1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Common capabilities, needed by capability.o. 3 */ 4 5 #include <linux/capability.h> 6 #include <linux/audit.h> 7 #include <linux/init.h> 8 #include <linux/kernel.h> 9 #include <linux/lsm_hooks.h> 10 #include <linux/file.h> 11 #include <linux/mm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/skbuff.h> 16 #include <linux/netlink.h> 17 #include <linux/ptrace.h> 18 #include <linux/xattr.h> 19 #include <linux/hugetlb.h> 20 #include <linux/mount.h> 21 #include <linux/sched.h> 22 #include <linux/prctl.h> 23 #include <linux/securebits.h> 24 #include <linux/user_namespace.h> 25 #include <linux/binfmts.h> 26 #include <linux/personality.h> 27 28 /* 29 * If a non-root user executes a setuid-root binary in 30 * !secure(SECURE_NOROOT) mode, then we raise capabilities. 31 * However if fE is also set, then the intent is for only 32 * the file capabilities to be applied, and the setuid-root 33 * bit is left on either to change the uid (plausible) or 34 * to get full privilege on a kernel without file capabilities 35 * support. So in that case we do not raise capabilities. 36 * 37 * Warn if that happens, once per boot. 38 */ 39 static void warn_setuid_and_fcaps_mixed(const char *fname) 40 { 41 static int warned; 42 if (!warned) { 43 printk(KERN_INFO "warning: `%s' has both setuid-root and" 44 " effective capabilities. Therefore not raising all" 45 " capabilities.\n", fname); 46 warned = 1; 47 } 48 } 49 50 /** 51 * cap_capable - Determine whether a task has a particular effective capability 52 * @cred: The credentials to use 53 * @ns: The user namespace in which we need the capability 54 * @cap: The capability to check for 55 * @opts: Bitmask of options defined in include/linux/security.h 56 * 57 * Determine whether the nominated task has the specified capability amongst 58 * its effective set, returning 0 if it does, -ve if it does not. 59 * 60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() 61 * and has_capability() functions. That is, it has the reverse semantics: 62 * cap_has_capability() returns 0 when a task has a capability, but the 63 * kernel's capable() and has_capability() returns 1 for this case. 64 */ 65 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, 66 int cap, unsigned int opts) 67 { 68 struct user_namespace *ns = targ_ns; 69 70 /* See if cred has the capability in the target user namespace 71 * by examining the target user namespace and all of the target 72 * user namespace's parents. 73 */ 74 for (;;) { 75 /* Do we have the necessary capabilities? */ 76 if (ns == cred->user_ns) 77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; 78 79 /* 80 * If we're already at a lower level than we're looking for, 81 * we're done searching. 82 */ 83 if (ns->level <= cred->user_ns->level) 84 return -EPERM; 85 86 /* 87 * The owner of the user namespace in the parent of the 88 * user namespace has all caps. 89 */ 90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) 91 return 0; 92 93 /* 94 * If you have a capability in a parent user ns, then you have 95 * it over all children user namespaces as well. 96 */ 97 ns = ns->parent; 98 } 99 100 /* We never get here */ 101 } 102 103 /** 104 * cap_settime - Determine whether the current process may set the system clock 105 * @ts: The time to set 106 * @tz: The timezone to set 107 * 108 * Determine whether the current process may set the system clock and timezone 109 * information, returning 0 if permission granted, -ve if denied. 110 */ 111 int cap_settime(const struct timespec64 *ts, const struct timezone *tz) 112 { 113 if (!capable(CAP_SYS_TIME)) 114 return -EPERM; 115 return 0; 116 } 117 118 /** 119 * cap_ptrace_access_check - Determine whether the current process may access 120 * another 121 * @child: The process to be accessed 122 * @mode: The mode of attachment. 123 * 124 * If we are in the same or an ancestor user_ns and have all the target 125 * task's capabilities, then ptrace access is allowed. 126 * If we have the ptrace capability to the target user_ns, then ptrace 127 * access is allowed. 128 * Else denied. 129 * 130 * Determine whether a process may access another, returning 0 if permission 131 * granted, -ve if denied. 132 */ 133 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) 134 { 135 int ret = 0; 136 const struct cred *cred, *child_cred; 137 const kernel_cap_t *caller_caps; 138 139 rcu_read_lock(); 140 cred = current_cred(); 141 child_cred = __task_cred(child); 142 if (mode & PTRACE_MODE_FSCREDS) 143 caller_caps = &cred->cap_effective; 144 else 145 caller_caps = &cred->cap_permitted; 146 if (cred->user_ns == child_cred->user_ns && 147 cap_issubset(child_cred->cap_permitted, *caller_caps)) 148 goto out; 149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) 150 goto out; 151 ret = -EPERM; 152 out: 153 rcu_read_unlock(); 154 return ret; 155 } 156 157 /** 158 * cap_ptrace_traceme - Determine whether another process may trace the current 159 * @parent: The task proposed to be the tracer 160 * 161 * If parent is in the same or an ancestor user_ns and has all current's 162 * capabilities, then ptrace access is allowed. 163 * If parent has the ptrace capability to current's user_ns, then ptrace 164 * access is allowed. 165 * Else denied. 166 * 167 * Determine whether the nominated task is permitted to trace the current 168 * process, returning 0 if permission is granted, -ve if denied. 