xref: /linux/security/apparmor/apparmorfs.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AppArmor security module
4  *
5  * This file contains AppArmor /sys/kernel/security/apparmor interface functions
6  *
7  * Copyright (C) 1998-2008 Novell/SUSE
8  * Copyright 2009-2010 Canonical Ltd.
9  */
10 
11 #include <linux/ctype.h>
12 #include <linux/security.h>
13 #include <linux/vmalloc.h>
14 #include <linux/init.h>
15 #include <linux/seq_file.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/namei.h>
19 #include <linux/capability.h>
20 #include <linux/rcupdate.h>
21 #include <linux/fs.h>
22 #include <linux/fs_context.h>
23 #include <linux/poll.h>
24 #include <linux/zlib.h>
25 #include <uapi/linux/major.h>
26 #include <uapi/linux/magic.h>
27 
28 #include "include/apparmor.h"
29 #include "include/apparmorfs.h"
30 #include "include/audit.h"
31 #include "include/cred.h"
32 #include "include/crypto.h"
33 #include "include/ipc.h"
34 #include "include/label.h"
35 #include "include/policy.h"
36 #include "include/policy_ns.h"
37 #include "include/resource.h"
38 #include "include/policy_unpack.h"
39 
40 /*
41  * The apparmor filesystem interface used for policy load and introspection
42  * The interface is split into two main components based on their function
43  * a securityfs component:
44  *   used for static files that are always available, and which allows
45  *   userspace to specificy the location of the security filesystem.
46  *
47  *   fns and data are prefixed with
48  *      aa_sfs_
49  *
50  * an apparmorfs component:
51  *   used loaded policy content and introspection. It is not part of  a
52  *   regular mounted filesystem and is available only through the magic
53  *   policy symlink in the root of the securityfs apparmor/ directory.
54  *   Tasks queries will be magically redirected to the correct portion
55  *   of the policy tree based on their confinement.
56  *
57  *   fns and data are prefixed with
58  *      aafs_
59  *
60  * The aa_fs_ prefix is used to indicate the fn is used by both the
61  * securityfs and apparmorfs filesystems.
62  */
63 
64 
65 /*
66  * support fns
67  */
68 
69 struct rawdata_f_data {
70 	struct aa_loaddata *loaddata;
71 };
72 
73 #define RAWDATA_F_DATA_BUF(p) (char *)(p + 1)
74 
75 static void rawdata_f_data_free(struct rawdata_f_data *private)
76 {
77 	if (!private)
78 		return;
79 
80 	aa_put_loaddata(private->loaddata);
81 	kvfree(private);
82 }
83 
84 static struct rawdata_f_data *rawdata_f_data_alloc(size_t size)
85 {
86 	struct rawdata_f_data *ret;
87 
88 	if (size > SIZE_MAX - sizeof(*ret))
89 		return ERR_PTR(-EINVAL);
90 
91 	ret = kvzalloc(sizeof(*ret) + size, GFP_KERNEL);
92 	if (!ret)
93 		return ERR_PTR(-ENOMEM);
94 
95 	return ret;
96 }
97 
98 /**
99  * aa_mangle_name - mangle a profile name to std profile layout form
100  * @name: profile name to mangle  (NOT NULL)
101  * @target: buffer to store mangled name, same length as @name (MAYBE NULL)
102  *
103  * Returns: length of mangled name
104  */
105 static int mangle_name(const char *name, char *target)
106 {
107 	char *t = target;
108 
109 	while (*name == '/' || *name == '.')
110 		name++;
111 
112 	if (target) {
113 		for (; *name; name++) {
114 			if (*name == '/')
115 				*(t)++ = '.';
116 			else if (isspace(*name))
117 				*(t)++ = '_';
118 			else if (isalnum(*name) || strchr("._-", *name))
119 				*(t)++ = *name;
120 		}
121 
122 		*t = 0;
123 	} else {
124 		int len = 0;
125 		for (; *name; name++) {
126 			if (isalnum(*name) || isspace(*name) ||
127 			    strchr("/._-", *name))
128 				len++;
129 		}
130 
131 		return len;
132 	}
133 
134 	return t - target;
135 }
136 
137 
138 /*
139  * aafs - core fns and data for the policy tree
140  */
141 
142 #define AAFS_NAME		"apparmorfs"
143 static struct vfsmount *aafs_mnt;
144 static int aafs_count;
145 
146 
147 static int aafs_show_path(struct seq_file *seq, struct dentry *dentry)
148 {
149 	seq_printf(seq, "%s:[%lu]", AAFS_NAME, d_inode(dentry)->i_ino);
150 	return 0;
151 }
152 
153 static void aafs_free_inode(struct inode *inode)
154 {
155 	if (S_ISLNK(inode->i_mode))
156 		kfree(inode->i_link);
157 	free_inode_nonrcu(inode);
158 }
159 
160 static const struct super_operations aafs_super_ops = {
161 	.statfs = simple_statfs,
162 	.free_inode = aafs_free_inode,
163 	.show_path = aafs_show_path,
164 };
165 
166 static int apparmorfs_fill_super(struct super_block *sb, struct fs_context *fc)
167 {
168 	static struct tree_descr files[] = { {""} };
169 	int error;
170 
171 	error = simple_fill_super(sb, AAFS_MAGIC, files);
172 	if (error)
173 		return error;
174 	sb->s_op = &aafs_super_ops;
175 
176 	return 0;
177 }
178 
179 static int apparmorfs_get_tree(struct fs_context *fc)
180 {
181 	return get_tree_single(fc, apparmorfs_fill_super);
182 }
183 
184 static const struct fs_context_operations apparmorfs_context_ops = {
185 	.get_tree	= apparmorfs_get_tree,
186 };
187 
188 static int apparmorfs_init_fs_context(struct fs_context *fc)
189 {
190 	fc->ops = &apparmorfs_context_ops;
191 	return 0;
192 }
193 
194 static struct file_system_type aafs_ops = {
195 	.owner = THIS_MODULE,
196 	.name = AAFS_NAME,
197 	.init_fs_context = apparmorfs_init_fs_context,
198 	.kill_sb = kill_anon_super,
199 };
200 
201 /**
202  * __aafs_setup_d_inode - basic inode setup for apparmorfs
203  * @dir: parent directory for the dentry
204  * @dentry: dentry we are seting the inode up for
205  * @mode: permissions the file should have
206  * @data: data to store on inode.i_private, available in open()
207  * @link: if symlink, symlink target string
208  * @fops: struct file_operations that should be used
209  * @iops: struct of inode_operations that should be used
210  */
211 static int __aafs_setup_d_inode(struct inode *dir, struct dentry *dentry,
212 			       umode_t mode, void *data, char *link,
213 			       const struct file_operations *fops,
214 			       const struct inode_operations *iops)
215 {
216 	struct inode *inode = new_inode(dir->i_sb);
217 
218 	AA_BUG(!dir);
219 	AA_BUG(!dentry);
220 
221 	if (!inode)
222 		return -ENOMEM;
223 
224 	inode->i_ino = get_next_ino();
225 	inode->i_mode = mode;
226 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
227 	inode->i_private = data;
228 	if (S_ISDIR(mode)) {
229 		inode->i_op = iops ? iops : &simple_dir_inode_operations;
230 		inode->i_fop = &simple_dir_operations;
231 		inc_nlink(inode);
232 		inc_nlink(dir);
233 	} else if (S_ISLNK(mode)) {
234 		inode->i_op = iops ? iops : &simple_symlink_inode_operations;
235 		inode->i_link = link;
236 	} else {
237 		inode->i_fop = fops;
238 	}
239 	d_instantiate(dentry, inode);
240 	dget(dentry);
241 
242 	return 0;
243 }
244 
245 /**
246  * aafs_create - create a dentry in the apparmorfs filesystem
247  *
248  * @name: name of dentry to create
249  * @mode: permissions the file should have
250  * @parent: parent directory for this dentry
251  * @data: data to store on inode.i_private, available in open()
252  * @link: if symlink, symlink target string
253  * @fops: struct file_operations that should be used for
254  * @iops: struct of inode_operations that should be used
255  *
256  * This is the basic "create a xxx" function for apparmorfs.
257  *
258  * Returns a pointer to a dentry if it succeeds, that must be free with
259  * aafs_remove(). Will return ERR_PTR on failure.
260  */
261 static struct dentry *aafs_create(const char *name, umode_t mode,
262 				  struct dentry *parent, void *data, void *link,
263 				  const struct file_operations *fops,
264 				  const struct inode_operations *iops)
265 {
266 	struct dentry *dentry;
267 	struct inode *dir;
268 	int error;
269 
270 	AA_BUG(!name);
271 	AA_BUG(!parent);
272 
273 	if (!(mode & S_IFMT))
274 		mode = (mode & S_IALLUGO) | S_IFREG;
275 
276 	error = simple_pin_fs(&aafs_ops, &aafs_mnt, &aafs_count);
277 	if (error)
278 		return ERR_PTR(error);
279 
280 	dir = d_inode(parent);
281 
282 	inode_lock(dir);
283 	dentry = lookup_one_len(name, parent, strlen(name));
284 	if (IS_ERR(dentry)) {
285 		error = PTR_ERR(dentry);
286 		goto fail_lock;
287 	}
288 
289 	if (d_really_is_positive(dentry)) {
290 		error = -EEXIST;
291 		goto fail_dentry;
292 	}
293 
294 	error = __aafs_setup_d_inode(dir, dentry, mode, data, link, fops, iops);
295 	if (error)
296 		goto fail_dentry;
297 	inode_unlock(dir);
298 
299 	return dentry;
300 
301 fail_dentry:
302 	dput(dentry);
303 
304 fail_lock:
305 	inode_unlock(dir);
306 	simple_release_fs(&aafs_mnt, &aafs_count);
307 
308 	return ERR_PTR(error);
309 }
310 
311 /**
312  * aafs_create_file - create a file in the apparmorfs filesystem
313  *
314  * @name: name of dentry to create
315  * @mode: permissions the file should have
316  * @parent: parent directory for this dentry
317  * @data: data to store on inode.i_private, available in open()
318  * @fops: struct file_operations that should be used for
319  *
320  * see aafs_create
321  */
322 static struct dentry *aafs_create_file(const char *name, umode_t mode,
323 				       struct dentry *parent, void *data,
324 				       const struct file_operations *fops)
325 {
326 	return aafs_create(name, mode, parent, data, NULL, fops, NULL);
327 }
328 
329 /**
330  * aafs_create_dir - create a directory in the apparmorfs filesystem
331  *
332  * @name: name of dentry to create
333  * @parent: parent directory for this dentry
334  *
335  * see aafs_create
336  */
337 static struct dentry *aafs_create_dir(const char *name, struct dentry *parent)
338 {
339 	return aafs_create(name, S_IFDIR | 0755, parent, NULL, NULL, NULL,
340 			   NULL);
341 }
342 
343 /**
344  * aafs_create_symlink - create a symlink in the apparmorfs filesystem
345  * @name: name of dentry to create
346  * @parent: parent directory for this dentry
347  * @target: if symlink, symlink target string
348  * @private: private data
349  * @iops: struct of inode_operations that should be used
350  *
351  * If @target parameter is %NULL, then the @iops parameter needs to be
352  * setup to handle .readlink and .get_link inode_operations.
353  */
354 static struct dentry *aafs_create_symlink(const char *name,
355 					  struct dentry *parent,
356 					  const char *target,
357 					  void *private,
358 					  const struct inode_operations *iops)
359 {
360 	struct dentry *dent;
361 	char *link = NULL;
362 
363 	if (target) {
364 		if (!link)
365 			return ERR_PTR(-ENOMEM);
366 	}
367 	dent = aafs_create(name, S_IFLNK | 0444, parent, private, link, NULL,
368 			   iops);
369 	if (IS_ERR(dent))
370 		kfree(link);
371 
372 	return dent;
373 }
374 
375 /**
376  * aafs_remove - removes a file or directory from the apparmorfs filesystem
377  *
378  * @dentry: dentry of the file/directory/symlink to removed.
