xref: /linux/security/integrity/ima/ima_crypto.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4  *
5  * Authors:
6  * Mimi Zohar <zohar@us.ibm.com>
7  * Kylene Hall <kjhall@us.ibm.com>
8  *
9  * File: ima_crypto.c
10  *	Calculates md5/sha1 file hash, template hash, boot-aggreate hash
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/moduleparam.h>
17 #include <linux/ratelimit.h>
18 #include <linux/file.h>
19 #include <linux/crypto.h>
20 #include <linux/scatterlist.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 #include <crypto/hash.h>
24 
25 #include "ima.h"
26 
27 /* minimum file size for ahash use */
28 static unsigned long ima_ahash_minsize;
29 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
30 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
31 
32 /* default is 0 - 1 page. */
33 static int ima_maxorder;
34 static unsigned int ima_bufsize = PAGE_SIZE;
35 
36 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
37 {
38 	unsigned long long size;
39 	int order;
40 
41 	size = memparse(val, NULL);
42 	order = get_order(size);
43 	if (order >= MAX_ORDER)
44 		return -EINVAL;
45 	ima_maxorder = order;
46 	ima_bufsize = PAGE_SIZE << order;
47 	return 0;
48 }
49 
50 static const struct kernel_param_ops param_ops_bufsize = {
51 	.set = param_set_bufsize,
52 	.get = param_get_uint,
53 };
54 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
55 
56 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
57 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
58 
59 static struct crypto_shash *ima_shash_tfm;
60 static struct crypto_ahash *ima_ahash_tfm;
61 
62 int __init ima_init_crypto(void)
63 {
64 	long rc;
65 
66 	ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
67 	if (IS_ERR(ima_shash_tfm)) {
68 		rc = PTR_ERR(ima_shash_tfm);
69 		pr_err("Can not allocate %s (reason: %ld)\n",
70 		       hash_algo_name[ima_hash_algo], rc);
71 		return rc;
72 	}
73 	pr_info("Allocated hash algorithm: %s\n",
74 		hash_algo_name[ima_hash_algo]);
75 	return 0;
76 }
77 
78 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
79 {
80 	struct crypto_shash *tfm = ima_shash_tfm;
81 	int rc;
82 
83 	if (algo < 0 || algo >= HASH_ALGO__LAST)
84 		algo = ima_hash_algo;
85 
86 	if (algo != ima_hash_algo) {
87 		tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
88 		if (IS_ERR(tfm)) {
89 			rc = PTR_ERR(tfm);
90 			pr_err("Can not allocate %s (reason: %d)\n",
91 			       hash_algo_name[algo], rc);
92 		}
93 	}
94 	return tfm;
95 }
96 
97 static void ima_free_tfm(struct crypto_shash *tfm)
98 {
99 	if (tfm != ima_shash_tfm)
100 		crypto_free_shash(tfm);
101 }
102 
103 /**
104  * ima_alloc_pages() - Allocate contiguous pages.
105  * @max_size:       Maximum amount of memory to allocate.
106  * @allocated_size: Returned size of actual allocation.
107  * @last_warn:      Should the min_size allocation warn or not.
108  *
109  * Tries to do opportunistic allocation for memory first trying to allocate
110  * max_size amount of memory and then splitting that until zero order is
111  * reached. Allocation is tried without generating allocation warnings unless
112  * last_warn is set. Last_warn set affects only last allocation of zero order.
113  *
114  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
115  *
116  * Return pointer to allocated memory, or NULL on failure.
117  */
118 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
119 			     int last_warn)
120 {
121 	void *ptr;
122 	int order = ima_maxorder;
123 	gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
124 
125 	if (order)
126 		order = min(get_order(max_size), order);
127 
128 	for (; order; order--) {
129 		ptr = (void *)__get_free_pages(gfp_mask, order);
130 		if (ptr) {
131 			*allocated_size = PAGE_SIZE << order;
132 			return ptr;
133 		}
134 	}
135 
136 	/* order is zero - one page */
137 
138 	gfp_mask = GFP_KERNEL;
139 
140 	if (!last_warn)
141 		gfp_mask |= __GFP_NOWARN;
142 
143 	ptr = (void *)__get_free_pages(gfp_mask, 0);
144 	if (ptr) {
145 		*allocated_size = PAGE_SIZE;
146 		return ptr;
147 	}
148 
149 	*allocated_size = 0;
150 	return NULL;
151 }
152 
153 /**
154  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
155  * @ptr:  Pointer to allocated pages.