169 */ 170 int cap_ptrace_traceme(struct task_struct *parent) 171 { 172 int ret = 0; 173 const struct cred *cred, *child_cred; 174 175 rcu_read_lock(); 176 cred = __task_cred(parent); 177 child_cred = current_cred(); 178 if (cred->user_ns == child_cred->user_ns && 179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) 180 goto out; 181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) 182 goto out; 183 ret = -EPERM; 184 out: 185 rcu_read_unlock(); 186 return ret; 187 } 188 189 /** 190 * cap_capget - Retrieve a task's capability sets 191 * @target: The task from which to retrieve the capability sets 192 * @effective: The place to record the effective set 193 * @inheritable: The place to record the inheritable set 194 * @permitted: The place to record the permitted set 195 * 196 * This function retrieves the capabilities of the nominated task and returns 197 * them to the caller. 198 */ 199 int cap_capget(struct task_struct *target, kernel_cap_t *effective, 200 kernel_cap_t *inheritable, kernel_cap_t *permitted) 201 { 202 const struct cred *cred; 203 204 /* Derived from kernel/capability.c:sys_capget. */ 205 rcu_read_lock(); 206 cred = __task_cred(target); 207 *effective = cred->cap_effective; 208 *inheritable = cred->cap_inheritable; 209 *permitted = cred->cap_permitted; 210 rcu_read_unlock(); 211 return 0; 212 } 213 214 /* 215 * Determine whether the inheritable capabilities are limited to the old 216 * permitted set. Returns 1 if they are limited, 0 if they are not. 217 */ 218 static inline int cap_inh_is_capped(void) 219 { 220 /* they are so limited unless the current task has the CAP_SETPCAP 221 * capability 222 */ 223 if (cap_capable(current_cred(), current_cred()->user_ns, 224 CAP_SETPCAP, CAP_OPT_NONE) == 0) 225 return 0; 226 return 1; 227 } 228 229 /** 230 * cap_capset - Validate and apply proposed changes to current's capabilities 231 * @new: The proposed new credentials; alterations should be made here 232 * @old: The current task's current credentials 233 * @effective: A pointer to the proposed new effective capabilities set 234 * @inheritable: A pointer to the proposed new inheritable capabilities set 235 * @permitted: A pointer to the proposed new permitted capabilities set 236 * 237 * This function validates and applies a proposed mass change to the current 238 * process's capability sets. The changes are made to the proposed new 239 * credentials, and assuming no error, will be committed by the caller of LSM. 240 */ 241 int cap_capset(struct cred *new, 242 const struct cred *old, 243 const kernel_cap_t *effective, 244 const kernel_cap_t *inheritable, 245 const kernel_cap_t *permitted) 246 { 247 if (cap_inh_is_capped() && 248 !cap_issubset(*inheritable, 249 cap_combine(old->cap_inheritable, 250 old->cap_permitted))) 251 /* incapable of using this inheritable set */ 252 return -EPERM; 253 254 if (!cap_issubset(*inheritable, 255 cap_combine(old->cap_inheritable, 256 old->cap_bset))) 257 /* no new pI capabilities outside bounding set */ 258 return -EPERM; 259 260 /* verify restrictions on target's new Permitted set */ 261 if (!cap_issubset(*permitted, old->cap_permitted)) 262 return -EPERM; 263 264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ 265 if (!cap_issubset(*effective, *permitted)) 266 return -EPERM; 267 268 new->cap_effective = *effective; 269 new->cap_inheritable = *inheritable; 270 new->cap_permitted = *permitted; 271 272 /* 273 * Mask off ambient bits that are no longer both permitted and 274 * inheritable. 275 */ 276 new->cap_ambient = cap_intersect(new->cap_ambient, 277 cap_intersect(*permitted, 278 *inheritable)); 279 if (WARN_ON(!cap_ambient_invariant_ok(new))) 280 return -EINVAL; 281 return 0; 282 } 283 284 /** 285 * cap_inode_need_killpriv - Determine if inode change affects privileges 286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV 287 * 288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV 289 * affects the security markings on that inode, and if it is, should 290 * inode_killpriv() be invoked or the change rejected. 291 * 292 * Returns 1 if security.capability has a value, meaning inode_killpriv() 293 * is required, 0 otherwise, meaning inode_killpriv() is not required. 294 */ 295 int cap_inode_need_killpriv(struct dentry *dentry) 296 { 297 struct inode *inode = d_backing_inode(dentry); 298 int error; 299 300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0); 301 return error > 0; 302 } 303 304 /** 305 * cap_inode_killpriv - Erase the security markings on an inode 306 * @dentry: The inode/dentry to alter 307 * 308 * Erase the privilege-enhancing security markings on an inode. 309 * 310 * Returns 0 if successful, -ve on error. 311 */ 312 int cap_inode_killpriv(struct dentry *dentry) 313 { 314 int error; 315 316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS); 317 if (error == -EOPNOTSUPP) 318 error = 0; 319 return error; 320 } 321 322 static bool rootid_owns_currentns(kuid_t kroot) 323 { 324 struct user_namespace *ns; 325 326 if (!uid_valid(kroot)) 327 return false; 328 329 for (ns = current_user_ns(); ; ns = ns->parent) { 330 if (from_kuid(ns, kroot) == 0) 331 return true; 332 if (ns == &init_user_ns) 333 break; 334 } 335 336 return false; 337 } 338 339 static __u32 sansflags(__u32 m) 340 { 341 return m & ~VFS_CAP_FLAGS_EFFECTIVE; 342 } 343 344 static bool is_v2header(size_t size, const struct vfs_cap_data *cap) 345 { 346 if (size != XATTR_CAPS_SZ_2) 347 return false; 348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2; 349 } 350 351 static bool is_v3header(size_t size, const struct vfs_cap_data *cap) 352 { 353 if (size != XATTR_CAPS_SZ_3) 354 return false; 355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3; 356 } 357 358 /* 359 * getsecurity: We are called for security.