1 /* 2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation 3 * 4 * Authors: 5 * Mimi Zohar <zohar@us.ibm.com> 6 * Kylene Hall <kjhall@us.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, version 2 of the License. 11 * 12 * File: ima_crypto.c 13 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/moduleparam.h> 20 #include <linux/ratelimit.h> 21 #include <linux/file.h> 22 #include <linux/crypto.h> 23 #include <linux/scatterlist.h> 24 #include <linux/err.h> 25 #include <linux/slab.h> 26 #include <crypto/hash.h> 27 #include <crypto/hash_info.h> 28 #include "ima.h" 29 30 struct ahash_completion { 31 struct completion completion; 32 int err; 33 }; 34 35 /* minimum file size for ahash use */ 36 static unsigned long ima_ahash_minsize; 37 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644); 38 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use"); 39 40 /* default is 0 - 1 page. */ 41 static int ima_maxorder; 42 static unsigned int ima_bufsize = PAGE_SIZE; 43 44 static int param_set_bufsize(const char *val, const struct kernel_param *kp) 45 { 46 unsigned long long size; 47 int order; 48 49 size = memparse(val, NULL); 50 order = get_order(size); 51 if (order >= MAX_ORDER) 52 return -EINVAL; 53 ima_maxorder = order; 54 ima_bufsize = PAGE_SIZE << order; 55 return 0; 56 } 57 58 static struct kernel_param_ops param_ops_bufsize = { 59 .set = param_set_bufsize, 60 .get = param_get_uint, 61 }; 62 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int) 63 64 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644); 65 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size"); 66 67 static struct crypto_shash *ima_shash_tfm; 68 static struct crypto_ahash *ima_ahash_tfm; 69 70 /** 71 * ima_kernel_read - read file content 72 * 73 * This is a function for reading file content instead of kernel_read(). 74 * It does not perform locking checks to ensure it cannot be blocked. 75 * It does not perform security checks because it is irrelevant for IMA. 76 * 77 */ 78 static int ima_kernel_read(struct file *file, loff_t offset, 79 char *addr, unsigned long count) 80 { 81 mm_segment_t old_fs; 82 char __user *buf = addr; 83 ssize_t ret = -EINVAL; 84 85 if (!(file->f_mode & FMODE_READ)) 86 return -EBADF; 87 88 old_fs = get_fs(); 89 set_fs(get_ds()); 90 if (file->f_op->read) 91 ret = file->f_op->read(file, buf, count, &offset); 92 else if (file->f_op->aio_read) 93 ret = do_sync_read(file, buf, count, &offset); 94 else if (file->f_op->read_iter) 95 ret = new_sync_read(file, buf, count, &offset); 96 set_fs(old_fs); 97 return ret; 98 } 99 100 int __init ima_init_crypto(void) 101 { 102 long rc; 103 104 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0); 105 if (IS_ERR(ima_shash_tfm)) { 106 rc = PTR_ERR(ima_shash_tfm); 107 pr_err("Can not allocate %s (reason: %ld)\n", 108 hash_algo_name[ima_hash_algo], rc); 109 return rc; 110 } 111 return 0; 112 } 113 114 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo) 115 { 116 struct crypto_shash *tfm = ima_shash_tfm; 117 int rc; 118 119 if (algo < 0 || algo >= HASH_ALGO__LAST) 120 algo = ima_hash_algo; 121 122 if (algo != ima_hash_algo) { 123 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0); 124 if (IS_ERR(tfm)) { 125 rc = PTR_ERR(tfm); 126 pr_err("Can not allocate %s (reason: %d)\n", 127 hash_algo_name[algo], rc); 128 } 129 } 130 return tfm; 131 } 132 133 static void ima_free_tfm(struct crypto_shash *tfm) 134 { 135 if (tfm != ima_shash_tfm) 136 crypto_free_shash(tfm); 137 } 138 139 /** 140 * ima_alloc_pages() - Allocate contiguous pages. 141 * @max_size: Maximum amount of memory to allocate. 142 * @allocated_size: Returned size of actual allocation. 