379  */
380 static void aafs_remove(struct dentry *dentry)
381 {
382 	struct inode *dir;
383 
384 	if (!dentry || IS_ERR(dentry))
385 		return;
386 
387 	dir = d_inode(dentry->d_parent);
388 	inode_lock(dir);
389 	if (simple_positive(dentry)) {
390 		if (d_is_dir(dentry))
391 			simple_rmdir(dir, dentry);
392 		else
393 			simple_unlink(dir, dentry);
394 		d_delete(dentry);
395 		dput(dentry);
396 	}
397 	inode_unlock(dir);
398 	simple_release_fs(&aafs_mnt, &aafs_count);
399 }
400 
401 
402 /*
403  * aa_fs - policy load/replace/remove
404  */
405 
406 /**
407  * aa_simple_write_to_buffer - common routine for getting policy from user
408  * @userbuf: user buffer to copy data from  (NOT NULL)
409  * @alloc_size: size of user buffer (REQUIRES: @alloc_size >= @copy_size)
410  * @copy_size: size of data to copy from user buffer
411  * @pos: position write is at in the file (NOT NULL)
412  *
413  * Returns: kernel buffer containing copy of user buffer data or an
414  *          ERR_PTR on failure.
415  */
416 static struct aa_loaddata *aa_simple_write_to_buffer(const char __user *userbuf,
417 						     size_t alloc_size,
418 						     size_t copy_size,
419 						     loff_t *pos)
420 {
421 	struct aa_loaddata *data;
422 
423 	AA_BUG(copy_size > alloc_size);
424 
425 	if (*pos != 0)
426 		/* only writes from pos 0, that is complete writes */
427 		return ERR_PTR(-ESPIPE);
428 
429 	/* freed by caller to simple_write_to_buffer */
430 	data = aa_loaddata_alloc(alloc_size);
431 	if (IS_ERR(data))
432 		return data;
433 
434 	data->size = copy_size;
435 	if (copy_from_user(data->data, userbuf, copy_size)) {
436 		kvfree(data);
437 		return ERR_PTR(-EFAULT);
438 	}
439 
440 	return data;
441 }
442 
443 static ssize_t policy_update(u32 mask, const char __user *buf, size_t size,
444 			     loff_t *pos, struct aa_ns *ns)
445 {
446 	struct aa_loaddata *data;
447 	struct aa_label *label;
448 	ssize_t error;
449 
450 	label = begin_current_label_crit_section();
451 
452 	/* high level check about policy management - fine grained in
453 	 * below after unpack
454 	 */
455 	error = aa_may_manage_policy(label, ns, mask);
456 	if (error)
457 		return error;
458 
459 	data = aa_simple_write_to_buffer(buf, size, size, pos);
460 	error = PTR_ERR(data);
461 	if (!IS_ERR(data)) {
462 		error = aa_replace_profiles(ns, label, mask, data);
463 		aa_put_loaddata(data);
464 	}
465 	end_current_label_crit_section(label);
466 
467 	return error;
468 }
469 
470 /* .load file hook fn to load policy */
471 static ssize_t profile_load(struct file *f, const char __user *buf, size_t size,
472 			    loff_t *pos)
473 {
474 	struct aa_ns *ns = aa_get_ns(f->f_inode->i_private);
475 	int error = policy_update(AA_MAY_LOAD_POLICY, buf, size, pos, ns);
476 
477 	aa_put_ns(ns);
478 
479 	return error;
480 }
481 
482 static const struct file_operations aa_fs_profile_load = {
483 	.write = profile_load,
484 	.llseek = default_llseek,
485 };
486 
487 /* .replace file hook fn to load and/or replace policy */
488 static ssize_t profile_replace(struct file *f, const char __user *buf,
489 			       size_t size, loff_t *pos)
490 {
491 	struct aa_ns *ns = aa_get_ns(f->f_inode->i_private);
492 	int error = policy_update(AA_MAY_LOAD_POLICY | AA_MAY_REPLACE_POLICY,
493 				  buf, size, pos, ns);
494 	aa_put_ns(ns);
495 
496 	return error;
497 }
498 
499 static const struct file_operations aa_fs_profile_replace = {
500 	.write = profile_replace,
501 	.llseek = default_llseek,
502 };
503 
504 /* .remove file hook fn to remove loaded policy */
505 static ssize_t profile_remove(struct file *f, const char __user *buf,
506 			      size_t size, loff_t *pos)
507 {
508 	struct aa_loaddata *data;
509 	struct aa_label *label;
510 	ssize_t error;
511 	struct aa_ns *ns = aa_get_ns(f->f_inode->i_private);
512 
513 	label = begin_current_label_crit_section();
514 	/* high level check about policy management - fine grained in
515 	 * below after unpack
516 	 */
517 	error = aa_may_manage_policy(label, ns, AA_MAY_REMOVE_POLICY);
518 	if (error)
519 		goto out;
520 
521 	/*
522 	 * aa_remove_profile needs a null terminated string so 1 extra
523 	 * byte is allocated and the copied data is null terminated.
524 	 */
525 	data = aa_simple_write_to_buffer(buf, size + 1, size, pos);
526 
527 	error = PTR_ERR(data);
528 	if (!IS_ERR(data)) {
529 		data->data[size] = 0;
530 		error = aa_remove_profiles(ns, label, data->data, size);
531 		aa_put_loaddata(data);
532 	}
533  out:
534 	end_current_label_crit_section(label);
535 	aa_put_ns(ns);
536 	return error;
537 }
538 
539 static const struct file_operations aa_fs_profile_remove = {
540 	.write = profile_remove,
541 	.llseek = default_llseek,
542 };
543 
544 struct aa_revision {
545 	struct aa_ns *ns;
546 	long last_read;
547 };
548 
549 /* revision file hook fn for policy loads */
550 static int ns_revision_release(struct inode *inode, struct file *file)
551 {
552 	struct aa_revision *rev = file->private_data;
553 
554 	if (rev) {
555 		aa_put_ns(rev->ns);
556 		kfree(rev);
557 	}
558 
559 	return 0;
560 }
561 
562 static ssize_t ns_revision_read(struct file *file, char __user *buf,
563 				size_t size, loff_t *ppos)
564 {
565 	struct aa_revision *rev = file->private_data;
566 	char buffer[32];
567 	long last_read;
568 	int avail;
569 
570 	mutex_lock_nested(&rev->ns->lock, rev->ns->level);
571 	last_read = rev->last_read;
572 	if (last_read == rev->ns->revision) {
573 		mutex_unlock(&rev->ns->lock);
574 		if (file->f_flags & O_NONBLOCK)
575 			return -EAGAIN;
576 		if (wait_event_interruptible(rev->ns->wait,
577 					     last_read !=
578 					     READ_ONCE(rev->ns->revision)))
579 			return -ERESTARTSYS;
580 		mutex_lock_nested(&rev->ns->lock, rev->ns->level);
581 	}
582 
583 	avail = sprintf(buffer, "%ld\n", rev->ns->revision);
584 	if (*ppos + size > avail) {
585 		rev->last_read = rev->ns->revision;
586 		*ppos = 0;
587 	}
588 	mutex_unlock(&rev->ns->lock);
589 
590 	return simple_read_from_buffer(buf, size, ppos, buffer, avail);
591 }
592 
593 static int ns_revision_open(struct inode *inode, struct file *file)
594 {
595 	struct aa_revision *rev = kzalloc(sizeof(*rev), GFP_KERNEL);
596 
597 	if (!rev)
598 		return -ENOMEM;
599 
600 	rev->ns = aa_get_ns(inode->i_private);
601 	if (!rev->ns)
602 		rev->ns = aa_get_current_ns();
603 	file->private_data = rev;
604 
605 	return 0;
606 }
607 
608 static __poll_t ns_revision_poll(struct file *file, poll_table *pt)
609 {
610 	struct aa_revision *rev = file->private_data;
611 	__poll_t mask = 0;
612 
613 	if (rev) {
614 		mutex_lock_nested(&rev->ns->lock, rev->ns->level);
615 		poll_wait(file, &rev->ns->wait, pt);
616 		if (rev->last_read < rev->ns->revision)
617 			mask |= EPOLLIN | EPOLLRDNORM;
618 		mutex_unlock(&rev->ns->lock);
619 	}
620 
621 	return mask;
622 }
623 
624 void __aa_bump_ns_revision(struct aa_ns *ns)
625 {
626 	WRITE_ONCE(ns->revision, ns->revision + 1);
627 	wake_up_interruptible(&ns->wait);
628 }
629 
630 static const struct file_operations aa_fs_ns_revision_fops = {
631 	.owner		= THIS_MODULE,
632 	.open		= ns_revision_open,
633 	.poll		= ns_revision_poll,
634 	.read		= ns_revision_read,
635 	.llseek		= generic_file_llseek,
636 	.release	= ns_revision_release,
637 };
638 
639 static void profile_query_cb(struct aa_profile *profile, struct aa_perms *perms,
640 			     const char *match_str, size_t match_len)
641 {
642 	struct aa_perms tmp = { };
643 	struct aa_dfa *dfa;
644 	unsigned int state = 0;
645 
646 	if (profile_unconfined(profile))
647 		return;
648 	if (profile->file.dfa && *match_str == AA_CLASS_FILE) {
649 		dfa = profile->file.dfa;
650 		state = aa_dfa_match_len(dfa, profile->file.start,
651 					 match_str + 1, match_len - 1);
652 		if (state) {
653 			struct path_cond cond = { };
654 
655 			tmp = aa_compute_fperms(dfa, state, &cond);
656 		}
657 	} else if (profile->policy.dfa) {
658 		if (!PROFILE_MEDIATES(profile, *match_str))
659 			return;	/* no change to current perms */
660 		dfa = profile->policy.dfa;
661 		state = aa_dfa_match_len(dfa, profile->policy.start[0],
662 					 match_str, match_len);
663 		if (state)
664 			aa_compute_perms(dfa, state, &tmp);
665 	}
666 	aa_apply_modes_to_perms(profile, &tmp);
667 	aa_perms_accum_raw(perms, &tmp);
668 }
669 
670 
671 /**
672  * query_data - queries a policy and writes its data to buf
673  * @buf: the resulting data is stored here (NOT NULL)
674  * @buf_len: size of buf
675  * @query: query string used to retrieve data
676  * @query_len: size of query including second NUL byte
677  *
678  * The buffers pointed to by buf and query may overlap. The query buffer is
679  * parsed before buf is written to.
680  *
681  * The query should look like "<LABEL>\0<KEY>\0", where <LABEL> is the name of
682  * the security confinement context and <KEY> is the name of the data to
683  * retrieve. <LABEL> and <KEY> must not be NUL-terminated.
684  *
685  * Don't expect the contents of buf to be preserved on failure.
686  *
687  * Returns: number of characters written to buf or -errno on failure
688  */
689 static ssize_t query_data(char *buf, size_t buf_len,
690 			  char *query, size_t query_len)
691 {
692 	char *out;
693 	const char *key;
694 	struct label_it i;
695 	struct aa_label *label, *curr;
696 	struct aa_profile *profile;
697 	struct aa_data *data;
698 	u32 bytes, blocks;
699 	__le32 outle32;
700 
701 	if (!query_len)
702 		return -EINVAL; /* need a query */
703 
704 	key = query + strnlen(query, query_len) + 1;
705 	if (key + 1 >= query + query_len)
706 		return -EINVAL; /* not enough space for a non-empty key */
707 	if (key + strnlen(key, query + query_len - key) >= query + query_len)
708 		return -EINVAL; /* must end with NUL */
709 
710 	if (buf_len < sizeof(bytes) + sizeof(blocks))
711 		return -EINVAL; /* not enough space */
712 
713 	curr = begin_current_label_crit_section();
714 	label = aa_label_parse(curr, query, GFP_KERNEL, false, false);
715 	end_current_label_crit_section(curr);
716 	if (IS_ERR(label))
717 		return PTR_ERR(label);
718 
719 	/* We are going to leave space for two numbers. The first is the total
720 	 * number of bytes we are writing after the first number. This is so
721 	 * users can read the full output without reallocation.
722 	 *
723 	 * The second number is the number of data blocks we're writing. An
724 	 * application might be confined by multiple policies having data in
725 	 * the same key.