156  * @size: Size of allocated buffer.
157  */
158 static void ima_free_pages(void *ptr, size_t size)
159 {
160 	if (!ptr)
161 		return;
162 	free_pages((unsigned long)ptr, get_order(size));
163 }
164 
165 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
166 {
167 	struct crypto_ahash *tfm = ima_ahash_tfm;
168 	int rc;
169 
170 	if (algo < 0 || algo >= HASH_ALGO__LAST)
171 		algo = ima_hash_algo;
172 
173 	if (algo != ima_hash_algo || !tfm) {
174 		tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
175 		if (!IS_ERR(tfm)) {
176 			if (algo == ima_hash_algo)
177 				ima_ahash_tfm = tfm;
178 		} else {
179 			rc = PTR_ERR(tfm);
180 			pr_err("Can not allocate %s (reason: %d)\n",
181 			       hash_algo_name[algo], rc);
182 		}
183 	}
184 	return tfm;
185 }
186 
187 static void ima_free_atfm(struct crypto_ahash *tfm)
188 {
189 	if (tfm != ima_ahash_tfm)
190 		crypto_free_ahash(tfm);
191 }
192 
193 static inline int ahash_wait(int err, struct crypto_wait *wait)
194 {
195 
196 	err = crypto_wait_req(err, wait);
197 
198 	if (err)
199 		pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
200 
201 	return err;
202 }
203 
204 static int ima_calc_file_hash_atfm(struct file *file,
205 				   struct ima_digest_data *hash,
206 				   struct crypto_ahash *tfm)
207 {
208 	loff_t i_size, offset;
209 	char *rbuf[2] = { NULL, };
210 	int rc, rbuf_len, active = 0, ahash_rc = 0;
211 	struct ahash_request *req;
212 	struct scatterlist sg[1];
213 	struct crypto_wait wait;
214 	size_t rbuf_size[2];
215 
216 	hash->length = crypto_ahash_digestsize(tfm);
217 
218 	req = ahash_request_alloc(tfm, GFP_KERNEL);
219 	if (!req)
220 		return -ENOMEM;
221 
222 	crypto_init_wait(&wait);
223 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
224 				   CRYPTO_TFM_REQ_MAY_SLEEP,
225 				   crypto_req_done, &wait);
226 
227 	rc = ahash_wait(crypto_ahash_init(req), &wait);
228 	if (rc)
229 		goto out1;
230 
231 	i_size = i_size_read(file_inode(file));
232 
233 	if (i_size == 0)
234 		goto out2;
235 
236 	/*
237 	 * Try to allocate maximum size of memory.
238 	 * Fail if even a single page cannot be allocated.
239 	 */
240 	rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
241 	if (!rbuf[0]) {
242 		rc = -ENOMEM;
243 		goto out1;
244 	}
245 
246 	/* Only allocate one buffer if that is enough. */
247 	if (i_size > rbuf_size[0]) {
248 		/*
249 		 * Try to allocate secondary buffer. If that fails fallback to
250 		 * using single buffering. Use previous memory allocation size
251 		 * as baseline for possible allocation size.
252 		 */
253 		rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
254 					  &rbuf_size[1], 0);
255 	}
256 
257 	for (offset = 0; offset < i_size; offset += rbuf_len) {
258 		if (!rbuf[1] && offset) {
259 			/* Not using two buffers, and it is not the first
260 			 * read/request, wait for the completion of the
261 			 * previous ahash_update() request.
262 			 */
263 			rc = ahash_wait(ahash_rc, &wait);
264 			if (rc)
265 				goto out3;
266 		}
267 		/* read buffer */
268 		rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
269 		rc = integrity_kernel_read(file, offset, rbuf[active],
270 					   rbuf_len);
271 		if (rc != rbuf_len) {
272 			if (rc >= 0)
273 				rc = -EINVAL;
274 			/*
275 			 * Forward current rc, do not overwrite with return value
276 			 * from ahash_wait()
277 			 */
278 			ahash_wait(ahash_rc, &wait);
279 			goto out3;
280 		}
281 
282 		if (rbuf[1] && offset) {
283 			/* Using two buffers, and it is not the first
284 			 * read/request, wait for the completion of the
285 			 * previous ahash_update() request.
