xref: /linux/security/integrity/ima/ima_crypto.c (revision b8fc42dc065742bc68df6a61a2aff8cbe364fa17)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4  *
5  * Authors:
6  * Mimi Zohar <zohar@us.ibm.com>
7  * Kylene Hall <kjhall@us.ibm.com>
8  *
9  * File: ima_crypto.c
10  *	Calculates md5/sha1 file hash, template hash, boot-aggreate hash
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/moduleparam.h>
15 #include <linux/ratelimit.h>
16 #include <linux/file.h>
17 #include <linux/crypto.h>
18 #include <linux/scatterlist.h>
19 #include <linux/err.h>
20 #include <linux/slab.h>
21 #include <crypto/hash.h>
22 
23 #include "ima.h"
24 
25 /* minimum file size for ahash use */
26 static unsigned long ima_ahash_minsize;
27 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
28 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
29 
30 /* default is 0 - 1 page. */
31 static int ima_maxorder;
32 static unsigned int ima_bufsize = PAGE_SIZE;
33 
34 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
35 {
36 	unsigned long long size;
37 	int order;
38 
39 	size = memparse(val, NULL);
40 	order = get_order(size);
41 	if (order > MAX_PAGE_ORDER)
42 		return -EINVAL;
43 	ima_maxorder = order;
44 	ima_bufsize = PAGE_SIZE << order;
45 	return 0;
46 }
47 
48 static const struct kernel_param_ops param_ops_bufsize = {
49 	.set = param_set_bufsize,
50 	.get = param_get_uint,
51 };
52 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
53 
54 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
55 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
56 
57 static struct crypto_shash *ima_shash_tfm;
58 static struct crypto_ahash *ima_ahash_tfm;
59 
60 int ima_sha1_idx __ro_after_init;
61 int ima_hash_algo_idx __ro_after_init;
62 /*
63  * Additional number of slots reserved, as needed, for SHA1
64  * and IMA default algo.
65  */
66 int ima_extra_slots __ro_after_init;
67 
68 struct ima_algo_desc *ima_algo_array __ro_after_init;
69 
70 static int __init ima_init_ima_crypto(void)
71 {
72 	long rc;
73 
74 	ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
75 	if (IS_ERR(ima_shash_tfm)) {
76 		rc = PTR_ERR(ima_shash_tfm);
77 		pr_err("Can not allocate %s (reason: %ld)\n",
78 		       hash_algo_name[ima_hash_algo], rc);
79 		return rc;
80 	}
81 	pr_info("Allocated hash algorithm: %s\n",
82 		hash_algo_name[ima_hash_algo]);
83 	return 0;
84 }
85 
86 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
87 {
88 	struct crypto_shash *tfm = ima_shash_tfm;
89 	int rc, i;
90 
91 	if (algo < 0 || algo >= HASH_ALGO__LAST)
92 		algo = ima_hash_algo;
93 
94 	if (algo == ima_hash_algo)
95 		return tfm;
96 
97 	for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
98 		if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo)
99 			return ima_algo_array[i].tfm;
100 
101 	tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
102 	if (IS_ERR(tfm)) {
103 		rc = PTR_ERR(tfm);
104 		pr_err("Can not allocate %s (reason: %d)\n",
105 		       hash_algo_name[algo], rc);
106 	}
107 	return tfm;
108 }
109 
110 int __init ima_init_crypto(void)
111 {
112 	enum hash_algo algo;
113 	long rc;
114 	int i;
115 
116 	rc = ima_init_ima_crypto();
117 	if (rc)
118 		return rc;
119 
120 	ima_sha1_idx = -1;
121 	ima_hash_algo_idx = -1;
122 
123 	for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
124 		algo = ima_tpm_chip->allocated_banks[i].crypto_id;
125 		if (algo == HASH_ALGO_SHA1)