* before any attempt to read the 360 * xattr from the inode itself. 361 * 362 * This gives us a chance to read the on-disk value and convert it. If we 363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler. 364 * 365 * Note we are not called by vfs_getxattr_alloc(), but that is only called 366 * by the integrity subsystem, which really wants the unconverted values - 367 * so that's good. 368 */ 369 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer, 370 bool alloc) 371 { 372 int size, ret; 373 kuid_t kroot; 374 uid_t root, mappedroot; 375 char *tmpbuf = NULL; 376 struct vfs_cap_data *cap; 377 struct vfs_ns_cap_data *nscap; 378 struct dentry *dentry; 379 struct user_namespace *fs_ns; 380 381 if (strcmp(name, "capability") != 0) 382 return -EOPNOTSUPP; 383 384 dentry = d_find_any_alias(inode); 385 if (!dentry) 386 return -EINVAL; 387 388 size = sizeof(struct vfs_ns_cap_data); 389 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS, 390 &tmpbuf, size, GFP_NOFS); 391 dput(dentry); 392 393 if (ret < 0) 394 return ret; 395 396 fs_ns = inode->i_sb->s_user_ns; 397 cap = (struct vfs_cap_data *) tmpbuf; 398 if (is_v2header((size_t) ret, cap)) { 399 /* If this is sizeof(vfs_cap_data) then we're ok with the 400 * on-disk value, so return that. */ 401 if (alloc) 402 *buffer = tmpbuf; 403 else 404 kfree(tmpbuf); 405 return ret; 406 } else if (!is_v3header((size_t) ret, cap)) { 407 kfree(tmpbuf); 408 return -EINVAL; 409 } 410 411 nscap = (struct vfs_ns_cap_data *) tmpbuf; 412 root = le32_to_cpu(nscap->rootid); 413 kroot = make_kuid(fs_ns, root); 414 415 /* If the root kuid maps to a valid uid in current ns, then return 416 * this as a nscap. */ 417 mappedroot = from_kuid(current_user_ns(), kroot); 418 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) { 419 if (alloc) { 420 *buffer = tmpbuf; 421 nscap->rootid = cpu_to_le32(mappedroot); 422 } else 423 kfree(tmpbuf); 424 return size; 425 } 426 427 if (!rootid_owns_currentns(kroot)) { 428 kfree(tmpbuf); 429 return -EOPNOTSUPP; 430 } 431 432 /* This comes from a parent namespace. Return as a v2 capability */ 433 size = sizeof(struct vfs_cap_data); 434 if (alloc) { 435 *buffer = kmalloc(size, GFP_ATOMIC); 436 if (*buffer) { 437 struct vfs_cap_data *cap = *buffer; 438 __le32 nsmagic, magic; 439 magic = VFS_CAP_REVISION_2; 440 nsmagic = le32_to_cpu(nscap->magic_etc); 441 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE) 442 magic |= VFS_CAP_FLAGS_EFFECTIVE; 443 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 444 cap->magic_etc = cpu_to_le32(magic); 445 } else { 446 size = -ENOMEM; 447 } 448 } 449 kfree(tmpbuf); 450 return size; 451 } 452 453 static kuid_t rootid_from_xattr(const void *value, size_t size, 454 struct user_namespace *task_ns) 455 { 456 const struct vfs_ns_cap_data *nscap = value; 457 uid_t rootid = 0; 458 459 if (size == XATTR_CAPS_SZ_3) 460 rootid = le32_to_cpu(nscap->rootid); 461 462 return make_kuid(task_ns, rootid); 463 } 464 465 static bool validheader(size_t size, const struct vfs_cap_data *cap) 466 { 467 return is_v2header(size, cap) || is_v3header(size, cap); 468 } 469 470 /* 471 * User requested a write of security.capability. If needed, update the 472 * xattr to change from v2 to v3, or to fixup the v3 rootid. 473 * 474 * If all is ok, we return the new size, on error return < 0. 475 */ 476 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size) 477 { 478 struct vfs_ns_cap_data *nscap; 479 uid_t nsrootid; 480 const struct vfs_cap_data *cap = *ivalue; 481 __u32 magic, nsmagic; 482 struct inode *inode = d_backing_inode(dentry); 483 struct user_namespace *task_ns = current_user_ns(), 484 *fs_ns = inode->i_sb->s_user_ns; 485 kuid_t rootid; 486 size_t newsize; 487 488 if (!*ivalue) 489 return -EINVAL; 490 if (!validheader(size, cap)) 491 return -EINVAL; 492 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) 493 return -EPERM; 494 if (size == XATTR_CAPS_SZ_2) 495 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP)) 496 /* user is privileged, just write the v2 */ 497 return size; 498 499 rootid = rootid_from_xattr(*ivalue, size, task_ns); 500 if (!uid_valid(rootid)) 501 return -EINVAL; 502 503 nsrootid = from_kuid(fs_ns, rootid); 504 if (nsrootid == -1) 505 return -EINVAL; 506 507 newsize = sizeof(struct vfs_ns_cap_data); 508 nscap = kmalloc(newsize, GFP_ATOMIC); 509 if (!nscap) 510 return -ENOMEM; 511 nscap->rootid = cpu_to_le32(nsrootid); 512 nsmagic = VFS_CAP_REVISION_3; 513 magic = le32_to_cpu(cap->magic_etc); 514 if (magic & VFS_CAP_FLAGS_EFFECTIVE) 515 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; 516 nscap->magic_etc = cpu_to_le32(nsmagic); 517 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 518 519 kvfree(*ivalue); 520 *ivalue = nscap; 521 return newsize; 522 } 523 524 /* 525 * Calculate the new process capability sets from the capability sets attached 526 * to a file. 527 */ 528 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, 529 struct linux_binprm *bprm, 530 bool *effective, 531 bool *has_fcap) 532 { 533 struct cred *new = bprm->cred; 534 unsigned i; 535 int ret = 0; 536 537 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) 538 *effective = true; 539 540 if (caps->magic_etc & VFS_CAP_REVISION_MASK) 541 *has_fcap = true; 542 543 CAP_FOR_EACH_U32(i) { 544 __u32 permitted = caps->permitted.cap[i]; 545 __u32 inheritable = caps->inheritable.cap[i]; 546 547 /* 548 * pP' = (X & fP) | (pI & fI) 549 * The addition of pA' is handled later. 