286 			 */
287 			rc = ahash_wait(ahash_rc, &wait);
288 			if (rc)
289 				goto out3;
290 		}
291 
292 		sg_init_one(&sg[0], rbuf[active], rbuf_len);
293 		ahash_request_set_crypt(req, sg, NULL, rbuf_len);
294 
295 		ahash_rc = crypto_ahash_update(req);
296 
297 		if (rbuf[1])
298 			active = !active; /* swap buffers, if we use two */
299 	}
300 	/* wait for the last update request to complete */
301 	rc = ahash_wait(ahash_rc, &wait);
302 out3:
303 	ima_free_pages(rbuf[0], rbuf_size[0]);
304 	ima_free_pages(rbuf[1], rbuf_size[1]);
305 out2:
306 	if (!rc) {
307 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
308 		rc = ahash_wait(crypto_ahash_final(req), &wait);
309 	}
310 out1:
311 	ahash_request_free(req);
312 	return rc;
313 }
314 
315 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
316 {
317 	struct crypto_ahash *tfm;
318 	int rc;
319 
320 	tfm = ima_alloc_atfm(hash->algo);
321 	if (IS_ERR(tfm))
322 		return PTR_ERR(tfm);
323 
324 	rc = ima_calc_file_hash_atfm(file, hash, tfm);
325 
326 	ima_free_atfm(tfm);
327 
328 	return rc;
329 }
330 
331 static int ima_calc_file_hash_tfm(struct file *file,
332 				  struct ima_digest_data *hash,
333 				  struct crypto_shash *tfm)
334 {
335 	loff_t i_size, offset = 0;
336 	char *rbuf;
337 	int rc;
338 	SHASH_DESC_ON_STACK(shash, tfm);
339 
340 	shash->tfm = tfm;
341 
342 	hash->length = crypto_shash_digestsize(tfm);
343 
344 	rc = crypto_shash_init(shash);
345 	if (rc != 0)
346 		return rc;
347 
348 	i_size = i_size_read(file_inode(file));
349 
350 	if (i_size == 0)
351 		goto out;
352 
353 	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
354 	if (!rbuf)
355 		return -ENOMEM;
356 
357 	while (offset < i_size) {
358 		int rbuf_len;
359 
360 		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
361 		if (rbuf_len < 0) {
362 			rc = rbuf_len;
363 			break;
364 		}
365 		if (rbuf_len == 0) {	/* unexpected EOF */
366 			rc = -EINVAL;
367 			break;
368 		}
369 		offset += rbuf_len;
370 
371 		rc = crypto_shash_update(shash, rbuf, rbuf_len);
372 		if (rc)
373 			break;
374 	}
375 	kfree(rbuf);
376 out:
377 	if (!rc)
378 		rc = crypto_shash_final(shash, hash->digest);
379 	return rc;
380 }
381 
382 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
383 {
384 	struct crypto_shash *tfm;
385 	int rc;
386 
387 	tfm = ima_alloc_tfm(hash->algo);
388 	if (IS_ERR(tfm))
389 		return PTR_ERR(tfm);
390 
391 	rc = ima_calc_file_hash_tfm(file, hash, tfm);
392 
393 	ima_free_tfm(tfm);
394 
395 	return rc;
396 }
397 
398 /*
399  * ima_calc_file_hash - calculate file hash
400  *
401  * Asynchronous hash (ahash) allows using HW acceleration for calculating
402  * a hash. ahash performance varies for different data sizes on different
403  * crypto accelerators. shash performance might be better for smaller files.
404  * The 'ima.ahash_minsize' module parameter allows specifying the best
405  * minimum file size for using ahash on the system.
406  *
407  * If the ima.ahash_minsize parameter is not specified, this function uses
408  * shash for the hash calculation.  If ahash fails, it falls back to using
409  * shash.
410  */
411 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
412 {
413 	loff_t i_size;
414 	int rc;
415 	struct file *f = file;
416 	bool new_file_instance = false, modified_flags = false;
417 
418 	/*
419 	 * For consistency, fail file's opened with the O_DIRECT flag on
420 	 * filesystems mounted with/without DAX option.
