1 /* Common capabilities, needed by capability.o. 2 * 3 * This program is free software; you can redistribute it and/or modify 4 * it under the terms of the GNU General Public License as published by 5 * the Free Software Foundation; either version 2 of the License, or 6 * (at your option) any later version. 7 * 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/audit.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/lsm_hooks.h> 16 #include <linux/file.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/skbuff.h> 22 #include <linux/netlink.h> 23 #include <linux/ptrace.h> 24 #include <linux/xattr.h> 25 #include <linux/hugetlb.h> 26 #include <linux/mount.h> 27 #include <linux/sched.h> 28 #include <linux/prctl.h> 29 #include <linux/securebits.h> 30 #include <linux/user_namespace.h> 31 #include <linux/binfmts.h> 32 #include <linux/personality.h> 33 34 /* 35 * If a non-root user executes a setuid-root binary in 36 * !secure(SECURE_NOROOT) mode, then we raise capabilities. 37 * However if fE is also set, then the intent is for only 38 * the file capabilities to be applied, and the setuid-root 39 * bit is left on either to change the uid (plausible) or 40 * to get full privilege on a kernel without file capabilities 41 * support. So in that case we do not raise capabilities. 42 * 43 * Warn if that happens, once per boot. 44 */ 45 static void warn_setuid_and_fcaps_mixed(const char *fname) 46 { 47 static int warned; 48 if (!warned) { 49 printk(KERN_INFO "warning: `%s' has both setuid-root and" 50 " effective capabilities. Therefore not raising all" 51 " capabilities.\n", fname); 52 warned = 1; 53 } 54 } 55 56 /** 57 * cap_capable - Determine whether a task has a particular effective capability 58 * @cred: The credentials to use 59 * @ns: The user namespace in which we need the capability 60 * @cap: The capability to check for 61 * @audit: Whether to write an audit message or not 62 * 63 * Determine whether the nominated task has the specified capability amongst 64 * its effective set, returning 0 if it does, -ve if it does not. 65 * 66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() 67 * and has_capability() functions. That is, it has the reverse semantics: 68 * cap_has_capability() returns 0 when a task has a capability, but the 69 * kernel's capable() and has_capability() returns 1 for this case. 70 */ 71 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, 72 int cap, int audit) 73 { 74 struct user_namespace *ns = targ_ns; 75 76 /* See if cred has the capability in the target user namespace 77 * by examining the target user namespace and all of the target 78 * user namespace's parents. 79 */ 80 for (;;) { 81 /* Do we have the necessary capabilities? */ 82 if (ns == cred->user_ns) 83 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; 84 85 /* 86 * If we're already at a lower level than we're looking for, 87 * we're done searching. 88 */ 89 if (ns->level <= cred->user_ns->level) 90 return -EPERM; 91 92 /* 93 * The owner of the user namespace in the parent of the 94 * user namespace has all caps. 95 */ 96 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) 97 return 0; 98 99 /* 100 * If you have a capability in a parent user ns, then you have 101 * it over all children user namespaces as well. 102 */ 103 ns = ns->parent; 104 } 105 106 /* We never get here */ 107 } 108 109 /** 110 * cap_settime - Determine whether the current process may set the system clock 111 * @ts: The time to set 112 * @tz: The timezone to set 113 * 114 * Determine whether the current process may set the system clock and timezone 115 * information, returning 0 if permission granted, -ve if denied. 116 */ 117 int cap_settime(const struct timespec64 *ts, const struct timezone *tz) 118 { 119 if (!capable(CAP_SYS_TIME)) 120 return -EPERM; 121 return 0; 122 } 123 124 /** 125 * cap_ptrace_access_check - Determine whether the current process may access 126 * another 127 * @child: The process to be accessed 128 * @mode: The mode of attachment. 129 * 130 * If we are in the same or an ancestor user_ns and have all the target 131 * task's capabilities, then ptrace access is allowed. 132 * If we have the ptrace capability to the target user_ns, then ptrace 133 * access is allowed. 134 * Else denied. 135 * 136 * Determine whether a process may access another, returning 0 if permission 137 * granted, -ve if denied. 138 */ 139 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) 140 { 141 int ret = 0; 142 const struct cred *cred, *child_cred; 143 const kernel_cap_t *caller_caps; 144 145 rcu_read_lock(); 146 cred = current_cred(); 147 child_cred = __task_cred(child); 148 if (mode & PTRACE_MODE_FSCREDS) 149 caller_caps = &cred->cap_effective; 150 else 151 caller_caps = &cred->cap_permitted; 152 if (cred->user_ns == child_cred->user_ns && 153 cap_issubset(child_cred->cap_permitted, *caller_caps)) 154 goto out; 155 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) 156 goto out; 157 ret = -EPERM; 158 out: 159 rcu_read_unlock(); 160 return ret; 161 } 162 163 /** 164 * cap_ptrace_traceme - Determine whether another process may trace the current 165 * @parent: The task proposed to be the tracer 166 * 167 * If parent is in the same or an ancestor user_ns and has all current's 168 * capabilities, then ptrace access is allowed. 