1 /* 2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation 3 * 4 * Authors: 5 * Mimi Zohar <zohar@us.ibm.com> 6 * Kylene Hall <kjhall@us.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, version 2 of the License. 11 * 12 * File: ima_crypto.c 13 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/moduleparam.h> 20 #include <linux/ratelimit.h> 21 #include <linux/file.h> 22 #include <linux/crypto.h> 23 #include <linux/scatterlist.h> 24 #include <linux/err.h> 25 #include <linux/slab.h> 26 #include <crypto/hash.h> 27 #include <crypto/hash_info.h> 28 #include "ima.h" 29 30 struct ahash_completion { 31 struct completion completion; 32 int err; 33 }; 34 35 /* minimum file size for ahash use */ 36 static unsigned long ima_ahash_minsize; 37 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644); 38 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use"); 39 40 /* default is 0 - 1 page. */ 41 static int ima_maxorder; 42 static unsigned int ima_bufsize = PAGE_SIZE; 43 44 static int param_set_bufsize(const char *val, const struct kernel_param *kp) 45 { 46 unsigned long long size; 47 int order; 48 49 size = memparse(val, NULL); 50 order = get_order(size); 51 if (order >= MAX_ORDER) 52 return -EINVAL; 53 ima_maxorder = order; 54 ima_bufsize = PAGE_SIZE << order; 55 return 0; 56 } 57 58 static struct kernel_param_ops param_ops_bufsize = { 59 .set = param_set_bufsize, 60 .get = param_get_uint, 61 }; 62 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int) 63 64 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644); 65 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size"); 66 67 static struct crypto_shash *ima_shash_tfm; 68 static struct crypto_ahash *ima_ahash_tfm; 69 70 /** 71 * ima_kernel_read - read file content 72 * 73 * This is a function for reading file content instead of kernel_read(). 74 * It does not perform locking checks to ensure it cannot be blocked. 75 * It does not perform security checks because it is irrelevant for IMA. 76 * 77 */ 78 static int ima_kernel_read(struct file *file, loff_t offset, 79 char *addr, unsigned long count) 80 { 81 mm_segment_t old_fs; 82 char __user *buf = addr; 83 ssize_t ret; 84 85 if (!(file->f_mode & FMODE_READ)) 86 return -EBADF; 87 if (!file->f_op->read && !file->f_op->aio_read) 88 return -EINVAL; 89 90 old_fs = get_fs(); 91 set_fs(get_ds()); 92 if (file->f_op->read) 93 ret = file->f_op->read(file, buf, count, &offset); 94 else 95 ret = do_sync_read(file, buf, count, &offset); 96 set_fs(old_fs); 97 return ret; 98 } 99 100 int ima_init_crypto(void) 101 { 102 long rc; 103 104 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0); 105 if (IS_ERR(ima_shash_tfm)) { 106 rc = PTR_ERR(ima_shash_tfm); 107 pr_err("Can not allocate %s (reason: %ld)\n", 108 hash_algo_name[ima_hash_algo], rc); 109 return rc; 110 } 111 return 0; 112 } 113 114 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo) 115 { 116 struct crypto_shash *tfm = ima_shash_tfm; 117 int rc; 118 119 if (algo != ima_hash_algo && algo < HASH_ALGO__LAST) { 120 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0); 121 if (IS_ERR(tfm)) { 122 rc = PTR_ERR(tfm); 123 pr_err("Can not allocate %s (reason: %d)\n", 124 hash_algo_name[algo], rc); 125 } 126 } 127 return tfm; 128 } 129 130 static void ima_free_tfm(struct crypto_shash *tfm) 131 { 132 if (tfm != ima_shash_tfm) 133 crypto_free_shash(tfm); 134 } 135 136 /** 137 * ima_alloc_pages() - Allocate contiguous pages. 138 * @max_size: Maximum amount of memory to allocate. 139 * @allocated_size: Returned size of actual allocation. 140 * @last_warn: Should the min_size allocation warn or not. 141 * 142 * Tries to do opportunistic allocation for memory first trying to allocate 143 * max_size amount of memory and then splitting that until zero order is 144 * reached. Allocation is tried without generating allocation warnings unless 145 * last_warn is set. Last_warn set affects only last allocation of zero order. 