xref: /linux/security/integrity/ima/ima_crypto.c (revision 8ab2e96d8ff188006f1e3346a56443cd07fe1858)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4  *
5  * Authors:
6  * Mimi Zohar <zohar@us.ibm.com>
7  * Kylene Hall <kjhall@us.ibm.com>
8  *
9  * File: ima_crypto.c
10  *	Calculates md5/sha1 file hash, template hash, boot-aggreate hash
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/moduleparam.h>
15 #include <linux/ratelimit.h>
16 #include <linux/file.h>
17 #include <linux/crypto.h>
18 #include <linux/scatterlist.h>
19 #include <linux/err.h>
20 #include <linux/slab.h>
21 #include <crypto/hash.h>
22 
23 #include "ima.h"
24 
25 /* minimum file size for ahash use */
26 static unsigned long ima_ahash_minsize;
27 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
28 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
29 
30 /* default is 0 - 1 page. */
31 static int ima_maxorder;
32 static unsigned int ima_bufsize = PAGE_SIZE;
33 
34 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
35 {
36 	unsigned long long size;
37 	int order;
38 
39 	size = memparse(val, NULL);
40 	order = get_order(size);
41 	if (order >= MAX_ORDER)
42 		return -EINVAL;
43 	ima_maxorder = order;
44 	ima_bufsize = PAGE_SIZE << order;
45 	return 0;
46 }
47 
48 static const struct kernel_param_ops param_ops_bufsize = {
49 	.set = param_set_bufsize,
50 	.get = param_get_uint,
51 };
52 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
53 
54 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
55 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
56 
57 static struct crypto_shash *ima_shash_tfm;
58 static struct crypto_ahash *ima_ahash_tfm;
59 
60 int __init ima_init_crypto(void)
61 {
62 	long rc;
63 
64 	ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
65 	if (IS_ERR(ima_shash_tfm)) {
66 		rc = PTR_ERR(ima_shash_tfm);
67 		pr_err("Can not allocate %s (reason: %ld)\n",
68 		       hash_algo_name[ima_hash_algo], rc);
69 		return rc;
70 	}
71 	pr_info("Allocated hash algorithm: %s\n",
72 		hash_algo_name[ima_hash_algo]);
73 	return 0;
74 }
75 
76 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
77 {
78 	struct crypto_shash *tfm = ima_shash_tfm;
79 	int rc;
80 
81 	if (algo < 0 || algo >= HASH_ALGO__LAST)
82 		algo = ima_hash_algo;
83 
84 	if (algo != ima_hash_algo) {
85 		tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
86 		if (IS_ERR(tfm)) {
87 			rc = PTR_ERR(tfm);
88 			pr_err("Can not allocate %s (reason: %d)\n",
89 			       hash_algo_name[algo], rc);
90 		}
91 	}
92 	return tfm;
93 }
94 
95 static void ima_free_tfm(struct crypto_shash *tfm)
96 {
97 	if (tfm != ima_shash_tfm)
98 		crypto_free_shash(tfm);
99 }
100 
101 /**
102  * ima_alloc_pages() - Allocate contiguous pages.
103  * @max_size:       Maximum amount of memory to allocate.
104  * @allocated_size: Returned size of actual allocation.
105  * @last_warn:      Should the min_size allocation warn or not.
106  *
107  * Tries to do opportunistic allocation for memory first trying to allocate
108  * max_size amount of memory and then splitting that until zero order is
109  * reached. Allocation is tried without generating allocation warnings unless
110  * last_warn is set. Last_warn set affects only last allocation of zero order.
111  *
112  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
113  *
114  * Return pointer to allocated memory, or NULL on failure.
115  */
116 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
117 			     int last_warn)
118 {
119 	void *ptr;
120 	int order = ima_maxorder;
121 	gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
122 
123 	if (order)
124 		order = min(get_order(max_size), order);
125 
126 	for (; order; order--) {
127 		ptr = (void *)__get_free_pages(gfp_mask, order);
128 		if (ptr) {
129 			*allocated_size = PAGE_SIZE << order;
130 			return ptr;
131 		}
132 	}
133 
134 	/* order is zero - one page */
135 
136 	gfp_mask = GFP_KERNEL;
137 
138 	if (!last_warn)
139 		gfp_mask |= __GFP_NOWARN;
140 
141 	ptr = (void *)__get_free_pages(gfp_mask, 0);
142 	if (ptr) {
143 		*allocated_size = PAGE_SIZE;
144 		return ptr;
145 	}
146 
147 	*allocated_size = 0;
148 	return NULL;
149 }
150 
151 /**
152  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
153  * @ptr:  Pointer to allocated pages.