169 * If parent has the ptrace capability to current's user_ns, then ptrace 170 * access is allowed. 171 * Else denied. 172 * 173 * Determine whether the nominated task is permitted to trace the current 174 * process, returning 0 if permission is granted, -ve if denied. 175 */ 176 int cap_ptrace_traceme(struct task_struct *parent) 177 { 178 int ret = 0; 179 const struct cred *cred, *child_cred; 180 181 rcu_read_lock(); 182 cred = __task_cred(parent); 183 child_cred = current_cred(); 184 if (cred->user_ns == child_cred->user_ns && 185 cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) 186 goto out; 187 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) 188 goto out; 189 ret = -EPERM; 190 out: 191 rcu_read_unlock(); 192 return ret; 193 } 194 195 /** 196 * cap_capget - Retrieve a task's capability sets 197 * @target: The task from which to retrieve the capability sets 198 * @effective: The place to record the effective set 199 * @inheritable: The place to record the inheritable set 200 * @permitted: The place to record the permitted set 201 * 202 * This function retrieves the capabilities of the nominated task and returns 203 * them to the caller. 204 */ 205 int cap_capget(struct task_struct *target, kernel_cap_t *effective, 206 kernel_cap_t *inheritable, kernel_cap_t *permitted) 207 { 208 const struct cred *cred; 209 210 /* Derived from kernel/capability.c:sys_capget. */ 211 rcu_read_lock(); 212 cred = __task_cred(target); 213 *effective = cred->cap_effective; 214 *inheritable = cred->cap_inheritable; 215 *permitted = cred->cap_permitted; 216 rcu_read_unlock(); 217 return 0; 218 } 219 220 /* 221 * Determine whether the inheritable capabilities are limited to the old 222 * permitted set. Returns 1 if they are limited, 0 if they are not. 223 */ 224 static inline int cap_inh_is_capped(void) 225 { 226 227 /* they are so limited unless the current task has the CAP_SETPCAP 228 * capability 229 */ 230 if (cap_capable(current_cred(), current_cred()->user_ns, 231 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0) 232 return 0; 233 return 1; 234 } 235 236 /** 237 * cap_capset - Validate and apply proposed changes to current's capabilities 238 * @new: The proposed new credentials; alterations should be made here 239 * @old: The current task's current credentials 240 * @effective: A pointer to the proposed new effective capabilities set 241 * @inheritable: A pointer to the proposed new inheritable capabilities set 242 * @permitted: A pointer to the proposed new permitted capabilities set 243 * 244 * This function validates and applies a proposed mass change to the current 245 * process's capability sets. The changes are made to the proposed new 246 * credentials, and assuming no error, will be committed by the caller of LSM. 247 */ 248 int cap_capset(struct cred *new, 249 const struct cred *old, 250 const kernel_cap_t *effective, 251 const kernel_cap_t *inheritable, 252 const kernel_cap_t *permitted) 253 { 254 if (cap_inh_is_capped() && 255 !cap_issubset(*inheritable, 256 cap_combine(old->cap_inheritable, 257 old->cap_permitted))) 258 /* incapable of using this inheritable set */ 259 return -EPERM; 260 261 if (!cap_issubset(*inheritable, 262 cap_combine(old->cap_inheritable, 263 old->cap_bset))) 264 /* no new pI capabilities outside bounding set */ 265 return -EPERM; 266 267 /* verify restrictions on target's new Permitted set */ 268 if (!cap_issubset(*permitted, old->cap_permitted)) 269 return -EPERM; 270 271 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ 272 if (!cap_issubset(*effective, *permitted)) 273 return -EPERM; 274 275 new->cap_effective = *effective; 276 new->cap_inheritable = *inheritable; 277 new->cap_permitted = *permitted; 278 279 /* 280 * Mask off ambient bits that are no longer both permitted and 281 * inheritable. 282 */ 283 new->cap_ambient = cap_intersect(new->cap_ambient, 284 cap_intersect(*permitted, 285 *inheritable)); 286 if (WARN_ON(!cap_ambient_invariant_ok(new))) 287 return -EINVAL; 288 return 0; 289 } 290 291 /** 292 * cap_inode_need_killpriv - Determine if inode change affects privileges 293 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV 294 * 295 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV 296 * affects the security markings on that inode, and if it is, should 297 * inode_killpriv() be invoked or the change rejected. 298 * 299 * Returns 1 if security.capability has a value, meaning inode_killpriv() 300 * is required, 0 otherwise, meaning inode_killpriv() is not required. 301 */ 302 int cap_inode_need_killpriv(struct dentry *dentry) 303 { 304 struct inode *inode = d_backing_inode(dentry); 305 int error; 306 307 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0); 308 return error > 0; 309 } 310 311 /** 312 * cap_inode_killpriv - Erase the security markings on an inode 313 * @dentry: The inode/dentry to alter 314 * 315 * Erase the privilege-enhancing security markings on an inode. 316 * 317 * Returns 0 if successful, -ve on error. 