xref: /linux/security/commoncap.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
27 
28 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
29 /*
30  * Because of the reduced scope of CAP_SETPCAP when filesystem
31  * capabilities are in effect, it is safe to allow this capability to
32  * be available in the default configuration.
33  */
34 # define CAP_INIT_BSET  CAP_FULL_SET
35 #else /* ie. ndef CONFIG_SECURITY_FILE_CAPABILITIES */
36 # define CAP_INIT_BSET  CAP_INIT_EFF_SET
37 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
38 
39 kernel_cap_t cap_bset = CAP_INIT_BSET;    /* systemwide capability bound */
40 EXPORT_SYMBOL(cap_bset);
41 
42 /* Global security state */
43 
44 unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
45 EXPORT_SYMBOL(securebits);
46 
47 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
48 {
49 	NETLINK_CB(skb).eff_cap = current->cap_effective;
50 	return 0;
51 }
52 
53 int cap_netlink_recv(struct sk_buff *skb, int cap)
54 {
55 	if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
56 		return -EPERM;
57 	return 0;
58 }
59 
60 EXPORT_SYMBOL(cap_netlink_recv);
61 
62 int cap_capable (struct task_struct *tsk, int cap)
63 {
64 	/* Derived from include/linux/sched.h:capable. */
65 	if (cap_raised(tsk->cap_effective, cap))
66 		return 0;
67 	return -EPERM;
68 }
69 
70 int cap_settime(struct timespec *ts, struct timezone *tz)
71 {
72 	if (!capable(CAP_SYS_TIME))
73 		return -EPERM;
74 	return 0;
75 }
76 
77 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
78 {
79 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
80 	if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
81 	    !__capable(parent, CAP_SYS_PTRACE))
82 		return -EPERM;
83 	return 0;
84 }
85 
86 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
87 		kernel_cap_t *inheritable, kernel_cap_t *permitted)
88 {
89 	/* Derived from kernel/capability.c:sys_capget. */
90 	*effective = cap_t (target->cap_effective);
91 	*inheritable = cap_t (target->cap_inheritable);
92 	*permitted = cap_t (target->cap_permitted);
93 	return 0;
94 }
95 
96 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
97 
98 static inline int cap_block_setpcap(struct task_struct *target)
99 {
100 	/*
101 	 * No support for remote process capability manipulation with
102 	 * filesystem capability support.
103 	 */
104 	return (target != current);
105 }
106 
107 static inline int cap_inh_is_capped(void)
108 {
109 	/*
110 	 * return 1 if changes to the inheritable set are limited
111 	 * to the old permitted set.
112 	 */
113 	return !cap_capable(current, CAP_SETPCAP);
114 }
115 
116 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
117 
118 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
119 static inline int cap_inh_is_capped(void) { return 1; }
120 
121 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
122 
123 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
124 		      kernel_cap_t *inheritable, kernel_cap_t *permitted)
125 {
126 	if (cap_block_setpcap(target)) {
127 		return -EPERM;
128 	}
129 	if (cap_inh_is_capped()
130 	    && !cap_issubset(*inheritable,
131 			     cap_combine(target->cap_inheritable,
132 					 current->cap_permitted))) {
133 		/* incapable of using this inheritable set */
134 		return -EPERM;
135 	}
136 
137 	/* verify restrictions on target's new Permitted set */
138 	if (!cap_issubset (*permitted,
139 			   cap_combine (target->cap_permitted,
140 					current->cap_permitted))) {
141 		return -EPERM;
142 	}
143 
144 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
145 	if (!cap_issubset (*effective, *permitted)) {
146 		return -EPERM;
147 	}
148 
149 	return 0;
150 }
151 
152 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