126 			ima_sha1_idx = i;
127 
128 		if (algo == ima_hash_algo)
129 			ima_hash_algo_idx = i;
130 	}
131 
132 	if (ima_sha1_idx < 0) {
133 		ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
134 		if (ima_hash_algo == HASH_ALGO_SHA1)
135 			ima_hash_algo_idx = ima_sha1_idx;
136 	}
137 
138 	if (ima_hash_algo_idx < 0)
139 		ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
140 
141 	ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots,
142 				 sizeof(*ima_algo_array), GFP_KERNEL);
143 	if (!ima_algo_array) {
144 		rc = -ENOMEM;
145 		goto out;
146 	}
147 
148 	for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
149 		algo = ima_tpm_chip->allocated_banks[i].crypto_id;
150 		ima_algo_array[i].algo = algo;
151 
152 		/* unknown TPM algorithm */
153 		if (algo == HASH_ALGO__LAST)
154 			continue;
155 
156 		if (algo == ima_hash_algo) {
157 			ima_algo_array[i].tfm = ima_shash_tfm;
158 			continue;
159 		}
160 
161 		ima_algo_array[i].tfm = ima_alloc_tfm(algo);
162 		if (IS_ERR(ima_algo_array[i].tfm)) {
163 			if (algo == HASH_ALGO_SHA1) {
164 				rc = PTR_ERR(ima_algo_array[i].tfm);
165 				ima_algo_array[i].tfm = NULL;
166 				goto out_array;
167 			}
168 
169 			ima_algo_array[i].tfm = NULL;
170 		}
171 	}
172 
173 	if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) {
174 		if (ima_hash_algo == HASH_ALGO_SHA1) {
175 			ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm;
176 		} else {
177 			ima_algo_array[ima_sha1_idx].tfm =
178 						ima_alloc_tfm(HASH_ALGO_SHA1);
179 			if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) {
180 				rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm);
181 				goto out_array;
182 			}
183 		}
184 
185 		ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1;
186 	}
187 
188 	if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) &&
189 	    ima_hash_algo_idx != ima_sha1_idx) {
190 		ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm;
191 		ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo;
192 	}
193 
194 	return 0;
195 out_array:
196 	for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
197 		if (!ima_algo_array[i].tfm ||
198 		    ima_algo_array[i].tfm == ima_shash_tfm)
199 			continue;
200 
201 		crypto_free_shash(ima_algo_array[i].tfm);
202 	}
203 	kfree(ima_algo_array);
204 out:
205 	crypto_free_shash(ima_shash_tfm);
206 	return rc;
207 }
208 
209 static void ima_free_tfm(struct crypto_shash *tfm)
210 {
211 	int i;
212 
213 	if (tfm == ima_shash_tfm)
214 		return;
215 
216 	for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
217 		if (ima_algo_array[i].tfm == tfm)
218 			return;
219 
220 	crypto_free_shash(tfm);
221 }
222 
223 /**
224  * ima_alloc_pages() - Allocate contiguous pages.
225  * @max_size:       Maximum amount of memory to allocate.
226  * @allocated_size: Returned size of actual allocation.
227  * @last_warn:      Should the min_size allocation warn or not.
228  *
229  * Tries to do opportunistic allocation for memory first trying to allocate
230  * max_size amount of memory and then splitting that until zero order is
231  * reached. Allocation is tried without generating allocation warnings unless
232  * last_warn is set. Last_warn set affects only last allocation of zero order.
233  *
234  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
235  *
236  * Return pointer to allocated memory, or NULL on failure.