318 */ 319 int cap_inode_killpriv(struct dentry *dentry) 320 { 321 int error; 322 323 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS); 324 if (error == -EOPNOTSUPP) 325 error = 0; 326 return error; 327 } 328 329 static bool rootid_owns_currentns(kuid_t kroot) 330 { 331 struct user_namespace *ns; 332 333 if (!uid_valid(kroot)) 334 return false; 335 336 for (ns = current_user_ns(); ; ns = ns->parent) { 337 if (from_kuid(ns, kroot) == 0) 338 return true; 339 if (ns == &init_user_ns) 340 break; 341 } 342 343 return false; 344 } 345 346 static __u32 sansflags(__u32 m) 347 { 348 return m & ~VFS_CAP_FLAGS_EFFECTIVE; 349 } 350 351 static bool is_v2header(size_t size, const struct vfs_cap_data *cap) 352 { 353 if (size != XATTR_CAPS_SZ_2) 354 return false; 355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2; 356 } 357 358 static bool is_v3header(size_t size, const struct vfs_cap_data *cap) 359 { 360 if (size != XATTR_CAPS_SZ_3) 361 return false; 362 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3; 363 } 364 365 /* 366 * getsecurity: We are called for security.* before any attempt to read the 367 * xattr from the inode itself. 368 * 369 * This gives us a chance to read the on-disk value and convert it. If we 370 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler. 371 * 372 * Note we are not called by vfs_getxattr_alloc(), but that is only called 373 * by the integrity subsystem, which really wants the unconverted values - 374 * so that's good. 375 */ 376 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer, 377 bool alloc) 378 { 379 int size, ret; 380 kuid_t kroot; 381 uid_t root, mappedroot; 382 char *tmpbuf = NULL; 383 struct vfs_cap_data *cap; 384 struct vfs_ns_cap_data *nscap; 385 struct dentry *dentry; 386 struct user_namespace *fs_ns; 387 388 if (strcmp(name, "capability") != 0) 389 return -EOPNOTSUPP; 390 391 dentry = d_find_alias(inode); 392 if (!dentry) 393 return -EINVAL; 394 395 size = sizeof(struct vfs_ns_cap_data); 396 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS, 397 &tmpbuf, size, GFP_NOFS); 398 dput(dentry); 399 400 if (ret < 0) 401 return ret; 402 403 fs_ns = inode->i_sb->s_user_ns; 404 cap = (struct vfs_cap_data *) tmpbuf; 405 if (is_v2header((size_t) ret, cap)) { 406 /* If this is sizeof(vfs_cap_data) then we're ok with the 407 * on-disk value, so return that. */ 408 if (alloc) 409 *buffer = tmpbuf; 410 else 411 kfree(tmpbuf); 412 return ret; 413 } else if (!is_v3header((size_t) ret, cap)) { 414 kfree(tmpbuf); 415 return -EINVAL; 416 } 417 418 nscap = (struct vfs_ns_cap_data *) tmpbuf; 419 root = le32_to_cpu(nscap->rootid); 420 kroot = make_kuid(fs_ns, root); 421 422 /* If the root kuid maps to a valid uid in current ns, then return 423 * this as a nscap. */ 424 mappedroot = from_kuid(current_user_ns(), kroot); 425 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) { 426 if (alloc) { 427 *buffer = tmpbuf; 428 nscap->rootid = cpu_to_le32(mappedroot); 429 } else 430 kfree(tmpbuf); 431 return size; 432 } 433 434 if (!rootid_owns_currentns(kroot)) { 435 kfree(tmpbuf); 436 return -EOPNOTSUPP; 437 } 438 439 /* This comes from a parent namespace. Return as a v2 capability */ 440 size = sizeof(struct vfs_cap_data); 441 if (alloc) { 442 *buffer = kmalloc(size, GFP_ATOMIC); 443 if (*buffer) { 444 struct vfs_cap_data *cap = *buffer; 445 __le32 nsmagic, magic; 446 magic = VFS_CAP_REVISION_2; 447 nsmagic = le32_to_cpu(nscap->magic_etc); 448 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE) 449 magic |= VFS_CAP_FLAGS_EFFECTIVE; 450 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 451 cap->magic_etc = cpu_to_le32(magic); 452 } 453 } 454 kfree(tmpbuf); 455 return size; 456 } 457 458 static kuid_t rootid_from_xattr(const void *value, size_t size, 459 struct user_namespace *task_ns) 460 { 461 const struct vfs_ns_cap_data *nscap = value; 462 uid_t rootid = 0; 463 464 if (size == XATTR_CAPS_SZ_3) 465 rootid = le32_to_cpu(nscap->rootid); 466 467 return make_kuid(task_ns, rootid); 468 } 469 470 static bool validheader(size_t size, const struct vfs_cap_data *cap) 471 { 472 return is_v2header(size, cap) || is_v3header(size, cap); 473 } 474 475 /* 476 * User requested a write of security.capability. If needed, update the 477 * xattr to change from v2 to v3, or to fixup the v3 rootid. 478 * 479 * If all is ok, we return the new size, on error return < 0. 480 */ 481 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size) 482 { 483 struct vfs_ns_cap_data *nscap; 484 uid_t nsrootid; 485 const struct vfs_cap_data *cap = *ivalue; 486 __u32 magic, nsmagic; 487 struct inode *inode = d_backing_inode(dentry); 488 struct user_namespace *task_ns = current_user_ns(), 489 *fs_ns = inode->i_sb->s_user_ns; 490 kuid_t rootid; 491 size_t newsize; 492 493 if (!*ivalue) 494 return -EINVAL; 495 if (!validheader(size, cap)) 496 return -EINVAL; 497 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) 498 return -EPERM; 499 if (size == XATTR_CAPS_SZ_2) 500 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP)) 501 /* user is privileged, just write the v2 */ 502 return size; 503 504 rootid = rootid_from_xattr(*ivalue, size, task_ns); 505 if (!uid_valid(rootid)) 506 return -EINVAL; 507 508 nsrootid = from_kuid(fs_ns, rootid); 509 if (nsrootid == -1) 510 return -EINVAL; 511 512 newsize = sizeof(struct vfs_ns_cap_data); 513 nscap = kmalloc(newsize, GFP_ATOMIC); 514 if (!nscap) 515 return -ENOMEM; 516 nscap->rootid = cpu_to_le32(nsrootid); 517 nsmagic = VFS_CAP_REVISION_3; 518 magic = le32_to_cpu(cap->magic_etc); 519 if (magic & VFS_CAP_FLAGS_EFFECTIVE) 520 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; 521 nscap->magic_etc = cpu_to_le32(nsmagic); 522 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 523 524 kvfree(*ivalue); 525 *ivalue = nscap; 526 return newsize; 527 } 528 529 /* 530 * Calculate the new process capability sets from the capability sets attached 531 * to a file. 532 */ 533 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, 534 struct linux_binprm *bprm, 535 bool *effective, 536 bool *has_fcap) 537 { 538 struct cred *new = bprm->cred; 539 unsigned i; 540 int ret = 0; 541 542 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) 543 *effective = true; 544 545 if (caps->magic_etc & VFS_CAP_REVISION_MASK) 546 *has_fcap = true; 547 548 CAP_FOR_EACH_U32(i) { 549 __u32 permitted = caps->permitted.cap[i]; 550 __u32 inheritable = caps->inheritable.cap[i]; 551 552 /* 553 * pP' = (X & fP) | (pI & fI) 554 * The addition of pA' is handled later. 