143 * @last_warn: Should the min_size allocation warn or not. 144 * 145 * Tries to do opportunistic allocation for memory first trying to allocate 146 * max_size amount of memory and then splitting that until zero order is 147 * reached. Allocation is tried without generating allocation warnings unless 148 * last_warn is set. Last_warn set affects only last allocation of zero order. 149 * 150 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL) 151 * 152 * Return pointer to allocated memory, or NULL on failure. 153 */ 154 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size, 155 int last_warn) 156 { 157 void *ptr; 158 int order = ima_maxorder; 159 gfp_t gfp_mask = __GFP_WAIT | __GFP_NOWARN | __GFP_NORETRY; 160 161 if (order) 162 order = min(get_order(max_size), order); 163 164 for (; order; order--) { 165 ptr = (void *)__get_free_pages(gfp_mask, order); 166 if (ptr) { 167 *allocated_size = PAGE_SIZE << order; 168 return ptr; 169 } 170 } 171 172 /* order is zero - one page */ 173 174 gfp_mask = GFP_KERNEL; 175 176 if (!last_warn) 177 gfp_mask |= __GFP_NOWARN; 178 179 ptr = (void *)__get_free_pages(gfp_mask, 0); 180 if (ptr) { 181 *allocated_size = PAGE_SIZE; 182 return ptr; 183 } 184 185 *allocated_size = 0; 186 return NULL; 187 } 188 189 /** 190 * ima_free_pages() - Free pages allocated by ima_alloc_pages(). 191 * @ptr: Pointer to allocated pages. 192 * @size: Size of allocated buffer. 193 */ 194 static void ima_free_pages(void *ptr, size_t size) 195 { 196 if (!ptr) 197 return; 198 free_pages((unsigned long)ptr, get_order(size)); 199 } 200 201 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo) 202 { 203 struct crypto_ahash *tfm = ima_ahash_tfm; 204 int rc; 205 206 if (algo < 0 || algo >= HASH_ALGO__LAST) 207 algo = ima_hash_algo; 208 209 if (algo != ima_hash_algo || !tfm) { 210 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0); 211 if (!IS_ERR(tfm)) { 212 if (algo == ima_hash_algo) 213 ima_ahash_tfm = tfm; 214 } else { 215 rc = PTR_ERR(tfm); 216 pr_err("Can not allocate %s (reason: %d)\n", 217 hash_algo_name[algo], rc); 218 } 219 } 220 return tfm; 221 } 222 223 static void ima_free_atfm(struct crypto_ahash *tfm) 224 { 225 if (tfm != ima_ahash_tfm) 226 crypto_free_ahash(tfm); 227 } 228 229 static void ahash_complete(struct crypto_async_request *req, int err) 230 { 231 struct ahash_completion *res = req->data; 232 233 if (err == -EINPROGRESS) 234 return; 235 res->err = err; 236 complete(&res->completion); 237 } 238 239 static int ahash_wait(int err, struct ahash_completion *res) 240 { 241 switch (err) { 242 case 0: 243 break; 244 case -EINPROGRESS: 245 case -EBUSY: 246 wait_for_completion(&res->completion); 247 reinit_completion(&res->completion); 248 err = res->err; 249 /* fall through */ 250 default: 251 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err); 252 } 253 254 return err; 255 } 256 257 static int ima_calc_file_hash_atfm(struct file *file, 258 struct ima_digest_data *hash, 259 struct crypto_ahash *tfm) 260 { 261 loff_t i_size, offset; 262 char *rbuf[2] = { NULL, }; 263 int rc, read = 0, rbuf_len, active = 0, ahash_rc = 0; 264 struct ahash_request *req; 265 struct scatterlist sg[1]; 266 struct ahash_completion res; 267 size_t rbuf_size[2]; 268 269 hash->length = crypto_ahash_digestsize(tfm); 270 271 req = ahash_request_alloc(tfm, GFP_KERNEL); 272 if (!req) 273 return -ENOMEM; 274 275 init_completion(&res.completion); 276 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | 277 CRYPTO_TFM_REQ_MAY_SLEEP, 278 ahash_complete, &res); 279 280 rc = ahash_wait(crypto_ahash_init(req), &res); 281 if (rc) 282 goto out1; 283 284 i_size = i_size_read(file_inode(file)); 285 286 if (i_size == 0) 287 goto out2; 288 289 /* 290 * Try to allocate maximum size of memory. 291 * Fail if even a single page cannot be allocated. 