xref: /linux/security/apparmor/apparmorfs.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AppArmor security module
4  *
5  * This file contains AppArmor /sys/kernel/security/apparmor interface functions
6  *
7  * Copyright (C) 1998-2008 Novell/SUSE
8  * Copyright 2009-2010 Canonical Ltd.
9  */
10 
11 #include <linux/ctype.h>
12 #include <linux/security.h>
13 #include <linux/vmalloc.h>
14 #include <linux/init.h>
15 #include <linux/seq_file.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/namei.h>
19 #include <linux/capability.h>
20 #include <linux/rcupdate.h>
21 #include <linux/fs.h>
22 #include <linux/fs_context.h>
23 #include <linux/poll.h>
24 #include <linux/zlib.h>
25 #include <uapi/linux/major.h>
26 #include <uapi/linux/magic.h>
27 
28 #include "include/apparmor.h"
29 #include "include/apparmorfs.h"
30 #include "include/audit.h"
31 #include "include/cred.h"
32 #include "include/crypto.h"
33 #include "include/ipc.h"
34 #include "include/label.h"
35 #include "include/policy.h"
36 #include "include/policy_ns.h"
37 #include "include/resource.h"
38 #include "include/policy_unpack.h"
39 
40 /*
41  * The apparmor filesystem interface used for policy load and introspection
42  * The interface is split into two main components based on their function
43  * a securityfs component:
44  *   used for static files that are always available, and which allows
45  *   userspace to specificy the location of the security filesystem.
46  *
47  *   fns and data are prefixed with
48  *      aa_sfs_
49  *
50  * an apparmorfs component:
51  *   used loaded policy content and introspection. It is not part of  a
52  *   regular mounted filesystem and is available only through the magic
53  *   policy symlink in the root of the securityfs apparmor/ directory.
54  *   Tasks queries will be magically redirected to the correct portion
55  *   of the policy tree based on their confinement.
56  *
57  *   fns and data are prefixed with
58  *      aafs_
59  *
60  * The aa_fs_ prefix is used to indicate the fn is used by both the
61  * securityfs and apparmorfs filesystems.
62  */
63 
64 
65 /*
66  * support fns
67  */
68 
69 struct rawdata_f_data {
70 	struct aa_loaddata *loaddata;
71 };
72 
73 #define RAWDATA_F_DATA_BUF(p) (char *)(p + 1)
74 
75 static void rawdata_f_data_free(struct rawdata_f_data *private)
76 {
77 	if (!private)
78 		return;
79 
80 	aa_put_loaddata(private->loaddata);
81 	kvfree(private);
82 }
83 
84 static struct rawdata_f_data *rawdata_f_data_alloc(size_t size)
85 {
86 	struct rawdata_f_data *ret;
87 
88 	if (size > SIZE_MAX - sizeof(*ret))
89 		return ERR_PTR(-EINVAL);
90 
91 	ret = kvzalloc(sizeof(*ret) + size, GFP_KERNEL);
92 	if (!ret)
93 		return ERR_PTR(-ENOMEM);
94 
95 	return ret;
96 }
97 
98 /**
99  * aa_mangle_name - mangle a profile name to std profile layout form
100  * @name: profile name to mangle  (NOT NULL)
101  * @target: buffer to store mangled name, same length as @name (MAYBE NULL)
102  *
103  * Returns: length of mangled name
104  */
105 static int mangle_name(const char *name, char *target)
106 {
107 	char *t = target;
108 
109 	while (*name == '/' || *name == '.')
110 		name++;
111 
112 	if (target) {
113 		for (; *name; name++) {
114 			if (*name == '/')
115 				*(t)++ = '.';
116 			else if (isspace(*name))
117 				*(t)++ = '_';
118 			else if (isalnum(*name) || strchr("._-", *name))
119 				*(t)++ = *name;
120 		}
121 
122 		*t = 0;
123 	} else {
124 		int len = 0;
125 		for (; *name; name++) {
126 			if (isalnum(*name) || isspace(*name) ||
127 			    strchr("/._-", *name))
128 				len++;
129 		}
130 
131 		return len;
132 	}
133 
134 	return t - target;
135 }
136 
137 
138 /*
139  * aafs - core fns and data for the policy tree
140  */
141 
142 #define AAFS_NAME		"apparmorfs"
143 static struct vfsmount *aafs_mnt;
144 static int aafs_count;
145 
146 
147 static int aafs_show_path(struct seq_file *seq, struct dentry *dentry)
148 {
149 	seq_printf(seq, "%s:[%lu]", AAFS_NAME, d_inode(dentry)->i_ino);
150 	return 0;
151 }
152 
153 static void aafs_free_inode(struct inode *inode)
154 {
155 	if (S_ISLNK(inode->i_mode))
156 		kfree(inode->i_link);
157 	free_inode_nonrcu(inode);
158 }
159 
160 static const struct super_operations aafs_super_ops = {
161 	.statfs = simple_statfs,
162 	.free_inode = aafs_free_inode,
163 	.show_path = aafs_show_path,
164 };
165 
166 static int apparmorfs_fill_super(struct super_block *sb, struct fs_context *fc)
167 {
168 	static struct tree_descr files[] = { {""} };
169 	int error;
170 
171 	error = simple_fill_super(sb, AAFS_MAGIC, files);
172 	if (error)
173 		return error;
174 	sb->s_op = &aafs_super_ops;
175 
176 	return 0;
177 }
178 
179 static int apparmorfs_get_tree(struct fs_context *fc)
180 {
181 	return get_tree_single(fc, apparmorfs_fill_super);
182 }
183 
184 static const struct fs_context_operations apparmorfs_context_ops = {
185 	.get_tree	= apparmorfs_get_tree,
186 };
187 
188 static int apparmorfs_init_fs_context(struct fs_context *fc)
189 {
190 	fc->ops = &apparmorfs_context_ops;
191 	return 0;
192 }
193 
194 static struct file_system_type aafs_ops = {
195 	.owner = THIS_MODULE,
196 	.name = AAFS_NAME,
197 	.init_fs_context = apparmorfs_init_fs_context,
198 	.kill_sb = kill_anon_super,
199 };
200 
201 /**
202  * __aafs_setup_d_inode - basic inode setup for apparmorfs
203  * @dir: parent directory for the dentry
204  * @dentry: dentry we are seting the inode up for
205  * @mode: permissions the file should have
206  * @data: data to store on inode.i_private, available in open()
207  * @link: if symlink, symlink target string
208  * @fops: struct file_operations that should be used
209  * @iops: struct of inode_operations that should be used
210  */
211 static int __aafs_setup_d_inode(struct inode *dir, struct dentry *dentry,
212 			       umode_t mode, void *data, char *link,
213 			       const struct file_operations *fops,
214 			       const struct inode_operations *iops)
215 {
216 	struct inode *inode = new_inode(dir->i_sb);
217 
218 	AA_BUG(!dir);
219 	AA_BUG(!dentry);
220 
221 	if (!inode)
222 		return -ENOMEM;
223 
224 	inode->i_ino = get_next_ino();
225 	inode->i_mode = mode;
226 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
227 	inode->i_private = data;
228 	if (S_ISDIR(mode)) {
229 		inode->i_op = iops ? iops : &simple_dir_inode_operations;
230 		inode->i_fop = &simple_dir_operations;
231 		inc_nlink(inode);
232 		inc_nlink(dir);
233 	} else if (S_ISLNK(mode)) {
234 		inode->i_op = iops ? iops : &simple_symlink_inode_operations;
235 		inode->i_link = link;
236 	} else {
237 		inode->i_fop = fops;
238 	}
239 	d_instantiate(dentry, inode);
240 	dget(dentry);
241 
242 	return 0;
243 }
244 
245 /**
246  * aafs_create - create a dentry in the apparmorfs filesystem
247  *
248  * @name: name of dentry to create
249  * @mode: permissions the file should have
250  * @parent: parent directory for this dentry
251  * @data: data to store on inode.i_private, available in open()
252  * @link: if symlink, symlink target string
253  * @fops: struct file_operations that should be used for
254  * @iops: struct of inode_operations that should be used
255  *
256  * This is the basic "create a xxx" function for apparmorfs.
257  *
258  * Returns a pointer to a dentry if it succeeds, that must be free with
259  * aafs_remove(). Will return ERR_PTR on failure.