555 */ 556 new->cap_permitted.cap[i] = 557 (new->cap_bset.cap[i] & permitted) | 558 (new->cap_inheritable.cap[i] & inheritable); 559 560 if (permitted & ~new->cap_permitted.cap[i]) 561 /* insufficient to execute correctly */ 562 ret = -EPERM; 563 } 564 565 /* 566 * For legacy apps, with no internal support for recognizing they 567 * do not have enough capabilities, we return an error if they are 568 * missing some "forced" (aka file-permitted) capabilities. 569 */ 570 return *effective ? ret : 0; 571 } 572 573 /* 574 * Extract the on-exec-apply capability sets for an executable file. 575 */ 576 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) 577 { 578 struct inode *inode = d_backing_inode(dentry); 579 __u32 magic_etc; 580 unsigned tocopy, i; 581 int size; 582 struct vfs_ns_cap_data data, *nscaps = &data; 583 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data; 584 kuid_t rootkuid; 585 struct user_namespace *fs_ns; 586 587 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); 588 589 if (!inode) 590 return -ENODATA; 591 592 fs_ns = inode->i_sb->s_user_ns; 593 size = __vfs_getxattr((struct dentry *)dentry, inode, 594 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ); 595 if (size == -ENODATA || size == -EOPNOTSUPP) 596 /* no data, that's ok */ 597 return -ENODATA; 598 599 if (size < 0) 600 return size; 601 602 if (size < sizeof(magic_etc)) 603 return -EINVAL; 604 605 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc); 606 607 rootkuid = make_kuid(fs_ns, 0); 608 switch (magic_etc & VFS_CAP_REVISION_MASK) { 609 case VFS_CAP_REVISION_1: 610 if (size != XATTR_CAPS_SZ_1) 611 return -EINVAL; 612 tocopy = VFS_CAP_U32_1; 613 break; 614 case VFS_CAP_REVISION_2: 615 if (size != XATTR_CAPS_SZ_2) 616 return -EINVAL; 617 tocopy = VFS_CAP_U32_2; 618 break; 619 case VFS_CAP_REVISION_3: 620 if (size != XATTR_CAPS_SZ_3) 621 return -EINVAL; 622 tocopy = VFS_CAP_U32_3; 623 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid)); 624 break; 625 626 default: 627 return -EINVAL; 628 } 629 /* Limit the caps to the mounter of the filesystem 630 * or the more limited uid specified in the xattr. 631 */ 632 if (!rootid_owns_currentns(rootkuid)) 633 return -ENODATA; 634 635 CAP_FOR_EACH_U32(i) { 636 if (i >= tocopy) 637 break; 638 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted); 639 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable); 640 } 641 642 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 643 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 644 645 return 0; 646 } 647 648 /* 649 * Attempt to get the on-exec apply capability sets for an executable file from 650 * its xattrs and, if present, apply them to the proposed credentials being 651 * constructed by execve(). 652 */ 653 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap) 654 { 655 int rc = 0; 656 struct cpu_vfs_cap_data vcaps; 657 658 cap_clear(bprm->cred->cap_permitted); 659 660 if (!file_caps_enabled) 661 return 0; 662 663 if (!mnt_may_suid(bprm->file->f_path.mnt)) 664 return 0; 665 666 /* 667 * This check is redundant with mnt_may_suid() but is kept to make 668 * explicit that capability bits are limited to s_user_ns and its 669 * descendants. 670 */ 671 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns)) 672 return 0; 673 674 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 675 if (rc < 0) { 676 if (rc == -EINVAL) 677 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n", 678 bprm->filename); 679 else if (rc == -ENODATA) 680 rc = 0; 681 goto out; 682 } 683 684 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap); 685 if (rc == -EINVAL) 686 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", 687 __func__, rc, bprm->filename); 688 689 out: 690 if (rc) 691 cap_clear(bprm->cred->cap_permitted); 692 693 return rc; 694 } 695 696 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); } 697 698 static inline bool __is_real(kuid_t uid, struct cred *cred) 699 { return uid_eq(cred->uid, uid); } 700 701 static inline bool __is_eff(kuid_t uid, struct cred *cred) 702 { return uid_eq(cred->euid, uid); } 703 704 static inline bool __is_suid(kuid_t uid, struct cred *cred) 705 { return !__is_real(uid, cred) && __is_eff(uid, cred); } 706 707 /* 708 * handle_privileged_root - Handle case of privileged root 709 * @bprm: The execution parameters, including the proposed creds 710 * @has_fcap: Are any file capabilities set? 711 * @effective: Do we have effective root privilege? 