154  * @size: Size of allocated buffer.
155  */
156 static void ima_free_pages(void *ptr, size_t size)
157 {
158 	if (!ptr)
159 		return;
160 	free_pages((unsigned long)ptr, get_order(size));
161 }
162 
163 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
164 {
165 	struct crypto_ahash *tfm = ima_ahash_tfm;
166 	int rc;
167 
168 	if (algo < 0 || algo >= HASH_ALGO__LAST)
169 		algo = ima_hash_algo;
170 
171 	if (algo != ima_hash_algo || !tfm) {
172 		tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
173 		if (!IS_ERR(tfm)) {
174 			if (algo == ima_hash_algo)
175 				ima_ahash_tfm = tfm;
176 		} else {
177 			rc = PTR_ERR(tfm);
178 			pr_err("Can not allocate %s (reason: %d)\n",
179 			       hash_algo_name[algo], rc);
180 		}
181 	}
182 	return tfm;
183 }
184 
185 static void ima_free_atfm(struct crypto_ahash *tfm)
186 {
187 	if (tfm != ima_ahash_tfm)
188 		crypto_free_ahash(tfm);
189 }
190 
191 static inline int ahash_wait(int err, struct crypto_wait *wait)
192 {
193 
194 	err = crypto_wait_req(err, wait);
195 
196 	if (err)
197 		pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
198 
199 	return err;
200 }
201 
202 static int ima_calc_file_hash_atfm(struct file *file,
203 				   struct ima_digest_data *hash,
204 				   struct crypto_ahash *tfm)
205 {
206 	loff_t i_size, offset;
207 	char *rbuf[2] = { NULL, };
208 	int rc, rbuf_len, active = 0, ahash_rc = 0;
209 	struct ahash_request *req;
210 	struct scatterlist sg[1];
211 	struct crypto_wait wait;
212 	size_t rbuf_size[2];
213 
214 	hash->length = crypto_ahash_digestsize(tfm);
215 
216 	req = ahash_request_alloc(tfm, GFP_KERNEL);
217 	if (!req)
218 		return -ENOMEM;
219 
220 	crypto_init_wait(&wait);
221 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
222 				   CRYPTO_TFM_REQ_MAY_SLEEP,
223 				   crypto_req_done, &wait);
224 
225 	rc = ahash_wait(crypto_ahash_init(req), &wait);
226 	if (rc)
227 		goto out1;
228 
229 	i_size = i_size_read(file_inode(file));
230 
231 	if (i_size == 0)
232 		goto out2;
233 
234 	/*
235 	 * Try to allocate maximum size of memory.
236 	 * Fail if even a single page cannot be allocated.
237 	 */
238 	rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
239 	if (!rbuf[0]) {
240 		rc = -ENOMEM;
241 		goto out1;
242 	}
243 
244 	/* Only allocate one buffer if that is enough. */
245 	if (i_size > rbuf_size[0]) {
246 		/*
247 		 * Try to allocate secondary buffer. If that fails fallback to
248 		 * using single buffering. Use previous memory allocation size
249 		 * as baseline for possible allocation size.
250 		 */
251 		rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
252 					  &rbuf_size[1], 0);
253 	}
254 
255 	for (offset = 0; offset < i_size; offset += rbuf_len) {
256 		if (!rbuf[1] && offset) {
257 			/* Not using two buffers, and it is not the first
258 			 * read/request, wait for the completion of the
259 			 * previous ahash_update() request.
260 			 */
261 			rc = ahash_wait(ahash_rc, &wait);
262 			if (rc)
263 				goto out3;
264 		}
265 		/* read buffer */
266 		rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
267 		rc = integrity_kernel_read(file, offset, rbuf[active],
268 					   rbuf_len);
269 		if (rc != rbuf_len) {
270 			if (rc >= 0)
271 				rc = -EINVAL;
272 			/*
273 			 * Forward current rc, do not overwrite with return value
274 			 * from ahash_wait()
275 			 */
276 			ahash_wait(ahash_rc, &wait);
277 			goto out3;
278 		}
279 
280 		if (rbuf[1] && offset) {
281 			/* Using two buffers, and it is not the first
282 			 * read/request, wait for the completion of the
283 			 * previous ahash_update() request.