260  */
261 static struct dentry *aafs_create(const char *name, umode_t mode,
262 				  struct dentry *parent, void *data, void *link,
263 				  const struct file_operations *fops,
264 				  const struct inode_operations *iops)
265 {
266 	struct dentry *dentry;
267 	struct inode *dir;
268 	int error;
269 
270 	AA_BUG(!name);
271 	AA_BUG(!parent);
272 
273 	if (!(mode & S_IFMT))
274 		mode = (mode & S_IALLUGO) | S_IFREG;
275 
276 	error = simple_pin_fs(&aafs_ops, &aafs_mnt, &aafs_count);
277 	if (error)
278 		return ERR_PTR(error);
279 
280 	dir = d_inode(parent);
281 
282 	inode_lock(dir);
283 	dentry = lookup_one_len(name, parent, strlen(name));
284 	if (IS_ERR(dentry)) {
285 		error = PTR_ERR(dentry);
286 		goto fail_lock;
287 	}
288 
289 	if (d_really_is_positive(dentry)) {
290 		error = -EEXIST;
291 		goto fail_dentry;
292 	}
293 
294 	error = __aafs_setup_d_inode(dir, dentry, mode, data, link, fops, iops);
295 	if (error)
296 		goto fail_dentry;
297 	inode_unlock(dir);
298 
299 	return dentry;
300 
301 fail_dentry:
302 	dput(dentry);
303 
304 fail_lock:
305 	inode_unlock(dir);
306 	simple_release_fs(&aafs_mnt, &aafs_count);
307 
308 	return ERR_PTR(error);
309 }
310 
311 /**
312  * aafs_create_file - create a file in the apparmorfs filesystem
313  *
314  * @name: name of dentry to create
315  * @mode: permissions the file should have
316  * @parent: parent directory for this dentry
317  * @data: data to store on inode.i_private, available in open()
318  * @fops: struct file_operations that should be used for
319  *
320  * see aafs_create
321  */
322 static struct dentry *aafs_create_file(const char *name, umode_t mode,
323 				       struct dentry *parent, void *data,
324 				       const struct file_operations *fops)
325 {
326 	return aafs_create(name, mode, parent, data, NULL, fops, NULL);
327 }
328 
329 /**
330  * aafs_create_dir - create a directory in the apparmorfs filesystem
331  *
332  * @name: name of dentry to create
333  * @parent: parent directory for this dentry
334  *
335  * see aafs_create
336  */
337 static struct dentry *aafs_create_dir(const char *name, struct dentry *parent)
338 {
339 	return aafs_create(name, S_IFDIR | 0755, parent, NULL, NULL, NULL,
340 			   NULL);
341 }
342 
343 /**
344  * aafs_create_symlink - create a symlink in the apparmorfs filesystem
345  * @name: name of dentry to create
346  * @parent: parent directory for this dentry
347  * @target: if symlink, symlink target string
348  * @private: private data
349  * @iops: struct of inode_operations that should be used
350  *
351  * If @target parameter is %NULL, then the @iops parameter needs to be
352  * setup to handle .readlink and .get_link inode_operations.
353  */
354 static struct dentry *aafs_create_symlink(const char *name,
355 					  struct dentry *parent,
356 					  const char *target,
357 					  void *private,
358 					  const struct inode_operations *iops)
359 {
360 	struct dentry *dent;
361 	char *link = NULL;
362 
363 	if (target) {
364 		if (!link)
365 			return ERR_PTR(-ENOMEM);
366 	}
367 	dent = aafs_create(name, S_IFLNK | 0444, parent, private, link, NULL,
368 			   iops);
369 	if (IS_ERR(dent))
370 		kfree(link);
371 
372 	return dent;
373 }
374 
375 /**
376  * aafs_remove - removes a file or directory from the apparmorfs filesystem
377  *
378  * @dentry: dentry of the file/directory/symlink to removed.
379  */
380 static void aafs_remove(struct dentry *dentry)
381 {
382 	struct inode *dir;
383 
384 	if (!dentry || IS_ERR(dentry))
385 		return;
386 
387 	dir = d_inode(dentry->d_parent);
388 	inode_lock(dir);
389 	if (simple_positive(dentry)) {
390 		if (d_is_dir(dentry))
391 			simple_rmdir(dir, dentry);
392 		else
393 			simple_unlink(dir, dentry);
394 		d_delete(dentry);
395 		dput(dentry);
396 	}
397 	inode_unlock(dir);
398 	simple_release_fs(&aafs_mnt, &aafs_count);
399 }
400 
401 
402 /*
403  * aa_fs - policy load/replace/remove
404  */
405 
406 /**
407  * aa_simple_write_to_buffer - common routine for getting policy from user
408  * @userbuf: user buffer to copy data from  (NOT NULL)
409  * @alloc_size: size of user buffer (REQUIRES: @alloc_size >= @copy_size)
410  * @copy_size: size of data to copy from user buffer
411  * @pos: position write is at in the file (NOT NULL)
412  *
413  * Returns: kernel buffer containing copy of user buffer data or an
414  *          ERR_PTR on failure.
415  */
416 static struct aa_loaddata *aa_simple_write_to_buffer(const char __user *userbuf,
417 						     size_t alloc_size,
418 						     size_t copy_size,
419 						     loff_t *pos)
420 {
421 	struct aa_loaddata *data;
422 
423 	AA_BUG(copy_size > alloc_size);
424 
425 	if (*pos != 0)
426 		/* only writes from pos 0, that is complete writes */
427 		return ERR_PTR(-ESPIPE);
428 
429 	/* freed by caller to simple_write_to_buffer */
430 	data = aa_loaddata_alloc(alloc_size);
431 	if (IS_ERR(data))
432 		return data;
433 
434 	data->size = copy_size;
435 	if (copy_from_user(data->data, userbuf, copy_size)) {
436 		kvfree(data);
437 		return ERR_PTR(-EFAULT);
438 	}
439 
440 	return data;
441 }
442 
443 static ssize_t policy_update(u32 mask, const char __user *buf, size_t size,
444 			     loff_t *pos, struct aa_ns *ns)
445 {
446 	struct aa_loaddata *data;
447 	struct aa_label *label;
448 	ssize_t error;
449 
450 	label = begin_current_label_crit_section();
451 
452 	/* high level check about policy management - fine grained in
453 	 * below after unpack
454 	 */
455 	error = aa_may_manage_policy(label, ns, mask);
456 	if (error)
457 		goto end_section;
458 
459 	data = aa_simple_write_to_buffer(buf, size, size, pos);
460 	error = PTR_ERR(data);
461 	if (!IS_ERR(data)) {
462 		error = aa_replace_profiles(ns, label, mask, data);
463 		aa_put_loaddata(data);
464 	}
465 end_section:
466 	end_current_label_crit_section(label);
467 
468 	return error;
469 }
470 
471 /* .load file hook fn to load policy */
472 static ssize_t profile_load(struct file *f, const char __user *buf, size_t size,
473 			    loff_t *pos)
474 {
475 	struct aa_ns *ns = aa_get_ns(f->f_inode->i_private);
476 	int error = policy_update(AA_MAY_LOAD_POLICY, buf, size, pos, ns);
477 
478 	aa_put_ns(ns);
479 
480 	return error;
481 }
482 
483 static const struct file_operations aa_fs_profile_load = {
484 	.write = profile_load,
485 	.llseek = default_llseek,
486 };
487 
488 /* .replace file hook fn to load and/or replace policy */
489 static ssize_t profile_replace(struct file *f, const char __user *buf,
490 			       size_t size, loff_t *pos)
491 {
492 	struct aa_ns *ns = aa_get_ns(f->f_inode->i_private);
493 	int error = policy_update(AA_MAY_LOAD_POLICY | AA_MAY_REPLACE_POLICY,
494 				  buf, size, pos, ns);
495 	aa_put_ns(ns);
496 
497 	return error;
498 }
499 
500 static const struct file_operations aa_fs_profile_replace = {
501 	.write = profile_replace,
502 	.llseek = default_llseek,
503 };
504 
505 /* .remove file hook fn to remove loaded policy */
506 static ssize_t profile_remove(struct file *f, const char __user *buf,
507 			      size_t size, loff_t *pos)
508 {
509 	struct aa_loaddata *data;
510 	struct aa_label *label;
511 	ssize_t error;
512 	struct aa_ns *ns = aa_get_ns(f->f_inode->i_private);
513 
514 	label = begin_current_label_crit_section();
515 	/* high level check about policy management - fine grained in
516 	 * below after unpack
517 	 */
518 	error = aa_may_manage_policy(label, ns, AA_MAY_REMOVE_POLICY);
519 	if (error)
520 		goto out;
521 
522 	/*
523 	 * aa_remove_profile needs a null terminated string so 1 extra
524 	 * byte is allocated and the copied data is null terminated.