712 * @root_uid: This namespace' root UID WRT initial USER namespace 713 * 714 * Handle the case where root is privileged and hasn't been neutered by 715 * SECURE_NOROOT. If file capabilities are set, they won't be combined with 716 * set UID root and nothing is changed. If we are root, cap_permitted is 717 * updated. If we have become set UID root, the effective bit is set. 718 */ 719 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap, 720 bool *effective, kuid_t root_uid) 721 { 722 const struct cred *old = current_cred(); 723 struct cred *new = bprm->cred; 724 725 if (!root_privileged()) 726 return; 727 /* 728 * If the legacy file capability is set, then don't set privs 729 * for a setuid root binary run by a non-root user. Do set it 730 * for a root user just to cause least surprise to an admin. 731 */ 732 if (has_fcap && __is_suid(root_uid, new)) { 733 warn_setuid_and_fcaps_mixed(bprm->filename); 734 return; 735 } 736 /* 737 * To support inheritance of root-permissions and suid-root 738 * executables under compatibility mode, we override the 739 * capability sets for the file. 740 */ 741 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) { 742 /* pP' = (cap_bset & ~0) | (pI & ~0) */ 743 new->cap_permitted = cap_combine(old->cap_bset, 744 old->cap_inheritable); 745 } 746 /* 747 * If only the real uid is 0, we do not set the effective bit. 748 */ 749 if (__is_eff(root_uid, new)) 750 *effective = true; 751 } 752 753 #define __cap_gained(field, target, source) \ 754 !cap_issubset(target->cap_##field, source->cap_##field) 755 #define __cap_grew(target, source, cred) \ 756 !cap_issubset(cred->cap_##target, cred->cap_##source) 757 #define __cap_full(field, cred) \ 758 cap_issubset(CAP_FULL_SET, cred->cap_##field) 759 760 static inline bool __is_setuid(struct cred *new, const struct cred *old) 761 { return !uid_eq(new->euid, old->uid); } 762 763 static inline bool __is_setgid(struct cred *new, const struct cred *old) 764 { return !gid_eq(new->egid, old->gid); } 765 766 /* 767 * 1) Audit candidate if current->cap_effective is set 768 * 769 * We do not bother to audit if 3 things are true: 770 * 1) cap_effective has all caps 771 * 2) we became root *OR* are were already root 772 * 3) root is supposed to have all caps (SECURE_NOROOT) 773 * Since this is just a normal root execing a process. 774 * 775 * Number 1 above might fail if you don't have a full bset, but I think 776 * that is interesting information to audit. 777 * 778 * A number of other conditions require logging: 779 * 2) something prevented setuid root getting all caps 780 * 3) non-setuid root gets fcaps 781 * 4) non-setuid root gets ambient 782 */ 783 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old, 784 kuid_t root, bool has_fcap) 785 { 786 bool ret = false; 787 788 if ((__cap_grew(effective, ambient, new) && 789 !(__cap_full(effective, new) && 790 (__is_eff(root, new) || __is_real(root, new)) && 791 root_privileged())) || 792 (root_privileged() && 793 __is_suid(root, new) && 794 !__cap_full(effective, new)) || 795 (!__is_setuid(new, old) && 796 ((has_fcap && 797 __cap_gained(permitted, new, old)) || 798 __cap_gained(ambient, new, old)))) 799 800 ret = true; 801 802 return ret; 803 } 804 805 /** 806 * cap_bprm_set_creds - Set up the proposed credentials for execve(). 807 * @bprm: The execution parameters, including the proposed creds 808 * 809 * Set up the proposed credentials for a new execution context being 810 * constructed by execve(). The proposed creds in @bprm->cred is altered, 811 * which won't take effect immediately. Returns 0 if successful, -ve on error. 812 */ 813 int cap_bprm_set_creds(struct linux_binprm *bprm) 814 { 815 const struct cred *old = current_cred(); 816 struct cred *new = bprm->cred; 817 bool effective = false, has_fcap = false, is_setid; 818 int ret; 819 kuid_t root_uid; 820 821 if (WARN_ON(!cap_ambient_invariant_ok(old))) 822 return -EPERM; 823 824 ret = get_file_caps(bprm, &effective, &has_fcap); 825 if (ret < 0) 826 return ret; 827 828 root_uid = make_kuid(new->user_ns, 0); 829 830 handle_privileged_root(bprm, has_fcap, &effective, root_uid); 831 832 /* if we have fs caps, clear dangerous personality flags */ 833 if (__cap_gained(permitted, new, old)) 834 bprm->per_clear |= PER_CLEAR_ON_SETID; 835 836 /* Don't let someone trace a set[ug]id/setpcap binary with the revised 837 * credentials unless they have the appropriate permit. 838 * 839 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. 840 */ 841 is_setid = __is_setuid(new, old) || __is_setgid(new, old); 842 843 if ((is_setid || __cap_gained(permitted, new, old)) && 844 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) || 845 !ptracer_capable(current, new->user_ns))) { 846 /* downgrade; they get no more than they had, and maybe less */ 847 if (!ns_capable(new->user_ns, CAP_SETUID) || 848 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { 849 new->euid = new->uid; 850 new->egid = new->gid; 851 } 852 new->cap_permitted = cap_intersect(new->cap_permitted, 853 old->cap_permitted); 854 } 855 856 new->suid = new->fsuid = new->euid; 857 new->sgid = new->fsgid = new->egid; 858 859 /* File caps or setid cancels ambient. */ 860 if (has_fcap || is_setid) 861 cap_clear(new->cap_ambient); 862 863 /* 864 * Now that we've computed pA', update pP' to give: 865 * pP' = (X & fP) | (pI & fI) | pA' 866 */ 867 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient); 868 869 /* 870 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set, 871 * this is the same as pE' = (fE ? pP' : 0) | pA'. 