550 */ 551 new->cap_permitted.cap[i] = 552 (new->cap_bset.cap[i] & permitted) | 553 (new->cap_inheritable.cap[i] & inheritable); 554 555 if (permitted & ~new->cap_permitted.cap[i]) 556 /* insufficient to execute correctly */ 557 ret = -EPERM; 558 } 559 560 /* 561 * For legacy apps, with no internal support for recognizing they 562 * do not have enough capabilities, we return an error if they are 563 * missing some "forced" (aka file-permitted) capabilities. 564 */ 565 return *effective ? ret : 0; 566 } 567 568 /* 569 * Extract the on-exec-apply capability sets for an executable file. 570 */ 571 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) 572 { 573 struct inode *inode = d_backing_inode(dentry); 574 __u32 magic_etc; 575 unsigned tocopy, i; 576 int size; 577 struct vfs_ns_cap_data data, *nscaps = &data; 578 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data; 579 kuid_t rootkuid; 580 struct user_namespace *fs_ns; 581 582 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); 583 584 if (!inode) 585 return -ENODATA; 586 587 fs_ns = inode->i_sb->s_user_ns; 588 size = __vfs_getxattr((struct dentry *)dentry, inode, 589 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ); 590 if (size == -ENODATA || size == -EOPNOTSUPP) 591 /* no data, that's ok */ 592 return -ENODATA; 593 594 if (size < 0) 595 return size; 596 597 if (size < sizeof(magic_etc)) 598 return -EINVAL; 599 600 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc); 601 602 rootkuid = make_kuid(fs_ns, 0); 603 switch (magic_etc & VFS_CAP_REVISION_MASK) { 604 case VFS_CAP_REVISION_1: 605 if (size != XATTR_CAPS_SZ_1) 606 return -EINVAL; 607 tocopy = VFS_CAP_U32_1; 608 break; 609 case VFS_CAP_REVISION_2: 610 if (size != XATTR_CAPS_SZ_2) 611 return -EINVAL; 612 tocopy = VFS_CAP_U32_2; 613 break; 614 case VFS_CAP_REVISION_3: 615 if (size != XATTR_CAPS_SZ_3) 616 return -EINVAL; 617 tocopy = VFS_CAP_U32_3; 618 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid)); 619 break; 620 621 default: 622 return -EINVAL; 623 } 624 /* Limit the caps to the mounter of the filesystem 625 * or the more limited uid specified in the xattr. 626 */ 627 if (!rootid_owns_currentns(rootkuid)) 628 return -ENODATA; 629 630 CAP_FOR_EACH_U32(i) { 631 if (i >= tocopy) 632 break; 633 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted); 634 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable); 635 } 636 637 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 638 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 639 640 cpu_caps->rootid = rootkuid; 641 642 return 0; 643 } 644 645 /* 646 * Attempt to get the on-exec apply capability sets for an executable file from 647 * its xattrs and, if present, apply them to the proposed credentials being 648 * constructed by execve(). 649 */ 650 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap) 651 { 652 int rc = 0; 653 struct cpu_vfs_cap_data vcaps; 654 655 cap_clear(bprm->cred->cap_permitted); 656 657 if (!file_caps_enabled) 658 return 0; 659 660 if (!mnt_may_suid(bprm->file->f_path.mnt)) 661 return 0; 662 663 /* 664 * This check is redundant with mnt_may_suid() but is kept to make 665 * explicit that capability bits are limited to s_user_ns and its 666 * descendants. 667 */ 668 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns)) 669 return 0; 670 671 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 672 if (rc < 0) { 673 if (rc == -EINVAL) 674 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n", 675 bprm->filename); 676 else if (rc == -ENODATA) 677 rc = 0; 678 goto out; 679 } 680 681 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap); 682 683 out: 684 if (rc) 685 cap_clear(bprm->cred->cap_permitted); 686 687 return rc; 688 } 689 690 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); } 691 692 static inline bool __is_real(kuid_t uid, struct cred *cred) 693 { return uid_eq(cred->uid, uid); } 694 695 static inline bool __is_eff(kuid_t uid, struct cred *cred) 696 { return uid_eq(cred->euid, uid); } 697 698 static inline bool __is_suid(kuid_t uid, struct cred *cred) 699 { return !__is_real(uid, cred) && __is_eff(uid, cred); } 700 701 /* 702 * handle_privileged_root - Handle case of privileged root 703 * @bprm: The execution parameters, including the proposed creds 704 * @has_fcap: Are any file capabilities set? 705 * @effective: Do we have effective root privilege? 706 * @root_uid: This namespace' root UID WRT initial USER namespace 707 * 708 * Handle the case where root is privileged and hasn't been neutered by 709 * SECURE_NOROOT. If file capabilities are set, they won't be combined with 710 * set UID root and nothing is changed. If we are root, cap_permitted is 711 * updated. If we have become set UID root, the effective bit is set. 712 */ 713 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap, 714 bool *effective, kuid_t root_uid) 715 { 716 const struct cred *old = current_cred(); 717 struct cred *new = bprm->cred; 718 719 if (!root_privileged()) 720 return; 721 /* 722 * If the legacy file capability is set, then don't set privs 723 * for a setuid root binary run by a non-root user. Do set it 724 * for a root user just to cause least surprise to an admin. 