525 	 */
526 	data = aa_simple_write_to_buffer(buf, size + 1, size, pos);
527 
528 	error = PTR_ERR(data);
529 	if (!IS_ERR(data)) {
530 		data->data[size] = 0;
531 		error = aa_remove_profiles(ns, label, data->data, size);
532 		aa_put_loaddata(data);
533 	}
534  out:
535 	end_current_label_crit_section(label);
536 	aa_put_ns(ns);
537 	return error;
538 }
539 
540 static const struct file_operations aa_fs_profile_remove = {
541 	.write = profile_remove,
542 	.llseek = default_llseek,
543 };
544 
545 struct aa_revision {
546 	struct aa_ns *ns;
547 	long last_read;
548 };
549 
550 /* revision file hook fn for policy loads */
551 static int ns_revision_release(struct inode *inode, struct file *file)
552 {
553 	struct aa_revision *rev = file->private_data;
554 
555 	if (rev) {
556 		aa_put_ns(rev->ns);
557 		kfree(rev);
558 	}
559 
560 	return 0;
561 }
562 
563 static ssize_t ns_revision_read(struct file *file, char __user *buf,
564 				size_t size, loff_t *ppos)
565 {
566 	struct aa_revision *rev = file->private_data;
567 	char buffer[32];
568 	long last_read;
569 	int avail;
570 
571 	mutex_lock_nested(&rev->ns->lock, rev->ns->level);
572 	last_read = rev->last_read;
573 	if (last_read == rev->ns->revision) {
574 		mutex_unlock(&rev->ns->lock);
575 		if (file->f_flags & O_NONBLOCK)
576 			return -EAGAIN;
577 		if (wait_event_interruptible(rev->ns->wait,
578 					     last_read !=
579 					     READ_ONCE(rev->ns->revision)))
580 			return -ERESTARTSYS;
581 		mutex_lock_nested(&rev->ns->lock, rev->ns->level);
582 	}
583 
584 	avail = sprintf(buffer, "%ld\n", rev->ns->revision);
585 	if (*ppos + size > avail) {
586 		rev->last_read = rev->ns->revision;
587 		*ppos = 0;
588 	}
589 	mutex_unlock(&rev->ns->lock);
590 
591 	return simple_read_from_buffer(buf, size, ppos, buffer, avail);
592 }
593 
594 static int ns_revision_open(struct inode *inode, struct file *file)
595 {
596 	struct aa_revision *rev = kzalloc(sizeof(*rev), GFP_KERNEL);
597 
598 	if (!rev)
599 		return -ENOMEM;
600 
601 	rev->ns = aa_get_ns(inode->i_private);
602 	if (!rev->ns)
603 		rev->ns = aa_get_current_ns();
604 	file->private_data = rev;
605 
606 	return 0;
607 }
608 
609 static __poll_t ns_revision_poll(struct file *file, poll_table *pt)
610 {
611 	struct aa_revision *rev = file->private_data;
612 	__poll_t mask = 0;
613 
614 	if (rev) {
615 		mutex_lock_nested(&rev->ns->lock, rev->ns->level);
616 		poll_wait(file, &rev->ns->wait, pt);
617 		if (rev->last_read < rev->ns->revision)
618 			mask |= EPOLLIN | EPOLLRDNORM;
619 		mutex_unlock(&rev->ns->lock);
620 	}
621 
622 	return mask;
623 }
624 
625 void __aa_bump_ns_revision(struct aa_ns *ns)
626 {
627 	WRITE_ONCE(ns->revision, ns->revision + 1);
628 	wake_up_interruptible(&ns->wait);
629 }
630 
631 static const struct file_operations aa_fs_ns_revision_fops = {
632 	.owner		= THIS_MODULE,
633 	.open		= ns_revision_open,
634 	.poll		= ns_revision_poll,
635 	.read		= ns_revision_read,
636 	.llseek		= generic_file_llseek,
637 	.release	= ns_revision_release,
638 };
639 
640 static void profile_query_cb(struct aa_profile *profile, struct aa_perms *perms,
641 			     const char *match_str, size_t match_len)
642 {
643 	struct aa_perms tmp = { };
644 	struct aa_dfa *dfa;
645 	unsigned int state = 0;
646 
647 	if (profile_unconfined(profile))
648 		return;
649 	if (profile->file.dfa && *match_str == AA_CLASS_FILE) {
650 		dfa = profile->file.dfa;
651 		state = aa_dfa_match_len(dfa, profile->file.start,
652 					 match_str + 1, match_len - 1);
653 		if (state) {
654 			struct path_cond cond = { };
655 
656 			tmp = aa_compute_fperms(dfa, state, &cond);
657 		}
658 	} else if (profile->policy.dfa) {
659 		if (!PROFILE_MEDIATES(profile, *match_str))
660 			return;	/* no change to current perms */
661 		dfa = profile->policy.dfa;
662 		state = aa_dfa_match_len(dfa, profile->policy.start[0],
663 					 match_str, match_len);
664 		if (state)
665 			aa_compute_perms(dfa, state, &tmp);
666 	}
667 	aa_apply_modes_to_perms(profile, &tmp);
668 	aa_perms_accum_raw(perms, &tmp);
669 }
670 
671 
672 /**
673  * query_data - queries a policy and writes its data to buf
674  * @buf: the resulting data is stored here (NOT NULL)
675  * @buf_len: size of buf
676  * @query: query string used to retrieve data
677  * @query_len: size of query including second NUL byte
678  *
679  * The buffers pointed to by buf and query may overlap. The query buffer is
680  * parsed before buf is written to.
681  *
682  * The query should look like "<LABEL>\0<KEY>\0", where <LABEL> is the name of
683  * the security confinement context and <KEY> is the name of the data to
684  * retrieve. <LABEL> and <KEY> must not be NUL-terminated.
685  *
686  * Don't expect the contents of buf to be preserved on failure.
687  *
688  * Returns: number of characters written to buf or -errno on failure
689  */
690 static ssize_t query_data(char *buf, size_t buf_len,
691 			  char *query, size_t query_len)
692 {
693 	char *out;
694 	const char *key;
695 	struct label_it i;
696 	struct aa_label *label, *curr;
697 	struct aa_profile *profile;
698 	struct aa_data *data;
699 	u32 bytes, blocks;
700 	__le32 outle32;
701 
702 	if (!query_len)
703 		return -EINVAL; /* need a query */
704 
705 	key = query + strnlen(query, query_len) + 1;
706 	if (key + 1 >= query + query_len)
707 		return -EINVAL; /* not enough space for a non-empty key */
708 	if (key + strnlen(key, query + query_len - key) >= query + query_len)
709 		return -EINVAL; /* must end with NUL */
710 
711 	if (buf_len < sizeof(bytes) + sizeof(blocks))
712 		return -EINVAL; /* not enough space */
713 
714 	curr = begin_current_label_crit_section();
715 	label = aa_label_parse(curr, query, GFP_KERNEL, false, false);
716 	end_current_label_crit_section(curr);
717 	if (IS_ERR(label))
718 		return PTR_ERR(label);
719 
720 	/* We are going to leave space for two numbers. The first is the total
721 	 * number of bytes we are writing after the first number. This is so
722 	 * users can read the full output without reallocation.
723 	 *
724 	 * The second number is the number of data blocks we're writing. An
725 	 * application might be confined by multiple policies having data in
726 	 * the same key.
727 	 */
728 	memset(buf, 0, sizeof(bytes) + sizeof(blocks));
729 	out = buf + sizeof(bytes) + sizeof(blocks);
730 
731 	blocks = 0;
732 	label_for_each_confined(i, label, profile) {
733 		if (!profile->data)
734 			continue;
735 
736 		data = rhashtable_lookup_fast(profile->data, &key,
737 					      profile->data->p);
738 
739 		if (data) {
740 			if (out + sizeof(outle32) + data->size > buf +
741 			    buf_len) {
742 				aa_put_label(label);
743 				return -EINVAL; /* not enough space */
744 			}
745 			outle32 = __cpu_to_le32(data->size);
746 			memcpy(out, &outle32, sizeof(outle32));
747 			out += sizeof(outle32);
748 			memcpy(out, data->data, data->size);
749 			out += data->size;
750 			blocks++;
751 		}
752 	}
753 	aa_put_label(label);
754 
755 	outle32 = __cpu_to_le32(out - buf - sizeof(bytes));
756 	memcpy(buf, &outle32, sizeof(outle32));
757 	outle32 = __cpu_to_le32(blocks);
758 	memcpy(buf + sizeof(bytes), &outle32, sizeof(outle32));
759 
760 	return out - buf;
761 }
762 
763 /**
764  * query_label - queries a label and writes permissions to buf
765  * @buf: the resulting permissions string is stored here (NOT NULL)
766  * @buf_len: size of buf
767  * @query: binary query string to match against the dfa
768  * @query_len: size of query
769  * @view_only: only compute for querier's view
770  *
771  * The buffers pointed to by buf and query may overlap. The query buffer is
772  * parsed before buf is written to.
773  *
774  * The query should look like "LABEL_NAME\0DFA_STRING" where LABEL_NAME is
775  * the name of the label, in the current namespace, that is to be queried and
776  * DFA_STRING is a binary string to match against the label(s)'s DFA.
777  *
778  * LABEL_NAME must be NUL terminated. DFA_STRING may contain NUL characters
779  * but must *not* be NUL terminated.
780  *
781  * Returns: number of characters written to buf or -errno on failure
782  */
783 static ssize_t query_label(char *buf, size_t buf_len,
784 			   char *query, size_t query_len, bool view_only)
785 {
786 	struct aa_profile *profile;
787 	struct aa_label *label, *curr;
788 	char *label_name, *match_str;
789 	size_t label_name_len, match_len;
790 	struct aa_perms perms;
791 	struct label_it i;
792 
793 	if (!query_len)
794 		return -EINVAL;
795 
796 	label_name = query;
797 	label_name_len = strnlen(query, query_len);
798 	if (!label_name_len || label_name_len == query_len)
799 		return -EINVAL;
800 
801 	/**
802 	 * The extra byte is to account for the null byte between the
803 	 * profile name and dfa string. profile_name_len is greater
804 	 * than zero and less than query_len, so a byte can be safely
805 	 * added or subtracted.
806 	 */
807 	match_str = label_name + label_name_len + 1;
808 	match_len = query_len - label_name_len - 1;
809 
810 	curr = begin_current_label_crit_section();
811 	label = aa_label_parse(curr, label_name, GFP_KERNEL, false, false);
812 	end_current_label_crit_section(curr);
813 	if (IS_ERR(label))
814 		return PTR_ERR(label);
815 
816 	perms = allperms;
817 	if (view_only) {
818 		label_for_each_in_ns(i, labels_ns(label), label, profile) {
819 			profile_query_cb(profile, &perms, match_str, match_len);
820 		}
821 	} else {
822 		label_for_each(i, label, profile) {
823 			profile_query_cb(profile, &perms, match_str, match_len);
824 		}
825 	}
826 	aa_put_label(label);
827 
828 	return scnprintf(buf, buf_len,
829 		      "allow 0x%08x\ndeny 0x%08x\naudit 0x%08x\nquiet 0x%08x\n",
830 		      perms.allow, perms.deny, perms.audit, perms.quiet);
831 }
832 
833 /*
834  * Transaction based IO.
835  * The file expects a write which triggers the transaction, and then
836  * possibly a read(s) which collects the result - which is stored in a
837  * file-local buffer. Once a new write is performed, a new set of results
838  * are stored in the file-local buffer.