153 		     kernel_cap_t *inheritable, kernel_cap_t *permitted)
154 {
155 	target->cap_effective = *effective;
156 	target->cap_inheritable = *inheritable;
157 	target->cap_permitted = *permitted;
158 }
159 
160 static inline void bprm_clear_caps(struct linux_binprm *bprm)
161 {
162 	cap_clear(bprm->cap_inheritable);
163 	cap_clear(bprm->cap_permitted);
164 	bprm->cap_effective = false;
165 }
166 
167 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
168 
169 int cap_inode_need_killpriv(struct dentry *dentry)
170 {
171 	struct inode *inode = dentry->d_inode;
172 	int error;
173 
174 	if (!inode->i_op || !inode->i_op->getxattr)
175 	       return 0;
176 
177 	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
178 	if (error <= 0)
179 		return 0;
180 	return 1;
181 }
182 
183 int cap_inode_killpriv(struct dentry *dentry)
184 {
185 	struct inode *inode = dentry->d_inode;
186 
187 	if (!inode->i_op || !inode->i_op->removexattr)
188 	       return 0;
189 
190 	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
191 }
192 
193 static inline int cap_from_disk(struct vfs_cap_data *caps,
194 				struct linux_binprm *bprm,
195 				int size)
196 {
197 	__u32 magic_etc;
198 
199 	if (size != XATTR_CAPS_SZ)
200 		return -EINVAL;
201 
202 	magic_etc = le32_to_cpu(caps->magic_etc);
203 
204 	switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
205 	case VFS_CAP_REVISION:
206 		if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
207 			bprm->cap_effective = true;
208 		else
209 			bprm->cap_effective = false;
210 		bprm->cap_permitted = to_cap_t(le32_to_cpu(caps->permitted));
211 		bprm->cap_inheritable = to_cap_t(le32_to_cpu(caps->inheritable));
212 		return 0;
213 	default:
214 		return -EINVAL;
215 	}
216 }
217 
218 /* Locate any VFS capabilities: */
219 static int get_file_caps(struct linux_binprm *bprm)
220 {
221 	struct dentry *dentry;
222 	int rc = 0;
223 	struct vfs_cap_data incaps;
224 	struct inode *inode;
225 
226 	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
227 		bprm_clear_caps(bprm);
228 		return 0;
229 	}
230 
231 	dentry = dget(bprm->file->f_dentry);
232 	inode = dentry->d_inode;
233 	if (!inode->i_op || !inode->i_op->getxattr)
234 		goto out;
235 
236 	rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
237 	if (rc > 0) {
238 		if (rc == XATTR_CAPS_SZ)
239 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS,
240 						&incaps, XATTR_CAPS_SZ);
241 		else
242 			rc = -EINVAL;
243 	}
244 	if (rc == -ENODATA || rc == -EOPNOTSUPP) {
245 		/* no data, that's ok */
246 		rc = 0;
247 		goto out;
248 	}
249 	if (rc < 0)
250 		goto out;
251 
252 	rc = cap_from_disk(&incaps, bprm, rc);
253 	if (rc)
254 		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
255 			__FUNCTION__, rc, bprm->filename);
256 
257 out:
258 	dput(dentry);
259 	if (rc)
260 		bprm_clear_caps(bprm);
261 
262 	return rc;
263 }
264 
265 #else
266 int cap_inode_need_killpriv(struct dentry *dentry)
267 {
268 	return 0;
269 }
270 
271 int cap_inode_killpriv(struct dentry *dentry)
272 {
273 	return 0;
274 }
275 
276 static inline int get_file_caps(struct linux_binprm *bprm)
277 {
278 	bprm_clear_caps(bprm);
279 	return 0;
280 }
281 #endif
282 
283 int cap_bprm_set_security (struct linux_binprm *bprm)
284 {
285 	int ret;
286 
287 	ret = get_file_caps(bprm);
288 	if (ret)
289 		printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
290 			__FUNCTION__, ret, bprm->filename);
291 
292 	/*  To support inheritance of root-permissions and suid-root
293 	 *  executables under compatibility mode, we raise all three
294 	 *  capability sets for the file.
295 	 *
296 	 *  If only the real uid is 0, we only raise the inheritable
297 	 *  and permitted sets of the executable file.