726 	 */
727 	memset(buf, 0, sizeof(bytes) + sizeof(blocks));
728 	out = buf + sizeof(bytes) + sizeof(blocks);
729 
730 	blocks = 0;
731 	label_for_each_confined(i, label, profile) {
732 		if (!profile->data)
733 			continue;
734 
735 		data = rhashtable_lookup_fast(profile->data, &key,
736 					      profile->data->p);
737 
738 		if (data) {
739 			if (out + sizeof(outle32) + data->size > buf +
740 			    buf_len) {
741 				aa_put_label(label);
742 				return -EINVAL; /* not enough space */
743 			}
744 			outle32 = __cpu_to_le32(data->size);
745 			memcpy(out, &outle32, sizeof(outle32));
746 			out += sizeof(outle32);
747 			memcpy(out, data->data, data->size);
748 			out += data->size;
749 			blocks++;
750 		}
751 	}
752 	aa_put_label(label);
753 
754 	outle32 = __cpu_to_le32(out - buf - sizeof(bytes));
755 	memcpy(buf, &outle32, sizeof(outle32));
756 	outle32 = __cpu_to_le32(blocks);
757 	memcpy(buf + sizeof(bytes), &outle32, sizeof(outle32));
758 
759 	return out - buf;
760 }
761 
762 /**
763  * query_label - queries a label and writes permissions to buf
764  * @buf: the resulting permissions string is stored here (NOT NULL)
765  * @buf_len: size of buf
766  * @query: binary query string to match against the dfa
767  * @query_len: size of query
768  * @view_only: only compute for querier's view
769  *
770  * The buffers pointed to by buf and query may overlap. The query buffer is
771  * parsed before buf is written to.
772  *
773  * The query should look like "LABEL_NAME\0DFA_STRING" where LABEL_NAME is
774  * the name of the label, in the current namespace, that is to be queried and
775  * DFA_STRING is a binary string to match against the label(s)'s DFA.
776  *
777  * LABEL_NAME must be NUL terminated. DFA_STRING may contain NUL characters
778  * but must *not* be NUL terminated.
779  *
780  * Returns: number of characters written to buf or -errno on failure
781  */
782 static ssize_t query_label(char *buf, size_t buf_len,
783 			   char *query, size_t query_len, bool view_only)
784 {
785 	struct aa_profile *profile;
786 	struct aa_label *label, *curr;
787 	char *label_name, *match_str;
788 	size_t label_name_len, match_len;
789 	struct aa_perms perms;
790 	struct label_it i;
791 
792 	if (!query_len)
793 		return -EINVAL;
794 
795 	label_name = query;
796 	label_name_len = strnlen(query, query_len);
797 	if (!label_name_len || label_name_len == query_len)
798 		return -EINVAL;
799 
800 	/**
801 	 * The extra byte is to account for the null byte between the
802 	 * profile name and dfa string. profile_name_len is greater
803 	 * than zero and less than query_len, so a byte can be safely
804 	 * added or subtracted.
805 	 */
806 	match_str = label_name + label_name_len + 1;
807 	match_len = query_len - label_name_len - 1;
808 
809 	curr = begin_current_label_crit_section();
810 	label = aa_label_parse(curr, label_name, GFP_KERNEL, false, false);
811 	end_current_label_crit_section(curr);
812 	if (IS_ERR(label))
813 		return PTR_ERR(label);
814 
815 	perms = allperms;
816 	if (view_only) {
817 		label_for_each_in_ns(i, labels_ns(label), label, profile) {
818 			profile_query_cb(profile, &perms, match_str, match_len);
819 		}
820 	} else {
821 		label_for_each(i, label, profile) {
822 			profile_query_cb(profile, &perms, match_str, match_len);
823 		}
824 	}
825 	aa_put_label(label);
826 
827 	return scnprintf(buf, buf_len,
828 		      "allow 0x%08x\ndeny 0x%08x\naudit 0x%08x\nquiet 0x%08x\n",
829 		      perms.allow, perms.deny, perms.audit, perms.quiet);
830 }
831 
832 /*
833  * Transaction based IO.
834  * The file expects a write which triggers the transaction, and then
835  * possibly a read(s) which collects the result - which is stored in a
836  * file-local buffer. Once a new write is performed, a new set of results
837  * are stored in the file-local buffer.
838  */
839 struct multi_transaction {
840 	struct kref count;
841 	ssize_t size;
842 	char data[0];
843 };
844 
845 #define MULTI_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct multi_transaction))
846 /* TODO: replace with per file lock */
847 static DEFINE_SPINLOCK(multi_transaction_lock);
848 
849 static void multi_transaction_kref(struct kref *kref)
850 {
851 	struct multi_transaction *t;
852 
853 	t = container_of(kref, struct multi_transaction, count);
854 	free_page((unsigned long) t);
855 }
856 
857 static struct multi_transaction *
858 get_multi_transaction(struct multi_transaction *t)
859 {
860 	if  (t)
861 		kref_get(&(t->count));
862 
863 	return t;
864 }
865 
866 static void put_multi_transaction(struct multi_transaction *t)
867 {
868 	if (t)
869 		kref_put(&(t->count), multi_transaction_kref);
870 }
871 
872 /* does not increment @new's count */
873 static void multi_transaction_set(struct file *file,
874 				  struct multi_transaction *new, size_t n)
875 {
876 	struct multi_transaction *old;
877 
878 	AA_BUG(n > MULTI_TRANSACTION_LIMIT);
879 
880 	new->size = n;
881 	spin_lock(&multi_transaction_lock);
882 	old = (struct multi_transaction *) file->private_data;
883 	file->private_data = new;
884 	spin_unlock(&multi_transaction_lock);
885 	put_multi_transaction(old);
886 }
887 
888 static struct multi_transaction *multi_transaction_new(struct file *file,
889 						       const char __user *buf,
890 						       size_t size)
891 {
892 	struct multi_transaction *t;
893 
894 	if (size > MULTI_TRANSACTION_LIMIT - 1)
895 		return ERR_PTR(-EFBIG);
896 
897 	t = (struct multi_transaction *)get_zeroed_page(GFP_KERNEL);
898 	if (!t)
899 		return ERR_PTR(-ENOMEM);
900 	kref_init(&t->count);
901 	if (copy_from_user(t->data, buf, size))
902 		return ERR_PTR(-EFAULT);
903 
904 	return t;
905 }
906 
907 static ssize_t multi_transaction_read(struct file *file, char __user *buf,
908 				       size_t size, loff_t *pos)
909 {
910 	struct multi_transaction *t;
911 	ssize_t ret;
912 
913 	spin_lock(&multi_transaction_lock);
914 	t = get_multi_transaction(file->private_data);
915 	spin_unlock(&multi_transaction_lock);
916 	if (!t)
917 		return 0;
918 
919 	ret = simple_read_from_buffer(buf, size, pos, t->data, t->size);
920 	put_multi_transaction(t);
921 
922 	return ret;
923 }
924 
925 static int multi_transaction_release(struct inode *inode, struct file *file)
926 {
927 	put_multi_transaction(file->private_data);
928 
929 	return 0;
930 }
931 
932 #define QUERY_CMD_LABEL		"label\0"
933 #define QUERY_CMD_LABEL_LEN	6
934 #define QUERY_CMD_PROFILE	"profile\0"
935 #define QUERY_CMD_PROFILE_LEN	8
936 #define QUERY_CMD_LABELALL	"labelall\0"
937 #define QUERY_CMD_LABELALL_LEN	9
938 #define QUERY_CMD_DATA		"data\0"
939 #define QUERY_CMD_DATA_LEN	5
940 
941 /**
942  * aa_write_access - generic permissions and data query
943  * @file: pointer to open apparmorfs/access file
944  * @ubuf: user buffer containing the complete query string (NOT NULL)
945  * @count: size of ubuf
946  * @ppos: position in the file (MUST BE ZERO)
947  *
948  * Allows for one permissions or data query per open(), write(), and read()
949  * sequence. The only queries currently supported are label-based queries for
950  * permissions or data.
951  *
952  * For permissions queries, ubuf must begin with "label\0", followed by the
953  * profile query specific format described in the query_label() function
954  * documentation.
955  *
956  * For data queries, ubuf must have the form "data\0<LABEL>\0<KEY>\0", where
957  * <LABEL> is the name of the security confinement context and <KEY> is the
958  * name of the data to retrieve.
959  *
960  * Returns: number of bytes written or -errno on failure
961  */
962 static ssize_t aa_write_access(struct file *file, const char __user *ubuf,
963 			       size_t count, loff_t *ppos)
964 {
965 	struct multi_transaction *t;
966 	ssize_t len;
967 
968 	if (*ppos)
969 		return -ESPIPE;
970 
971 	t = multi_transaction_new(file, ubuf, count);
972 	if (IS_ERR(t))
973 		return PTR_ERR(t);
974 
975 	if (count > QUERY_CMD_PROFILE_LEN &&
976 	    !memcmp(t->data, QUERY_CMD_PROFILE, QUERY_CMD_PROFILE_LEN)) {
977 		len = query_label(t->data, MULTI_TRANSACTION_LIMIT,
978 				  t->data + QUERY_CMD_PROFILE_LEN,
979 				  count - QUERY_CMD_PROFILE_LEN, true);
980 	} else if (count > QUERY_CMD_LABEL_LEN &&
981 		   !memcmp(t->data, QUERY_CMD_LABEL, QUERY_CMD_LABEL_LEN)) {
982 		len = query_label(t->data, MULTI_TRANSACTION_LIMIT,
983 				  t->data + QUERY_CMD_LABEL_LEN,
984 				  count - QUERY_CMD_LABEL_LEN, true);
985 	} else if (count > QUERY_CMD_LABELALL_LEN &&
986 		   !memcmp(t->data, QUERY_CMD_LABELALL,
987 			   QUERY_CMD_LABELALL_LEN)) {
988 		len = query_label(t->data, MULTI_TRANSACTION_LIMIT,
989 				  t->data + QUERY_CMD_LABELALL_LEN,
990 				  count - QUERY_CMD_LABELALL_LEN, false);
991 	} else if (count > QUERY_CMD_DATA_LEN &&
992 		   !memcmp(t->data, QUERY_CMD_DATA, QUERY_CMD_DATA_LEN)) {
993 		len = query_data(t->data, MULTI_TRANSACTION_LIMIT,
994 				 t->data + QUERY_CMD_DATA_LEN,
995 				 count - QUERY_CMD_DATA_LEN);
996 	} else
997 		len = -EINVAL;
998 
999 	if (len < 0) {
1000 		put_multi_transaction(t);
1001 		return len;
1002 	}
1003 
1004 	multi_transaction_set(file, t, len);
1005 
1006 	return count;
1007 }
1008 
1009 static const struct file_operations aa_sfs_access = {
1010 	.write		= aa_write_access,
1011 	.read		= multi_transaction_read,
1012 	.release	= multi_transaction_release,
1013 	.llseek		= generic_file_llseek,
1014 };
1015 
1016 static int aa_sfs_seq_show(struct seq_file *seq, void *v)
1017 {
1018 	struct aa_sfs_entry *fs_file = seq->private;
1019 
1020 	if (!fs_file)
1021 		return 0;
1022 
1023 	switch (fs_file->v_type) {
1024 	case AA_SFS_TYPE_BOOLEAN:
1025 		seq_printf(seq, "%s\n", fs_file->v.boolean ? "yes" : "no");
1026 		break;
1027 	case AA_SFS_TYPE_STRING:
1028 		seq_printf(seq, "%s\n", fs_file->v.string);
1029 		break;
1030 	case AA_SFS_TYPE_U64:
1031 		seq_printf(seq, "%#08lx\n", fs_file->v.u64);
1032 		break;