421 	 */
422 	if (file->f_flags & O_DIRECT) {
423 		hash->length = hash_digest_size[ima_hash_algo];
424 		hash->algo = ima_hash_algo;
425 		return -EINVAL;
426 	}
427 
428 	/* Open a new file instance in O_RDONLY if we cannot read */
429 	if (!(file->f_mode & FMODE_READ)) {
430 		int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
431 				O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
432 		flags |= O_RDONLY;
433 		f = dentry_open(&file->f_path, flags, file->f_cred);
434 		if (IS_ERR(f)) {
435 			/*
436 			 * Cannot open the file again, lets modify f_flags
437 			 * of original and continue
438 			 */
439 			pr_info_ratelimited("Unable to reopen file for reading.\n");
440 			f = file;
441 			f->f_flags |= FMODE_READ;
442 			modified_flags = true;
443 		} else {
444 			new_file_instance = true;
445 		}
446 	}
447 
448 	i_size = i_size_read(file_inode(f));
449 
450 	if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
451 		rc = ima_calc_file_ahash(f, hash);
452 		if (!rc)
453 			goto out;
454 	}
455 
456 	rc = ima_calc_file_shash(f, hash);
457 out:
458 	if (new_file_instance)
459 		fput(f);
460 	else if (modified_flags)
461 		f->f_flags &= ~FMODE_READ;
462 	return rc;
463 }
464 
465 /*
466  * Calculate the hash of template data
467  */
468 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
469 					 struct ima_template_desc *td,
470 					 int num_fields,
471 					 struct ima_digest_data *hash,
472 					 struct crypto_shash *tfm)
473 {
474 	SHASH_DESC_ON_STACK(shash, tfm);
475 	int rc, i;
476 
477 	shash->tfm = tfm;
478 
479 	hash->length = crypto_shash_digestsize(tfm);
480 
481 	rc = crypto_shash_init(shash);
482 	if (rc != 0)
483 		return rc;
484 
485 	for (i = 0; i < num_fields; i++) {
486 		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
487 		u8 *data_to_hash = field_data[i].data;
488 		u32 datalen = field_data[i].len;
489 		u32 datalen_to_hash =
490 		    !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
491 
492 		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
493 			rc = crypto_shash_update(shash,
494 						(const u8 *) &datalen_to_hash,
495 						sizeof(datalen_to_hash));
496 			if (rc)
497 				break;
498 		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
499 			memcpy(buffer, data_to_hash, datalen);
500 			data_to_hash = buffer;
501 			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
502 		}
503 		rc = crypto_shash_update(shash, data_to_hash, datalen);
504 		if (rc)
505 			break;
506 	}
507 
508 	if (!rc)
509 		rc = crypto_shash_final(shash, hash->digest);
510 
511 	return rc;
512 }
513 
514 int ima_calc_field_array_hash(struct ima_field_data *field_data,
515 			      struct ima_template_desc *desc, int num_fields,
516 			      struct ima_digest_data *hash)
517 {
518 	struct crypto_shash *tfm;
519 	int rc;
520 
521 	tfm = ima_alloc_tfm(hash->algo);
522 	if (IS_ERR(tfm))
523 		return PTR_ERR(tfm);
524 
525 	rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
526 					   hash, tfm);
527 
528 	ima_free_tfm(tfm);
529 
530 	return rc;
531 }
532 
533 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
534 				  struct ima_digest_data *hash,
535 				  struct crypto_ahash *tfm)
536 {
537 	struct ahash_request *req;
538 	struct scatterlist sg;
539 	struct crypto_wait wait;
540 	int rc, ahash_rc = 0;
541 
542 	hash->length = crypto_ahash_digestsize(tfm);
543 
544 	req = ahash_request_alloc(tfm, GFP_KERNEL);
545 	if (!req)
546 		return -ENOMEM;
547 
548 	crypto_init_wait(&wait);
549 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
550 				   CRYPTO_TFM_REQ_MAY_SLEEP,
551 				   crypto_req_done, &wait);