292 */ 293 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1); 294 if (!rbuf[0]) { 295 rc = -ENOMEM; 296 goto out1; 297 } 298 299 /* Only allocate one buffer if that is enough. */ 300 if (i_size > rbuf_size[0]) { 301 /* 302 * Try to allocate secondary buffer. If that fails fallback to 303 * using single buffering. Use previous memory allocation size 304 * as baseline for possible allocation size. 305 */ 306 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0], 307 &rbuf_size[1], 0); 308 } 309 310 if (!(file->f_mode & FMODE_READ)) { 311 file->f_mode |= FMODE_READ; 312 read = 1; 313 } 314 315 for (offset = 0; offset < i_size; offset += rbuf_len) { 316 if (!rbuf[1] && offset) { 317 /* Not using two buffers, and it is not the first 318 * read/request, wait for the completion of the 319 * previous ahash_update() request. 320 */ 321 rc = ahash_wait(ahash_rc, &res); 322 if (rc) 323 goto out3; 324 } 325 /* read buffer */ 326 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]); 327 rc = ima_kernel_read(file, offset, rbuf[active], rbuf_len); 328 if (rc != rbuf_len) 329 goto out3; 330 331 if (rbuf[1] && offset) { 332 /* Using two buffers, and it is not the first 333 * read/request, wait for the completion of the 334 * previous ahash_update() request. 335 */ 336 rc = ahash_wait(ahash_rc, &res); 337 if (rc) 338 goto out3; 339 } 340 341 sg_init_one(&sg[0], rbuf[active], rbuf_len); 342 ahash_request_set_crypt(req, sg, NULL, rbuf_len); 343 344 ahash_rc = crypto_ahash_update(req); 345 346 if (rbuf[1]) 347 active = !active; /* swap buffers, if we use two */ 348 } 349 /* wait for the last update request to complete */ 350 rc = ahash_wait(ahash_rc, &res); 351 out3: 352 if (read) 353 file->f_mode &= ~FMODE_READ; 354 ima_free_pages(rbuf[0], rbuf_size[0]); 355 ima_free_pages(rbuf[1], rbuf_size[1]); 356 out2: 357 if (!rc) { 358 ahash_request_set_crypt(req, NULL, hash->digest, 0); 359 rc = ahash_wait(crypto_ahash_final(req), &res); 360 } 361 out1: 362 ahash_request_free(req); 363 return rc; 364 } 365 366 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash) 367 { 368 struct crypto_ahash *tfm; 369 int rc; 370 371 tfm = ima_alloc_atfm(hash->algo); 372 if (IS_ERR(tfm)) 373 return PTR_ERR(tfm); 374 375 rc = ima_calc_file_hash_atfm(file, hash, tfm); 376 377 ima_free_atfm(tfm); 378 379 return rc; 380 } 381 382 static int ima_calc_file_hash_tfm(struct file *file, 383 struct ima_digest_data *hash, 384 struct crypto_shash *tfm) 385 { 386 loff_t i_size, offset = 0; 387 char *rbuf; 388 int rc, read = 0; 389 struct { 390 struct shash_desc shash; 391 char ctx[crypto_shash_descsize(tfm)]; 392 } desc; 393 394 desc.shash.tfm = tfm; 395 desc.shash.flags = 0; 396 397 hash->length = crypto_shash_digestsize(tfm); 398 399 rc = crypto_shash_init(&desc.shash); 400 if (rc != 0) 401 return rc; 402 403 i_size = i_size_read(file_inode(file)); 404 405 if (i_size == 0) 406 goto out; 407 408 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL); 409 if (!rbuf) 410 return -ENOMEM; 411 412 if (!(file->f_mode & FMODE_READ)) { 413 file->f_mode |= FMODE_READ; 414 read = 1; 415 } 416 417 while (offset < i_size) { 418 int rbuf_len; 419 420 rbuf_len = ima_kernel_read(file, offset, rbuf, PAGE_SIZE); 421 if (rbuf_len < 0) { 422 rc = rbuf_len; 423 break; 424 } 425 if (rbuf_len == 0) 426 break; 427 offset += rbuf_len; 428 429 rc = crypto_shash_update(&desc.shash, rbuf, rbuf_len); 430 if (rc) 431 break; 432 } 433 if (read) 434 file->f_mode &= ~FMODE_READ; 435 kfree(rbuf); 436 out: 437 if (!rc) 438 rc = crypto_shash_final(&desc.shash, hash->digest); 439 return rc; 440 } 441 442 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash) 443 { 444 struct crypto_shash *tfm; 445 int rc; 446 447 tfm = ima_alloc_tfm(hash->algo); 448 if (IS_ERR(tfm)) 449 return PTR_ERR(tfm); 450 451 rc = ima_calc_file_hash_tfm(file, hash, tfm); 452 453 ima_free_tfm(tfm); 454 455 return rc; 456 } 457 458 /* 459 * ima_calc_file_hash - calculate file hash 460 * 461 * Asynchronous hash (ahash) allows using HW acceleration for calculating 462 * a hash. ahash performance varies for different data sizes on different 463 * crypto accelerators. shash performance might be better for smaller files. 