1033 	default:
1034 		/* Ignore unpritable entry types. */
1035 		break;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 static int aa_sfs_seq_open(struct inode *inode, struct file *file)
1042 {
1043 	return single_open(file, aa_sfs_seq_show, inode->i_private);
1044 }
1045 
1046 const struct file_operations aa_sfs_seq_file_ops = {
1047 	.owner		= THIS_MODULE,
1048 	.open		= aa_sfs_seq_open,
1049 	.read		= seq_read,
1050 	.llseek		= seq_lseek,
1051 	.release	= single_release,
1052 };
1053 
1054 /*
1055  * profile based file operations
1056  *     policy/profiles/XXXX/profiles/ *
1057  */
1058 
1059 #define SEQ_PROFILE_FOPS(NAME)						      \
1060 static int seq_profile_ ##NAME ##_open(struct inode *inode, struct file *file)\
1061 {									      \
1062 	return seq_profile_open(inode, file, seq_profile_ ##NAME ##_show);    \
1063 }									      \
1064 									      \
1065 static const struct file_operations seq_profile_ ##NAME ##_fops = {	      \
1066 	.owner		= THIS_MODULE,					      \
1067 	.open		= seq_profile_ ##NAME ##_open,			      \
1068 	.read		= seq_read,					      \
1069 	.llseek		= seq_lseek,					      \
1070 	.release	= seq_profile_release,				      \
1071 }									      \
1072 
1073 static int seq_profile_open(struct inode *inode, struct file *file,
1074 			    int (*show)(struct seq_file *, void *))
1075 {
1076 	struct aa_proxy *proxy = aa_get_proxy(inode->i_private);
1077 	int error = single_open(file, show, proxy);
1078 
1079 	if (error) {
1080 		file->private_data = NULL;
1081 		aa_put_proxy(proxy);
1082 	}
1083 
1084 	return error;
1085 }
1086 
1087 static int seq_profile_release(struct inode *inode, struct file *file)
1088 {
1089 	struct seq_file *seq = (struct seq_file *) file->private_data;
1090 	if (seq)
1091 		aa_put_proxy(seq->private);
1092 	return single_release(inode, file);
1093 }
1094 
1095 static int seq_profile_name_show(struct seq_file *seq, void *v)
1096 {
1097 	struct aa_proxy *proxy = seq->private;
1098 	struct aa_label *label = aa_get_label_rcu(&proxy->label);
1099 	struct aa_profile *profile = labels_profile(label);
1100 	seq_printf(seq, "%s\n", profile->base.name);
1101 	aa_put_label(label);
1102 
1103 	return 0;
1104 }
1105 
1106 static int seq_profile_mode_show(struct seq_file *seq, void *v)
1107 {
1108 	struct aa_proxy *proxy = seq->private;
1109 	struct aa_label *label = aa_get_label_rcu(&proxy->label);
1110 	struct aa_profile *profile = labels_profile(label);
1111 	seq_printf(seq, "%s\n", aa_profile_mode_names[profile->mode]);
1112 	aa_put_label(label);
1113 
1114 	return 0;
1115 }
1116 
1117 static int seq_profile_attach_show(struct seq_file *seq, void *v)
1118 {
1119 	struct aa_proxy *proxy = seq->private;
1120 	struct aa_label *label = aa_get_label_rcu(&proxy->label);
1121 	struct aa_profile *profile = labels_profile(label);
1122 	if (profile->attach)
1123 		seq_printf(seq, "%s\n", profile->attach);
1124 	else if (profile->xmatch)
1125 		seq_puts(seq, "<unknown>\n");
1126 	else
1127 		seq_printf(seq, "%s\n", profile->base.name);
1128 	aa_put_label(label);
1129 
1130 	return 0;
1131 }
1132 
1133 static int seq_profile_hash_show(struct seq_file *seq, void *v)
1134 {
1135 	struct aa_proxy *proxy = seq->private;
1136 	struct aa_label *label = aa_get_label_rcu(&proxy->label);
1137 	struct aa_profile *profile = labels_profile(label);
1138 	unsigned int i, size = aa_hash_size();
1139 
1140 	if (profile->hash) {
1141 		for (i = 0; i < size; i++)
1142 			seq_printf(seq, "%.2x", profile->hash[i]);
1143 		seq_putc(seq, '\n');
1144 	}
1145 	aa_put_label(label);
1146 
1147 	return 0;
1148 }
1149 
1150 SEQ_PROFILE_FOPS(name);
1151 SEQ_PROFILE_FOPS(mode);
1152 SEQ_PROFILE_FOPS(attach);
1153 SEQ_PROFILE_FOPS(hash);
1154 
1155 /*
1156  * namespace based files
1157  *     several root files and
1158  *     policy/ *
1159  */
1160 
1161 #define SEQ_NS_FOPS(NAME)						      \
1162 static int seq_ns_ ##NAME ##_open(struct inode *inode, struct file *file)     \
1163 {									      \
1164 	return single_open(file, seq_ns_ ##NAME ##_show, inode->i_private);   \
1165 }									      \
1166 									      \
1167 static const struct file_operations seq_ns_ ##NAME ##_fops = {	      \
1168 	.owner		= THIS_MODULE,					      \
1169 	.open		= seq_ns_ ##NAME ##_open,			      \
1170 	.read		= seq_read,					      \
1171 	.llseek		= seq_lseek,					      \
1172 	.release	= single_release,				      \
1173 }									      \
1174 
1175 static int seq_ns_stacked_show(struct seq_file *seq, void *v)
1176 {
1177 	struct aa_label *label;
1178 
1179 	label = begin_current_label_crit_section();
1180 	seq_printf(seq, "%s\n", label->size > 1 ? "yes" : "no");
1181 	end_current_label_crit_section(label);
1182 
1183 	return 0;
1184 }
1185 
1186 static int seq_ns_nsstacked_show(struct seq_file *seq, void *v)
1187 {
1188 	struct aa_label *label;
1189 	struct aa_profile *profile;
1190 	struct label_it it;
1191 	int count = 1;
1192 
1193 	label = begin_current_label_crit_section();
1194 
1195 	if (label->size > 1) {
1196 		label_for_each(it, label, profile)
1197 			if (profile->ns != labels_ns(label)) {
1198 				count++;
1199 				break;
1200 			}
1201 	}
1202 
1203 	seq_printf(seq, "%s\n", count > 1 ? "yes" : "no");
1204 	end_current_label_crit_section(label);
1205 
1206 	return 0;
1207 }
1208 
1209 static int seq_ns_level_show(struct seq_file *seq, void *v)
1210 {
1211 	struct aa_label *label;
1212 
1213 	label = begin_current_label_crit_section();
1214 	seq_printf(seq, "%d\n", labels_ns(label)->level);
1215 	end_current_label_crit_section(label);
1216 
1217 	return 0;
1218 }
1219 
1220 static int seq_ns_name_show(struct seq_file *seq, void *v)
1221 {
1222 	struct aa_label *label = begin_current_label_crit_section();
1223 	seq_printf(seq, "%s\n", labels_ns(label)->base.name);
1224 	end_current_label_crit_section(label);
1225 
1226 	return 0;
1227 }
1228 
1229 SEQ_NS_FOPS(stacked);
1230 SEQ_NS_FOPS(nsstacked);
1231 SEQ_NS_FOPS(level);
1232 SEQ_NS_FOPS(name);
1233 
1234 
1235 /* policy/raw_data/ * file ops */
1236 
1237 #define SEQ_RAWDATA_FOPS(NAME)						      \
1238 static int seq_rawdata_ ##NAME ##_open(struct inode *inode, struct file *file)\
1239 {									      \
1240 	return seq_rawdata_open(inode, file, seq_rawdata_ ##NAME ##_show);    \
1241 }									      \
1242 									      \
1243 static const struct file_operations seq_rawdata_ ##NAME ##_fops = {	      \
1244 	.owner		= THIS_MODULE,					      \
1245 	.open		= seq_rawdata_ ##NAME ##_open,			      \
1246 	.read		= seq_read,					      \
1247 	.llseek		= seq_lseek,					      \
1248 	.release	= seq_rawdata_release,				      \
1249 }									      \
1250 
1251 static int seq_rawdata_open(struct inode *inode, struct file *file,
1252 			    int (*show)(struct seq_file *, void *))
1253 {
1254 	struct aa_loaddata *data = __aa_get_loaddata(inode->i_private);
1255 	int error;
1256 
1257 	if (!data)
1258 		/* lost race this ent is being reaped */
1259 		return -ENOENT;
1260 
1261 	error = single_open(file, show, data);
1262 	if (error) {
1263 		AA_BUG(file->private_data &&
1264 		       ((struct seq_file *)file->private_data)->private);
1265 		aa_put_loaddata(data);
1266 	}
1267 
1268 	return error;
1269 }
1270 
1271 static int seq_rawdata_release(struct inode *inode, struct file *file)
1272 {
1273 	struct seq_file *seq = (struct seq_file *) file->private_data;
1274 
1275 	if (seq)
1276 		aa_put_loaddata(seq->private);
1277 
1278 	return single_release(inode, file);
1279 }
1280 
1281 static int seq_rawdata_abi_show(struct seq_file *seq, void *v)
1282 {
1283 	struct aa_loaddata *data = seq->private;
1284 
1285 	seq_printf(seq, "v%d\n", data->abi);
1286 
1287 	return 0;
1288 }
1289 
1290 static int seq_rawdata_revision_show(struct seq_file *seq, void *v)
1291 {
1292 	struct aa_loaddata *data = seq->private;
1293 
1294 	seq_printf(seq, "%ld\n", data->revision);
1295 
1296 	return 0;
1297 }
1298 
1299 static int seq_rawdata_hash_show(struct seq_file *seq, void *v)
1300 {
1301 	struct aa_loaddata *data = seq->private;
1302 	unsigned int i, size = aa_hash_size();
1303 
1304 	if (data->hash) {
1305 		for (i = 0; i < size; i++)
1306 			seq_printf(seq, "%.2x", data->hash[i]);
1307 		seq_putc(seq, '\n');
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static int seq_rawdata_compressed_size_show(struct seq_file *seq, void *v)
1314 {
1315 	struct aa_loaddata *data = seq->private;
1316 
1317 	seq_printf(seq, "%zu\n", data->compressed_size);
1318 
1319 	return 0;
1320 }
1321 
1322 SEQ_RAWDATA_FOPS(abi);
1323 SEQ_RAWDATA_FOPS(revision);
1324 SEQ_RAWDATA_FOPS(hash);
1325 SEQ_RAWDATA_FOPS(compressed_size);
1326 
1327 static int deflate_decompress(char *src, size_t slen, char *dst, size_t dlen)
1328 {
1329 	int error;
1330 	struct z_stream_s strm;
1331 
1332 	if (aa_g_rawdata_compression_level == 0) {
1333 		if (dlen < slen)
1334 			return -EINVAL;
1335 		memcpy(dst, src, slen);
1336 		return 0;
1337 	}
1338 
1339 	memset(&strm, 0, sizeof(strm));
1340 
1341 	strm.workspace = kvzalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
1342 	if (!strm.workspace)
1343 		return -ENOMEM;
1344 
1345 	strm.next_in = src;
1346 	strm.avail_in = slen;
1347 
1348 	error = zlib_inflateInit(&strm);
1349 	if (error != Z_OK) {
1350 		error = -ENOMEM;
1351 		goto fail_inflate_init;
1352 	}
1353 
1354 	strm.next_out = dst;
1355 	strm.avail_out = dlen;
1356 
1357 	error = zlib_inflate(&strm, Z_FINISH);
1358 	if (error != Z_STREAM_END)
1359 		error = -EINVAL;
1360 	else
1361 		error = 0;
1362 
1363 	zlib_inflateEnd(&strm);
1364 fail_inflate_init:
1365 	kvfree(strm.workspace);
1366 	return error;
1367 }
1368 
1369 static ssize_t rawdata_read(struct file *file, char __user *buf, size_t size,
1370 			    loff_t *ppos)
1371 {
1372 	struct rawdata_f_data *private = file->private_data;
1373 
1374 	return simple_read_from_buffer(buf, size, ppos,
1375 				       RAWDATA_F_DATA_BUF(private),