237  */
238 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
239 			     int last_warn)
240 {
241 	void *ptr;
242 	int order = ima_maxorder;
243 	gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
244 
245 	if (order)
246 		order = min(get_order(max_size), order);
247 
248 	for (; order; order--) {
249 		ptr = (void *)__get_free_pages(gfp_mask, order);
250 		if (ptr) {
251 			*allocated_size = PAGE_SIZE << order;
252 			return ptr;
253 		}
254 	}
255 
256 	/* order is zero - one page */
257 
258 	gfp_mask = GFP_KERNEL;
259 
260 	if (!last_warn)
261 		gfp_mask |= __GFP_NOWARN;
262 
263 	ptr = (void *)__get_free_pages(gfp_mask, 0);
264 	if (ptr) {
265 		*allocated_size = PAGE_SIZE;
266 		return ptr;
267 	}
268 
269 	*allocated_size = 0;
270 	return NULL;
271 }
272 
273 /**
274  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
275  * @ptr:  Pointer to allocated pages.
276  * @size: Size of allocated buffer.
277  */
278 static void ima_free_pages(void *ptr, size_t size)
279 {
280 	if (!ptr)
281 		return;
282 	free_pages((unsigned long)ptr, get_order(size));
283 }
284 
285 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
286 {
287 	struct crypto_ahash *tfm = ima_ahash_tfm;
288 	int rc;
289 
290 	if (algo < 0 || algo >= HASH_ALGO__LAST)
291 		algo = ima_hash_algo;
292 
293 	if (algo != ima_hash_algo || !tfm) {
294 		tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
295 		if (!IS_ERR(tfm)) {
296 			if (algo == ima_hash_algo)
297 				ima_ahash_tfm = tfm;
298 		} else {
299 			rc = PTR_ERR(tfm);
300 			pr_err("Can not allocate %s (reason: %d)\n",
301 			       hash_algo_name[algo], rc);
302 		}
303 	}
304 	return tfm;
305 }
306 
307 static void ima_free_atfm(struct crypto_ahash *tfm)
308 {
309 	if (tfm != ima_ahash_tfm)
310 		crypto_free_ahash(tfm);
311 }
312 
313 static inline int ahash_wait(int err, struct crypto_wait *wait)
314 {
315 
316 	err = crypto_wait_req(err, wait);
317 
318 	if (err)
319 		pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
320 
321 	return err;
322 }
323 
324 static int ima_calc_file_hash_atfm(struct file *file,
325 				   struct ima_digest_data *hash,
326 				   struct crypto_ahash *tfm)
327 {
328 	loff_t i_size, offset;
329 	char *rbuf[2] = { NULL, };
330 	int rc, rbuf_len, active = 0, ahash_rc = 0;
331 	struct ahash_request *req;
332 	struct scatterlist sg[1];
333 	struct crypto_wait wait;
334 	size_t rbuf_size[2];
335 
336 	hash->length = crypto_ahash_digestsize(tfm);
337 
338 	req = ahash_request_alloc(tfm, GFP_KERNEL);
339 	if (!req)
340 		return -ENOMEM;
341 
342 	crypto_init_wait(&wait);
343 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
344 				   CRYPTO_TFM_REQ_MAY_SLEEP,
345 				   crypto_req_done, &wait);
346 
347 	rc = ahash_wait(crypto_ahash_init(req), &wait);
348 	if (rc)
349 		goto out1;
350 
351 	i_size = i_size_read(file_inode(file));
352 
353 	if (i_size == 0)
354 		goto out2;
355 
356 	/*
357 	 * Try to allocate maximum size of memory.
358 	 * Fail if even a single page cannot be allocated.
359 	 */
360 	rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
361 	if (!rbuf[0]) {
362 		rc = -ENOMEM;
363 		goto out1;
364 	}
365 
366 	/* Only allocate one buffer if that is enough. */
367 	if (i_size > rbuf_size[0]) {
368 		/*
369 		 * Try to allocate secondary buffer. If that fails fallback to
370 		 * using single buffering. Use previous memory allocation size
371 		 * as baseline for possible allocation size.
372 		 */
373 		rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
374 					  &rbuf_size[1], 0);
375 	}
376 
377 	for (offset = 0; offset < i_size; offset += rbuf_len) {
378 		if (!rbuf[1] && offset) {
379 			/* Not using two buffers, and it is not the first
380 			 * read/request, wait for the completion of the
381 			 * previous ahash_update() request.