146 * 147 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL) 148 * 149 * Return pointer to allocated memory, or NULL on failure. 150 */ 151 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size, 152 int last_warn) 153 { 154 void *ptr; 155 int order = ima_maxorder; 156 gfp_t gfp_mask = __GFP_WAIT | __GFP_NOWARN | __GFP_NORETRY; 157 158 if (order) 159 order = min(get_order(max_size), order); 160 161 for (; order; order--) { 162 ptr = (void *)__get_free_pages(gfp_mask, order); 163 if (ptr) { 164 *allocated_size = PAGE_SIZE << order; 165 return ptr; 166 } 167 } 168 169 /* order is zero - one page */ 170 171 gfp_mask = GFP_KERNEL; 172 173 if (!last_warn) 174 gfp_mask |= __GFP_NOWARN; 175 176 ptr = (void *)__get_free_pages(gfp_mask, 0); 177 if (ptr) { 178 *allocated_size = PAGE_SIZE; 179 return ptr; 180 } 181 182 *allocated_size = 0; 183 return NULL; 184 } 185 186 /** 187 * ima_free_pages() - Free pages allocated by ima_alloc_pages(). 188 * @ptr: Pointer to allocated pages. 189 * @size: Size of allocated buffer. 190 */ 191 static void ima_free_pages(void *ptr, size_t size) 192 { 193 if (!ptr) 194 return; 195 free_pages((unsigned long)ptr, get_order(size)); 196 } 197 198 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo) 199 { 200 struct crypto_ahash *tfm = ima_ahash_tfm; 201 int rc; 202 203 if ((algo != ima_hash_algo && algo < HASH_ALGO__LAST) || !tfm) { 204 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0); 205 if (!IS_ERR(tfm)) { 206 if (algo == ima_hash_algo) 207 ima_ahash_tfm = tfm; 208 } else { 209 rc = PTR_ERR(tfm); 210 pr_err("Can not allocate %s (reason: %d)\n", 211 hash_algo_name[algo], rc); 212 } 213 } 214 return tfm; 215 } 216 217 static void ima_free_atfm(struct crypto_ahash *tfm) 218 { 219 if (tfm != ima_ahash_tfm) 220 crypto_free_ahash(tfm); 221 } 222 223 static void ahash_complete(struct crypto_async_request *req, int err) 224 { 225 struct ahash_completion *res = req->data; 226 227 if (err == -EINPROGRESS) 228 return; 229 res->err = err; 230 complete(&res->completion); 231 } 232 233 static int ahash_wait(int err, struct ahash_completion *res) 234 { 235 switch (err) { 236 case 0: 237 break; 238 case -EINPROGRESS: 239 case -EBUSY: 240 wait_for_completion(&res->completion); 241 reinit_completion(&res->completion); 242 err = res->err; 243 /* fall through */ 244 default: 245 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err); 246 } 247 248 return err; 249 } 250 251 static int ima_calc_file_hash_atfm(struct file *file, 252 struct ima_digest_data *hash, 253 struct crypto_ahash *tfm) 254 { 255 loff_t i_size, offset; 256 char *rbuf[2] = { NULL, }; 257 int rc, read = 0, rbuf_len, active = 0, ahash_rc = 0; 258 struct ahash_request *req; 259 struct scatterlist sg[1]; 260 struct ahash_completion res; 261 size_t rbuf_size[2]; 262 263 hash->length = crypto_ahash_digestsize(tfm); 264 265 req = ahash_request_alloc(tfm, GFP_KERNEL); 266 if (!req) 267 return -ENOMEM; 268 269 init_completion(&res.completion); 270 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | 271 CRYPTO_TFM_REQ_MAY_SLEEP, 272 ahash_complete, &res); 273 274 rc = ahash_wait(crypto_ahash_init(req), &res); 275 if (rc) 276 goto out1; 277 278 i_size = i_size_read(file_inode(file)); 279 280 if (i_size == 0) 281 goto out2; 282 283 /* 284 * Try to allocate maximum size of memory. 285 * Fail if even a single page cannot be allocated. 286 */ 287 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1); 288 if (!rbuf[0]) { 289 rc = -ENOMEM; 290 goto out1; 291 } 292 293 /* Only allocate one buffer if that is enough. */ 294 if (i_size > rbuf_size[0]) { 295 /* 296 * Try to allocate secondary buffer. If that fails fallback to 297 * using single buffering. Use previous memory allocation size 298 * as baseline for possible allocation size. 299 */ 300 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0], 301 &rbuf_size[1], 0); 302 } 303 304 if (!