725 */ 726 if (has_fcap && __is_suid(root_uid, new)) { 727 warn_setuid_and_fcaps_mixed(bprm->filename); 728 return; 729 } 730 /* 731 * To support inheritance of root-permissions and suid-root 732 * executables under compatibility mode, we override the 733 * capability sets for the file. 734 */ 735 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) { 736 /* pP' = (cap_bset & ~0) | (pI & ~0) */ 737 new->cap_permitted = cap_combine(old->cap_bset, 738 old->cap_inheritable); 739 } 740 /* 741 * If only the real uid is 0, we do not set the effective bit. 742 */ 743 if (__is_eff(root_uid, new)) 744 *effective = true; 745 } 746 747 #define __cap_gained(field, target, source) \ 748 !cap_issubset(target->cap_##field, source->cap_##field) 749 #define __cap_grew(target, source, cred) \ 750 !cap_issubset(cred->cap_##target, cred->cap_##source) 751 #define __cap_full(field, cred) \ 752 cap_issubset(CAP_FULL_SET, cred->cap_##field) 753 754 static inline bool __is_setuid(struct cred *new, const struct cred *old) 755 { return !uid_eq(new->euid, old->uid); } 756 757 static inline bool __is_setgid(struct cred *new, const struct cred *old) 758 { return !gid_eq(new->egid, old->gid); } 759 760 /* 761 * 1) Audit candidate if current->cap_effective is set 762 * 763 * We do not bother to audit if 3 things are true: 764 * 1) cap_effective has all caps 765 * 2) we became root *OR* are were already root 766 * 3) root is supposed to have all caps (SECURE_NOROOT) 767 * Since this is just a normal root execing a process. 768 * 769 * Number 1 above might fail if you don't have a full bset, but I think 770 * that is interesting information to audit. 771 * 772 * A number of other conditions require logging: 773 * 2) something prevented setuid root getting all caps 774 * 3) non-setuid root gets fcaps 775 * 4) non-setuid root gets ambient 776 */ 777 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old, 778 kuid_t root, bool has_fcap) 779 { 780 bool ret = false; 781 782 if ((__cap_grew(effective, ambient, new) && 783 !(__cap_full(effective, new) && 784 (__is_eff(root, new) || __is_real(root, new)) && 785 root_privileged())) || 786 (root_privileged() && 787 __is_suid(root, new) && 788 !__cap_full(effective, new)) || 789 (!__is_setuid(new, old) && 790 ((has_fcap && 791 __cap_gained(permitted, new, old)) || 792 __cap_gained(ambient, new, old)))) 793 794 ret = true; 795 796 return ret; 797 } 798 799 /** 800 * cap_bprm_set_creds - Set up the proposed credentials for execve(). 801 * @bprm: The execution parameters, including the proposed creds 802 * 803 * Set up the proposed credentials for a new execution context being 804 * constructed by execve(). The proposed creds in @bprm->cred is altered, 805 * which won't take effect immediately. Returns 0 if successful, -ve on error. 806 */ 807 int cap_bprm_set_creds(struct linux_binprm *bprm) 808 { 809 const struct cred *old = current_cred(); 810 struct cred *new = bprm->cred; 811 bool effective = false, has_fcap = false, is_setid; 812 int ret; 813 kuid_t root_uid; 814 815 if (WARN_ON(!cap_ambient_invariant_ok(old))) 816 return -EPERM; 817 818 ret = get_file_caps(bprm, &effective, &has_fcap); 819 if (ret < 0) 820 return ret; 821 822 root_uid = make_kuid(new->user_ns, 0); 823 824 handle_privileged_root(bprm, has_fcap, &effective, root_uid); 825 826 /* if we have fs caps, clear dangerous personality flags */ 827 if (__cap_gained(permitted, new, old)) 828 bprm->per_clear |= PER_CLEAR_ON_SETID; 829 830 /* Don't let someone trace a set[ug]id/setpcap binary with the revised 831 * credentials unless they have the appropriate permit. 832 * 833 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. 834 */ 835 is_setid = __is_setuid(new, old) || __is_setgid(new, old); 836 837 if ((is_setid || __cap_gained(permitted, new, old)) && 838 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) || 839 !ptracer_capable(current, new->user_ns))) { 840 /* downgrade; they get no more than they had, and maybe less */ 841 if (!ns_capable(new->user_ns, CAP_SETUID) || 842 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { 843 new->euid = new->uid; 844 new->egid = new->gid; 845 } 846 new->cap_permitted = cap_intersect(new->cap_permitted, 847 old->cap_permitted); 848 } 849 850 new->suid = new->fsuid = new->euid; 851 new->sgid = new->fsgid = new->egid; 852 853 /* File caps or setid cancels ambient. */ 854 if (has_fcap || is_setid) 855 cap_clear(new->cap_ambient); 856 857 /* 858 * Now that we've computed pA', update pP' to give: 859 * pP' = (X & fP) | (pI & fI) | pA' 860 */ 861 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient); 862 863 /* 864 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set, 865 * this is the same as pE' = (fE ? pP' : 0) | pA'. 