839  */
840 struct multi_transaction {
841 	struct kref count;
842 	ssize_t size;
843 	char data[0];
844 };
845 
846 #define MULTI_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct multi_transaction))
847 /* TODO: replace with per file lock */
848 static DEFINE_SPINLOCK(multi_transaction_lock);
849 
850 static void multi_transaction_kref(struct kref *kref)
851 {
852 	struct multi_transaction *t;
853 
854 	t = container_of(kref, struct multi_transaction, count);
855 	free_page((unsigned long) t);
856 }
857 
858 static struct multi_transaction *
859 get_multi_transaction(struct multi_transaction *t)
860 {
861 	if  (t)
862 		kref_get(&(t->count));
863 
864 	return t;
865 }
866 
867 static void put_multi_transaction(struct multi_transaction *t)
868 {
869 	if (t)
870 		kref_put(&(t->count), multi_transaction_kref);
871 }
872 
873 /* does not increment @new's count */
874 static void multi_transaction_set(struct file *file,
875 				  struct multi_transaction *new, size_t n)
876 {
877 	struct multi_transaction *old;
878 
879 	AA_BUG(n > MULTI_TRANSACTION_LIMIT);
880 
881 	new->size = n;
882 	spin_lock(&multi_transaction_lock);
883 	old = (struct multi_transaction *) file->private_data;
884 	file->private_data = new;
885 	spin_unlock(&multi_transaction_lock);
886 	put_multi_transaction(old);
887 }
888 
889 static struct multi_transaction *multi_transaction_new(struct file *file,
890 						       const char __user *buf,
891 						       size_t size)
892 {
893 	struct multi_transaction *t;
894 
895 	if (size > MULTI_TRANSACTION_LIMIT - 1)
896 		return ERR_PTR(-EFBIG);
897 
898 	t = (struct multi_transaction *)get_zeroed_page(GFP_KERNEL);
899 	if (!t)
900 		return ERR_PTR(-ENOMEM);
901 	kref_init(&t->count);
902 	if (copy_from_user(t->data, buf, size))
903 		return ERR_PTR(-EFAULT);
904 
905 	return t;
906 }
907 
908 static ssize_t multi_transaction_read(struct file *file, char __user *buf,
909 				       size_t size, loff_t *pos)
910 {
911 	struct multi_transaction *t;
912 	ssize_t ret;
913 
914 	spin_lock(&multi_transaction_lock);
915 	t = get_multi_transaction(file->private_data);
916 	spin_unlock(&multi_transaction_lock);
917 	if (!t)
918 		return 0;
919 
920 	ret = simple_read_from_buffer(buf, size, pos, t->data, t->size);
921 	put_multi_transaction(t);
922 
923 	return ret;
924 }
925 
926 static int multi_transaction_release(struct inode *inode, struct file *file)
927 {
928 	put_multi_transaction(file->private_data);
929 
930 	return 0;
931 }
932 
933 #define QUERY_CMD_LABEL		"label\0"
934 #define QUERY_CMD_LABEL_LEN	6
935 #define QUERY_CMD_PROFILE	"profile\0"
936 #define QUERY_CMD_PROFILE_LEN	8
937 #define QUERY_CMD_LABELALL	"labelall\0"
938 #define QUERY_CMD_LABELALL_LEN	9
939 #define QUERY_CMD_DATA		"data\0"
940 #define QUERY_CMD_DATA_LEN	5
941 
942 /**
943  * aa_write_access - generic permissions and data query
944  * @file: pointer to open apparmorfs/access file
945  * @ubuf: user buffer containing the complete query string (NOT NULL)
946  * @count: size of ubuf
947  * @ppos: position in the file (MUST BE ZERO)
948  *
949  * Allows for one permissions or data query per open(), write(), and read()
950  * sequence. The only queries currently supported are label-based queries for
951  * permissions or data.
952  *
953  * For permissions queries, ubuf must begin with "label\0", followed by the
954  * profile query specific format described in the query_label() function
955  * documentation.
956  *
957  * For data queries, ubuf must have the form "data\0<LABEL>\0<KEY>\0", where
958  * <LABEL> is the name of the security confinement context and <KEY> is the
959  * name of the data to retrieve.
960  *
961  * Returns: number of bytes written or -errno on failure
962  */
963 static ssize_t aa_write_access(struct file *file, const char __user *ubuf,
964 			       size_t count, loff_t *ppos)
965 {
966 	struct multi_transaction *t;
967 	ssize_t len;
968 
969 	if (*ppos)
970 		return -ESPIPE;
971 
972 	t = multi_transaction_new(file, ubuf, count);
973 	if (IS_ERR(t))
974 		return PTR_ERR(t);
975 
976 	if (count > QUERY_CMD_PROFILE_LEN &&
977 	    !memcmp(t->data, QUERY_CMD_PROFILE, QUERY_CMD_PROFILE_LEN)) {
978 		len = query_label(t->data, MULTI_TRANSACTION_LIMIT,
979 				  t->data + QUERY_CMD_PROFILE_LEN,
980 				  count - QUERY_CMD_PROFILE_LEN, true);
981 	} else if (count > QUERY_CMD_LABEL_LEN &&
982 		   !memcmp(t->data, QUERY_CMD_LABEL, QUERY_CMD_LABEL_LEN)) {
983 		len = query_label(t->data, MULTI_TRANSACTION_LIMIT,
984 				  t->data + QUERY_CMD_LABEL_LEN,
985 				  count - QUERY_CMD_LABEL_LEN, true);
986 	} else if (count > QUERY_CMD_LABELALL_LEN &&
987 		   !memcmp(t->data, QUERY_CMD_LABELALL,
988 			   QUERY_CMD_LABELALL_LEN)) {
989 		len = query_label(t->data, MULTI_TRANSACTION_LIMIT,
990 				  t->data + QUERY_CMD_LABELALL_LEN,
991 				  count - QUERY_CMD_LABELALL_LEN, false);
992 	} else if (count > QUERY_CMD_DATA_LEN &&
993 		   !memcmp(t->data, QUERY_CMD_DATA, QUERY_CMD_DATA_LEN)) {
994 		len = query_data(t->data, MULTI_TRANSACTION_LIMIT,
995 				 t->data + QUERY_CMD_DATA_LEN,
996 				 count - QUERY_CMD_DATA_LEN);
997 	} else
998 		len = -EINVAL;
999 
1000 	if (len < 0) {
1001 		put_multi_transaction(t);
1002 		return len;
1003 	}
1004 
1005 	multi_transaction_set(file, t, len);
1006 
1007 	return count;
1008 }
1009 
1010 static const struct file_operations aa_sfs_access = {
1011 	.write		= aa_write_access,
1012 	.read		= multi_transaction_read,
1013 	.release	= multi_transaction_release,
1014 	.llseek		= generic_file_llseek,
1015 };
1016 
1017 static int aa_sfs_seq_show(struct seq_file *seq, void *v)
1018 {
1019 	struct aa_sfs_entry *fs_file = seq->private;
1020 
1021 	if (!fs_file)
1022 		return 0;
1023 
1024 	switch (fs_file->v_type) {
1025 	case AA_SFS_TYPE_BOOLEAN:
1026 		seq_printf(seq, "%s\n", fs_file->v.boolean ? "yes" : "no");
1027 		break;
1028 	case AA_SFS_TYPE_STRING:
1029 		seq_printf(seq, "%s\n", fs_file->v.string);
1030 		break;
1031 	case AA_SFS_TYPE_U64:
1032 		seq_printf(seq, "%#08lx\n", fs_file->v.u64);
1033 		break;
1034 	default:
1035 		/* Ignore unpritable entry types. */
1036 		break;
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static int aa_sfs_seq_open(struct inode *inode, struct file *file)
1043 {
1044 	return single_open(file, aa_sfs_seq_show, inode->i_private);
1045 }
1046 
1047 const struct file_operations aa_sfs_seq_file_ops = {
1048 	.owner		= THIS_MODULE,
1049 	.open		= aa_sfs_seq_open,
1050 	.read		= seq_read,
1051 	.llseek		= seq_lseek,
1052 	.release	= single_release,
1053 };
1054 
1055 /*
1056  * profile based file operations
1057  *     policy/profiles/XXXX/profiles/ *
1058  */
1059 
1060 #define SEQ_PROFILE_FOPS(NAME)						      \
1061 static int seq_profile_ ##NAME ##_open(struct inode *inode, struct file *file)\
1062 {									      \
1063 	return seq_profile_open(inode, file, seq_profile_ ##NAME ##_show);    \
1064 }									      \
1065 									      \
1066 static const struct file_operations seq_profile_ ##NAME ##_fops = {	      \
1067 	.owner		= THIS_MODULE,					      \
1068 	.open		= seq_profile_ ##NAME ##_open,			      \
1069 	.read		= seq_read,					      \
1070 	.llseek		= seq_lseek,					      \
1071 	.release	= seq_profile_release,				      \
1072 }									      \
1073 
1074 static int seq_profile_open(struct inode *inode, struct file *file,
1075 			    int (*show)(struct seq_file *, void *))
1076 {
1077 	struct aa_proxy *proxy = aa_get_proxy(inode->i_private);
1078 	int error = single_open(file, show, proxy);