298 	 */
299 
300 	if (!issecure (SECURE_NOROOT)) {
301 		if (bprm->e_uid == 0 || current->uid == 0) {
302 			cap_set_full (bprm->cap_inheritable);
303 			cap_set_full (bprm->cap_permitted);
304 		}
305 		if (bprm->e_uid == 0)
306 			bprm->cap_effective = true;
307 	}
308 
309 	return ret;
310 }
311 
312 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
313 {
314 	/* Derived from fs/exec.c:compute_creds. */
315 	kernel_cap_t new_permitted, working;
316 
317 	new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
318 	working = cap_intersect (bprm->cap_inheritable,
319 				 current->cap_inheritable);
320 	new_permitted = cap_combine (new_permitted, working);
321 
322 	if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
323 	    !cap_issubset (new_permitted, current->cap_permitted)) {
324 		set_dumpable(current->mm, suid_dumpable);
325 		current->pdeath_signal = 0;
326 
327 		if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
328 			if (!capable(CAP_SETUID)) {
329 				bprm->e_uid = current->uid;
330 				bprm->e_gid = current->gid;
331 			}
332 			if (!capable (CAP_SETPCAP)) {
333 				new_permitted = cap_intersect (new_permitted,
334 							current->cap_permitted);
335 			}
336 		}
337 	}
338 
339 	current->suid = current->euid = current->fsuid = bprm->e_uid;
340 	current->sgid = current->egid = current->fsgid = bprm->e_gid;
341 
342 	/* For init, we want to retain the capabilities set
343 	 * in the init_task struct. Thus we skip the usual
344 	 * capability rules */
345 	if (!is_global_init(current)) {
346 		current->cap_permitted = new_permitted;
347 		current->cap_effective = bprm->cap_effective ?
348 				new_permitted : 0;
349 	}
350 
351 	/* AUD: Audit candidate if current->cap_effective is set */
352 
353 	current->keep_capabilities = 0;
354 }
355 
356 int cap_bprm_secureexec (struct linux_binprm *bprm)
357 {
358 	if (current->uid != 0) {
359 		if (bprm->cap_effective)
360 			return 1;
361 		if (!cap_isclear(bprm->cap_permitted))
362 			return 1;
363 		if (!cap_isclear(bprm->cap_inheritable))
364 			return 1;
365 	}
366 
367 	return (current->euid != current->uid ||
368 		current->egid != current->gid);
369 }
370 
371 int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
372 		       size_t size, int flags)
373 {
374 	if (!strcmp(name, XATTR_NAME_CAPS)) {
375 		if (!capable(CAP_SETFCAP))
376 			return -EPERM;
377 		return 0;
378 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
379 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
380 	    !capable(CAP_SYS_ADMIN))
381 		return -EPERM;
382 	return 0;
383 }
384 
385 int cap_inode_removexattr(struct dentry *dentry, char *name)
386 {
387 	if (!strcmp(name, XATTR_NAME_CAPS)) {
388 		if (!capable(CAP_SETFCAP))
389 			return -EPERM;
390 		return 0;
391 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
392 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
393 	    !capable(CAP_SYS_ADMIN))
394 		return -EPERM;
395 	return 0;
396 }
397 
398 /* moved from kernel/sys.c. */
399 /*
400  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
401  * a process after a call to setuid, setreuid, or setresuid.
402  *
403  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
404  *  {r,e,s}uid != 0, the permitted and effective capabilities are
405  *  cleared.
406  *
407  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
408  *  capabilities of the process are cleared.
409  *
410  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
411  *  capabilities are set to the permitted capabilities.
412  *
413  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
414  *  never happen.
415  *
416  *  -astor
417  *
418  * cevans - New behaviour, Oct '99
419  * A process may, via prctl(), elect to keep its capabilities when it
420  * calls setuid() and switches away from uid==0. Both permitted and
421  * effective sets will be retained.
422  * Without this change, it was impossible for a daemon to drop only some
423  * of its privilege. The call to setuid(!=0) would drop all privileges!
424  * Keeping uid 0 is not an option because uid 0 owns too many vital
425  * files..
426  * Thanks to Olaf Kirch and Peter Benie for spotting this.
427  */
428 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
429 					int old_suid)
430 {
431 	if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
432 	    (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
433 	    !current->keep_capabilities) {
434 		cap_clear (current->cap_permitted);
435 		cap_clear (current->cap_effective);
436 	}
437 	if (old_euid == 0 && current->euid != 0) {
438 		cap_clear (current->cap_effective);
439 	}
440 	if (old_euid != 0 && current->euid == 0) {
441 		current->cap_effective = current->cap_permitted;
442 	}
443 }
444 
445 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
446 			  int flags)
447 {
448 	switch (flags) {
449 	case LSM_SETID_RE:
450 	case LSM_SETID_ID:
451 	case LSM_SETID_RES:
452 		/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
453 		if (!issecure (SECURE_NO_SETUID_FIXUP)) {
454 			cap_emulate_setxuid (old_ruid, old_euid, old_suid);
455 		}
456 		break;
457 	case LSM_SETID_FS:
458 		{
459 			uid_t old_fsuid = old_ruid;
460 
461 			/* Copied from kernel/sys.c:setfsuid. */
462 
463 			/*
464 			 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
465 			 *          if not, we might be a bit too harsh here.