866 */ 867 if (effective) 868 new->cap_effective = new->cap_permitted; 869 else 870 new->cap_effective = new->cap_ambient; 871 872 if (WARN_ON(!cap_ambient_invariant_ok(new))) 873 return -EPERM; 874 875 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) { 876 ret = audit_log_bprm_fcaps(bprm, new, old); 877 if (ret < 0) 878 return ret; 879 } 880 881 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 882 883 if (WARN_ON(!cap_ambient_invariant_ok(new))) 884 return -EPERM; 885 886 /* Check for privilege-elevated exec. */ 887 bprm->cap_elevated = 0; 888 if (is_setid || 889 (!__is_real(root_uid, new) && 890 (effective || 891 __cap_grew(permitted, ambient, new)))) 892 bprm->cap_elevated = 1; 893 894 return 0; 895 } 896 897 /** 898 * cap_inode_setxattr - Determine whether an xattr may be altered 899 * @dentry: The inode/dentry being altered 900 * @name: The name of the xattr to be changed 901 * @value: The value that the xattr will be changed to 902 * @size: The size of value 903 * @flags: The replacement flag 904 * 905 * Determine whether an xattr may be altered or set on an inode, returning 0 if 906 * permission is granted, -ve if denied. 907 * 908 * This is used to make sure security xattrs don't get updated or set by those 909 * who aren't privileged to do so. 910 */ 911 int cap_inode_setxattr(struct dentry *dentry, const char *name, 912 const void *value, size_t size, int flags) 913 { 914 struct user_namespace *user_ns = dentry->d_sb->s_user_ns; 915 916 /* Ignore non-security xattrs */ 917 if (strncmp(name, XATTR_SECURITY_PREFIX, 918 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0) 919 return 0; 920 921 /* 922 * For XATTR_NAME_CAPS the check will be done in 923 * cap_convert_nscap(), called by setxattr() 924 */ 925 if (strcmp(name, XATTR_NAME_CAPS) == 0) 926 return 0; 927 928 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 929 return -EPERM; 930 return 0; 931 } 932 933 /** 934 * cap_inode_removexattr - Determine whether an xattr may be removed 935 * @dentry: The inode/dentry being altered 936 * @name: The name of the xattr to be changed 937 * 938 * Determine whether an xattr may be removed from an inode, returning 0 if 939 * permission is granted, -ve if denied. 940 * 941 * This is used to make sure security xattrs don't get removed by those who 942 * aren't privileged to remove them. 943 */ 944 int cap_inode_removexattr(struct dentry *dentry, const char *name) 945 { 946 struct user_namespace *user_ns = dentry->d_sb->s_user_ns; 947 948 /* Ignore non-security xattrs */ 949 if (strncmp(name, XATTR_SECURITY_PREFIX, 950 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0) 951 return 0; 952 953 if (strcmp(name, XATTR_NAME_CAPS) == 0) { 954 /* security.capability gets namespaced */ 955 struct inode *inode = d_backing_inode(dentry); 956 if (!inode) 957 return -EINVAL; 958 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) 959 return -EPERM; 960 return 0; 961 } 962 963 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 964 return -EPERM; 965 return 0; 966 } 967 968 /* 969 * cap_emulate_setxuid() fixes the effective / permitted capabilities of 970 * a process after a call to setuid, setreuid, or setresuid. 971 * 972 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of 973 * {r,e,s}uid != 0, the permitted and effective capabilities are 974 * cleared. 975 * 976 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective 977 * capabilities of the process are cleared. 978 * 979 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective 980 * capabilities are set to the permitted capabilities. 981 * 982 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should 983 * never happen. 984 * 985 * -astor 986 * 987 * cevans - New behaviour, Oct '99 988 * A process may, via prctl(), elect to keep its capabilities when it 989 * calls setuid() and switches away from uid==0. Both permitted and 990 * effective sets will be retained. 991 * Without this change, it was impossible for a daemon to drop only some 992 * of its privilege. The call to setuid(!=0) would drop all privileges! 993 * Keeping uid 0 is not an option because uid 0 owns too many vital 994 * files.. 995 * Thanks to Olaf Kirch and Peter Benie for spotting this. 996 */ 997 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) 998 { 999 kuid_t root_uid = make_kuid(old->user_ns, 0); 1000 1001 if ((uid_eq(old->uid, root_uid) || 1002 uid_eq(old->euid, root_uid) || 1003 uid_eq(old->suid, root_uid)) && 1004 (!uid_eq(new->uid, root_uid) && 1005 !uid_eq(new->euid, root_uid) && 1006 !uid_eq(new->suid, root_uid))) { 1007 if (!issecure(SECURE_KEEP_CAPS)) { 1008 cap_clear(new->cap_permitted); 1009 cap_clear(new->cap_effective); 1010 } 1011 1012 /* 1013 * Pre-ambient programs expect setresuid to nonroot followed 1014 * by exec to drop capabilities. We should make sure that 1015 * this remains the case. 1016 */ 1017 cap_clear(new->cap_ambient); 1018 } 1019 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) 1020 cap_clear(new->cap_effective); 1021 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) 1022 new->cap_effective = new->cap_permitted; 1023 } 1024 1025 /** 1026 * cap_task_fix_setuid - Fix up the results of setuid() call 1027 * @new: The proposed credentials 1028 * @old: The current task's current credentials 1029 * @flags: Indications of what has changed 1030 * 1031 * Fix up the results of setuid() call before the credential changes are 1032 * actually applied, returning 0 to grant the changes, -ve to deny them. 1033 */ 1034 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) 1035 { 1036 switch (flags) { 1037 case LSM_SETID_RE: 1038 case LSM_SETID_ID: 1039 case LSM_SETID_RES: 1040 /* juggle the capabilities to follow [RES]UID changes unless 1041 * otherwise suppressed */ 1042 if (!issecure(SECURE_NO_SETUID_FIXUP)) 1043 cap_emulate_setxuid(new, old); 1044 break; 1045 1046 case LSM_SETID_FS: 1047 /* juggle the capabilties to follow FSUID changes, unless 1048 * otherwise suppressed 1049 * 1050 * FIXME - is fsuser used for all CAP_FS_MASK capabilities? 