1079 
1080 	if (error) {
1081 		file->private_data = NULL;
1082 		aa_put_proxy(proxy);
1083 	}
1084 
1085 	return error;
1086 }
1087 
1088 static int seq_profile_release(struct inode *inode, struct file *file)
1089 {
1090 	struct seq_file *seq = (struct seq_file *) file->private_data;
1091 	if (seq)
1092 		aa_put_proxy(seq->private);
1093 	return single_release(inode, file);
1094 }
1095 
1096 static int seq_profile_name_show(struct seq_file *seq, void *v)
1097 {
1098 	struct aa_proxy *proxy = seq->private;
1099 	struct aa_label *label = aa_get_label_rcu(&proxy->label);
1100 	struct aa_profile *profile = labels_profile(label);
1101 	seq_printf(seq, "%s\n", profile->base.name);
1102 	aa_put_label(label);
1103 
1104 	return 0;
1105 }
1106 
1107 static int seq_profile_mode_show(struct seq_file *seq, void *v)
1108 {
1109 	struct aa_proxy *proxy = seq->private;
1110 	struct aa_label *label = aa_get_label_rcu(&proxy->label);
1111 	struct aa_profile *profile = labels_profile(label);
1112 	seq_printf(seq, "%s\n", aa_profile_mode_names[profile->mode]);
1113 	aa_put_label(label);
1114 
1115 	return 0;
1116 }
1117 
1118 static int seq_profile_attach_show(struct seq_file *seq, void *v)
1119 {
1120 	struct aa_proxy *proxy = seq->private;
1121 	struct aa_label *label = aa_get_label_rcu(&proxy->label);
1122 	struct aa_profile *profile = labels_profile(label);
1123 	if (profile->attach)
1124 		seq_printf(seq, "%s\n", profile->attach);
1125 	else if (profile->xmatch)
1126 		seq_puts(seq, "<unknown>\n");
1127 	else
1128 		seq_printf(seq, "%s\n", profile->base.name);
1129 	aa_put_label(label);
1130 
1131 	return 0;
1132 }
1133 
1134 static int seq_profile_hash_show(struct seq_file *seq, void *v)
1135 {
1136 	struct aa_proxy *proxy = seq->private;
1137 	struct aa_label *label = aa_get_label_rcu(&proxy->label);
1138 	struct aa_profile *profile = labels_profile(label);
1139 	unsigned int i, size = aa_hash_size();
1140 
1141 	if (profile->hash) {
1142 		for (i = 0; i < size; i++)
1143 			seq_printf(seq, "%.2x", profile->hash[i]);
1144 		seq_putc(seq, '\n');
1145 	}
1146 	aa_put_label(label);
1147 
1148 	return 0;
1149 }
1150 
1151 SEQ_PROFILE_FOPS(name);
1152 SEQ_PROFILE_FOPS(mode);
1153 SEQ_PROFILE_FOPS(attach);
1154 SEQ_PROFILE_FOPS(hash);
1155 
1156 /*
1157  * namespace based files
1158  *     several root files and
1159  *     policy/ *
1160  */
1161 
1162 #define SEQ_NS_FOPS(NAME)						      \
1163 static int seq_ns_ ##NAME ##_open(struct inode *inode, struct file *file)     \
1164 {									      \
1165 	return single_open(file, seq_ns_ ##NAME ##_show, inode->i_private);   \
1166 }									      \
1167 									      \
1168 static const struct file_operations seq_ns_ ##NAME ##_fops = {	      \
1169 	.owner		= THIS_MODULE,					      \
1170 	.open		= seq_ns_ ##NAME ##_open,			      \
1171 	.read		= seq_read,					      \
1172 	.llseek		= seq_lseek,					      \
1173 	.release	= single_release,				      \
1174 }									      \
1175 
1176 static int seq_ns_stacked_show(struct seq_file *seq, void *v)
1177 {
1178 	struct aa_label *label;
1179 
1180 	label = begin_current_label_crit_section();
1181 	seq_printf(seq, "%s\n", label->size > 1 ? "yes" : "no");
1182 	end_current_label_crit_section(label);
1183 
1184 	return 0;
1185 }
1186 
1187 static int seq_ns_nsstacked_show(struct seq_file *seq, void *v)
1188 {
1189 	struct aa_label *label;
1190 	struct aa_profile *profile;
1191 	struct label_it it;
1192 	int count = 1;
1193 
1194 	label = begin_current_label_crit_section();
1195 
1196 	if (label->size > 1) {
1197 		label_for_each(it, label, profile)
1198 			if (profile->ns != labels_ns(label)) {
1199 				count++;
1200 				break;
1201 			}
1202 	}
1203 
1204 	seq_printf(seq, "%s\n", count > 1 ? "yes" : "no");
1205 	end_current_label_crit_section(label);
1206 
1207 	return 0;
1208 }
1209 
1210 static int seq_ns_level_show(struct seq_file *seq, void *v)
1211 {
1212 	struct aa_label *label;
1213 
1214 	label = begin_current_label_crit_section();
1215 	seq_printf(seq, "%d\n", labels_ns(label)->level);
1216 	end_current_label_crit_section(label);
1217 
1218 	return 0;
1219 }
1220 
1221 static int seq_ns_name_show(struct seq_file *seq, void *v)
1222 {
1223 	struct aa_label *label = begin_current_label_crit_section();
1224 	seq_printf(seq, "%s\n", labels_ns(label)->base.name);
1225 	end_current_label_crit_section(label);
1226 
1227 	return 0;
1228 }
1229 
1230 SEQ_NS_FOPS(stacked);
1231 SEQ_NS_FOPS(nsstacked);
1232 SEQ_NS_FOPS(level);
1233 SEQ_NS_FOPS(name);
1234 
1235 
1236 /* policy/raw_data/ * file ops */
1237 
1238 #define SEQ_RAWDATA_FOPS(NAME)						      \
1239 static int seq_rawdata_ ##NAME ##_open(struct inode *inode, struct file *file)\
1240 {									      \
1241 	return seq_rawdata_open(inode, file, seq_rawdata_ ##NAME ##_show);    \
1242 }									      \
1243 									      \
1244 static const struct file_operations seq_rawdata_ ##NAME ##_fops = {	      \
1245 	.owner		= THIS_MODULE,					      \
1246 	.open		= seq_rawdata_ ##NAME ##_open,			      \
1247 	.read		= seq_read,					      \
1248 	.llseek		= seq_lseek,					      \
1249 	.release	= seq_rawdata_release,				      \
1250 }									      \
1251 
1252 static int seq_rawdata_open(struct inode *inode, struct file *file,
1253 			    int (*show)(struct seq_file *, void *))
1254 {
1255 	struct aa_loaddata *data = __aa_get_loaddata(inode->i_private);
1256 	int error;
1257 
1258 	if (!data)
1259 		/* lost race this ent is being reaped */
1260 		return -ENOENT;
1261 
1262 	error = single_open(file, show, data);
1263 	if (error) {
1264 		AA_BUG(file->private_data &&
1265 		       ((struct seq_file *)file->private_data)->private);
1266 		aa_put_loaddata(data);
1267 	}
1268 
1269 	return error;
1270 }
1271 
1272 static int seq_rawdata_release(struct inode *inode, struct file *file)
1273 {
1274 	struct seq_file *seq = (struct seq_file *) file->private_data;
1275 
1276 	if (seq)
1277 		aa_put_loaddata(seq->private);
1278 
1279 	return single_release(inode, file);
1280 }
1281 
1282 static int seq_rawdata_abi_show(struct seq_file *seq, void *v)
1283 {
1284 	struct aa_loaddata *data = seq->private;
1285 
1286 	seq_printf(seq, "v%d\n", data->abi);
1287 
1288 	return 0;
1289 }
1290 
1291 static int seq_rawdata_revision_show(struct seq_file *seq, void *v)
1292 {
1293 	struct aa_loaddata *data = seq->private;
1294 
1295 	seq_printf(seq, "%ld\n", data->revision);
1296 
1297 	return 0;
1298 }
1299 
1300 static int seq_rawdata_hash_show(struct seq_file *seq, void *v)
1301 {
1302 	struct aa_loaddata *data = seq->private;
1303 	unsigned int i, size = aa_hash_size();
1304 
1305 	if (data->hash) {
1306 		for (i = 0; i < size; i++)
1307 			seq_printf(seq, "%.2x", data->hash[i]);
1308 		seq_putc(seq, '\n');
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 static int seq_rawdata_compressed_size_show(struct seq_file *seq, void *v)
1315 {
1316 	struct aa_loaddata *data = seq->private;
1317 
1318 	seq_printf(seq, "%zu\n", data->compressed_size);
1319 
1320 	return 0;
1321 }
1322 
1323 SEQ_RAWDATA_FOPS(abi);
1324 SEQ_RAWDATA_FOPS(revision);
1325 SEQ_RAWDATA_FOPS(hash);
1326 SEQ_RAWDATA_FOPS(compressed_size);
1327 
1328 static int deflate_decompress(char *src, size_t slen, char *dst, size_t dlen)
1329 {
1330 	int error;
1331 	struct z_stream_s strm;
1332 
1333 	if (aa_g_rawdata_compression_level == 0) {
1334 		if (dlen < slen)
1335 			return -EINVAL;
1336 		memcpy(dst, src, slen);
1337 		return 0;
1338 	}
1339 
1340 	memset(&strm, 0, sizeof(strm));
1341 