382 			 */
383 			rc = ahash_wait(ahash_rc, &wait);
384 			if (rc)
385 				goto out3;
386 		}
387 		/* read buffer */
388 		rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
389 		rc = integrity_kernel_read(file, offset, rbuf[active],
390 					   rbuf_len);
391 		if (rc != rbuf_len) {
392 			if (rc >= 0)
393 				rc = -EINVAL;
394 			/*
395 			 * Forward current rc, do not overwrite with return value
396 			 * from ahash_wait()
397 			 */
398 			ahash_wait(ahash_rc, &wait);
399 			goto out3;
400 		}
401 
402 		if (rbuf[1] && offset) {
403 			/* Using two buffers, and it is not the first
404 			 * read/request, wait for the completion of the
405 			 * previous ahash_update() request.
406 			 */
407 			rc = ahash_wait(ahash_rc, &wait);
408 			if (rc)
409 				goto out3;
410 		}
411 
412 		sg_init_one(&sg[0], rbuf[active], rbuf_len);
413 		ahash_request_set_crypt(req, sg, NULL, rbuf_len);
414 
415 		ahash_rc = crypto_ahash_update(req);
416 
417 		if (rbuf[1])
418 			active = !active; /* swap buffers, if we use two */
419 	}
420 	/* wait for the last update request to complete */
421 	rc = ahash_wait(ahash_rc, &wait);
422 out3:
423 	ima_free_pages(rbuf[0], rbuf_size[0]);
424 	ima_free_pages(rbuf[1], rbuf_size[1]);
425 out2:
426 	if (!rc) {
427 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
428 		rc = ahash_wait(crypto_ahash_final(req), &wait);
429 	}
430 out1:
431 	ahash_request_free(req);
432 	return rc;
433 }
434 
435 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
436 {
437 	struct crypto_ahash *tfm;
438 	int rc;
439 
440 	tfm = ima_alloc_atfm(hash->algo);
441 	if (IS_ERR(tfm))
442 		return PTR_ERR(tfm);
443 
444 	rc = ima_calc_file_hash_atfm(file, hash, tfm);
445 
446 	ima_free_atfm(tfm);
447 
448 	return rc;
449 }
450 
451 static int ima_calc_file_hash_tfm(struct file *file,
452 				  struct ima_digest_data *hash,
453 				  struct crypto_shash *tfm)
454 {
455 	loff_t i_size, offset = 0;
456 	char *rbuf;
457 	int rc;
458 	SHASH_DESC_ON_STACK(shash, tfm);
459 
460 	shash->tfm = tfm;
461 
462 	hash->length = crypto_shash_digestsize(tfm);
463 
464 	rc = crypto_shash_init(shash);
465 	if (rc != 0)
466 		return rc;
467 
468 	i_size = i_size_read(file_inode(file));
469 
470 	if (i_size == 0)
471 		goto out;
472 
473 	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
474 	if (!rbuf)
475 		return -ENOMEM;
476 
477 	while (offset < i_size) {
478 		int rbuf_len;
479 
480 		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
481 		if (rbuf_len < 0) {
482 			rc = rbuf_len;
483 			break;
484 		}
485 		if (rbuf_len == 0) {	/* unexpected EOF */
486 			rc = -EINVAL;
487 			break;
488 		}
489 		offset += rbuf_len;
490 
491 		rc = crypto_shash_update(shash, rbuf, rbuf_len);
492 		if (rc)
493 			break;
494 	}
495 	kfree(rbuf);
496 out:
497 	if (!rc)
498 		rc = crypto_shash_final(shash, hash->digest);
499 	return rc;
500 }
501 
502 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
503 {
504 	struct crypto_shash *tfm;
505 	int rc;
506 
507 	tfm = ima_alloc_tfm(hash->algo);
508 	if (IS_ERR(tfm))
509 		return PTR_ERR(tfm);
510 
511 	rc = ima_calc_file_hash_tfm(file, hash, tfm);
512 
513 	ima_free_tfm(tfm);
514 
515 	return rc;
516 }
517 
518 /*
519  * ima_calc_file_hash - calculate file hash
520  *
521  * Asynchronous hash (ahash) allows using HW acceleration for calculating
522  * a hash. ahash performance varies for different data sizes on different
523  * crypto accelerators. shash performance might be better for smaller files.