1051 * if not, we might be a bit too harsh here. 1052 */ 1053 if (!issecure(SECURE_NO_SETUID_FIXUP)) { 1054 kuid_t root_uid = make_kuid(old->user_ns, 0); 1055 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) 1056 new->cap_effective = 1057 cap_drop_fs_set(new->cap_effective); 1058 1059 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) 1060 new->cap_effective = 1061 cap_raise_fs_set(new->cap_effective, 1062 new->cap_permitted); 1063 } 1064 break; 1065 1066 default: 1067 return -EINVAL; 1068 } 1069 1070 return 0; 1071 } 1072 1073 /* 1074 * Rationale: code calling task_setscheduler, task_setioprio, and 1075 * task_setnice, assumes that 1076 * . if capable(cap_sys_nice), then those actions should be allowed 1077 * . if not capable(cap_sys_nice), but acting on your own processes, 1078 * then those actions should be allowed 1079 * This is insufficient now since you can call code without suid, but 1080 * yet with increased caps. 1081 * So we check for increased caps on the target process. 1082 */ 1083 static int cap_safe_nice(struct task_struct *p) 1084 { 1085 int is_subset, ret = 0; 1086 1087 rcu_read_lock(); 1088 is_subset = cap_issubset(__task_cred(p)->cap_permitted, 1089 current_cred()->cap_permitted); 1090 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 1091 ret = -EPERM; 1092 rcu_read_unlock(); 1093 1094 return ret; 1095 } 1096 1097 /** 1098 * cap_task_setscheduler - Detemine if scheduler policy change is permitted 1099 * @p: The task to affect 1100 * 1101 * Detemine if the requested scheduler policy change is permitted for the 1102 * specified task, returning 0 if permission is granted, -ve if denied. 1103 */ 1104 int cap_task_setscheduler(struct task_struct *p) 1105 { 1106 return cap_safe_nice(p); 1107 } 1108 1109 /** 1110 * cap_task_ioprio - Detemine if I/O priority change is permitted 1111 * @p: The task to affect 1112 * @ioprio: The I/O priority to set 1113 * 1114 * Detemine if the requested I/O priority change is permitted for the specified 1115 * task, returning 0 if permission is granted, -ve if denied. 1116 */ 1117 int cap_task_setioprio(struct task_struct *p, int ioprio) 1118 { 1119 return cap_safe_nice(p); 1120 } 1121 1122 /** 1123 * cap_task_ioprio - Detemine if task priority change is permitted 1124 * @p: The task to affect 1125 * @nice: The nice value to set 1126 * 1127 * Detemine if the requested task priority change is permitted for the 1128 * specified task, returning 0 if permission is granted, -ve if denied. 1129 */ 1130 int cap_task_setnice(struct task_struct *p, int nice) 1131 { 1132 return cap_safe_nice(p); 1133 } 1134 1135 /* 1136 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from 1137 * the current task's bounding set. Returns 0 on success, -ve on error. 1138 */ 1139 static int cap_prctl_drop(unsigned long cap) 1140 { 1141 struct cred *new; 1142 1143 if (!ns_capable(current_user_ns(), CAP_SETPCAP)) 1144 return -EPERM; 1145 if (!cap_valid(cap)) 1146 return -EINVAL; 1147 1148 new = prepare_creds(); 1149 if (!new) 1150 return -ENOMEM; 1151 cap_lower(new->cap_bset, cap); 1152 return commit_creds(new); 1153 } 1154 1155 /** 1156 * cap_task_prctl - Implement process control functions for this security module 1157 * @option: The process control function requested 1158 * @arg2, @arg3, @arg4, @arg5: The argument data for this function 1159 * 1160 * Allow process control functions (sys_prctl()) to alter capabilities; may 1161 * also deny access to other functions not otherwise implemented here. 1162 * 1163 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented 1164 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM 1165 * modules will consider performing the function. 1166 */ 1167 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1168 unsigned long arg4, unsigned long arg5) 1169 { 1170 const struct cred *old = current_cred(); 1171 struct cred *new; 1172 1173 switch (option) { 1174 case PR_CAPBSET_READ: 1175 if (!cap_valid(arg2)) 1176 return -EINVAL; 1177 return !!cap_raised(old->cap_bset, arg2); 1178 1179 case PR_CAPBSET_DROP: 1180 return cap_prctl_drop(arg2); 1181 1182 /* 1183 * The next four prctl's remain to assist with transitioning a 1184 * system from legacy UID=0 based privilege (when filesystem 1185 * capabilities are not in use) to a system using filesystem 1186 * capabilities only - as the POSIX.1e draft intended. 1187 * 1188 * Note: 1189 * 1190 * PR_SET_SECUREBITS = 1191 * issecure_mask(SECURE_KEEP_CAPS_LOCKED) 1192 * | issecure_mask(SECURE_NOROOT) 1193 * | issecure_mask(SECURE_NOROOT_LOCKED) 1194 * | issecure_mask(SECURE_NO_SETUID_FIXUP) 1195 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) 1196 * 1197 * will ensure that the current process and all of its 1198 * children will be locked into a pure 1199 * capability-based-privilege environment. 