872 */ 873 if (effective) 874 new->cap_effective = new->cap_permitted; 875 else 876 new->cap_effective = new->cap_ambient; 877 878 if (WARN_ON(!cap_ambient_invariant_ok(new))) 879 return -EPERM; 880 881 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) { 882 ret = audit_log_bprm_fcaps(bprm, new, old); 883 if (ret < 0) 884 return ret; 885 } 886 887 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 888 889 if (WARN_ON(!cap_ambient_invariant_ok(new))) 890 return -EPERM; 891 892 /* Check for privilege-elevated exec. */ 893 bprm->cap_elevated = 0; 894 if (is_setid || 895 (!__is_real(root_uid, new) && 896 (effective || 897 __cap_grew(permitted, ambient, new)))) 898 bprm->cap_elevated = 1; 899 900 return 0; 901 } 902 903 /** 904 * cap_inode_setxattr - Determine whether an xattr may be altered 905 * @dentry: The inode/dentry being altered 906 * @name: The name of the xattr to be changed 907 * @value: The value that the xattr will be changed to 908 * @size: The size of value 909 * @flags: The replacement flag 910 * 911 * Determine whether an xattr may be altered or set on an inode, returning 0 if 912 * permission is granted, -ve if denied. 913 * 914 * This is used to make sure security xattrs don't get updated or set by those 915 * who aren't privileged to do so. 916 */ 917 int cap_inode_setxattr(struct dentry *dentry, const char *name, 918 const void *value, size_t size, int flags) 919 { 920 /* Ignore non-security xattrs */ 921 if (strncmp(name, XATTR_SECURITY_PREFIX, 922 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0) 923 return 0; 924 925 /* 926 * For XATTR_NAME_CAPS the check will be done in 927 * cap_convert_nscap(), called by setxattr() 928 */ 929 if (strcmp(name, XATTR_NAME_CAPS) == 0) 930 return 0; 931 932 if (!capable(CAP_SYS_ADMIN)) 933 return -EPERM; 934 return 0; 935 } 936 937 /** 938 * cap_inode_removexattr - Determine whether an xattr may be removed 939 * @dentry: The inode/dentry being altered 940 * @name: The name of the xattr to be changed 941 * 942 * Determine whether an xattr may be removed from an inode, returning 0 if 943 * permission is granted, -ve if denied. 944 * 945 * This is used to make sure security xattrs don't get removed by those who 946 * aren't privileged to remove them. 947 */ 948 int cap_inode_removexattr(struct dentry *dentry, const char *name) 949 { 950 /* Ignore non-security xattrs */ 951 if (strncmp(name, XATTR_SECURITY_PREFIX, 952 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0) 953 return 0; 954 955 if (strcmp(name, XATTR_NAME_CAPS) == 0) { 956 /* security.capability gets namespaced */ 957 struct inode *inode = d_backing_inode(dentry); 958 if (!inode) 959 return -EINVAL; 960 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) 961 return -EPERM; 962 return 0; 963 } 964 965 if (!capable(CAP_SYS_ADMIN)) 966 return -EPERM; 967 return 0; 968 } 969 970 /* 971 * cap_emulate_setxuid() fixes the effective / permitted capabilities of 972 * a process after a call to setuid, setreuid, or setresuid. 973 * 974 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of 975 * {r,e,s}uid != 0, the permitted and effective capabilities are 976 * cleared. 977 * 978 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective 979 * capabilities of the process are cleared. 980 * 981 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective 982 * capabilities are set to the permitted capabilities. 983 * 984 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should 985 * never happen. 986 * 987 * -astor 988 * 989 * cevans - New behaviour, Oct '99 990 * A process may, via prctl(), elect to keep its capabilities when it 991 * calls setuid() and switches away from uid==0. Both permitted and 992 * effective sets will be retained. 993 * Without this change, it was impossible for a daemon to drop only some 994 * of its privilege. The call to setuid(!=0) would drop all privileges! 995 * Keeping uid 0 is not an option because uid 0 owns too many vital 996 * files.. 997 * Thanks to Olaf Kirch and Peter Benie for spotting this. 998 */ 999 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) 1000 { 1001 kuid_t root_uid = make_kuid(old->user_ns, 0); 1002 1003 if ((uid_eq(old->uid, root_uid) || 1004 uid_eq(old->euid, root_uid) || 1005 uid_eq(old->suid, root_uid)) && 1006 (!uid_eq(new->uid, root_uid) && 1007 !uid_eq(new->euid, root_uid) && 1008 !uid_eq(new->suid, root_uid))) { 1009 if (!issecure(SECURE_KEEP_CAPS)) { 1010 cap_clear(new->cap_permitted); 1011 cap_clear(new->cap_effective); 1012 } 1013 1014 /* 1015 * Pre-ambient programs expect setresuid to nonroot followed 1016 * by exec to drop capabilities. We should make sure that 1017 * this remains the case. 1018 */ 1019 cap_clear(new->cap_ambient); 1020 } 1021 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) 1022 cap_clear(new->cap_effective); 1023 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) 1024 new->cap_effective = new->cap_permitted; 1025 } 1026 1027 /** 1028 * cap_task_fix_setuid - Fix up the results of setuid() call 1029 * @new: The proposed credentials 1030 * @old: The current task's current credentials 1031 * @flags: Indications of what has changed 1032 * 1033 * Fix up the results of setuid() call before the credential changes are 1034 * actually applied, returning 0 to grant the changes, -ve to deny them. 1035 */ 1036 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) 1037 { 1038 switch (flags) { 1039 case LSM_SETID_RE: 1040 case LSM_SETID_ID: 1041 case LSM_SETID_RES: 1042 /* juggle the capabilities to follow [RES]UID changes unless 1043 * otherwise suppressed */ 1044 if (!issecure(SECURE_NO_SETUID_FIXUP)) 1045 cap_emulate_setxuid(new, old); 1046 break; 1047 1048 case LSM_SETID_FS: 1049 /* juggle the capabilties to follow FSUID changes, unless 1050 * otherwise suppressed 1051 * 1052 * FIXME - is fsuser used for all CAP_FS_MASK capabilities? 