524  * The 'ima.ahash_minsize' module parameter allows specifying the best
525  * minimum file size for using ahash on the system.
526  *
527  * If the ima.ahash_minsize parameter is not specified, this function uses
528  * shash for the hash calculation.  If ahash fails, it falls back to using
529  * shash.
530  */
531 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
532 {
533 	loff_t i_size;
534 	int rc;
535 	struct file *f = file;
536 	bool new_file_instance = false;
537 
538 	/*
539 	 * For consistency, fail file's opened with the O_DIRECT flag on
540 	 * filesystems mounted with/without DAX option.
541 	 */
542 	if (file->f_flags & O_DIRECT) {
543 		hash->length = hash_digest_size[ima_hash_algo];
544 		hash->algo = ima_hash_algo;
545 		return -EINVAL;
546 	}
547 
548 	/* Open a new file instance in O_RDONLY if we cannot read */
549 	if (!(file->f_mode & FMODE_READ)) {
550 		int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
551 				O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
552 		flags |= O_RDONLY;
553 		f = dentry_open(&file->f_path, flags, file->f_cred);
554 		if (IS_ERR(f))
555 			return PTR_ERR(f);
556 
557 		new_file_instance = true;
558 	}
559 
560 	i_size = i_size_read(file_inode(f));
561 
562 	if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
563 		rc = ima_calc_file_ahash(f, hash);
564 		if (!rc)
565 			goto out;
566 	}
567 
568 	rc = ima_calc_file_shash(f, hash);
569 out:
570 	if (new_file_instance)
571 		fput(f);
572 	return rc;
573 }
574 
575 /*
576  * Calculate the hash of template data
577  */
578 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
579 					 struct ima_template_entry *entry,
580 					 int tfm_idx)
581 {
582 	SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm);
583 	struct ima_template_desc *td = entry->template_desc;
584 	int num_fields = entry->template_desc->num_fields;
585 	int rc, i;
586 
587 	shash->tfm = ima_algo_array[tfm_idx].tfm;
588 
589 	rc = crypto_shash_init(shash);
590 	if (rc != 0)
591 		return rc;
592 
593 	for (i = 0; i < num_fields; i++) {
594 		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
595 		u8 *data_to_hash = field_data[i].data;
596 		u32 datalen = field_data[i].len;
597 		u32 datalen_to_hash = !ima_canonical_fmt ?