1200 */ 1201 case PR_SET_SECUREBITS: 1202 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) 1203 & (old->securebits ^ arg2)) /*[1]*/ 1204 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ 1205 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ 1206 || (cap_capable(current_cred(), 1207 current_cred()->user_ns, 1208 CAP_SETPCAP, 1209 CAP_OPT_NONE) != 0) /*[4]*/ 1210 /* 1211 * [1] no changing of bits that are locked 1212 * [2] no unlocking of locks 1213 * [3] no setting of unsupported bits 1214 * [4] doing anything requires privilege (go read about 1215 * the "sendmail capabilities bug") 1216 */ 1217 ) 1218 /* cannot change a locked bit */ 1219 return -EPERM; 1220 1221 new = prepare_creds(); 1222 if (!new) 1223 return -ENOMEM; 1224 new->securebits = arg2; 1225 return commit_creds(new); 1226 1227 case PR_GET_SECUREBITS: 1228 return old->securebits; 1229 1230 case PR_GET_KEEPCAPS: 1231 return !!issecure(SECURE_KEEP_CAPS); 1232 1233 case PR_SET_KEEPCAPS: 1234 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ 1235 return -EINVAL; 1236 if (issecure(SECURE_KEEP_CAPS_LOCKED)) 1237 return -EPERM; 1238 1239 new = prepare_creds(); 1240 if (!new) 1241 return -ENOMEM; 1242 if (arg2) 1243 new->securebits |= issecure_mask(SECURE_KEEP_CAPS); 1244 else 1245 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 1246 return commit_creds(new); 1247 1248 case PR_CAP_AMBIENT: 1249 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) { 1250 if (arg3 | arg4 | arg5) 1251 return -EINVAL; 1252 1253 new = prepare_creds(); 1254 if (!new) 1255 return -ENOMEM; 1256 cap_clear(new->cap_ambient); 1257 return commit_creds(new); 1258 } 1259 1260 if (((!cap_valid(arg3)) | arg4 | arg5)) 1261 return -EINVAL; 1262 1263 if (arg2 == PR_CAP_AMBIENT_IS_SET) { 1264 return !!cap_raised(current_cred()->cap_ambient, arg3); 1265 } else if (arg2 != PR_CAP_AMBIENT_RAISE && 1266 arg2 != PR_CAP_AMBIENT_LOWER) { 1267 return -EINVAL; 1268 } else { 1269 if (arg2 == PR_CAP_AMBIENT_RAISE && 1270 (!cap_raised(current_cred()->cap_permitted, arg3) || 1271 !cap_raised(current_cred()->cap_inheritable, 1272 arg3) || 1273 issecure(SECURE_NO_CAP_AMBIENT_RAISE))) 1274 return -EPERM; 1275 1276 new = prepare_creds(); 1277 if (!new) 1278 return -ENOMEM; 1279 if (arg2 == PR_CAP_AMBIENT_RAISE) 1280 cap_raise(new->cap_ambient, arg3); 1281 else 1282 cap_lower(new->cap_ambient, arg3); 1283 return commit_creds(new); 1284 } 1285 1286 default: 1287 /* No functionality available - continue with default */ 1288 return -ENOSYS; 1289 } 1290 } 1291 1292 /** 1293 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted 1294 * @mm: The VM space in which the new mapping is to be made 1295 * @pages: The size of the mapping 1296 * 1297 * Determine whether the allocation of a new virtual mapping by the current 1298 * task is permitted, returning 1 if permission is granted, 0 if not. 1299 */ 1300 int cap_vm_enough_memory(struct mm_struct *mm, long pages) 1301 { 1302 int cap_sys_admin = 0; 1303 1304 if (cap_capable(current_cred(), &init_user_ns, 1305 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0) 1306 cap_sys_admin = 1; 1307 1308 return cap_sys_admin; 1309 } 1310 1311 /* 1312 * cap_mmap_addr - check if able to map given addr 1313 * @addr: address attempting to be mapped 1314 * 1315 * If the process is attempting to map memory below dac_mmap_min_addr they need 1316 * CAP_SYS_RAWIO. The other parameters to this function are unused by the 1317 * capability security module. Returns 0 if this mapping should be allowed 1318 * -EPERM if not. 1319 */ 1320 int cap_mmap_addr(unsigned long addr) 1321 { 1322 int ret = 0; 1323 1324 if (addr < dac_mmap_min_addr) { 1325 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, 1326 CAP_OPT_NONE); 1327 /* set PF_SUPERPRIV if it turns out we allow the low mmap */ 1328 if (ret == 0) 1329 current->flags |= PF_SUPERPRIV; 1330 } 1331 return ret; 1332 } 1333 1334 int cap_mmap_file(struct file *file, unsigned long reqprot, 1335 unsigned long prot, unsigned long flags) 1336 { 1337 return 0; 1338 } 1339 1340 #ifdef CONFIG_SECURITY 1341 1342 struct security_hook_list capability_hooks[] __lsm_ro_after_init = { 1343 LSM_HOOK_INIT(capable, cap_capable), 1344 LSM_HOOK_INIT(settime, cap_settime), 1345 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check), 1346 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme), 1347 LSM_HOOK_INIT(capget, cap_capget), 1348 LSM_HOOK_INIT(capset, cap_capset), 1349 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds), 1350 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv), 1351 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv), 1352 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity), 1353 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr), 1354 LSM_HOOK_INIT(mmap_file, cap_mmap_file), 1355 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid), 1356 LSM_HOOK_INIT(task_prctl, cap_task_prctl), 1357 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler), 1358 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio), 1359 LSM_HOOK_INIT(task_setnice, cap_task_setnice), 1360 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory), 1361 }; 1362 1363 static int __init capability_init(void) 1364 { 1365 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks), 1366 "capability"); 1367 return 0; 1368 } 1369 1370 DEFINE_LSM(capability) = { 1371 .name = "capability", 1372 .order = LSM_ORDER_FIRST, 1373 .init = capability_init, 1374 }; 1375 1376 #endif /* CONFIG_SECURITY */ 1377