(file->f_mode & FMODE_READ)) { 305 file->f_mode |= FMODE_READ; 306 read = 1; 307 } 308 309 for (offset = 0; offset < i_size; offset += rbuf_len) { 310 if (!rbuf[1] && offset) { 311 /* Not using two buffers, and it is not the first 312 * read/request, wait for the completion of the 313 * previous ahash_update() request. 314 */ 315 rc = ahash_wait(ahash_rc, &res); 316 if (rc) 317 goto out3; 318 } 319 /* read buffer */ 320 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]); 321 rc = ima_kernel_read(file, offset, rbuf[active], rbuf_len); 322 if (rc != rbuf_len) 323 goto out3; 324 325 if (rbuf[1] && offset) { 326 /* Using two buffers, and it is not the first 327 * read/request, wait for the completion of the 328 * previous ahash_update() request. 329 */ 330 rc = ahash_wait(ahash_rc, &res); 331 if (rc) 332 goto out3; 333 } 334 335 sg_init_one(&sg[0], rbuf[active], rbuf_len); 336 ahash_request_set_crypt(req, sg, NULL, rbuf_len); 337 338 ahash_rc = crypto_ahash_update(req); 339 340 if (rbuf[1]) 341 active = !active; /* swap buffers, if we use two */ 342 } 343 /* wait for the last update request to complete */ 344 rc = ahash_wait(ahash_rc, &res); 345 out3: 346 if (read) 347 file->f_mode &= ~FMODE_READ; 348 ima_free_pages(rbuf[0], rbuf_size[0]); 349 ima_free_pages(rbuf[1], rbuf_size[1]); 350 out2: 351 if (!rc) { 352 ahash_request_set_crypt(req, NULL, hash->digest, 0); 353 rc = ahash_wait(crypto_ahash_final(req), &res); 354 } 355 out1: 356 ahash_request_free(req); 357 return rc; 358 } 359 360 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash) 361 { 362 struct crypto_ahash *tfm; 363 int rc; 364 365 tfm = ima_alloc_atfm(hash->algo); 366 if (IS_ERR(tfm)) 367 return PTR_ERR(tfm); 368 369 rc = ima_calc_file_hash_atfm(file, hash, tfm); 370 371 ima_free_atfm(tfm); 372 373 return rc; 374 } 375 376 static int ima_calc_file_hash_tfm(struct file *file, 377 struct ima_digest_data *hash, 378 struct crypto_shash *tfm) 379 { 380 loff_t i_size, offset = 0; 381 char *rbuf; 382 int rc, read = 0; 383 struct { 384 struct shash_desc shash; 385 char ctx[crypto_shash_descsize(tfm)]; 386 } desc; 387 388 desc.shash.tfm = tfm; 389 desc.shash.flags = 0; 390 391 hash->length = crypto_shash_digestsize(tfm); 392 393 rc = crypto_shash_init(&desc.shash); 394 if (rc != 0) 395 return rc; 396 397 i_size = i_size_read(file_inode(file)); 398 399 if (i_size == 0) 400 goto out; 401 402 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL); 403 if (!rbuf) 404 return -ENOMEM; 405 406 if (!(file->f_mode & FMODE_READ)) { 407 file->f_mode |= FMODE_READ; 408 read = 1; 409 } 410 411 while (offset < i_size) { 412 int rbuf_len; 413 414 rbuf_len = ima_kernel_read(file, offset, rbuf, PAGE_SIZE); 415 if (rbuf_len < 0) { 416 rc = rbuf_len; 417 break; 418 } 419 if (rbuf_len == 0) 420 break; 421 offset += rbuf_len; 422 423 rc = crypto_shash_update(&desc.shash, rbuf, rbuf_len); 424 if (rc) 425 break; 426 } 427 if (read) 428 file->f_mode &= ~FMODE_READ; 429 kfree(rbuf); 430 out: 431 if (!rc) 432 rc = crypto_shash_final(&desc.shash, hash->digest); 433 return rc; 434 } 435 436 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash) 437 { 438 struct crypto_shash *tfm; 439 int rc; 440 441 tfm = ima_alloc_tfm(hash->algo); 442 if (IS_ERR(tfm)) 443 return PTR_ERR(tfm); 444 445 rc = ima_calc_file_hash_tfm(file, hash, tfm); 446 447 ima_free_tfm(tfm); 448 449 return rc; 450 } 451 452 /* 453 * ima_calc_file_hash - calculate file hash 454 * 455 * Asynchronous hash (ahash) allows using HW acceleration for calculating 456 * a hash. ahash performance varies for different data sizes on different 457 * crypto accelerators. shash performance might be better for smaller files. 