466 			 */
467 
468 			if (!issecure (SECURE_NO_SETUID_FIXUP)) {
469 				if (old_fsuid == 0 && current->fsuid != 0) {
470 					cap_t (current->cap_effective) &=
471 					    ~CAP_FS_MASK;
472 				}
473 				if (old_fsuid != 0 && current->fsuid == 0) {
474 					cap_t (current->cap_effective) |=
475 					    (cap_t (current->cap_permitted) &
476 					     CAP_FS_MASK);
477 				}
478 			}
479 			break;
480 		}
481 	default:
482 		return -EINVAL;
483 	}
484 
485 	return 0;
486 }
487 
488 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
489 /*
490  * Rationale: code calling task_setscheduler, task_setioprio, and
491  * task_setnice, assumes that
492  *   . if capable(cap_sys_nice), then those actions should be allowed
493  *   . if not capable(cap_sys_nice), but acting on your own processes,
494  *   	then those actions should be allowed
495  * This is insufficient now since you can call code without suid, but
496  * yet with increased caps.
497  * So we check for increased caps on the target process.
498  */
499 static inline int cap_safe_nice(struct task_struct *p)
500 {
501 	if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
502 	    !__capable(current, CAP_SYS_NICE))
503 		return -EPERM;
504 	return 0;
505 }
506 
507 int cap_task_setscheduler (struct task_struct *p, int policy,
508 			   struct sched_param *lp)
509 {
510 	return cap_safe_nice(p);
511 }
512 
513 int cap_task_setioprio (struct task_struct *p, int ioprio)
514 {
515 	return cap_safe_nice(p);
516 }
517 
518 int cap_task_setnice (struct task_struct *p, int nice)
519 {
520 	return cap_safe_nice(p);
521 }
522 
523 int cap_task_kill(struct task_struct *p, struct siginfo *info,
524 				int sig, u32 secid)
525 {
526 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
527 		return 0;
528 
529 	/*
530 	 * Running a setuid root program raises your capabilities.
531 	 * Killing your own setuid root processes was previously
532 	 * allowed.
533 	 * We must preserve legacy signal behavior in this case.
534 	 */
535 	if (p->euid == 0 && p->uid == current->uid)
536 		return 0;
537 
538 	/* sigcont is permitted within same session */
539 	if (sig == SIGCONT && (task_session_nr(current) == task_session_nr(p)))
540 		return 0;
541 
542 	if (secid)
543 		/*
544 		 * Signal sent as a particular user.
545 		 * Capabilities are ignored.  May be wrong, but it's the
546 		 * only thing we can do at the moment.
547 		 * Used only by usb drivers?
548 		 */
549 		return 0;
550 	if (cap_issubset(p->cap_permitted, current->cap_permitted))
551 		return 0;
552 	if (capable(CAP_KILL))
553 		return 0;
554 
555 	return -EPERM;
556 }
557 #else
558 int cap_task_setscheduler (struct task_struct *p, int policy,
559 			   struct sched_param *lp)
560 {
561 	return 0;
562 }
563 int cap_task_setioprio (struct task_struct *p, int ioprio)
564 {
565 	return 0;
566 }
567 int cap_task_setnice (struct task_struct *p, int nice)
568 {
569 	return 0;
570 }
571 int cap_task_kill(struct task_struct *p, struct siginfo *info,
572 				int sig, u32 secid)
573 {
574 	return 0;
575 }
576 #endif
577 
578 void cap_task_reparent_to_init (struct task_struct *p)
579 {
580 	p->cap_effective = CAP_INIT_EFF_SET;
581 	p->cap_inheritable = CAP_INIT_INH_SET;
582 	p->cap_permitted = CAP_FULL_SET;
583 	p->keep_capabilities = 0;
584 	return;
585 }
586 
587 int cap_syslog (int type)
588 {
589 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
590 		return -EPERM;
591 	return 0;
592 }
593 
594 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
595 {
596 	int cap_sys_admin = 0;
597 
598 	if (cap_capable(current, CAP_SYS_ADMIN) == 0)
599 		cap_sys_admin = 1;
600 	return __vm_enough_memory(mm, pages, cap_sys_admin);
601 }
602 
603