1342 	strm.workspace = kvzalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
1343 	if (!strm.workspace)
1344 		return -ENOMEM;
1345 
1346 	strm.next_in = src;
1347 	strm.avail_in = slen;
1348 
1349 	error = zlib_inflateInit(&strm);
1350 	if (error != Z_OK) {
1351 		error = -ENOMEM;
1352 		goto fail_inflate_init;
1353 	}
1354 
1355 	strm.next_out = dst;
1356 	strm.avail_out = dlen;
1357 
1358 	error = zlib_inflate(&strm, Z_FINISH);
1359 	if (error != Z_STREAM_END)
1360 		error = -EINVAL;
1361 	else
1362 		error = 0;
1363 
1364 	zlib_inflateEnd(&strm);
1365 fail_inflate_init:
1366 	kvfree(strm.workspace);
1367 	return error;
1368 }
1369 
1370 static ssize_t rawdata_read(struct file *file, char __user *buf, size_t size,
1371 			    loff_t *ppos)
1372 {
1373 	struct rawdata_f_data *private = file->private_data;
1374 
1375 	return simple_read_from_buffer(buf, size, ppos,
1376 				       RAWDATA_F_DATA_BUF(private),
1377 				       private->loaddata->size);
1378 }
1379 
1380 static int rawdata_release(struct inode *inode, struct file *file)
1381 {
1382 	rawdata_f_data_free(file->private_data);
1383 
1384 	return 0;
1385 }
1386 
1387 static int rawdata_open(struct inode *inode, struct file *file)
1388 {
1389 	int error;
1390 	struct aa_loaddata *loaddata;
1391 	struct rawdata_f_data *private;
1392 
1393 	if (!policy_view_capable(NULL))
1394 		return -EACCES;
1395 
1396 	loaddata = __aa_get_loaddata(inode->i_private);
1397 	if (!loaddata)
1398 		/* lost race: this entry is being reaped */
1399 		return -ENOENT;
1400 
1401 	private = rawdata_f_data_alloc(loaddata->size);
1402 	if (IS_ERR(private)) {
1403 		error = PTR_ERR(private);
1404 		goto fail_private_alloc;
1405 	}
1406 
1407 	private->loaddata = loaddata;
1408 
1409 	error = deflate_decompress(loaddata->data, loaddata->compressed_size,
1410 				   RAWDATA_F_DATA_BUF(private),
1411 				   loaddata->size);
1412 	if (error)
1413 		goto fail_decompress;
1414 
1415 	file->private_data = private;
1416 	return 0;
1417 
1418 fail_decompress:
1419 	rawdata_f_data_free(private);
1420 	return error;
1421 
1422 fail_private_alloc:
1423 	aa_put_loaddata(loaddata);
1424 	return error;
1425 }
1426 
1427 static const struct file_operations rawdata_fops = {
1428 	.open = rawdata_open,
1429 	.read = rawdata_read,
1430 	.llseek = generic_file_llseek,
1431 	.release = rawdata_release,
1432 };
1433 
1434 static void remove_rawdata_dents(struct aa_loaddata *rawdata)
1435 {
1436 	int i;
1437 
1438 	for (i = 0; i < AAFS_LOADDATA_NDENTS; i++) {
1439 		if (!IS_ERR_OR_NULL(rawdata->dents[i])) {
1440 			/* no refcounts on i_private */
1441 			aafs_remove(rawdata->dents[i]);
1442 			rawdata->dents[i] = NULL;
1443 		}
1444 	}
1445 }
1446 
1447 void __aa_fs_remove_rawdata(struct aa_loaddata *rawdata)
1448 {
1449 	AA_BUG(rawdata->ns && !mutex_is_locked(&rawdata->ns->lock));
1450 
1451 	if (rawdata->ns) {
1452 		remove_rawdata_dents(rawdata);
1453 		list_del_init(&rawdata->list);
1454 		aa_put_ns(rawdata->ns);
1455 		rawdata->ns = NULL;
1456 	}
1457 }
1458 
1459 int __aa_fs_create_rawdata(struct aa_ns *ns, struct aa_loaddata *rawdata)
1460 {
1461 	struct dentry *dent, *dir;
1462 
1463 	AA_BUG(!ns);
1464 	AA_BUG(!rawdata);
1465 	AA_BUG(!mutex_is_locked(&ns->lock));
1466 	AA_BUG(!ns_subdata_dir(ns));
1467 
1468 	/*
1469 	 * just use ns revision dir was originally created at. This is
1470 	 * under ns->lock and if load is successful revision will be
1471 	 * bumped and is guaranteed to be unique
1472 	 */
1473 	rawdata->name = kasprintf(GFP_KERNEL, "%ld", ns->revision);
1474 	if (!rawdata->name)
1475 		return -ENOMEM;
1476 
1477 	dir = aafs_create_dir(rawdata->name, ns_subdata_dir(ns));
1478 	if (IS_ERR(dir))
1479 		/* ->name freed when rawdata freed */
1480 		return PTR_ERR(dir);
1481 	rawdata->dents[AAFS_LOADDATA_DIR] = dir;
1482 
1483 	dent = aafs_create_file("abi", S_IFREG | 0444, dir, rawdata,
1484 				      &seq_rawdata_abi_fops);
1485 	if (IS_ERR(dent))
1486 		goto fail;
1487 	rawdata->dents[AAFS_LOADDATA_ABI] = dent;
1488 
1489 	dent = aafs_create_file("revision", S_IFREG | 0444, dir, rawdata,
1490 				      &seq_rawdata_revision_fops);
1491 	if (IS_ERR(dent))
1492 		goto fail;
1493 	rawdata->dents[AAFS_LOADDATA_REVISION] = dent;
1494 
1495 	if (aa_g_hash_policy) {
1496 		dent = aafs_create_file("sha1", S_IFREG | 0444, dir,
1497 					      rawdata, &seq_rawdata_hash_fops);
1498 		if (IS_ERR(dent))
1499 			goto fail;
1500 		rawdata->dents[AAFS_LOADDATA_HASH] = dent;
1501 	}
1502 
1503 	dent = aafs_create_file("compressed_size", S_IFREG | 0444, dir,
1504 				rawdata,
1505 				&seq_rawdata_compressed_size_fops);
1506 	if (IS_ERR(dent))
1507 		goto fail;
1508 	rawdata->dents[AAFS_LOADDATA_COMPRESSED_SIZE] = dent;
1509 
1510 	dent = aafs_create_file("raw_data", S_IFREG | 0444,
1511 				      dir, rawdata, &rawdata_fops);
1512 	if (IS_ERR(dent))
1513 		goto fail;
1514 	rawdata->dents[AAFS_LOADDATA_DATA] = dent;
1515 	d_inode(dent)->i_size = rawdata->size;
1516 
1517 	rawdata->ns = aa_get_ns(ns);
1518 	list_add(&rawdata->list, &ns->rawdata_list);
1519 	/* no refcount on inode rawdata */
1520 
1521 	return 0;
1522 
1523 fail:
1524 	remove_rawdata_dents(rawdata);
1525 
1526 	return PTR_ERR(dent);
1527 }
1528 
1529 /** fns to setup dynamic per profile/namespace files **/
1530 
1531 /**
1532  *
1533  * Requires: @profile->ns->lock held
1534  */
1535 void __aafs_profile_rmdir(struct aa_profile *profile)
1536 {
1537 	struct aa_profile *child;
1538 	int i;
1539 
1540 	if (!profile)
1541 		return;
1542 
1543 	list_for_each_entry(child, &profile->base.profiles, base.list)
1544 		__aafs_profile_rmdir(child);
1545 
1546 	for (i = AAFS_PROF_SIZEOF - 1; i >= 0; --i) {
1547 		struct aa_proxy *proxy;
1548 		if (!profile->dents[i])
1549 			continue;
1550 
1551 		proxy = d_inode(profile->dents[i])->i_private;
1552 		aafs_remove(profile->dents[i]);
1553 		aa_put_proxy(proxy);
1554 		profile->dents[i] = NULL;
1555 	}
1556 }
1557 
1558 /**
1559  *
1560  * Requires: @old->ns->lock held
1561  */
1562 void __aafs_profile_migrate_dents(struct aa_profile *old,
1563 				  struct aa_profile *new)
1564 {
1565 	int i;
1566 
1567 	AA_BUG(!old);
1568 	AA_BUG(!new);
1569 	AA_BUG(!mutex_is_locked(&profiles_ns(old)->lock));
1570 
1571 	for (i = 0; i < AAFS_PROF_SIZEOF; i++) {
1572 		new->dents[i] = old->dents[i];
1573 		if (new->dents[i])
1574 			new->dents[i]->d_inode->i_mtime = current_time(new->dents[i]->d_inode);
1575 		old->dents[i] = NULL;
1576 	}
1577 }
1578 
1579 static struct dentry *create_profile_file(struct dentry *dir, const char *name,
1580 					  struct aa_profile *profile,
1581 					  const struct file_operations *fops)
1582 {
1583 	struct aa_proxy *proxy = aa_get_proxy(profile->label.proxy);
1584 	struct dentry *dent;
1585 
1586 	dent = aafs_create_file(name, S_IFREG | 0444, dir, proxy, fops);
1587 	if (IS_ERR(dent))
1588 		aa_put_proxy(proxy);
1589 
1590 	return dent;
1591 }
1592 
1593 static int profile_depth(struct aa_profile *profile)
1594 {
1595 	int depth = 0;
1596 
1597 	rcu_read_lock();
1598 	for (depth = 0; profile; profile = rcu_access_pointer(profile->parent))
1599 		depth++;
1600 	rcu_read_unlock();
1601 
1602 	return depth;
1603 }
1604 
1605 static char *gen_symlink_name(int depth, const char *dirname, const char *fname)
1606 {
1607 	char *buffer, *s;
1608 	int error;
1609 	int size = depth * 6 + strlen(dirname) + strlen(fname) + 11;
1610 
1611 	s = buffer = kmalloc(size, GFP_KERNEL);
1612 	if (!buffer)
1613 		return ERR_PTR(-ENOMEM);
1614 