284 			 */
285 			rc = ahash_wait(ahash_rc, &wait);
286 			if (rc)
287 				goto out3;
288 		}
289 
290 		sg_init_one(&sg[0], rbuf[active], rbuf_len);
291 		ahash_request_set_crypt(req, sg, NULL, rbuf_len);
292 
293 		ahash_rc = crypto_ahash_update(req);
294 
295 		if (rbuf[1])
296 			active = !active; /* swap buffers, if we use two */
297 	}
298 	/* wait for the last update request to complete */
299 	rc = ahash_wait(ahash_rc, &wait);
300 out3:
301 	ima_free_pages(rbuf[0], rbuf_size[0]);
302 	ima_free_pages(rbuf[1], rbuf_size[1]);
303 out2:
304 	if (!rc) {
305 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
306 		rc = ahash_wait(crypto_ahash_final(req), &wait);
307 	}
308 out1:
309 	ahash_request_free(req);
310 	return rc;
311 }
312 
313 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
314 {
315 	struct crypto_ahash *tfm;
316 	int rc;
317 
318 	tfm = ima_alloc_atfm(hash->algo);
319 	if (IS_ERR(tfm))
320 		return PTR_ERR(tfm);
321 
322 	rc = ima_calc_file_hash_atfm(file, hash, tfm);
323 
324 	ima_free_atfm(tfm);
325 
326 	return rc;
327 }
328 
329 static int ima_calc_file_hash_tfm(struct file *file,
330 				  struct ima_digest_data *hash,
331 				  struct crypto_shash *tfm)
332 {
333 	loff_t i_size, offset = 0;
334 	char *rbuf;
335 	int rc;
336 	SHASH_DESC_ON_STACK(shash, tfm);
337 
338 	shash->tfm = tfm;
339 
340 	hash->length = crypto_shash_digestsize(tfm);
341 
342 	rc = crypto_shash_init(shash);
343 	if (rc != 0)
344 		return rc;
345 
346 	i_size = i_size_read(file_inode(file));
347 
348 	if (i_size == 0)
349 		goto out;
350 
351 	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
352 	if (!rbuf)
353 		return -ENOMEM;
354 
355 	while (offset < i_size) {
356 		int rbuf_len;
357 
358 		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
359 		if (rbuf_len < 0) {
360 			rc = rbuf_len;
361 			break;
362 		}
363 		if (rbuf_len == 0) {	/* unexpected EOF */
364 			rc = -EINVAL;
365 			break;
366 		}
367 		offset += rbuf_len;
368 
369 		rc = crypto_shash_update(shash, rbuf, rbuf_len);
370 		if (rc)
371 			break;
372 	}
373 	kfree(rbuf);
374 out:
375 	if (!rc)
376 		rc = crypto_shash_final(shash, hash->digest);
377 	return rc;
378 }
379 
380 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
381 {
382 	struct crypto_shash *tfm;
383 	int rc;
384 
385 	tfm = ima_alloc_tfm(hash->algo);
386 	if (IS_ERR(tfm))
387 		return PTR_ERR(tfm);
388 
389 	rc = ima_calc_file_hash_tfm(file, hash, tfm);
390 
391 	ima_free_tfm(tfm);
392 
393 	return rc;
394 }
395 
396 /*
397  * ima_calc_file_hash - calculate file hash
398  *
399  * Asynchronous hash (ahash) allows using HW acceleration for calculating
400  * a hash. ahash performance varies for different data sizes on different
401  * crypto accelerators. shash performance might be better for smaller files.
402  * The 'ima.ahash_minsize' module parameter allows specifying the best
403  * minimum file size for using ahash on the system.
404  *
405  * If the ima.ahash_minsize parameter is not specified, this function uses
406  * shash for the hash calculation.  If ahash fails, it falls back to using
407  * shash.
408  */
409 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
410 {
411 	loff_t i_size;
412 	int rc;
413 	struct file *f = file;
414 	bool new_file_instance = false, modified_flags = false;
415 
416 	/*
417 	 * For consistency, fail file's opened with the O_DIRECT flag on
418 	 * filesystems mounted with/without DAX option.
