477 			if (rc)
478 				break;
479 		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
480 			memcpy(buffer, data_to_hash, datalen);
481 			data_to_hash = buffer;
482 			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
483 		}
484 		rc = crypto_shash_update(shash, data_to_hash, datalen);
485 		if (rc)
486 			break;
487 	}
488 
489 	if (!rc)
490 		rc = crypto_shash_final(shash, hash->digest);
491 
492 	return rc;
493 }
494 
495 int ima_calc_field_array_hash(struct ima_field_data *field_data,
496 			      struct ima_template_desc *desc, int num_fields,
497 			      struct ima_digest_data *hash)
498 {
499 	struct crypto_shash *tfm;
500 	int rc;
501 
502 	tfm = ima_alloc_tfm(hash->algo);
503 	if (IS_ERR(tfm))
504 		return PTR_ERR(tfm);
505 
506 	rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
507 					   hash, tfm);
508 
509 	ima_free_tfm(tfm);
510 
511 	return rc;
512 }
513 
514 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
515 				  struct ima_digest_data *hash,
516 				  struct crypto_ahash *tfm)
517 {
518 	struct ahash_request *req;
519 	struct scatterlist sg;
520 	struct crypto_wait wait;
521 	int rc, ahash_rc = 0;
522 
523 	hash->length = crypto_ahash_digestsize(tfm);
524 
525 	req = ahash_request_alloc(tfm, GFP_KERNEL);
526 	if (!req)
527 		return -ENOMEM;
528 
529 	crypto_init_wait(&wait);
530 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
531 				   CRYPTO_TFM_REQ_MAY_SLEEP,
532 				   crypto_req_done, &wait);
533 
534 	rc = ahash_wait(crypto_ahash_init(req), &wait);
535 	if (rc)
536 		goto out;
537 
538 	sg_init_one(&sg, buf, len);
539 	ahash_request_set_crypt(req, &sg, NULL, len);
540 
541 	ahash_rc = crypto_ahash_update(req);
542 
543 	/* wait for the update request to complete */
544 	rc = ahash_wait(ahash_rc, &wait);
545 	if (!rc) {
546 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
547 		rc = ahash_wait(crypto_ahash_final(req), &wait);
548 	}
549 out:
550 	ahash_request_free(req);
551 	return rc;
552 }
553 
554 static int calc_buffer_ahash(const void *buf, loff_t len,
555 			     struct ima_digest_data *hash)
556 {
557 	struct crypto_ahash *tfm;
558 	int rc;
559 
560 	tfm = ima_alloc_atfm(hash->algo);
561 	if (IS_ERR(tfm))
562 		return PTR_ERR(tfm);
563 
564 	rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
565 
566 	ima_free_atfm(tfm);
567 
568 	return rc;
569 }
570 
571 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
572 				struct ima_digest_data *hash,
573 				struct crypto_shash *tfm)
574 {
575 	SHASH_DESC_ON_STACK(shash, tfm);
576 	unsigned int len;
577 	int rc;
578 
579 	shash->tfm = tfm;
580 	shash->flags = 0;
581 
582 	hash->length = crypto_shash_digestsize(tfm);
583 
584 	rc = crypto_shash_init(shash);
585 	if (rc != 0)
586 		return rc;
587 
588 	while (size) {
589 		len = size < PAGE_SIZE ? size : PAGE_SIZE;
590 		rc = crypto_shash_update(shash, buf, len);
591 		if (rc)
592 			break;
593 		buf += len;
594 		size -= len;
595 	}
596 
597 	if (!rc)
598 		rc = crypto_shash_final(shash, hash->digest);
599 	return rc;
600 }
601 
602 static int calc_buffer_shash(const void *buf, loff_t len,
603 			     struct ima_digest_data *hash)
604 {
605 	struct crypto_shash *tfm;
606 	int rc;
607 
608 	tfm = ima_alloc_tfm(hash->algo);
609 	if (IS_ERR(tfm))
610 		return PTR_ERR(tfm);
611 
612 	rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
613 
614 	ima_free_tfm(tfm);
615 	return rc;
616 }
617 
618 int ima_calc_buffer_hash(const void *buf, loff_t len,
619 			 struct ima_digest_data *hash)
620 {
621 	int rc;
622 
623 	if (ima_ahash_minsize && len >= ima_ahash_minsize) {
624 		rc = calc_buffer_ahash(buf, len, hash);
625 		if (!rc)
626 			return 0;
627 	}
628 
629 	return calc_buffer_shash(buf, len, hash);
630 }
631 
632 static void __init ima_pcrread(int idx, u8 *pcr)
633 {
634 	if (!ima_used_chip)
635 		return;
636 
637 	if (tpm_pcr_read(NULL, idx, pcr) != 0)
638 		pr_err("Error Communicating to TPM chip\n");
639 }
640 
641 /*
642  * Calculate the boot aggregate hash
643  */
644 static int __init ima_calc_boot_aggregate_tfm(char *digest,
645 					      struct crypto_shash *tfm)
646 {
647 	u8 pcr_i[TPM_DIGEST_SIZE];
648 	int rc, i;
649 	SHASH_DESC_ON_STACK(shash, tfm);
650 
651 	shash->tfm = tfm;
652 	shash->flags = 0;
653 
654 	rc = crypto_shash_init(shash);
655 	if (rc != 0)
656 		return rc;
657 
658 	/* cumulative sha1 over tpm registers 0-7 */
659 	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
660 		ima_pcrread(i, pcr_i);
661 		/* now accumulate with current aggregate */
662 		rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
663 	}
664 	if (!rc)
665 		crypto_shash_final(shash, digest);
666 	return rc;
667 }
668 
669 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
670 {
671 	struct crypto_shash *tfm;
672 	int rc;
673 
674 	tfm = ima_alloc_tfm(hash->algo);
675 	if (IS_ERR(tfm))
676 		return PTR_ERR(tfm);
677 
678 	hash->length = crypto_shash_digestsize(tfm);
679 	rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
680 
681 	ima_free_tfm(tfm);
682 
683 	return rc;
684 }
685