1615 	for (; depth > 0; depth--) {
1616 		strcpy(s, "../../");
1617 		s += 6;
1618 		size -= 6;
1619 	}
1620 
1621 	error = snprintf(s, size, "raw_data/%s/%s", dirname, fname);
1622 	if (error >= size || error < 0) {
1623 		kfree(buffer);
1624 		return ERR_PTR(-ENAMETOOLONG);
1625 	}
1626 
1627 	return buffer;
1628 }
1629 
1630 static void rawdata_link_cb(void *arg)
1631 {
1632 	kfree(arg);
1633 }
1634 
1635 static const char *rawdata_get_link_base(struct dentry *dentry,
1636 					 struct inode *inode,
1637 					 struct delayed_call *done,
1638 					 const char *name)
1639 {
1640 	struct aa_proxy *proxy = inode->i_private;
1641 	struct aa_label *label;
1642 	struct aa_profile *profile;
1643 	char *target;
1644 	int depth;
1645 
1646 	if (!dentry)
1647 		return ERR_PTR(-ECHILD);
1648 
1649 	label = aa_get_label_rcu(&proxy->label);
1650 	profile = labels_profile(label);
1651 	depth = profile_depth(profile);
1652 	target = gen_symlink_name(depth, profile->rawdata->name, name);
1653 	aa_put_label(label);
1654 
1655 	if (IS_ERR(target))
1656 		return target;
1657 
1658 	set_delayed_call(done, rawdata_link_cb, target);
1659 
1660 	return target;
1661 }
1662 
1663 static const char *rawdata_get_link_sha1(struct dentry *dentry,
1664 					 struct inode *inode,
1665 					 struct delayed_call *done)
1666 {
1667 	return rawdata_get_link_base(dentry, inode, done, "sha1");
1668 }
1669 
1670 static const char *rawdata_get_link_abi(struct dentry *dentry,
1671 					struct inode *inode,
1672 					struct delayed_call *done)
1673 {
1674 	return rawdata_get_link_base(dentry, inode, done, "abi");
1675 }
1676 
1677 static const char *rawdata_get_link_data(struct dentry *dentry,
1678 					 struct inode *inode,
1679 					 struct delayed_call *done)
1680 {
1681 	return rawdata_get_link_base(dentry, inode, done, "raw_data");
1682 }
1683 
1684 static const struct inode_operations rawdata_link_sha1_iops = {
1685 	.get_link	= rawdata_get_link_sha1,
1686 };
1687 
1688 static const struct inode_operations rawdata_link_abi_iops = {
1689 	.get_link	= rawdata_get_link_abi,
1690 };
1691 static const struct inode_operations rawdata_link_data_iops = {
1692 	.get_link	= rawdata_get_link_data,
1693 };
1694 
1695 
1696 /*
1697  * Requires: @profile->ns->lock held
1698  */
1699 int __aafs_profile_mkdir(struct aa_profile *profile, struct dentry *parent)
1700 {
1701 	struct aa_profile *child;
1702 	struct dentry *dent = NULL, *dir;
1703 	int error;
1704 
1705 	AA_BUG(!profile);
1706 	AA_BUG(!mutex_is_locked(&profiles_ns(profile)->lock));
1707 
1708 	if (!parent) {
1709 		struct aa_profile *p;
1710 		p = aa_deref_parent(profile);
1711 		dent = prof_dir(p);
1712 		/* adding to parent that previously didn't have children */
1713 		dent = aafs_create_dir("profiles", dent);
1714 		if (IS_ERR(dent))
1715 			goto fail;
1716 		prof_child_dir(p) = parent = dent;
1717 	}
1718 
1719 	if (!profile->dirname) {
1720 		int len, id_len;
1721 		len = mangle_name(profile->base.name, NULL);
1722 		id_len = snprintf(NULL, 0, ".%ld", profile->ns->uniq_id);
1723 
1724 		profile->dirname = kmalloc(len + id_len + 1, GFP_KERNEL);
1725 		if (!profile->dirname) {
1726 			error = -ENOMEM;
1727 			goto fail2;
1728 		}
1729 
1730 		mangle_name(profile->base.name, profile->dirname);
1731 		sprintf(profile->dirname + len, ".%ld", profile->ns->uniq_id++);
1732 	}
1733 
1734 	dent = aafs_create_dir(profile->dirname, parent);
1735 	if (IS_ERR(dent))
1736 		goto fail;
1737 	prof_dir(profile) = dir = dent;
1738 
1739 	dent = create_profile_file(dir, "name", profile,
1740 				   &seq_profile_name_fops);
1741 	if (IS_ERR(dent))
1742 		goto fail;
1743 	profile->dents[AAFS_PROF_NAME] = dent;
1744 
1745 	dent = create_profile_file(dir, "mode", profile,
1746 				   &seq_profile_mode_fops);
1747 	if (IS_ERR(dent))
1748 		goto fail;
1749 	profile->dents[AAFS_PROF_MODE] = dent;
1750 
1751 	dent = create_profile_file(dir, "attach", profile,
1752 				   &seq_profile_attach_fops);
1753 	if (IS_ERR(dent))
1754 		goto fail;
1755 	profile->dents[AAFS_PROF_ATTACH] = dent;
1756 
1757 	if (profile->hash) {
1758 		dent = create_profile_file(dir, "sha1", profile,
1759 					   &seq_profile_hash_fops);
1760 		if (IS_ERR(dent))
1761 			goto fail;
1762 		profile->dents[AAFS_PROF_HASH] = dent;
1763 	}
1764 
1765 	if (profile->rawdata) {
1766 		dent = aafs_create_symlink("raw_sha1", dir, NULL,
1767 					   profile->label.proxy,
1768 					   &rawdata_link_sha1_iops);
1769 		if (IS_ERR(dent))
1770 			goto fail;
1771 		aa_get_proxy(profile->label.proxy);
1772 		profile->dents[AAFS_PROF_RAW_HASH] = dent;
1773 
1774 		dent = aafs_create_symlink("raw_abi", dir, NULL,
1775 					   profile->label.proxy,
1776 					   &rawdata_link_abi_iops);
1777 		if (IS_ERR(dent))
1778 			goto fail;
1779 		aa_get_proxy(profile->label.proxy);
1780 		profile->dents[AAFS_PROF_RAW_ABI] = dent;
1781 
1782 		dent = aafs_create_symlink("raw_data", dir, NULL,
1783 					   profile->label.proxy,
1784 					   &rawdata_link_data_iops);
1785 		if (IS_ERR(dent))
1786 			goto fail;
1787 		aa_get_proxy(profile->label.proxy);
1788 		profile->dents[AAFS_PROF_RAW_DATA] = dent;
1789 	}
1790 
1791 	list_for_each_entry(child, &profile->base.profiles, base.list) {
1792 		error = __aafs_profile_mkdir(child, prof_child_dir(profile));
1793 		if (error)
1794 			goto fail2;
1795 	}
1796 
1797 	return 0;
1798 
1799 fail:
1800 	error = PTR_ERR(dent);
1801 
1802 fail2:
1803 	__aafs_profile_rmdir(profile);
1804 
1805 	return error;
1806 }
1807 
1808 static int ns_mkdir_op(struct inode *dir, struct dentry *dentry, umode_t mode)
1809 {
1810 	struct aa_ns *ns, *parent;
1811 	/* TODO: improve permission check */
1812 	struct aa_label *label;
1813 	int error;
1814 
1815 	label = begin_current_label_crit_section();
1816 	error = aa_may_manage_policy(label, NULL, AA_MAY_LOAD_POLICY);
1817 	end_current_label_crit_section(label);
1818 	if (error)
1819 		return error;
1820 
1821 	parent = aa_get_ns(dir->i_private);
1822 	AA_BUG(d_inode(ns_subns_dir(parent)) != dir);
1823 
1824 	/* we have to unlock and then relock to get locking order right
1825 	 * for pin_fs
1826 	 */
1827 	inode_unlock(dir);
1828 	error = simple_pin_fs(&aafs_ops, &aafs_mnt, &aafs_count);
1829 	mutex_lock_nested(&parent->lock, parent->level);
1830 	inode_lock_nested(dir, I_MUTEX_PARENT);
1831 	if (error)
1832 		goto out;
1833 
1834 	error = __aafs_setup_d_inode(dir, dentry, mode | S_IFDIR,  NULL,
1835 				     NULL, NULL, NULL);
1836 	if (error)
1837 		goto out_pin;
1838 
1839 	ns = __aa_find_or_create_ns(parent, READ_ONCE(dentry->d_name.name),
1840 				    dentry);
1841 	if (IS_ERR(ns)) {
1842 		error = PTR_ERR(ns);
1843 		ns = NULL;
1844 	}
1845 
1846 	aa_put_ns(ns);		/* list ref remains */
1847 out_pin:
1848 	if (error)
1849 		simple_release_fs(&aafs_mnt, &aafs_count);
1850 out:
1851 	mutex_unlock(&parent->lock);
1852 	aa_put_ns(parent);
1853 
1854 	return error;
1855 }
1856 
1857 static int ns_rmdir_op(struct inode *dir, struct dentry *dentry)
1858 {
1859 	struct aa_ns *ns, *parent;
1860 	/* TODO: improve permission check */
1861 	struct aa_label *label;
1862 	int error;
1863 
1864 	label = begin_current_label_crit_section();
1865 	error = aa_may_manage_policy(label, NULL, AA_MAY_LOAD_POLICY);
1866 	end_current_label_crit_section(label);
1867 	if (error)
1868 		return error;
1869 
1870 	parent = aa_get_ns(dir->i_private);
1871 	/* rmdir calls the generic securityfs functions to remove files
1872 	 * from the apparmor dir. It is up to the apparmor ns locking
1873 	 * to avoid races.