552 
553 	rc = ahash_wait(crypto_ahash_init(req), &wait);
554 	if (rc)
555 		goto out;
556 
557 	sg_init_one(&sg, buf, len);
558 	ahash_request_set_crypt(req, &sg, NULL, len);
559 
560 	ahash_rc = crypto_ahash_update(req);
561 
562 	/* wait for the update request to complete */
563 	rc = ahash_wait(ahash_rc, &wait);
564 	if (!rc) {
565 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
566 		rc = ahash_wait(crypto_ahash_final(req), &wait);
567 	}
568 out:
569 	ahash_request_free(req);
570 	return rc;
571 }
572 
573 static int calc_buffer_ahash(const void *buf, loff_t len,
574 			     struct ima_digest_data *hash)
575 {
576 	struct crypto_ahash *tfm;
577 	int rc;
578 
579 	tfm = ima_alloc_atfm(hash->algo);
580 	if (IS_ERR(tfm))
581 		return PTR_ERR(tfm);
582 
583 	rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
584 
585 	ima_free_atfm(tfm);
586 
587 	return rc;
588 }
589 
590 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
591 				struct ima_digest_data *hash,
592 				struct crypto_shash *tfm)
593 {
594 	SHASH_DESC_ON_STACK(shash, tfm);
595 	unsigned int len;
596 	int rc;
597 
598 	shash->tfm = tfm;
599 
600 	hash->length = crypto_shash_digestsize(tfm);
601 
602 	rc = crypto_shash_init(shash);
603 	if (rc != 0)
604 		return rc;
605 
606 	while (size) {
607 		len = size < PAGE_SIZE ? size : PAGE_SIZE;
608 		rc = crypto_shash_update(shash, buf, len);
609 		if (rc)
610 			break;
611 		buf += len;
612 		size -= len;
613 	}
614 
615 	if (!rc)
616 		rc = crypto_shash_final(shash, hash->digest);
617 	return rc;
618 }
619 
620 static int calc_buffer_shash(const void *buf, loff_t len,
621 			     struct ima_digest_data *hash)
622 {
623 	struct crypto_shash *tfm;
624 	int rc;
625 
626 	tfm = ima_alloc_tfm(hash->algo);
627 	if (IS_ERR(tfm))
628 		return PTR_ERR(tfm);
629 
630 	rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
631 
632 	ima_free_tfm(tfm);
633 	return rc;
634 }
635 
636 int ima_calc_buffer_hash(const void *buf, loff_t len,
637 			 struct ima_digest_data *hash)
638 {
639 	int rc;
640 
641 	if (ima_ahash_minsize && len >= ima_ahash_minsize) {
642 		rc = calc_buffer_ahash(buf, len, hash);
643 		if (!rc)
644 			return 0;
645 	}
646 
647 	return calc_buffer_shash(buf, len, hash);
648 }
649 
650 static void __init ima_pcrread(u32 idx, struct tpm_digest *d)
651 {
652 	if (!ima_tpm_chip)
653 		return;
654 
655 	if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
656 		pr_err("Error Communicating to TPM chip\n");
657 }
658 
659 /*
660  * Calculate the boot aggregate hash
661  */
662 static int __init ima_calc_boot_aggregate_tfm(char *digest,
663 					      struct crypto_shash *tfm)
664 {
665 	struct tpm_digest d = { .alg_id = TPM_ALG_SHA1, .digest = {0} };
666 	int rc;
667 	u32 i;
668 	SHASH_DESC_ON_STACK(shash, tfm);
669 
670 	shash->tfm = tfm;
671 
672 	rc = crypto_shash_init(shash);
673 	if (rc != 0)
674 		return rc;
675 
676 	/* cumulative sha1 over tpm registers 0-7 */
677 	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
678 		ima_pcrread(i, &d);
679 		/* now accumulate with current aggregate */
680 		rc = crypto_shash_update(shash, d.digest, TPM_DIGEST_SIZE);
681 	}
682 	if (!rc)
683 		crypto_shash_final(shash, digest);
684 	return rc;
685 }
686 
687 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
688 {
689 	struct crypto_shash *tfm;
690 	int rc;
691 
692 	tfm = ima_alloc_tfm(hash->algo);
693 	if (IS_ERR(tfm))
694 		return PTR_ERR(tfm);
695 
696 	hash->length = crypto_shash_digestsize(tfm);
697 	rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
698 
699 	ima_free_tfm(tfm);
700 
701 	return rc;
702 }
703