1376 				       private->loaddata->size);
1377 }
1378 
1379 static int rawdata_release(struct inode *inode, struct file *file)
1380 {
1381 	rawdata_f_data_free(file->private_data);
1382 
1383 	return 0;
1384 }
1385 
1386 static int rawdata_open(struct inode *inode, struct file *file)
1387 {
1388 	int error;
1389 	struct aa_loaddata *loaddata;
1390 	struct rawdata_f_data *private;
1391 
1392 	if (!policy_view_capable(NULL))
1393 		return -EACCES;
1394 
1395 	loaddata = __aa_get_loaddata(inode->i_private);
1396 	if (!loaddata)
1397 		/* lost race: this entry is being reaped */
1398 		return -ENOENT;
1399 
1400 	private = rawdata_f_data_alloc(loaddata->size);
1401 	if (IS_ERR(private)) {
1402 		error = PTR_ERR(private);
1403 		goto fail_private_alloc;
1404 	}
1405 
1406 	private->loaddata = loaddata;
1407 
1408 	error = deflate_decompress(loaddata->data, loaddata->compressed_size,
1409 				   RAWDATA_F_DATA_BUF(private),
1410 				   loaddata->size);
1411 	if (error)
1412 		goto fail_decompress;
1413 
1414 	file->private_data = private;
1415 	return 0;
1416 
1417 fail_decompress:
1418 	rawdata_f_data_free(private);
1419 	return error;
1420 
1421 fail_private_alloc:
1422 	aa_put_loaddata(loaddata);
1423 	return error;
1424 }
1425 
1426 static const struct file_operations rawdata_fops = {
1427 	.open = rawdata_open,
1428 	.read = rawdata_read,
1429 	.llseek = generic_file_llseek,
1430 	.release = rawdata_release,
1431 };
1432 
1433 static void remove_rawdata_dents(struct aa_loaddata *rawdata)
1434 {
1435 	int i;
1436 
1437 	for (i = 0; i < AAFS_LOADDATA_NDENTS; i++) {
1438 		if (!IS_ERR_OR_NULL(rawdata->dents[i])) {
1439 			/* no refcounts on i_private */
1440 			aafs_remove(rawdata->dents[i]);
1441 			rawdata->dents[i] = NULL;
1442 		}
1443 	}
1444 }
1445 
1446 void __aa_fs_remove_rawdata(struct aa_loaddata *rawdata)
1447 {
1448 	AA_BUG(rawdata->ns && !mutex_is_locked(&rawdata->ns->lock));
1449 
1450 	if (rawdata->ns) {
1451 		remove_rawdata_dents(rawdata);
1452 		list_del_init(&rawdata->list);
1453 		aa_put_ns(rawdata->ns);
1454 		rawdata->ns = NULL;
1455 	}
1456 }
1457 
1458 int __aa_fs_create_rawdata(struct aa_ns *ns, struct aa_loaddata *rawdata)
1459 {
1460 	struct dentry *dent, *dir;
1461 
1462 	AA_BUG(!ns);
1463 	AA_BUG(!rawdata);
1464 	AA_BUG(!mutex_is_locked(&ns->lock));
1465 	AA_BUG(!ns_subdata_dir(ns));
1466 
1467 	/*
1468 	 * just use ns revision dir was originally created at. This is
1469 	 * under ns->lock and if load is successful revision will be
1470 	 * bumped and is guaranteed to be unique
1471 	 */
1472 	rawdata->name = kasprintf(GFP_KERNEL, "%ld", ns->revision);
1473 	if (!rawdata->name)
1474 		return -ENOMEM;
1475 
1476 	dir = aafs_create_dir(rawdata->name, ns_subdata_dir(ns));
1477 	if (IS_ERR(dir))
1478 		/* ->name freed when rawdata freed */
1479 		return PTR_ERR(dir);
1480 	rawdata->dents[AAFS_LOADDATA_DIR] = dir;
1481 
1482 	dent = aafs_create_file("abi", S_IFREG | 0444, dir, rawdata,
1483 				      &seq_rawdata_abi_fops);
1484 	if (IS_ERR(dent))
1485 		goto fail;
1486 	rawdata->dents[AAFS_LOADDATA_ABI] = dent;
1487 
1488 	dent = aafs_create_file("revision", S_IFREG | 0444, dir, rawdata,
1489 				      &seq_rawdata_revision_fops);
1490 	if (IS_ERR(dent))
1491 		goto fail;
1492 	rawdata->dents[AAFS_LOADDATA_REVISION] = dent;
1493 
1494 	if (aa_g_hash_policy) {
1495 		dent = aafs_create_file("sha1", S_IFREG | 0444, dir,
1496 					      rawdata, &seq_rawdata_hash_fops);
1497 		if (IS_ERR(dent))
1498 			goto fail;
1499 		rawdata->dents[AAFS_LOADDATA_HASH] = dent;
1500 	}
1501 
1502 	dent = aafs_create_file("compressed_size", S_IFREG | 0444, dir,
1503 				rawdata,
1504 				&seq_rawdata_compressed_size_fops);
1505 	if (IS_ERR(dent))
1506 		goto fail;
1507 	rawdata->dents[AAFS_LOADDATA_COMPRESSED_SIZE] = dent;
1508 
1509 	dent = aafs_create_file("raw_data", S_IFREG | 0444,
1510 				      dir, rawdata, &rawdata_fops);
1511 	if (IS_ERR(dent))
1512 		goto fail;
1513 	rawdata->dents[AAFS_LOADDATA_DATA] = dent;
1514 	d_inode(dent)->i_size = rawdata->size;
1515 
1516 	rawdata->ns = aa_get_ns(ns);
1517 	list_add(&rawdata->list, &ns->rawdata_list);
1518 	/* no refcount on inode rawdata */
1519 
1520 	return 0;
1521 
1522 fail:
1523 	remove_rawdata_dents(rawdata);
1524 
1525 	return PTR_ERR(dent);
1526 }
1527 
1528 /** fns to setup dynamic per profile/namespace files **/
1529 
1530 /**
1531  *
1532  * Requires: @profile->ns->lock held
1533  */
1534 void __aafs_profile_rmdir(struct aa_profile *profile)
1535 {
1536 	struct aa_profile *child;
1537 	int i;
1538 
1539 	if (!profile)
1540 		return;
1541 
1542 	list_for_each_entry(child, &profile->base.profiles, base.list)
1543 		__aafs_profile_rmdir(child);
1544 
1545 	for (i = AAFS_PROF_SIZEOF - 1; i >= 0; --i) {
1546 		struct aa_proxy *proxy;
1547 		if (!profile->dents[i])
1548 			continue;
1549 
1550 		proxy = d_inode(profile->dents[i])->i_private;
1551 		aafs_remove(profile->dents[i]);
1552 		aa_put_proxy(proxy);
1553 		profile->dents[i] = NULL;
1554 	}
1555 }
1556 
1557 /**
1558  *
1559  * Requires: @old->ns->lock held
1560  */
1561 void __aafs_profile_migrate_dents(struct aa_profile *old,
1562 				  struct aa_profile *new)
1563 {
1564 	int i;
1565 
1566 	AA_BUG(!old);
1567 	AA_BUG(!new);
1568 	AA_BUG(!mutex_is_locked(&profiles_ns(old)->lock));
1569 
1570 	for (i = 0; i < AAFS_PROF_SIZEOF; i++) {
1571 		new->dents[i] = old->dents[i];
1572 		if (new->dents[i])
1573 			new->dents[i]->d_inode->i_mtime = current_time(new->dents[i]->d_inode);
1574 		old->dents[i] = NULL;
1575 	}
1576 }
1577 
1578 static struct dentry *create_profile_file(struct dentry *dir, const char *name,
1579 					  struct aa_profile *profile,
1580 					  const struct file_operations *fops)
1581 {
1582 	struct aa_proxy *proxy = aa_get_proxy(profile->label.proxy);
1583 	struct dentry *dent;
1584 
1585 	dent = aafs_create_file(name, S_IFREG | 0444, dir, proxy, fops);
1586 	if (IS_ERR(dent))
1587 		aa_put_proxy(proxy);
1588 
1589 	return dent;
1590 }
1591 
1592 static int profile_depth(struct aa_profile *profile)
1593 {
1594 	int depth = 0;
1595 
1596 	rcu_read_lock();
1597 	for (depth = 0; profile; profile = rcu_access_pointer(profile->parent))
1598 		depth++;
1599 	rcu_read_unlock();
1600 
1601 	return depth;
1602 }
1603 
1604 static char *gen_symlink_name(int depth, const char *dirname, const char *fname)
1605 {
1606 	char *buffer, *s;
1607 	int error;
1608 	int size = depth * 6 + strlen(dirname) + strlen(fname) + 11;
1609 
1610 	s = buffer = kmalloc(size, GFP_KERNEL);
1611 	if (!buffer)
1612 		return ERR_PTR(-ENOMEM);
1613 
1614 	for (; depth > 0; depth--) {
1615 		strcpy(s, "../../");
1616 		s += 6;
1617 		size -= 6;
1618 	}
1619 
1620 	error = snprintf(s, size, "raw_data/%s/%s", dirname, fname);
1621 	if (error >= size || error < 0) {
1622 		kfree(buffer);
1623 		return ERR_PTR(-ENAMETOOLONG);
1624 	}
1625 
1626 	return buffer;
1627 }
1628 
1629 static void rawdata_link_cb(void *arg)
1630 {
1631 	kfree(arg);
1632 }
1633 
1634 static const char *rawdata_get_link_base(struct dentry *dentry,
1635 					 struct inode *inode,
1636 					 struct delayed_call *done,
1637 					 const char *name)
1638 {
1639 	struct aa_proxy *proxy = inode->i_private;
1640 	struct aa_label *label;
1641 	struct aa_profile *profile;
1642 	char *target;
1643 	int depth;
1644 
1645 	if (!dentry)
1646 		return ERR_PTR(-ECHILD);
1647 
1648 	label = aa_get_label_rcu(&proxy->label);
1649 	profile = labels_profile(label);
1650 	depth = profile_depth(profile);
1651 	target = gen_symlink_name(depth, profile->rawdata->name, name);
1652 	aa_put_label(label);
1653 
1654 	if (IS_ERR(target))
1655 		return target;
1656 
1657 	set_delayed_call(done, rawdata_link_cb, target);
1658 
1659 	return target;
1660 }
1661 
1662 static const char *rawdata_get_link_sha1(struct dentry *dentry,
1663 					 struct inode *inode,
1664 					 struct delayed_call *done)
1665 {
1666 	return rawdata_get_link_base(dentry, inode, done, "sha1");
1667 }
1668 
1669 static const char *rawdata_get_link_abi(struct dentry *dentry,
1670 					struct inode *inode,
1671 					struct delayed_call *done)
1672 {
1673 	return rawdata_get_link_base(dentry, inode, done, "abi");
1674 }
1675 
1676 static const char *rawdata_get_link_data(struct dentry *dentry,
1677 					 struct inode *inode,
1678 					 struct delayed_call *done)
1679 {
1680 	return rawdata_get_link_base(dentry, inode, done, "raw_data");
1681 }
1682 
1683 static const struct inode_operations rawdata_link_sha1_iops = {
1684 	.get_link	= rawdata_get_link_sha1,
1685 };
1686 
1687 static const struct inode_operations rawdata_link_abi_iops = {
1688 	.get_link	= rawdata_get_link_abi,
1689 };
1690 static const struct inode_operations rawdata_link_data_iops = {
1691 	.get_link	= rawdata_get_link_data,
1692 };
1693 
1694 
1695 /*
1696  * Requires: @profile->ns->lock held
1697  */
1698 int __aafs_profile_mkdir(struct aa_profile *profile, struct dentry *parent)
1699 {
1700 	struct aa_profile *child;
1701 	struct dentry *dent = NULL, *dir;
1702 	int error;
1703 
1704 	AA_BUG(!profile);
1705 	AA_BUG(!mutex_is_locked(&profiles_ns(profile)->lock));
1706 
1707 	if (!parent) {
1708 		struct aa_profile *p;
1709 		p = aa_deref_parent(profile);
1710 		dent = prof_dir(p);
1711 		/* adding to parent that previously didn't have children */
1712 		dent = aafs_create_dir("profiles", dent);
1713 		if (IS_ERR(dent))
1714 			goto fail;
1715 		prof_child_dir(p) = parent = dent;
1716 	}
1717 
1718 	if (!profile->dirname) {
1719 		int len, id_len;
1720 		len = mangle_name(profile->base.name, NULL);
1721 		id_len = snprintf(NULL, 0, ".%ld", profile->ns->uniq_id);
1722 
1723 		profile->dirname = kmalloc(len + id_len + 1, GFP_KERNEL);
1724 		if (!profile->dirname) {
1725 			error = -ENOMEM;
1726 			goto fail2;
1727 		}
1728 
1729 		mangle_name(profile->base.name, profile->dirname);
1730 		sprintf(profile->dirname + len, ".%ld", profile->ns->uniq_id++);
1731 	}