598 				datalen : (__force u32)cpu_to_le32(datalen);
599 
600 		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
601 			rc = crypto_shash_update(shash,
602 						(const u8 *) &datalen_to_hash,
603 						sizeof(datalen_to_hash));
604 			if (rc)
605 				break;
606 		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
607 			memcpy(buffer, data_to_hash, datalen);
608 			data_to_hash = buffer;
609 			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
610 		}
611 		rc = crypto_shash_update(shash, data_to_hash, datalen);
612 		if (rc)
613 			break;
614 	}
615 
616 	if (!rc)
617 		rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest);
618 
619 	return rc;
620 }
621 
622 int ima_calc_field_array_hash(struct ima_field_data *field_data,
623 			      struct ima_template_entry *entry)
624 {
625 	u16 alg_id;
626 	int rc, i;
627 
628 	rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx);
629 	if (rc)
630 		return rc;
631 
632 	entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1;
633 
634 	for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
635 		if (i == ima_sha1_idx)
636 			continue;
637 
638 		if (i < NR_BANKS(ima_tpm_chip)) {
639 			alg_id = ima_tpm_chip->allocated_banks[i].alg_id;
640 			entry->digests[i].alg_id = alg_id;
641 		}
642 
643 		/* for unmapped TPM algorithms digest is still a padded SHA1 */
644 		if (!ima_algo_array[i].tfm) {
645 			memcpy(entry->digests[i].digest,
646 			       entry->digests[ima_sha1_idx].digest,
647 			       TPM_DIGEST_SIZE);
648 			continue;
649 		}
650 
651 		rc = ima_calc_field_array_hash_tfm(field_data, entry, i);
652 		if (rc)
653 			return rc;
654 	}
655 	return rc;
656 }
657 
658 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
659 				  struct ima_digest_data *hash,
660 				  struct crypto_ahash *tfm)
661 {
662 	struct ahash_request *req;
663 	struct scatterlist sg;
664 	struct crypto_wait wait;
665 	int rc, ahash_rc = 0;
666 
667 	hash->length = crypto_ahash_digestsize(tfm);
668 
669 	req = ahash_request_alloc(tfm, GFP_KERNEL);
670 	if (!req)
671 		return -ENOMEM;
672 
673 	crypto_init_wait(&wait);
674 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
675 				   CRYPTO_TFM_REQ_MAY_SLEEP,
676 				   crypto_req_done, &wait);
677 
678 	rc = ahash_wait(crypto_ahash_init(req), &wait);
679 	if (rc)
680 		goto out;
681 
682 	sg_init_one(&sg, buf, len);
683 	ahash_request_set_crypt(req, &sg, NULL, len);
684 
685 	ahash_rc = crypto_ahash_update(req);
686 
687 	/* wait for the update request to complete */
688 	rc = ahash_wait(ahash_rc, &wait);
689 	if (!rc) {
690 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
691 		rc = ahash_wait(crypto_ahash_final(req), &wait);
692 	}
693 out:
694 	ahash_request_free(req);
695 	return rc;
696 }
697 
698 static int calc_buffer_ahash(const void *buf, loff_t len,
699 			     struct ima_digest_data *hash)
700 {
701 	struct crypto_ahash *tfm;
702 	int rc;
703 
704 	tfm = ima_alloc_atfm(hash->algo);
705 	if (IS_ERR(tfm))
706 		return PTR_ERR(tfm);
707 
708 	rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
709 
710 	ima_free_atfm(tfm);
711 
712 	return rc;
713 }
714 
715 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
716 				struct ima_digest_data *hash,
717 				struct crypto_shash *tfm)
718 {
719 	SHASH_DESC_ON_STACK(shash, tfm);
720 	unsigned int len;
721 	int rc;
722 
723 	shash->tfm = tfm;
724 
725 	hash->length = crypto_shash_digestsize(tfm);
726 
727 	rc = crypto_shash_init(shash);
728 	if (rc != 0)
729 		return rc;
730 
731 	while (size) {
732 		len = size < PAGE_SIZE ? size : PAGE_SIZE;
733 		rc = crypto_shash_update(shash, buf, len);
734 		if (rc)
735 			break;
736 		buf += len;
737 		size -= len;
738 	}
739 
740 	if (!rc)
741 		rc = crypto_shash_final(shash, hash->digest);
742 	return rc;
743 }
744 
745 static int calc_buffer_shash(const void *buf, loff_t len,
746 			     struct ima_digest_data *hash)
747 {
748 	struct crypto_shash *tfm;
749 	int rc;
750 
751 	tfm = ima_alloc_tfm(hash->algo);
752 	if (IS_ERR(tfm))
753 		return PTR_ERR(tfm);
754 
755 	rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
756 
757 	ima_free_tfm(tfm);
758 	return rc;
759 }
760 
761 int ima_calc_buffer_hash(const void *buf, loff_t len,
762 			 struct ima_digest_data *hash)
763 {
764 	int rc;
765 
766 	if (ima_ahash_minsize && len >= ima_ahash_minsize) {
767 		rc = calc_buffer_ahash(buf, len, hash);
768 		if (!rc)
769 			return 0;
770 	}
771 
772 	return calc_buffer_shash(buf, len, hash);
773 }
774 
775 static void ima_pcrread(u32 idx, struct tpm_digest *d)
776 {
777 	if (!ima_tpm_chip)
778 		return;
779 
780 	if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
781 		pr_err("Error Communicating to TPM chip\n");
782 }
783 
784 /*
785  * The boot_aggregate is a cumulative hash over TPM registers 0 - 7.  With
786  * TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with
787  * TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks,
788  * allowing firmware to configure and enable different banks.