1053 * if not, we might be a bit too harsh here. 1054 */ 1055 if (!issecure(SECURE_NO_SETUID_FIXUP)) { 1056 kuid_t root_uid = make_kuid(old->user_ns, 0); 1057 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) 1058 new->cap_effective = 1059 cap_drop_fs_set(new->cap_effective); 1060 1061 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) 1062 new->cap_effective = 1063 cap_raise_fs_set(new->cap_effective, 1064 new->cap_permitted); 1065 } 1066 break; 1067 1068 default: 1069 return -EINVAL; 1070 } 1071 1072 return 0; 1073 } 1074 1075 /* 1076 * Rationale: code calling task_setscheduler, task_setioprio, and 1077 * task_setnice, assumes that 1078 * . if capable(cap_sys_nice), then those actions should be allowed 1079 * . if not capable(cap_sys_nice), but acting on your own processes, 1080 * then those actions should be allowed 1081 * This is insufficient now since you can call code without suid, but 1082 * yet with increased caps. 1083 * So we check for increased caps on the target process. 1084 */ 1085 static int cap_safe_nice(struct task_struct *p) 1086 { 1087 int is_subset, ret = 0; 1088 1089 rcu_read_lock(); 1090 is_subset = cap_issubset(__task_cred(p)->cap_permitted, 1091 current_cred()->cap_permitted); 1092 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 1093 ret = -EPERM; 1094 rcu_read_unlock(); 1095 1096 return ret; 1097 } 1098 1099 /** 1100 * cap_task_setscheduler - Detemine if scheduler policy change is permitted 1101 * @p: The task to affect 1102 * 1103 * Detemine if the requested scheduler policy change is permitted for the 1104 * specified task, returning 0 if permission is granted, -ve if denied. 1105 */ 1106 int cap_task_setscheduler(struct task_struct *p) 1107 { 1108 return cap_safe_nice(p); 1109 } 1110 1111 /** 1112 * cap_task_ioprio - Detemine if I/O priority change is permitted 1113 * @p: The task to affect 1114 * @ioprio: The I/O priority to set 1115 * 1116 * Detemine if the requested I/O priority change is permitted for the specified 1117 * task, returning 0 if permission is granted, -ve if denied. 1118 */ 1119 int cap_task_setioprio(struct task_struct *p, int ioprio) 1120 { 1121 return cap_safe_nice(p); 1122 } 1123 1124 /** 1125 * cap_task_ioprio - Detemine if task priority change is permitted 1126 * @p: The task to affect 1127 * @nice: The nice value to set 1128 * 1129 * Detemine if the requested task priority change is permitted for the 1130 * specified task, returning 0 if permission is granted, -ve if denied. 1131 */ 1132 int cap_task_setnice(struct task_struct *p, int nice) 1133 { 1134 return cap_safe_nice(p); 1135 } 1136 1137 /* 1138 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from 1139 * the current task's bounding set. Returns 0 on success, -ve on error. 1140 */ 1141 static int cap_prctl_drop(unsigned long cap) 1142 { 1143 struct cred *new; 1144 1145 if (!ns_capable(current_user_ns(), CAP_SETPCAP)) 1146 return -EPERM; 1147 if (!cap_valid(cap)) 1148 return -EINVAL; 1149 1150 new = prepare_creds(); 1151 if (!new) 1152 return -ENOMEM; 1153 cap_lower(new->cap_bset, cap); 1154 return commit_creds(new); 1155 } 1156 1157 /** 1158 * cap_task_prctl - Implement process control functions for this security module 1159 * @option: The process control function requested 1160 * @arg2, @arg3, @arg4, @arg5: The argument data for this function 1161 * 1162 * Allow process control functions (sys_prctl()) to alter capabilities; may 1163 * also deny access to other functions not otherwise implemented here. 1164 * 1165 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented 1166 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM 1167 * modules will consider performing the function. 1168 */ 1169 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1170 unsigned long arg4, unsigned long arg5) 1171 { 1172 const struct cred *old = current_cred(); 1173 struct cred *new; 1174 1175 switch (option) { 1176 case PR_CAPBSET_READ: 1177 if (!cap_valid(arg2)) 1178 return -EINVAL; 1179 return !!cap_raised(old->cap_bset, arg2); 1180 1181 case PR_CAPBSET_DROP: 1182 return cap_prctl_drop(arg2); 1183 1184 /* 1185 * The next four prctl's remain to assist with transitioning a 1186 * system from legacy UID=0 based privilege (when filesystem 1187 * capabilities are not in use) to a system using filesystem 1188 * capabilities only - as the POSIX.1e draft intended. 1189 * 1190 * Note: 1191 * 1192 * PR_SET_SECUREBITS = 1193 * issecure_mask(SECURE_KEEP_CAPS_LOCKED) 1194 * | issecure_mask(SECURE_NOROOT) 1195 * | issecure_mask(SECURE_NOROOT_LOCKED) 1196 * | issecure_mask(SECURE_NO_SETUID_FIXUP) 1197 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) 1198 * 1199 * will ensure that the current process and all of its 1200 * children will be locked into a pure 1201 * capability-based-privilege environment. 