1732 
1733 	dent = aafs_create_dir(profile->dirname, parent);
1734 	if (IS_ERR(dent))
1735 		goto fail;
1736 	prof_dir(profile) = dir = dent;
1737 
1738 	dent = create_profile_file(dir, "name", profile,
1739 				   &seq_profile_name_fops);
1740 	if (IS_ERR(dent))
1741 		goto fail;
1742 	profile->dents[AAFS_PROF_NAME] = dent;
1743 
1744 	dent = create_profile_file(dir, "mode", profile,
1745 				   &seq_profile_mode_fops);
1746 	if (IS_ERR(dent))
1747 		goto fail;
1748 	profile->dents[AAFS_PROF_MODE] = dent;
1749 
1750 	dent = create_profile_file(dir, "attach", profile,
1751 				   &seq_profile_attach_fops);
1752 	if (IS_ERR(dent))
1753 		goto fail;
1754 	profile->dents[AAFS_PROF_ATTACH] = dent;
1755 
1756 	if (profile->hash) {
1757 		dent = create_profile_file(dir, "sha1", profile,
1758 					   &seq_profile_hash_fops);
1759 		if (IS_ERR(dent))
1760 			goto fail;
1761 		profile->dents[AAFS_PROF_HASH] = dent;
1762 	}
1763 
1764 	if (profile->rawdata) {
1765 		dent = aafs_create_symlink("raw_sha1", dir, NULL,
1766 					   profile->label.proxy,
1767 					   &rawdata_link_sha1_iops);
1768 		if (IS_ERR(dent))
1769 			goto fail;
1770 		aa_get_proxy(profile->label.proxy);
1771 		profile->dents[AAFS_PROF_RAW_HASH] = dent;
1772 
1773 		dent = aafs_create_symlink("raw_abi", dir, NULL,
1774 					   profile->label.proxy,
1775 					   &rawdata_link_abi_iops);
1776 		if (IS_ERR(dent))
1777 			goto fail;
1778 		aa_get_proxy(profile->label.proxy);
1779 		profile->dents[AAFS_PROF_RAW_ABI] = dent;
1780 
1781 		dent = aafs_create_symlink("raw_data", dir, NULL,
1782 					   profile->label.proxy,
1783 					   &rawdata_link_data_iops);
1784 		if (IS_ERR(dent))
1785 			goto fail;
1786 		aa_get_proxy(profile->label.proxy);
1787 		profile->dents[AAFS_PROF_RAW_DATA] = dent;
1788 	}
1789 
1790 	list_for_each_entry(child, &profile->base.profiles, base.list) {
1791 		error = __aafs_profile_mkdir(child, prof_child_dir(profile));
1792 		if (error)
1793 			goto fail2;
1794 	}
1795 
1796 	return 0;
1797 
1798 fail:
1799 	error = PTR_ERR(dent);
1800 
1801 fail2:
1802 	__aafs_profile_rmdir(profile);
1803 
1804 	return error;
1805 }
1806 
1807 static int ns_mkdir_op(struct inode *dir, struct dentry *dentry, umode_t mode)
1808 {
1809 	struct aa_ns *ns, *parent;
1810 	/* TODO: improve permission check */
1811 	struct aa_label *label;
1812 	int error;
1813 
1814 	label = begin_current_label_crit_section();
1815 	error = aa_may_manage_policy(label, NULL, AA_MAY_LOAD_POLICY);
1816 	end_current_label_crit_section(label);
1817 	if (error)
1818 		return error;
1819 
1820 	parent = aa_get_ns(dir->i_private);
1821 	AA_BUG(d_inode(ns_subns_dir(parent)) != dir);
1822 
1823 	/* we have to unlock and then relock to get locking order right
1824 	 * for pin_fs
1825 	 */
1826 	inode_unlock(dir);
1827 	error = simple_pin_fs(&aafs_ops, &aafs_mnt, &aafs_count);
1828 	mutex_lock_nested(&parent->lock, parent->level);
1829 	inode_lock_nested(dir, I_MUTEX_PARENT);
1830 	if (error)
1831 		goto out;
1832 
1833 	error = __aafs_setup_d_inode(dir, dentry, mode | S_IFDIR,  NULL,
1834 				     NULL, NULL, NULL);
1835 	if (error)
1836 		goto out_pin;
1837 
1838 	ns = __aa_find_or_create_ns(parent, READ_ONCE(dentry->d_name.name),
1839 				    dentry);
1840 	if (IS_ERR(ns)) {
1841 		error = PTR_ERR(ns);
1842 		ns = NULL;
1843 	}
1844 
1845 	aa_put_ns(ns);		/* list ref remains */
1846 out_pin:
1847 	if (error)
1848 		simple_release_fs(&aafs_mnt, &aafs_count);
1849 out:
1850 	mutex_unlock(&parent->lock);
1851 	aa_put_ns(parent);
1852 
1853 	return error;
1854 }
1855 
1856 static int ns_rmdir_op(struct inode *dir, struct dentry *dentry)
1857 {
1858 	struct aa_ns *ns, *parent;
1859 	/* TODO: improve permission check */
1860 	struct aa_label *label;
1861 	int error;
1862 
1863 	label = begin_current_label_crit_section();
1864 	error = aa_may_manage_policy(label, NULL, AA_MAY_LOAD_POLICY);
1865 	end_current_label_crit_section(label);
1866 	if (error)
1867 		return error;
1868 
1869 	parent = aa_get_ns(dir->i_private);
1870 	/* rmdir calls the generic securityfs functions to remove files
1871 	 * from the apparmor dir. It is up to the apparmor ns locking
1872 	 * to avoid races.
1873 	 */
1874 	inode_unlock(dir);
1875 	inode_unlock(dentry->d_inode);
1876 
1877 	mutex_lock_nested(&parent->lock, parent->level);
1878 	ns = aa_get_ns(__aa_findn_ns(&parent->sub_ns, dentry->d_name.name,
1879 				     dentry->d_name.len));
1880 	if (!ns) {
1881 		error = -ENOENT;
1882 		goto out;
1883 	}
1884 	AA_BUG(ns_dir(ns) != dentry);
1885 
1886 	__aa_remove_ns(ns);
1887 	aa_put_ns(ns);
1888 
1889 out:
1890 	mutex_unlock(&parent->lock);
1891 	inode_lock_nested(dir, I_MUTEX_PARENT);
1892 	inode_lock(dentry->d_inode);
1893 	aa_put_ns(parent);
1894 
1895 	return error;
1896 }
1897 
1898 static const struct inode_operations ns_dir_inode_operations = {
1899 	.lookup		= simple_lookup,
1900 	.mkdir		= ns_mkdir_op,
1901 	.rmdir		= ns_rmdir_op,
1902 };
1903 
1904 static void __aa_fs_list_remove_rawdata(struct aa_ns *ns)
1905 {
1906 	struct aa_loaddata *ent, *tmp;
1907 
1908 	AA_BUG(!mutex_is_locked(&ns->lock));
1909 
1910 	list_for_each_entry_safe(ent, tmp, &ns->rawdata_list, list)
1911 		__aa_fs_remove_rawdata(ent);
1912 }
1913 
1914 /**
1915  *
1916  * Requires: @ns->lock held
1917  */
1918 void __aafs_ns_rmdir(struct aa_ns *ns)
1919 {
1920 	struct aa_ns *sub;
1921 	struct aa_profile *child;
1922 	int i;
1923 
1924 	if (!ns)
1925 		return;
1926 	AA_BUG(!mutex_is_locked(&ns->lock));
1927 
1928 	list_for_each_entry(child, &ns->base.profiles, base.list)
1929 		__aafs_profile_rmdir(child);
1930 
1931 	list_for_each_entry(sub, &ns->sub_ns, base.list) {
1932 		mutex_lock_nested(&sub->lock, sub->level);
1933 		__aafs_ns_rmdir(sub);
1934 		mutex_unlock(&sub->lock);
1935 	}
1936 
1937 	__aa_fs_list_remove_rawdata(ns);
1938 
1939 	if (ns_subns_dir(ns)) {
1940 		sub = d_inode(ns_subns_dir(ns))->i_private;
1941 		aa_put_ns(sub);
1942 	}
1943 	if (ns_subload(ns)) {
1944 		sub = d_inode(ns_subload(ns))->i_private;
1945 		aa_put_ns(sub);
1946 	}
1947 	if (ns_subreplace(ns)) {
1948 		sub = d_inode(ns_subreplace(ns))->i_private;
1949 		aa_put_ns(sub);
1950 	}
1951 	if (ns_subremove(ns)) {
1952 		sub = d_inode(ns_subremove(ns))->i_private;
1953 		aa_put_ns(sub);
1954 	}
1955 	if (ns_subrevision(ns)) {
1956 		sub = d_inode(ns_subrevision(ns))->i_private;
1957 		aa_put_ns(sub);
1958 	}
1959 
1960 	for (i = AAFS_NS_SIZEOF - 1; i >= 0; --i) {
1961 		aafs_remove(ns->dents[i]);
1962 		ns->dents[i] = NULL;
1963 	}
1964 }
1965 
1966 /* assumes cleanup in caller */
1967 static int __aafs_ns_mkdir_entries(struct aa_ns *ns, struct dentry *dir)
1968 {
1969 	struct dentry *dent;
1970 
1971 	AA_BUG(!ns);
1972 	AA_BUG(!dir);
1973 
1974 	dent = aafs_create_dir("profiles", dir);
1975 	if (IS_ERR(dent))
1976 		return PTR_ERR(dent);
1977 	ns_subprofs_dir(ns) = dent;
1978 
1979 	dent = aafs_create_dir("raw_data", dir);
1980 	if (IS_ERR(dent))
1981 		return PTR_ERR(dent);
1982 	ns_subdata_dir(ns) = dent;
1983 
1984 	dent = aafs_create_file("revision", 0444, dir, ns,
1985 				&aa_fs_ns_revision_fops);
1986 	if (IS_ERR(dent))
1987 		return PTR_ERR(dent);
1988 	aa_get_ns(ns);
1989 	ns_subrevision(ns) = dent;
1990 
1991 	dent = aafs_create_file(".load", 0640, dir, ns,
1992 				      &aa_fs_profile_load);
1993 	if (IS_ERR(dent))
1994 		return PTR_ERR(dent);
1995 	aa_get_ns(ns);
1996 	ns_subload(ns) = dent;
1997 
1998 	dent = aafs_create_file(".replace", 0640, dir, ns,
1999 				      &aa_fs_profile_replace);
2000 	if (IS_ERR(dent))
2001 		return PTR_ERR(dent);
2002 	aa_get_ns(ns);
2003 	ns_subreplace(ns) = dent;
2004 
2005 	dent = aafs_create_file(".remove", 0640, dir, ns,
2006 				      &aa_fs_profile_remove);
2007 	if (IS_ERR(dent))
2008 		return PTR_ERR(dent);
2009 	aa_get_ns(ns);
2010 	ns_subremove(ns) = dent;
2011 
2012 	  /* use create_dentry so we can supply private data */
2013 	dent = aafs_create("namespaces", S_IFDIR | 0755, dir, ns, NULL, NULL,
2014 			   &ns_dir_inode_operations);
2015 	if (IS_ERR(dent))
2016 		return PTR_ERR(dent);
2017 	aa_get_ns(ns);
2018 	ns_subns_dir(ns) = dent;
2019 
2020 	return 0;
2021 }
2022 
2023 /*
2024  * Requires: @ns->lock held
2025  */
2026 int __aafs_ns_mkdir(struct aa_ns *ns, struct dentry *parent, const char *name,
2027 		    struct dentry *dent)
2028 {
2029 	struct aa_ns *sub;
2030 	struct aa_profile *child;
2031 	struct dentry *dir;
2032 	int error;
2033 
2034 	AA_BUG(!ns);
2035 	AA_BUG(!parent);
2036 	AA_BUG(!mutex_is_locked(&ns->lock));
2037 
2038 	if (!name)
2039 		name = ns->base.name;
2040 
2041 	if (!dent) {
2042 		/* create ns dir if it doesn't already exist */
2043 		dent = aafs_create_dir(name, parent);
2044 		if (IS_ERR(dent))
2045 			goto fail;
2046 	} else
2047 		dget(dent);
2048 	ns_dir(ns) = dir = dent;
2049 	error = __aafs_ns_mkdir_entries(ns, dir);
2050 	if (error)
2051 		goto fail2;
2052 
2053 	/* profiles */
2054 	list_for_each_entry(child, &ns->base.profiles, base.list) {
2055 		error = __aafs_profile_mkdir(child, ns_subprofs_dir(ns));
2056 		if (error)
2057 			goto fail2;
2058 	}
2059 
2060 	/* subnamespaces */
2061 	list_for_each_entry(sub, &ns->sub_ns, base.list) {
2062 		mutex_lock_nested(&sub->lock, sub->level);
2063 		error = __aafs_ns_mkdir(sub, ns_subns_dir(ns), NULL, NULL);
2064 		mutex_unlock(&sub->lock);
2065 		if (error)
2066 			goto fail2;
2067 	}
2068 
2069 	return 0;
2070 
2071 fail:
2072 	error = PTR_ERR(dent);
2073 
2074 fail2:
2075 	__aafs_ns_rmdir(ns);
2076 
2077 	return error;
2078 }
2079 
2080 
2081 #define list_entry_is_head(pos, head, member) (&pos->member == (head))
2082 
2083 /**
2084  * __next_ns - find the next namespace to list
2085  * @root: root namespace to stop search at (NOT NULL)
2086  * @ns: current ns position (NOT NULL)
2087  *
2088  * Find the next namespace from @ns under @root and handle all locking needed
2089  * while switching current namespace.