789  *
790  * Knowing which TPM bank is read to calculate the boot_aggregate digest
791  * needs to be conveyed to a verifier.  For this reason, use the same
792  * hash algorithm for reading the TPM PCRs as for calculating the boot
793  * aggregate digest as stored in the measurement list.
794  */
795 static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id,
796 				       struct crypto_shash *tfm)
797 {
798 	struct tpm_digest d = { .alg_id = alg_id, .digest = {0} };
799 	int rc;
800 	u32 i;
801 	SHASH_DESC_ON_STACK(shash, tfm);
802 
803 	shash->tfm = tfm;
804 
805 	pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n",
806 		 d.alg_id);
807 
808 	rc = crypto_shash_init(shash);
809 	if (rc != 0)
810 		return rc;
811 
812 	/* cumulative digest over TPM registers 0-7 */
813 	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
814 		ima_pcrread(i, &d);
815 		/* now accumulate with current aggregate */
816 		rc = crypto_shash_update(shash, d.digest,
817 					 crypto_shash_digestsize(tfm));
818 		if (rc != 0)
819 			return rc;
820 	}
821 	/*
822 	 * Extend cumulative digest over TPM registers 8-9, which contain
823 	 * measurement for the kernel command line (reg. 8) and image (reg. 9)
824 	 * in a typical PCR allocation. Registers 8-9 are only included in
825 	 * non-SHA1 boot_aggregate digests to avoid ambiguity.
826 	 */
827 	if (alg_id != TPM_ALG_SHA1) {
828 		for (i = TPM_PCR8; i < TPM_PCR10; i++) {
829 			ima_pcrread(i, &d);
830 			rc = crypto_shash_update(shash, d.digest,
831 						crypto_shash_digestsize(tfm));
832 		}
833 	}
834 	if (!rc)
835 		crypto_shash_final(shash, digest);
836 	return rc;
837 }
838 
839 int ima_calc_boot_aggregate(struct ima_digest_data *hash)
840 {
841 	struct crypto_shash *tfm;
842 	u16 crypto_id, alg_id;
843 	int rc, i, bank_idx = -1;
844 
845 	for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) {
846 		crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id;
847 		if (crypto_id == hash->algo) {
848 			bank_idx = i;
849 			break;
850 		}
851 
852 		if (crypto_id == HASH_ALGO_SHA256)
853 			bank_idx = i;
854 
855 		if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1)
856 			bank_idx = i;
857 	}
858 
859 	if (bank_idx == -1) {
860 		pr_err("No suitable TPM algorithm for boot aggregate\n");
861 		return 0;
862 	}
863 
864 	hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id;
865 
866 	tfm = ima_alloc_tfm(hash->algo);
867 	if (IS_ERR(tfm))
868 		return PTR_ERR(tfm);
869 
870 	hash->length = crypto_shash_digestsize(tfm);
871 	alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id;
872 	rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm);
873 
874 	ima_free_tfm(tfm);
875 
876 	return rc;
877 }
878