1202 */ 1203 case PR_SET_SECUREBITS: 1204 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) 1205 & (old->securebits ^ arg2)) /*[1]*/ 1206 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ 1207 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ 1208 || (cap_capable(current_cred(), 1209 current_cred()->user_ns, CAP_SETPCAP, 1210 SECURITY_CAP_AUDIT) != 0) /*[4]*/ 1211 /* 1212 * [1] no changing of bits that are locked 1213 * [2] no unlocking of locks 1214 * [3] no setting of unsupported bits 1215 * [4] doing anything requires privilege (go read about 1216 * the "sendmail capabilities bug") 1217 */ 1218 ) 1219 /* cannot change a locked bit */ 1220 return -EPERM; 1221 1222 new = prepare_creds(); 1223 if (!new) 1224 return -ENOMEM; 1225 new->securebits = arg2; 1226 return commit_creds(new); 1227 1228 case PR_GET_SECUREBITS: 1229 return old->securebits; 1230 1231 case PR_GET_KEEPCAPS: 1232 return !!issecure(SECURE_KEEP_CAPS); 1233 1234 case PR_SET_KEEPCAPS: 1235 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ 1236 return -EINVAL; 1237 if (issecure(SECURE_KEEP_CAPS_LOCKED)) 1238 return -EPERM; 1239 1240 new = prepare_creds(); 1241 if (!new) 1242 return -ENOMEM; 1243 if (arg2) 1244 new->securebits |= issecure_mask(SECURE_KEEP_CAPS); 1245 else 1246 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 1247 return commit_creds(new); 1248 1249 case PR_CAP_AMBIENT: 1250 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) { 1251 if (arg3 | arg4 | arg5) 1252 return -EINVAL; 1253 1254 new = prepare_creds(); 1255 if (!new) 1256 return -ENOMEM; 1257 cap_clear(new->cap_ambient); 1258 return commit_creds(new); 1259 } 1260 1261 if (((!cap_valid(arg3)) | arg4 | arg5)) 1262 return -EINVAL; 1263 1264 if (arg2 == PR_CAP_AMBIENT_IS_SET) { 1265 return !!cap_raised(current_cred()->cap_ambient, arg3); 1266 } else if (arg2 != PR_CAP_AMBIENT_RAISE && 1267 arg2 != PR_CAP_AMBIENT_LOWER) { 1268 return -EINVAL; 1269 } else { 1270 if (arg2 == PR_CAP_AMBIENT_RAISE && 1271 (!cap_raised(current_cred()->cap_permitted, arg3) || 1272 !cap_raised(current_cred()->cap_inheritable, 1273 arg3) || 1274 issecure(SECURE_NO_CAP_AMBIENT_RAISE))) 1275 return -EPERM; 1276 1277 new = prepare_creds(); 1278 if (!new) 1279 return -ENOMEM; 1280 if (arg2 == PR_CAP_AMBIENT_RAISE) 1281 cap_raise(new->cap_ambient, arg3); 1282 else 1283 cap_lower(new->cap_ambient, arg3); 1284 return commit_creds(new); 1285 } 1286 1287 default: 1288 /* No functionality available - continue with default */ 1289 return -ENOSYS; 1290 } 1291 } 1292 1293 /** 1294 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted 1295 * @mm: The VM space in which the new mapping is to be made 1296 * @pages: The size of the mapping 1297 * 1298 * Determine whether the allocation of a new virtual mapping by the current 1299 * task is permitted, returning 1 if permission is granted, 0 if not. 1300 */ 1301 int cap_vm_enough_memory(struct mm_struct *mm, long pages) 1302 { 1303 int cap_sys_admin = 0; 1304 1305 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 1306 SECURITY_CAP_NOAUDIT) == 0) 1307 cap_sys_admin = 1; 1308 return cap_sys_admin; 1309 } 1310 1311 /* 1312 * cap_mmap_addr - check if able to map given addr 1313 * @addr: address attempting to be mapped 1314 * 1315 * If the process is attempting to map memory below dac_mmap_min_addr they need 1316 * CAP_SYS_RAWIO. The other parameters to this function are unused by the 1317 * capability security module. Returns 0 if this mapping should be allowed 1318 * -EPERM if not. 1319 */ 1320 int cap_mmap_addr(unsigned long addr) 1321 { 1322 int ret = 0; 1323 1324 if (addr < dac_mmap_min_addr) { 1325 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, 1326 SECURITY_CAP_AUDIT); 1327 /* set PF_SUPERPRIV if it turns out we allow the low mmap */ 1328 if (ret == 0) 1329 current->flags |= PF_SUPERPRIV; 1330 } 1331 return ret; 1332 } 1333 1334 int cap_mmap_file(struct file *file, unsigned long reqprot, 1335 unsigned long prot, unsigned long flags) 1336 { 1337 return 0; 1338 } 1339 1340 #ifdef CONFIG_SECURITY 1341 1342 struct security_hook_list capability_hooks[] __lsm_ro_after_init = { 1343 LSM_HOOK_INIT(capable, cap_capable), 1344 LSM_HOOK_INIT(settime, cap_settime), 1345 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check), 1346 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme), 1347 LSM_HOOK_INIT(capget, cap_capget), 1348 LSM_HOOK_INIT(capset, cap_capset), 1349 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds), 1350 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv), 1351 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv), 1352 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity), 1353 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr), 1354 LSM_HOOK_INIT(mmap_file, cap_mmap_file), 1355 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid), 1356 LSM_HOOK_INIT(task_prctl, cap_task_prctl), 1357 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler), 1358 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio), 1359 LSM_HOOK_INIT(task_setnice, cap_task_setnice), 1360 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory), 1361 }; 1362 1363 void __init capability_add_hooks(void) 1364 { 1365 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks), 1366 "capability"); 1367 } 1368 1369 #endif /* CONFIG_SECURITY */ 1370