xref: /linux/security/commoncap.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/config.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/smp_lock.h>
22 #include <linux/skbuff.h>
23 #include <linux/netlink.h>
24 #include <linux/ptrace.h>
25 #include <linux/xattr.h>
26 #include <linux/hugetlb.h>
27 
28 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
29 {
30 	NETLINK_CB(skb).eff_cap = current->cap_effective;
31 	return 0;
32 }
33 
34 EXPORT_SYMBOL(cap_netlink_send);
35 
36 int cap_netlink_recv(struct sk_buff *skb)
37 {
38 	if (!cap_raised(NETLINK_CB(skb).eff_cap, CAP_NET_ADMIN))
39 		return -EPERM;
40 	return 0;
41 }
42 
43 EXPORT_SYMBOL(cap_netlink_recv);
44 
45 int cap_capable (struct task_struct *tsk, int cap)
46 {
47 	/* Derived from include/linux/sched.h:capable. */
48 	if (cap_raised(tsk->cap_effective, cap))
49 		return 0;
50 	return -EPERM;
51 }
52 
53 int cap_settime(struct timespec *ts, struct timezone *tz)
54 {
55 	if (!capable(CAP_SYS_TIME))
56 		return -EPERM;
57 	return 0;
58 }
59 
60 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
61 {
62 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
63 	if (!cap_issubset (child->cap_permitted, current->cap_permitted) &&
64 	    !capable(CAP_SYS_PTRACE))
65 		return -EPERM;
66 	return 0;
67 }
68 
69 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
70 		kernel_cap_t *inheritable, kernel_cap_t *permitted)
71 {
72 	/* Derived from kernel/capability.c:sys_capget. */
73 	*effective = cap_t (target->cap_effective);
74 	*inheritable = cap_t (target->cap_inheritable);
75 	*permitted = cap_t (target->cap_permitted);
76 	return 0;
77 }
78 
79 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
80 		      kernel_cap_t *inheritable, kernel_cap_t *permitted)
81 {
82 	/* Derived from kernel/capability.c:sys_capset. */
83 	/* verify restrictions on target's new Inheritable set */
84 	if (!cap_issubset (*inheritable,
85 			   cap_combine (target->cap_inheritable,
86 					current->cap_permitted))) {
87 		return -EPERM;
88 	}
89 
90 	/* verify restrictions on target's new Permitted set */
91 	if (!cap_issubset (*permitted,
92 			   cap_combine (target->cap_permitted,
93 					current->cap_permitted))) {
94 		return -EPERM;
95 	}
96 
97 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
98 	if (!cap_issubset (*effective, *permitted)) {
99 		return -EPERM;
100 	}
101 
102 	return 0;
103 }
104 
105 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
106 		     kernel_cap_t *inheritable, kernel_cap_t *permitted)
107 {
108 	target->cap_effective = *effective;
109 	target->cap_inheritable = *inheritable;
110 	target->cap_permitted = *permitted;
111 }
112 
113 int cap_bprm_set_security (struct linux_binprm *bprm)
114 {
115 	/* Copied from fs/exec.c:prepare_binprm. */
116 
117 	/* We don't have VFS support for capabilities yet */
118 	cap_clear (bprm->cap_inheritable);
119 	cap_clear (bprm->cap_permitted);
120 	cap_clear (bprm->cap_effective);
121 
122 	/*  To support inheritance of root-permissions and suid-root
123 	 *  executables under compatibility mode, we raise all three
124 	 *  capability sets for the file.
125 	 *
126 	 *  If only the real uid is 0, we only raise the inheritable
127 	 *  and permitted sets of the executable file.
128 	 */
129 
130 	if (!issecure (SECURE_NOROOT)) {
131 		if (bprm->e_uid == 0 || current->uid == 0) {
132 			cap_set_full (bprm->cap_inheritable);
133 			cap_set_full (bprm->cap_permitted);
134 		}
135 		if (bprm->e_uid == 0)
136 			cap_set_full (bprm->cap_effective);
137 	}
138 	return 0;
139 }
140 
141 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
142 {
143 	/* Derived from fs/exec.c:compute_creds. */
144 	kernel_cap_t new_permitted, working;
145 
146 	new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
147 	working = cap_intersect (bprm->cap_inheritable,
148 				 current->cap_inheritable);
149 	new_permitted = cap_combine (new_permitted, working);
150 
151 	if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
152 	    !cap_issubset (new_permitted, current->cap_permitted)) {
153 		current->mm->dumpable = suid_dumpable;
154 
155 		if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
156 			if (!capable(CAP_SETUID)) {
157 				bprm->e_uid = current->uid;
158 				bprm->e_gid = current->gid;
159 			}
160 			if (!capable (CAP_SETPCAP)) {
161 				new_permitted = cap_intersect (new_permitted,
162 							current->cap_permitted);
163 			}
164 		}
165 	}
166 
167 	current->suid = current->euid = current->fsuid = bprm->e_uid;
168 	current->sgid = current->egid = current->fsgid = bprm->e_gid;
169 
170 	/* For init, we want to retain the capabilities set
171 	 * in the init_task struct. Thus we skip the usual
172 	 * capability rules */
173 	if (current->pid != 1) {
174 		current->cap_permitted = new_permitted;
175 		current->cap_effective =
176 		    cap_intersect (new_permitted, bprm->cap_effective);
177 	}
178 
179 	/* AUD: Audit candidate if current->cap_effective is set */
180 
181 	current->keep_capabilities = 0;
182 }
183 
184 int cap_bprm_secureexec (struct linux_binprm *bprm)
185 {
186 	/* If/when this module is enhanced to incorporate capability
187 	   bits on files, the test below should be extended to also perform a
188 	   test between the old and new capability sets.  For now,
189 	   it simply preserves the legacy decision algorithm used by
190 	   the old userland. */
191 	return (current->euid != current->uid ||
192 		current->egid != current->gid);
193 }
194 
195 int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
196 		       size_t size, int flags)
197 {
198 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
199 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
200 	    !capable(CAP_SYS_ADMIN))
201 		return -EPERM;
202 	return 0;
203 }
204 
205 int cap_inode_removexattr(struct dentry *dentry, char *name)
206 {
207 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
208 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
209 	    !capable(CAP_SYS_ADMIN))
210 		return -EPERM;
211 	return 0;
212 }
213 
214 /* moved from kernel/sys.c. */
215 /*
216  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
217  * a process after a call to setuid, setreuid, or setresuid.