419 	 */
420 	if (file->f_flags & O_DIRECT) {
421 		hash->length = hash_digest_size[ima_hash_algo];
422 		hash->algo = ima_hash_algo;
423 		return -EINVAL;
424 	}
425 
426 	/* Open a new file instance in O_RDONLY if we cannot read */
427 	if (!(file->f_mode & FMODE_READ)) {
428 		int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
429 				O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
430 		flags |= O_RDONLY;
431 		f = dentry_open(&file->f_path, flags, file->f_cred);
432 		if (IS_ERR(f)) {
433 			/*
434 			 * Cannot open the file again, lets modify f_flags
435 			 * of original and continue
436 			 */
437 			pr_info_ratelimited("Unable to reopen file for reading.\n");
438 			f = file;
439 			f->f_flags |= FMODE_READ;
440 			modified_flags = true;
441 		} else {
442 			new_file_instance = true;
443 		}
444 	}
445 
446 	i_size = i_size_read(file_inode(f));
447 
448 	if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
449 		rc = ima_calc_file_ahash(f, hash);
450 		if (!rc)
451 			goto out;
452 	}
453 
454 	rc = ima_calc_file_shash(f, hash);
455 out:
456 	if (new_file_instance)
457 		fput(f);
458 	else if (modified_flags)
459 		f->f_flags &= ~FMODE_READ;
460 	return rc;
461 }
462 
463 /*
464  * Calculate the hash of template data
465  */
466 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
467 					 struct ima_template_desc *td,
468 					 int num_fields,
469 					 struct ima_digest_data *hash,
470 					 struct crypto_shash *tfm)
471 {
472 	SHASH_DESC_ON_STACK(shash, tfm);
473 	int rc, i;
474 
475 	shash->tfm = tfm;
476 
477 	hash->length = crypto_shash_digestsize(tfm);
478 
479 	rc = crypto_shash_init(shash);
480 	if (rc != 0)
481 		return rc;
482 
483 	for (i = 0; i < num_fields; i++) {
484 		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
485 		u8 *data_to_hash = field_data[i].data;
486 		u32 datalen = field_data[i].len;
487 		u32 datalen_to_hash =
488 		    !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
489 
490 		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
491 			rc = crypto_shash_update(shash,
492 						(const u8 *) &datalen_to_hash,
493 						sizeof(datalen_to_hash));
494 			if (rc)
495 				break;
496 		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
497 			memcpy(buffer, data_to_hash, datalen);
498 			data_to_hash = buffer;
499 			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
500 		}
501 		rc = crypto_shash_update(shash, data_to_hash, datalen);
502 		if (rc)
503 			break;
504 	}
505 
506 	if (!rc)
507 		rc = crypto_shash_final(shash, hash->digest);
508 
509 	return rc;
510 }
511 
512 int ima_calc_field_array_hash(struct ima_field_data *field_data,
513 			      struct ima_template_desc *desc, int num_fields,
514 			      struct ima_digest_data *hash)
515 {
516 	struct crypto_shash *tfm;
517 	int rc;
518 
519 	tfm = ima_alloc_tfm(hash->algo);
520 	if (IS_ERR(tfm))
521 		return PTR_ERR(tfm);
522 
523 	rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
524 					   hash, tfm);
525 
526 	ima_free_tfm(tfm);
527 
528 	return rc;
529 }
530 
531 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
532 				  struct ima_digest_data *hash,
533 				  struct crypto_ahash *tfm)
534 {
535 	struct ahash_request *req;
536 	struct scatterlist sg;
537 	struct crypto_wait wait;
538 	int rc, ahash_rc = 0;
539 
540 	hash->length = crypto_ahash_digestsize(tfm);
541 
542 	req = ahash_request_alloc(tfm, GFP_KERNEL);
543 	if (!req)
544 		return -ENOMEM;
545 
546 	crypto_init_wait(&wait);
547 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
548 				   CRYPTO_TFM_REQ_MAY_SLEEP,
549 				   crypto_req_done, &wait);