458 * The 'ima.ahash_minsize' module parameter allows specifying the best 459 * minimum file size for using ahash on the system. 460 * 461 * If the ima.ahash_minsize parameter is not specified, this function uses 462 * shash for the hash calculation. If ahash fails, it falls back to using 463 * shash. 464 */ 465 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash) 466 { 467 loff_t i_size; 468 int rc; 469 470 i_size = i_size_read(file_inode(file)); 471 472 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) { 473 rc = ima_calc_file_ahash(file, hash); 474 if (!rc) 475 return 0; 476 } 477 478 return ima_calc_file_shash(file, hash); 479 } 480 481 /* 482 * Calculate the hash of template data 483 */ 484 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data, 485 struct ima_template_desc *td, 486 int num_fields, 487 struct ima_digest_data *hash, 488 struct crypto_shash *tfm) 489 { 490 struct { 491 struct shash_desc shash; 492 char ctx[crypto_shash_descsize(tfm)]; 493 } desc; 494 int rc, i; 495 496 desc.shash.tfm = tfm; 497 desc.shash.flags = 0; 498 499 hash->length = crypto_shash_digestsize(tfm); 500 501 rc = crypto_shash_init(&desc.shash); 502 if (rc != 0) 503 return rc; 504 505 for (i = 0; i < num_fields; i++) { 506 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 }; 507 u8 *data_to_hash = field_data[i].data; 508 u32 datalen = field_data[i].len; 509 510 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) { 511 rc = crypto_shash_update(&desc.shash, 512 (const u8 *) &field_data[i].len, 513 sizeof(field_data[i].len)); 514 if (rc) 515 break; 516 } else if (strcmp(td->fields[i]->field_id, "n") == 0) { 517 memcpy(buffer, data_to_hash, datalen); 518 data_to_hash = buffer; 519 datalen = IMA_EVENT_NAME_LEN_MAX + 1; 520 } 521 rc = crypto_shash_update(&desc.shash, data_to_hash, datalen); 522 if (rc) 523 break; 524 } 525 526 if (!rc) 527 rc = crypto_shash_final(&desc.shash, hash->digest); 528 529 return rc; 530 } 531 532 int ima_calc_field_array_hash(struct ima_field_data *field_data, 533 struct ima_template_desc *desc, int num_fields, 534 struct ima_digest_data *hash) 535 { 536 struct crypto_shash *tfm; 537 int rc; 538 539 tfm = ima_alloc_tfm(hash->algo); 540 if (IS_ERR(tfm)) 541 return PTR_ERR(tfm); 542 543 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields, 544 hash, tfm); 545 546 ima_free_tfm(tfm); 547 548 return rc; 549 } 550 551 static void __init ima_pcrread(int idx, u8 *pcr) 552 { 553 if (!ima_used_chip) 554 return; 555 556 if (tpm_pcr_read(TPM_ANY_NUM, idx, pcr) != 0) 557 pr_err("Error Communicating to TPM chip\n"); 558 } 559 560 /* 561 * Calculate the boot aggregate hash 562 */ 563 static int __init ima_calc_boot_aggregate_tfm(char *digest, 564 struct crypto_shash *tfm) 565 { 566 u8 pcr_i[TPM_DIGEST_SIZE]; 567 int rc, i; 568 struct { 569 struct shash_desc shash; 570 char ctx[crypto_shash_descsize(tfm)]; 571 } desc; 572 573 desc.shash.tfm = tfm; 574 desc.shash.flags = 0; 575 576 rc = crypto_shash_init(&desc.shash); 577 if (rc != 0) 578 return rc; 579 580 /* cumulative sha1 over tpm registers 0-7 */ 581 for (i = TPM_PCR0; i < TPM_PCR8; i++) { 582 ima_pcrread(i, pcr_i); 583 /* now accumulate with current aggregate */ 584 rc = crypto_shash_update(&desc.shash, pcr_i, TPM_DIGEST_SIZE); 585 } 586 if (!rc) 587 crypto_shash_final(&desc.shash, digest); 588 return rc; 589 } 590 591 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash) 592 { 593 struct crypto_shash *tfm; 594 int rc; 595 596 tfm = ima_alloc_tfm(hash->algo); 597 if (IS_ERR(tfm)) 598 return PTR_ERR(tfm); 599 600 hash->length = crypto_shash_digestsize(tfm); 601 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm); 602 603 ima_free_tfm(tfm); 604 605 return rc; 606 } 607