218  *
219  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
220  *  {r,e,s}uid != 0, the permitted and effective capabilities are
221  *  cleared.
222  *
223  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
224  *  capabilities of the process are cleared.
225  *
226  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
227  *  capabilities are set to the permitted capabilities.
228  *
229  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
230  *  never happen.
231  *
232  *  -astor
233  *
234  * cevans - New behaviour, Oct '99
235  * A process may, via prctl(), elect to keep its capabilities when it
236  * calls setuid() and switches away from uid==0. Both permitted and
237  * effective sets will be retained.
238  * Without this change, it was impossible for a daemon to drop only some
239  * of its privilege. The call to setuid(!=0) would drop all privileges!
240  * Keeping uid 0 is not an option because uid 0 owns too many vital
241  * files..
242  * Thanks to Olaf Kirch and Peter Benie for spotting this.
243  */
244 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
245 					int old_suid)
246 {
247 	if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
248 	    (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
249 	    !current->keep_capabilities) {
250 		cap_clear (current->cap_permitted);
251 		cap_clear (current->cap_effective);
252 	}
253 	if (old_euid == 0 && current->euid != 0) {
254 		cap_clear (current->cap_effective);
255 	}
256 	if (old_euid != 0 && current->euid == 0) {
257 		current->cap_effective = current->cap_permitted;
258 	}
259 }
260 
261 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
262 			  int flags)
263 {
264 	switch (flags) {
265 	case LSM_SETID_RE:
266 	case LSM_SETID_ID:
267 	case LSM_SETID_RES:
268 		/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
269 		if (!issecure (SECURE_NO_SETUID_FIXUP)) {
270 			cap_emulate_setxuid (old_ruid, old_euid, old_suid);
271 		}
272 		break;
273 	case LSM_SETID_FS:
274 		{
275 			uid_t old_fsuid = old_ruid;
276 
277 			/* Copied from kernel/sys.c:setfsuid. */
278 
279 			/*
280 			 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
281 			 *          if not, we might be a bit too harsh here.
282 			 */
283 
284 			if (!issecure (SECURE_NO_SETUID_FIXUP)) {
285 				if (old_fsuid == 0 && current->fsuid != 0) {
286 					cap_t (current->cap_effective) &=
287 					    ~CAP_FS_MASK;
288 				}
289 				if (old_fsuid != 0 && current->fsuid == 0) {
290 					cap_t (current->cap_effective) |=
291 					    (cap_t (current->cap_permitted) &
292 					     CAP_FS_MASK);
293 				}
294 			}
295 			break;
296 		}
297 	default:
298 		return -EINVAL;
299 	}
300 
301 	return 0;
302 }
303 
304 void cap_task_reparent_to_init (struct task_struct *p)
305 {
306 	p->cap_effective = CAP_INIT_EFF_SET;
307 	p->cap_inheritable = CAP_INIT_INH_SET;
308 	p->cap_permitted = CAP_FULL_SET;
309 	p->keep_capabilities = 0;
310 	return;
311 }
312 
313 int cap_syslog (int type)
314 {
315 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
316 		return -EPERM;
317 	return 0;
318 }
319 
320 int cap_vm_enough_memory(long pages)
321 {
322 	int cap_sys_admin = 0;
323 
324 	if (cap_capable(current, CAP_SYS_ADMIN) == 0)
325 		cap_sys_admin = 1;
326 	return __vm_enough_memory(pages, cap_sys_admin);
327 }
328 
329 EXPORT_SYMBOL(cap_capable);
330 EXPORT_SYMBOL(cap_settime);
331 EXPORT_SYMBOL(cap_ptrace);
332 EXPORT_SYMBOL(cap_capget);
333 EXPORT_SYMBOL(cap_capset_check);
334 EXPORT_SYMBOL(cap_capset_set);
335 EXPORT_SYMBOL(cap_bprm_set_security);
336 EXPORT_SYMBOL(cap_bprm_apply_creds);
337 EXPORT_SYMBOL(cap_bprm_secureexec);
338 EXPORT_SYMBOL(cap_inode_setxattr);
339 EXPORT_SYMBOL(cap_inode_removexattr);
340 EXPORT_SYMBOL(cap_task_post_setuid);
341 EXPORT_SYMBOL(cap_task_reparent_to_init);
342 EXPORT_SYMBOL(cap_syslog);
343 EXPORT_SYMBOL(cap_vm_enough_memory);
344 
345 MODULE_DESCRIPTION("Standard Linux Common Capabilities Security Module");
346 MODULE_LICENSE("GPL");
347