464 * The 'ima.ahash_minsize' module parameter allows specifying the best 465 * minimum file size for using ahash on the system. 466 * 467 * If the ima.ahash_minsize parameter is not specified, this function uses 468 * shash for the hash calculation. If ahash fails, it falls back to using 469 * shash. 470 */ 471 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash) 472 { 473 loff_t i_size; 474 int rc; 475 476 i_size = i_size_read(file_inode(file)); 477 478 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) { 479 rc = ima_calc_file_ahash(file, hash); 480 if (!rc) 481 return 0; 482 } 483 484 return ima_calc_file_shash(file, hash); 485 } 486 487 /* 488 * Calculate the hash of template data 489 */ 490 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data, 491 struct ima_template_desc *td, 492 int num_fields, 493 struct ima_digest_data *hash, 494 struct crypto_shash *tfm) 495 { 496 struct { 497 struct shash_desc shash; 498 char ctx[crypto_shash_descsize(tfm)]; 499 } desc; 500 int rc, i; 501 502 desc.shash.tfm = tfm; 503 desc.shash.flags = 0; 504 505 hash->length = crypto_shash_digestsize(tfm); 506 507 rc = crypto_shash_init(&desc.shash); 508 if (rc != 0) 509 return rc; 510 511 for (i = 0; i < num_fields; i++) { 512 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 }; 513 u8 *data_to_hash = field_data[i].data; 514 u32 datalen = field_data[i].len; 515 516 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) { 517 rc = crypto_shash_update(&desc.shash, 518 (const u8 *) &field_data[i].len, 519 sizeof(field_data[i].len)); 520 if (rc) 521 break; 522 } else if (strcmp(td->fields[i]->field_id, "n") == 0) { 523 memcpy(buffer, data_to_hash, datalen); 524 data_to_hash = buffer; 525 datalen = IMA_EVENT_NAME_LEN_MAX + 1; 526 } 527 rc = crypto_shash_update(&desc.shash, data_to_hash, datalen); 528 if (rc) 529 break; 530 } 531 532 if (!rc) 533 rc = crypto_shash_final(&desc.shash, hash->digest); 534 535 return rc; 536 } 537 538 int ima_calc_field_array_hash(struct ima_field_data *field_data, 539 struct ima_template_desc *desc, int num_fields, 540 struct ima_digest_data *hash) 541 { 542 struct crypto_shash *tfm; 543 int rc; 544 545 tfm = ima_alloc_tfm(hash->algo); 546 if (IS_ERR(tfm)) 547 return PTR_ERR(tfm); 548 549 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields, 550 hash, tfm); 551 552 ima_free_tfm(tfm); 553 554 return rc; 555 } 556 557 static void __init ima_pcrread(int idx, u8 *pcr) 558 { 559 if (!ima_used_chip) 560 return; 561 562 if (tpm_pcr_read(TPM_ANY_NUM, idx, pcr) != 0) 563 pr_err("Error Communicating to TPM chip\n"); 564 } 565 566 /* 567 * Calculate the boot aggregate hash 568 */ 569 static int __init ima_calc_boot_aggregate_tfm(char *digest, 570 struct crypto_shash *tfm) 571 { 572 u8 pcr_i[TPM_DIGEST_SIZE]; 573 int rc, i; 574 struct { 575 struct shash_desc shash; 576 char ctx[crypto_shash_descsize(tfm)]; 577 } desc; 578 579 desc.shash.tfm = tfm; 580 desc.shash.flags = 0; 581 582 rc = crypto_shash_init(&desc.shash); 583 if (rc != 0) 584 return rc; 585 586 /* cumulative sha1 over tpm registers 0-7 */ 587 for (i = TPM_PCR0; i < TPM_PCR8; i++) { 588 ima_pcrread(i, pcr_i); 589 /* now accumulate with current aggregate */ 590 rc = crypto_shash_update(&desc.shash, pcr_i, TPM_DIGEST_SIZE); 591 } 592 if (!rc) 593 crypto_shash_final(&desc.shash, digest); 594 return rc; 595 } 596 597 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash) 598 { 599 struct crypto_shash *tfm; 600 int rc; 601 602 tfm = ima_alloc_tfm(hash->algo); 603 if (IS_ERR(tfm)) 604 return PTR_ERR(tfm); 605 606 hash->length = crypto_shash_digestsize(tfm); 607 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm); 608 609 ima_free_tfm(tfm); 610 611 return rc; 612 } 613