2090  *
2091  * Returns: next namespace or NULL if at last namespace under @root
2092  * Requires: ns->parent->lock to be held
2093  * NOTE: will not unlock root->lock
2094  */
2095 static struct aa_ns *__next_ns(struct aa_ns *root, struct aa_ns *ns)
2096 {
2097 	struct aa_ns *parent, *next;
2098 
2099 	AA_BUG(!root);
2100 	AA_BUG(!ns);
2101 	AA_BUG(ns != root && !mutex_is_locked(&ns->parent->lock));
2102 
2103 	/* is next namespace a child */
2104 	if (!list_empty(&ns->sub_ns)) {
2105 		next = list_first_entry(&ns->sub_ns, typeof(*ns), base.list);
2106 		mutex_lock_nested(&next->lock, next->level);
2107 		return next;
2108 	}
2109 
2110 	/* check if the next ns is a sibling, parent, gp, .. */
2111 	parent = ns->parent;
2112 	while (ns != root) {
2113 		mutex_unlock(&ns->lock);
2114 		next = list_next_entry(ns, base.list);
2115 		if (!list_entry_is_head(next, &parent->sub_ns, base.list)) {
2116 			mutex_lock_nested(&next->lock, next->level);
2117 			return next;
2118 		}
2119 		ns = parent;
2120 		parent = parent->parent;
2121 	}
2122 
2123 	return NULL;
2124 }
2125 
2126 /**
2127  * __first_profile - find the first profile in a namespace
2128  * @root: namespace that is root of profiles being displayed (NOT NULL)
2129  * @ns: namespace to start in   (NOT NULL)
2130  *
2131  * Returns: unrefcounted profile or NULL if no profile
2132  * Requires: profile->ns.lock to be held
2133  */
2134 static struct aa_profile *__first_profile(struct aa_ns *root,
2135 					  struct aa_ns *ns)
2136 {
2137 	AA_BUG(!root);
2138 	AA_BUG(ns && !mutex_is_locked(&ns->lock));
2139 
2140 	for (; ns; ns = __next_ns(root, ns)) {
2141 		if (!list_empty(&ns->base.profiles))
2142 			return list_first_entry(&ns->base.profiles,
2143 						struct aa_profile, base.list);
2144 	}
2145 	return NULL;
2146 }
2147 
2148 /**
2149  * __next_profile - step to the next profile in a profile tree
2150  * @profile: current profile in tree (NOT NULL)
2151  *
2152  * Perform a depth first traversal on the profile tree in a namespace
2153  *
2154  * Returns: next profile or NULL if done
2155  * Requires: profile->ns.lock to be held
2156  */
2157 static struct aa_profile *__next_profile(struct aa_profile *p)
2158 {
2159 	struct aa_profile *parent;
2160 	struct aa_ns *ns = p->ns;
2161 
2162 	AA_BUG(!mutex_is_locked(&profiles_ns(p)->lock));
2163 
2164 	/* is next profile a child */
2165 	if (!list_empty(&p->base.profiles))
2166 		return list_first_entry(&p->base.profiles, typeof(*p),
2167 					base.list);
2168 
2169 	/* is next profile a sibling, parent sibling, gp, sibling, .. */
2170 	parent = rcu_dereference_protected(p->parent,
2171 					   mutex_is_locked(&p->ns->lock));
2172 	while (parent) {
2173 		p = list_next_entry(p, base.list);
2174 		if (!list_entry_is_head(p, &parent->base.profiles, base.list))
2175 			return p;
2176 		p = parent;
2177 		parent = rcu_dereference_protected(parent->parent,
2178 					    mutex_is_locked(&parent->ns->lock));
2179 	}
2180 
2181 	/* is next another profile in the namespace */
2182 	p = list_next_entry(p, base.list);
2183 	if (!list_entry_is_head(p, &ns->base.profiles, base.list))
2184 		return p;
2185 
2186 	return NULL;
2187 }
2188 
2189 /**
2190  * next_profile - step to the next profile in where ever it may be
2191  * @root: root namespace  (NOT NULL)
2192  * @profile: current profile  (NOT NULL)
2193  *
2194  * Returns: next profile or NULL if there isn't one
2195  */
2196 static struct aa_profile *next_profile(struct aa_ns *root,
2197 				       struct aa_profile *profile)
2198 {
2199 	struct aa_profile *next = __next_profile(profile);
2200 	if (next)
2201 		return next;
2202 
2203 	/* finished all profiles in namespace move to next namespace */
2204 	return __first_profile(root, __next_ns(root, profile->ns));
2205 }
2206 
2207 /**
2208  * p_start - start a depth first traversal of profile tree
2209  * @f: seq_file to fill
2210  * @pos: current position
2211  *
2212  * Returns: first profile under current namespace or NULL if none found
2213  *
2214  * acquires first ns->lock
2215  */
2216 static void *p_start(struct seq_file *f, loff_t *pos)
2217 {
2218 	struct aa_profile *profile = NULL;
2219 	struct aa_ns *root = aa_get_current_ns();
2220 	loff_t l = *pos;
2221 	f->private = root;
2222 
2223 	/* find the first profile */
2224 	mutex_lock_nested(&root->lock, root->level);
2225 	profile = __first_profile(root, root);
2226 
2227 	/* skip to position */
2228 	for (; profile && l > 0; l--)
2229 		profile = next_profile(root, profile);
2230 
2231 	return profile;
2232 }
2233 
2234 /**
2235  * p_next - read the next profile entry
2236  * @f: seq_file to fill
2237  * @p: profile previously returned
2238  * @pos: current position
2239  *
2240  * Returns: next profile after @p or NULL if none
2241  *
2242  * may acquire/release locks in namespace tree as necessary
2243  */
2244 static void *p_next(struct seq_file *f, void *p, loff_t *pos)
2245 {
2246 	struct aa_profile *profile = p;
2247 	struct aa_ns *ns = f->private;
2248 	(*pos)++;
2249 
2250 	return next_profile(ns, profile);
2251 }
2252 
2253 /**
2254  * p_stop - stop depth first traversal
2255  * @f: seq_file we are filling
2256  * @p: the last profile writen
2257  *
2258  * Release all locking done by p_start/p_next on namespace tree
2259  */
2260 static void p_stop(struct seq_file *f, void *p)
2261 {
2262 	struct aa_profile *profile = p;
2263 	struct aa_ns *root = f->private, *ns;
2264 
2265 	if (profile) {
2266 		for (ns = profile->ns; ns && ns != root; ns = ns->parent)
2267 			mutex_unlock(&ns->lock);
2268 	}
2269 	mutex_unlock(&root->lock);
2270 	aa_put_ns(root);
2271 }
2272 
2273 /**
2274  * seq_show_profile - show a profile entry
2275  * @f: seq_file to file
2276  * @p: current position (profile)    (NOT NULL)
2277  *
2278  * Returns: error on failure
2279  */
2280 static int seq_show_profile(struct seq_file *f, void *p)
2281 {
2282 	struct aa_profile *profile = (struct aa_profile *)p;
2283 	struct aa_ns *root = f->private;
2284 
2285 	aa_label_seq_xprint(f, root, &profile->label,
2286 			    FLAG_SHOW_MODE | FLAG_VIEW_SUBNS, GFP_KERNEL);
2287 	seq_putc(f, '\n');
2288 
2289 	return 0;
2290 }
2291 
2292 static const struct seq_operations aa_sfs_profiles_op = {
2293 	.start = p_start,
2294 	.next = p_next,
2295 	.stop = p_stop,
2296 	.show = seq_show_profile,
2297 };
2298 
2299 static int profiles_open(struct inode *inode, struct file *file)
2300 {
2301 	if (!policy_view_capable(NULL))
2302 		return -EACCES;
2303 
2304 	return seq_open(file, &aa_sfs_profiles_op);
2305 }
2306 
2307 static int profiles_release(struct inode *inode, struct file *file)
2308 {
2309 	return seq_release(inode, file);
2310 }
2311 
2312 static const struct file_operations aa_sfs_profiles_fops = {
2313 	.open = profiles_open,
2314 	.read = seq_read,
2315 	.llseek = seq_lseek,
2316 	.release = profiles_release,
2317 };
2318 
2319 
2320 /** Base file system setup **/
2321 static struct aa_sfs_entry aa_sfs_entry_file[] = {
2322 	AA_SFS_FILE_STRING("mask",
2323 			   "create read write exec append mmap_exec link lock"),
2324 	{ }
2325 };
2326 
2327 static struct aa_sfs_entry aa_sfs_entry_ptrace[] = {
2328 	AA_SFS_FILE_STRING("mask", "read trace"),
2329 	{ }
2330 };
2331 
2332 static struct aa_sfs_entry aa_sfs_entry_signal[] = {
2333 	AA_SFS_FILE_STRING("mask", AA_SFS_SIG_MASK),
2334 	{ }
2335 };
2336 
2337 static struct aa_sfs_entry aa_sfs_entry_attach[] = {
2338 	AA_SFS_FILE_BOOLEAN("xattr", 1),
2339 	{ }
2340 };
2341 static struct aa_sfs_entry aa_sfs_entry_domain[] = {
2342 	AA_SFS_FILE_BOOLEAN("change_hat",	1),
2343 	AA_SFS_FILE_BOOLEAN("change_hatv",	1),
2344 	AA_SFS_FILE_BOOLEAN("change_onexec",	1),
2345 	AA_SFS_FILE_BOOLEAN("change_profile",	1),
2346 	AA_SFS_FILE_BOOLEAN("stack",		1),
2347 	AA_SFS_FILE_BOOLEAN("fix_binfmt_elf_mmap",	1),
2348 	AA_SFS_FILE_BOOLEAN("post_nnp_subset",	1),
2349 	AA_SFS_FILE_BOOLEAN("computed_longest_left",	1),
2350 	AA_SFS_DIR("attach_conditions",		aa_sfs_entry_attach),
2351 	AA_SFS_FILE_STRING("version", "1.2"),
2352 	{ }
2353 };
2354 
2355 static struct aa_sfs_entry aa_sfs_entry_versions[] = {
2356 	AA_SFS_FILE_BOOLEAN("v5",	1),
2357 	AA_SFS_FILE_BOOLEAN("v6",	1),
2358 	AA_SFS_FILE_BOOLEAN("v7",	1),
2359 	AA_SFS_FILE_BOOLEAN("v8",	1),
2360 	{ }
2361 };
2362 
2363 static struct aa_sfs_entry aa_sfs_entry_policy[] = {
2364 	AA_SFS_DIR("versions",			aa_sfs_entry_versions),
2365 	AA_SFS_FILE_BOOLEAN("set_load",		1),
2366 	{ }
2367 };
2368 
2369 static struct aa_sfs_entry aa_sfs_entry_mount[] = {
2370 	AA_SFS_FILE_STRING("mask", "mount umount pivot_root"),
2371 	{ }
2372 };
2373 
2374 static struct aa_sfs_entry aa_sfs_entry_ns[] = {
2375 	AA_SFS_FILE_BOOLEAN("profile",		1),
2376 	AA_SFS_FILE_BOOLEAN("pivot_root",	0),
2377 	{ }
2378 };
2379 
2380 static struct aa_sfs_entry aa_sfs_entry_query_label[] = {
2381 	AA_SFS_FILE_STRING("perms", "allow deny audit quiet"),
2382 	AA_SFS_FILE_BOOLEAN("data",		1),
2383 	AA_SFS_FILE_BOOLEAN("multi_transaction",	1),
2384 	{ }
2385 };
2386 
2387 static struct aa_sfs_entry aa_sfs_entry_query[] = {
2388 	AA_SFS_DIR("label",			aa_sfs_entry_query_label),
2389 	{ }
2390 };
2391 static struct aa_sfs_entry aa_sfs_entry_features[] = {
2392 	AA_SFS_DIR("policy",			aa_sfs_entry_policy),
2393 	AA_SFS_DIR("domain",			aa_sfs_entry_domain),
2394 	AA_SFS_DIR("file",			aa_sfs_entry_file),
2395 	AA_SFS_DIR("network_v8",		aa_sfs_entry_network),
2396 	AA_SFS_DIR("mount",			aa_sfs_entry_mount),
2397 	AA_SFS_DIR("namespaces",		aa_sfs_entry_ns),
2398 	AA_SFS_FILE_U64("capability",		VFS_CAP_FLAGS_MASK),
2399 	AA_SFS_DIR("rlimit",			aa_sfs_entry_rlimit),
2400 	AA_SFS_DIR("caps",			aa_sfs_entry_caps),
2401 	AA_SFS_DIR("ptrace",			aa_sfs_entry_ptrace),
2402 	AA_SFS_DIR("signal",			aa_sfs_entry_signal),
2403 	AA_SFS_DIR("query",			aa_sfs_entry_query),
2404 	{ }
2405 };
2406 
2407 static struct aa_sfs_entry aa_sfs_entry_apparmor[] = {
2408 	AA_SFS_FILE_FOPS(".access", 0666, &aa_sfs_access),
2409 	AA_SFS_FILE_FOPS(".stacked", 0444, &seq_ns_stacked_fops),
2410 	AA_SFS_FILE_FOPS(".ns_stacked", 0444, &seq_ns_nsstacked_fops),
2411 	AA_SFS_FILE_FOPS(".ns_level", 0444, &seq_ns_level_fops),
2412 	AA_SFS_FILE_FOPS(".ns_name", 0444, &seq_ns_name_fops),
2413 	AA_SFS_FILE_FOPS("profiles", 0444, &aa_sfs_profiles_fops),
2414 	AA_SFS_DIR("features", aa_sfs_entry_features),
2415 	{ }
2416 };
2417 
2418 static struct aa_sfs_entry aa_sfs_entry =
2419 	AA_SFS_DIR("apparmor", aa_sfs_entry_apparmor);
2420 
2421 /**
2422  * entry_create_file - create a file entry in the apparmor securityfs
2423  * @fs_file: aa_sfs_entry to build an entry for (NOT NULL)
2424  * @parent: the parent dentry in the securityfs
2425  *
2426  * Use entry_remove_file to remove entries created with this fn.