550 
551 	rc = ahash_wait(crypto_ahash_init(req), &wait);
552 	if (rc)
553 		goto out;
554 
555 	sg_init_one(&sg, buf, len);
556 	ahash_request_set_crypt(req, &sg, NULL, len);
557 
558 	ahash_rc = crypto_ahash_update(req);
559 
560 	/* wait for the update request to complete */
561 	rc = ahash_wait(ahash_rc, &wait);
562 	if (!rc) {
563 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
564 		rc = ahash_wait(crypto_ahash_final(req), &wait);
565 	}
566 out:
567 	ahash_request_free(req);
568 	return rc;
569 }
570 
571 static int calc_buffer_ahash(const void *buf, loff_t len,
572 			     struct ima_digest_data *hash)
573 {
574 	struct crypto_ahash *tfm;
575 	int rc;
576 
577 	tfm = ima_alloc_atfm(hash->algo);
578 	if (IS_ERR(tfm))
579 		return PTR_ERR(tfm);
580 
581 	rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
582 
583 	ima_free_atfm(tfm);
584 
585 	return rc;
586 }
587 
588 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
589 				struct ima_digest_data *hash,
590 				struct crypto_shash *tfm)
591 {
592 	SHASH_DESC_ON_STACK(shash, tfm);
593 	unsigned int len;
594 	int rc;
595 
596 	shash->tfm = tfm;
597 
598 	hash->length = crypto_shash_digestsize(tfm);
599 
600 	rc = crypto_shash_init(shash);
601 	if (rc != 0)
602 		return rc;
603 
604 	while (size) {
605 		len = size < PAGE_SIZE ? size : PAGE_SIZE;
606 		rc = crypto_shash_update(shash, buf, len);
607 		if (rc)
608 			break;
609 		buf += len;
610 		size -= len;
611 	}
612 
613 	if (!rc)
614 		rc = crypto_shash_final(shash, hash->digest);
615 	return rc;
616 }
617 
618 static int calc_buffer_shash(const void *buf, loff_t len,
619 			     struct ima_digest_data *hash)
620 {
621 	struct crypto_shash *tfm;
622 	int rc;
623 
624 	tfm = ima_alloc_tfm(hash->algo);
625 	if (IS_ERR(tfm))
626 		return PTR_ERR(tfm);
627 
628 	rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
629 
630 	ima_free_tfm(tfm);
631 	return rc;
632 }
633 
634 int ima_calc_buffer_hash(const void *buf, loff_t len,
635 			 struct ima_digest_data *hash)
636 {
637 	int rc;
638 
639 	if (ima_ahash_minsize && len >= ima_ahash_minsize) {
640 		rc = calc_buffer_ahash(buf, len, hash);
641 		if (!rc)
642 			return 0;
643 	}
644 
645 	return calc_buffer_shash(buf, len, hash);
646 }
647 
648 static void __init ima_pcrread(u32 idx, struct tpm_digest *d)
649 {
650 	if (!ima_tpm_chip)
651 		return;
652 
653 	if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
654 		pr_err("Error Communicating to TPM chip\n");
655 }
656 
657 /*
658  * Calculate the boot aggregate hash
659  */
660 static int __init ima_calc_boot_aggregate_tfm(char *digest,
661 					      struct crypto_shash *tfm)
662 {
663 	struct tpm_digest d = { .alg_id = TPM_ALG_SHA1, .digest = {0} };
664 	int rc;
665 	u32 i;
666 	SHASH_DESC_ON_STACK(shash, tfm);
667 
668 	shash->tfm = tfm;
669 
670 	rc = crypto_shash_init(shash);
671 	if (rc != 0)
672 		return rc;
673 
674 	/* cumulative sha1 over tpm registers 0-7 */
675 	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
676 		ima_pcrread(i, &d);
677 		/* now accumulate with current aggregate */
678 		rc = crypto_shash_update(shash, d.digest, TPM_DIGEST_SIZE);
679 	}
680 	if (!rc)
681 		crypto_shash_final(shash, digest);
682 	return rc;
683 }
684 
685 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
686 {
687 	struct crypto_shash *tfm;
688 	int rc;
689 
690 	tfm = ima_alloc_tfm(hash->algo);
691 	if (IS_ERR(tfm))
692 		return PTR_ERR(tfm);
693 
694 	hash->length = crypto_shash_digestsize(tfm);
695 	rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
696 
697 	ima_free_tfm(tfm);
698 
699 	return rc;
700 }
701