2427  */
2428 static int __init entry_create_file(struct aa_sfs_entry *fs_file,
2429 				    struct dentry *parent)
2430 {
2431 	int error = 0;
2432 
2433 	fs_file->dentry = securityfs_create_file(fs_file->name,
2434 						 S_IFREG | fs_file->mode,
2435 						 parent, fs_file,
2436 						 fs_file->file_ops);
2437 	if (IS_ERR(fs_file->dentry)) {
2438 		error = PTR_ERR(fs_file->dentry);
2439 		fs_file->dentry = NULL;
2440 	}
2441 	return error;
2442 }
2443 
2444 static void __init entry_remove_dir(struct aa_sfs_entry *fs_dir);
2445 /**
2446  * entry_create_dir - recursively create a directory entry in the securityfs
2447  * @fs_dir: aa_sfs_entry (and all child entries) to build (NOT NULL)
2448  * @parent: the parent dentry in the securityfs
2449  *
2450  * Use entry_remove_dir to remove entries created with this fn.
2451  */
2452 static int __init entry_create_dir(struct aa_sfs_entry *fs_dir,
2453 				   struct dentry *parent)
2454 {
2455 	struct aa_sfs_entry *fs_file;
2456 	struct dentry *dir;
2457 	int error;
2458 
2459 	dir = securityfs_create_dir(fs_dir->name, parent);
2460 	if (IS_ERR(dir))
2461 		return PTR_ERR(dir);
2462 	fs_dir->dentry = dir;
2463 
2464 	for (fs_file = fs_dir->v.files; fs_file && fs_file->name; ++fs_file) {
2465 		if (fs_file->v_type == AA_SFS_TYPE_DIR)
2466 			error = entry_create_dir(fs_file, fs_dir->dentry);
2467 		else
2468 			error = entry_create_file(fs_file, fs_dir->dentry);
2469 		if (error)
2470 			goto failed;
2471 	}
2472 
2473 	return 0;
2474 
2475 failed:
2476 	entry_remove_dir(fs_dir);
2477 
2478 	return error;
2479 }
2480 
2481 /**
2482  * entry_remove_file - drop a single file entry in the apparmor securityfs
2483  * @fs_file: aa_sfs_entry to detach from the securityfs (NOT NULL)
2484  */
2485 static void __init entry_remove_file(struct aa_sfs_entry *fs_file)
2486 {
2487 	if (!fs_file->dentry)
2488 		return;
2489 
2490 	securityfs_remove(fs_file->dentry);
2491 	fs_file->dentry = NULL;
2492 }
2493 
2494 /**
2495  * entry_remove_dir - recursively drop a directory entry from the securityfs
2496  * @fs_dir: aa_sfs_entry (and all child entries) to detach (NOT NULL)
2497  */
2498 static void __init entry_remove_dir(struct aa_sfs_entry *fs_dir)
2499 {
2500 	struct aa_sfs_entry *fs_file;
2501 
2502 	for (fs_file = fs_dir->v.files; fs_file && fs_file->name; ++fs_file) {
2503 		if (fs_file->v_type == AA_SFS_TYPE_DIR)
2504 			entry_remove_dir(fs_file);
2505 		else
2506 			entry_remove_file(fs_file);
2507 	}
2508 
2509 	entry_remove_file(fs_dir);
2510 }
2511 
2512 /**
2513  * aa_destroy_aafs - cleanup and free aafs
2514  *
2515  * releases dentries allocated by aa_create_aafs
2516  */
2517 void __init aa_destroy_aafs(void)
2518 {
2519 	entry_remove_dir(&aa_sfs_entry);
2520 }
2521 
2522 
2523 #define NULL_FILE_NAME ".null"
2524 struct path aa_null;
2525 
2526 static int aa_mk_null_file(struct dentry *parent)
2527 {
2528 	struct vfsmount *mount = NULL;
2529 	struct dentry *dentry;
2530 	struct inode *inode;
2531 	int count = 0;
2532 	int error = simple_pin_fs(parent->d_sb->s_type, &mount, &count);
2533 
2534 	if (error)
2535 		return error;
2536 
2537 	inode_lock(d_inode(parent));
2538 	dentry = lookup_one_len(NULL_FILE_NAME, parent, strlen(NULL_FILE_NAME));
2539 	if (IS_ERR(dentry)) {
2540 		error = PTR_ERR(dentry);
2541 		goto out;
2542 	}
2543 	inode = new_inode(parent->d_inode->i_sb);
2544 	if (!inode) {
2545 		error = -ENOMEM;
2546 		goto out1;
2547 	}
2548 
2549 	inode->i_ino = get_next_ino();
2550 	inode->i_mode = S_IFCHR | S_IRUGO | S_IWUGO;
2551 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2552 	init_special_inode(inode, S_IFCHR | S_IRUGO | S_IWUGO,
2553 			   MKDEV(MEM_MAJOR, 3));
2554 	d_instantiate(dentry, inode);
2555 	aa_null.dentry = dget(dentry);
2556 	aa_null.mnt = mntget(mount);
2557 
2558 	error = 0;
2559 
2560 out1:
2561 	dput(dentry);
2562 out:
2563 	inode_unlock(d_inode(parent));
2564 	simple_release_fs(&mount, &count);
2565 	return error;
2566 }
2567 
2568 
2569 
2570 static const char *policy_get_link(struct dentry *dentry,
2571 				   struct inode *inode,
2572 				   struct delayed_call *done)
2573 {
2574 	struct aa_ns *ns;
2575 	struct path path;
2576 	int error;
2577 
2578 	if (!dentry)
2579 		return ERR_PTR(-ECHILD);
2580 
2581 	ns = aa_get_current_ns();
2582 	path.mnt = mntget(aafs_mnt);
2583 	path.dentry = dget(ns_dir(ns));
2584 	error = nd_jump_link(&path);
2585 	aa_put_ns(ns);
2586 
2587 	return ERR_PTR(error);
2588 }
2589 
2590 static int policy_readlink(struct dentry *dentry, char __user *buffer,
2591 			   int buflen)
2592 {
2593 	char name[32];
2594 	int res;
2595 
2596 	res = snprintf(name, sizeof(name), "%s:[%lu]", AAFS_NAME,
2597 		       d_inode(dentry)->i_ino);
2598 	if (res > 0 && res < sizeof(name))
2599 		res = readlink_copy(buffer, buflen, name);
2600 	else
2601 		res = -ENOENT;
2602 
2603 	return res;
2604 }
2605 
2606 static const struct inode_operations policy_link_iops = {
2607 	.readlink	= policy_readlink,
2608 	.get_link	= policy_get_link,
2609 };
2610 
2611 
2612 /**
2613  * aa_create_aafs - create the apparmor security filesystem
2614  *
2615  * dentries created here are released by aa_destroy_aafs
2616  *
2617  * Returns: error on failure
2618  */
2619 static int __init aa_create_aafs(void)
2620 {
2621 	struct dentry *dent;
2622 	int error;
2623 
2624 	if (!apparmor_initialized)
2625 		return 0;
2626 
2627 	if (aa_sfs_entry.dentry) {
2628 		AA_ERROR("%s: AppArmor securityfs already exists\n", __func__);
2629 		return -EEXIST;
2630 	}
2631 
2632 	/* setup apparmorfs used to virtualize policy/ */
2633 	aafs_mnt = kern_mount(&aafs_ops);
2634 	if (IS_ERR(aafs_mnt))
2635 		panic("can't set apparmorfs up\n");
2636 	aafs_mnt->mnt_sb->s_flags &= ~SB_NOUSER;
2637 
2638 	/* Populate fs tree. */
2639 	error = entry_create_dir(&aa_sfs_entry, NULL);
2640 	if (error)
2641 		goto error;
2642 
2643 	dent = securityfs_create_file(".load", 0666, aa_sfs_entry.dentry,
2644 				      NULL, &aa_fs_profile_load);
2645 	if (IS_ERR(dent))
2646 		goto dent_error;
2647 	ns_subload(root_ns) = dent;
2648 
2649 	dent = securityfs_create_file(".replace", 0666, aa_sfs_entry.dentry,
2650 				      NULL, &aa_fs_profile_replace);
2651 	if (IS_ERR(dent))
2652 		goto dent_error;
2653 	ns_subreplace(root_ns) = dent;
2654 
2655 	dent = securityfs_create_file(".remove", 0666, aa_sfs_entry.dentry,
2656 				      NULL, &aa_fs_profile_remove);
2657 	if (IS_ERR(dent))
2658 		goto dent_error;
2659 	ns_subremove(root_ns) = dent;
2660 
2661 	dent = securityfs_create_file("revision", 0444, aa_sfs_entry.dentry,
2662 				      NULL, &aa_fs_ns_revision_fops);
2663 	if (IS_ERR(dent))
2664 		goto dent_error;
2665 	ns_subrevision(root_ns) = dent;
2666 
2667 	/* policy tree referenced by magic policy symlink */
2668 	mutex_lock_nested(&root_ns->lock, root_ns->level);
2669 	error = __aafs_ns_mkdir(root_ns, aafs_mnt->mnt_root, ".policy",
2670 				aafs_mnt->mnt_root);
2671 	mutex_unlock(&root_ns->lock);
2672 	if (error)
2673 		goto error;
2674 
2675 	/* magic symlink similar to nsfs redirects based on task policy */
2676 	dent = securityfs_create_symlink("policy", aa_sfs_entry.dentry,
2677 					 NULL, &policy_link_iops);
2678 	if (IS_ERR(dent))
2679 		goto dent_error;
2680 
2681 	error = aa_mk_null_file(aa_sfs_entry.dentry);
2682 	if (error)
2683 		goto error;
2684 
2685 	/* TODO: add default profile to apparmorfs */
2686 
2687 	/* Report that AppArmor fs is enabled */
2688 	aa_info_message("AppArmor Filesystem Enabled");
2689 	return 0;
2690 
2691 dent_error:
2692 	error = PTR_ERR(dent);
2693 error:
2694 	aa_destroy_aafs();
2695 	AA_ERROR("Error creating AppArmor securityfs\n");
2696 	return error;
2697 }
2698 
2699 fs_initcall(aa_create_aafs);
2700