1874 	 */
1875 	inode_unlock(dir);
1876 	inode_unlock(dentry->d_inode);
1877 
1878 	mutex_lock_nested(&parent->lock, parent->level);
1879 	ns = aa_get_ns(__aa_findn_ns(&parent->sub_ns, dentry->d_name.name,
1880 				     dentry->d_name.len));
1881 	if (!ns) {
1882 		error = -ENOENT;
1883 		goto out;
1884 	}
1885 	AA_BUG(ns_dir(ns) != dentry);
1886 
1887 	__aa_remove_ns(ns);
1888 	aa_put_ns(ns);
1889 
1890 out:
1891 	mutex_unlock(&parent->lock);
1892 	inode_lock_nested(dir, I_MUTEX_PARENT);
1893 	inode_lock(dentry->d_inode);
1894 	aa_put_ns(parent);
1895 
1896 	return error;
1897 }
1898 
1899 static const struct inode_operations ns_dir_inode_operations = {
1900 	.lookup		= simple_lookup,
1901 	.mkdir		= ns_mkdir_op,
1902 	.rmdir		= ns_rmdir_op,
1903 };
1904 
1905 static void __aa_fs_list_remove_rawdata(struct aa_ns *ns)
1906 {
1907 	struct aa_loaddata *ent, *tmp;
1908 
1909 	AA_BUG(!mutex_is_locked(&ns->lock));
1910 
1911 	list_for_each_entry_safe(ent, tmp, &ns->rawdata_list, list)
1912 		__aa_fs_remove_rawdata(ent);
1913 }
1914 
1915 /**
1916  *
1917  * Requires: @ns->lock held
1918  */
1919 void __aafs_ns_rmdir(struct aa_ns *ns)
1920 {
1921 	struct aa_ns *sub;
1922 	struct aa_profile *child;
1923 	int i;
1924 
1925 	if (!ns)
1926 		return;
1927 	AA_BUG(!mutex_is_locked(&ns->lock));
1928 
1929 	list_for_each_entry(child, &ns->base.profiles, base.list)
1930 		__aafs_profile_rmdir(child);
1931 
1932 	list_for_each_entry(sub, &ns->sub_ns, base.list) {
1933 		mutex_lock_nested(&sub->lock, sub->level);
1934 		__aafs_ns_rmdir(sub);
1935 		mutex_unlock(&sub->lock);
1936 	}
1937 
1938 	__aa_fs_list_remove_rawdata(ns);
1939 
1940 	if (ns_subns_dir(ns)) {
1941 		sub = d_inode(ns_subns_dir(ns))->i_private;
1942 		aa_put_ns(sub);
1943 	}
1944 	if (ns_subload(ns)) {
1945 		sub = d_inode(ns_subload(ns))->i_private;
1946 		aa_put_ns(sub);
1947 	}
1948 	if (ns_subreplace(ns)) {
1949 		sub = d_inode(ns_subreplace(ns))->i_private;
1950 		aa_put_ns(sub);
1951 	}
1952 	if (ns_subremove(ns)) {
1953 		sub = d_inode(ns_subremove(ns))->i_private;
1954 		aa_put_ns(sub);
1955 	}
1956 	if (ns_subrevision(ns)) {
1957 		sub = d_inode(ns_subrevision(ns))->i_private;
1958 		aa_put_ns(sub);
1959 	}
1960 
1961 	for (i = AAFS_NS_SIZEOF - 1; i >= 0; --i) {
1962 		aafs_remove(ns->dents[i]);
1963 		ns->dents[i] = NULL;
1964 	}
1965 }
1966 
1967 /* assumes cleanup in caller */
1968 static int __aafs_ns_mkdir_entries(struct aa_ns *ns, struct dentry *dir)
1969 {
1970 	struct dentry *dent;
1971 
1972 	AA_BUG(!ns);
1973 	AA_BUG(!dir);
1974 
1975 	dent = aafs_create_dir("profiles", dir);
1976 	if (IS_ERR(dent))
1977 		return PTR_ERR(dent);
1978 	ns_subprofs_dir(ns) = dent;
1979 
1980 	dent = aafs_create_dir("raw_data", dir);
1981 	if (IS_ERR(dent))
1982 		return PTR_ERR(dent);
1983 	ns_subdata_dir(ns) = dent;
1984 
1985 	dent = aafs_create_file("revision", 0444, dir, ns,
1986 				&aa_fs_ns_revision_fops);
1987 	if (IS_ERR(dent))
1988 		return PTR_ERR(dent);
1989 	aa_get_ns(ns);
1990 	ns_subrevision(ns) = dent;
1991 
1992 	dent = aafs_create_file(".load", 0640, dir, ns,
1993 				      &aa_fs_profile_load);
1994 	if (IS_ERR(dent))
1995 		return PTR_ERR(dent);
1996 	aa_get_ns(ns);
1997 	ns_subload(ns) = dent;
1998 
1999 	dent = aafs_create_file(".replace", 0640, dir, ns,
2000 				      &aa_fs_profile_replace);
2001 	if (IS_ERR(dent))
2002 		return PTR_ERR(dent);
2003 	aa_get_ns(ns);
2004 	ns_subreplace(ns) = dent;
2005 
2006 	dent = aafs_create_file(".remove", 0640, dir, ns,
2007 				      &aa_fs_profile_remove);
2008 	if (IS_ERR(dent))
2009 		return PTR_ERR(dent);
2010 	aa_get_ns(ns);
2011 	ns_subremove(ns) = dent;
2012 
2013 	  /* use create_dentry so we can supply private data */
2014 	dent = aafs_create("namespaces", S_IFDIR | 0755, dir, ns, NULL, NULL,
2015 			   &ns_dir_inode_operations);
2016 	if (IS_ERR(dent))
2017 		return PTR_ERR(dent);
2018 	aa_get_ns(ns);
2019 	ns_subns_dir(ns) = dent;
2020 
2021 	return 0;
2022 }
2023 
2024 /*
2025  * Requires: @ns->lock held
2026  */
2027 int __aafs_ns_mkdir(struct aa_ns *ns, struct dentry *parent, const char *name,
2028 		    struct dentry *dent)
2029 {
2030 	struct aa_ns *sub;
2031 	struct aa_profile *child;
2032 	struct dentry *dir;
2033 	int error;
2034 
2035 	AA_BUG(!ns);
2036 	AA_BUG(!parent);
2037 	AA_BUG(!mutex_is_locked(&ns->lock));
2038 
2039 	if (!name)
2040 		name = ns->base.name;
2041 
2042 	if (!dent) {
2043 		/* create ns dir if it doesn't already exist */
2044 		dent = aafs_create_dir(name, parent);
2045 		if (IS_ERR(dent))
2046 			goto fail;
2047 	} else
2048 		dget(dent);
2049 	ns_dir(ns) = dir = dent;
2050 	error = __aafs_ns_mkdir_entries(ns, dir);
2051 	if (error)
2052 		goto fail2;
2053 
2054 	/* profiles */
2055 	list_for_each_entry(child, &ns->base.profiles, base.list) {
2056 		error = __aafs_profile_mkdir(child, ns_subprofs_dir(ns));
2057 		if (error)
2058 			goto fail2;
2059 	}
2060 
2061 	/* subnamespaces */
2062 	list_for_each_entry(sub, &ns->sub_ns, base.list) {
2063 		mutex_lock_nested(&sub->lock, sub->level);
2064 		error = __aafs_ns_mkdir(sub, ns_subns_dir(ns), NULL, NULL);
2065 		mutex_unlock(&sub->lock);
2066 		if (error)
2067 			goto fail2;
2068 	}
2069 
2070 	return 0;
2071 
2072 fail:
2073 	error = PTR_ERR(dent);
2074 
2075 fail2:
2076 	__aafs_ns_rmdir(ns);
2077 
2078 	return error;
2079 }
2080 
2081 
2082 #define list_entry_is_head(pos, head, member) (&pos->member == (head))
2083 
2084 /**
2085  * __next_ns - find the next namespace to list
2086  * @root: root namespace to stop search at (NOT NULL)
2087  * @ns: current ns position (NOT NULL)
2088  *
2089  * Find the next namespace from @ns under @root and handle all locking needed
2090  * while switching current namespace.
2091  *
2092  * Returns: next namespace or NULL if at last namespace under @root
2093  * Requires: ns->parent->lock to be held
2094  * NOTE: will not unlock root->lock
2095  */
2096 static struct aa_ns *__next_ns(struct aa_ns *root, struct aa_ns *ns)
2097 {
2098 	struct aa_ns *parent, *next;
2099 
2100 	AA_BUG(!root);
2101 	AA_BUG(!ns);
2102 	AA_BUG(ns != root && !mutex_is_locked(&ns->parent->lock));
2103 
2104 	/* is next namespace a child */
2105 	if (!list_empty(&ns->sub_ns)) {
2106 		next = list_first_entry(&ns->sub_ns, typeof(*ns), base.list);
2107 		mutex_lock_nested(&next->lock, next->level);
2108 		return next;
2109 	}
2110 
2111 	/* check if the next ns is a sibling, parent, gp, .. */
2112 	parent = ns->parent;
2113 	while (ns != root) {
2114 		mutex_unlock(&ns->lock);
2115 		next = list_next_entry(ns, base.list);
2116 		if (!list_entry_is_head(next, &parent->sub_ns, base.list)) {
2117 			mutex_lock_nested(&next->lock, next->level);
2118 			return next;
2119 		}
2120 		ns = parent;
2121 		parent = parent->parent;
2122 	}
2123 
2124 	return NULL;
2125 }
2126 
2127 /**
2128  * __first_profile - find the first profile in a namespace
2129  * @root: namespace that is root of profiles being displayed (NOT NULL)
2130  * @ns: namespace to start in   (NOT NULL)
2131  *
2132  * Returns: unrefcounted profile or NULL if no profile
2133  * Requires: profile->ns.lock to be held
2134  */
2135 static struct aa_profile *__first_profile(struct aa_ns *root,
2136 					  struct aa_ns *ns)
2137 {
2138 	AA_BUG(!root);
2139 	AA_BUG(ns && !mutex_is_locked(&ns->lock));
2140 
2141 	for (; ns; ns = __next_ns(root, ns)) {
2142 		if (!list_empty(&ns->base.profiles))
2143 			return list_first_entry(&ns->base.profiles,
2144 						struct aa_profile, base.list);
2145 	}
2146 	return NULL;
2147 }
2148 
2149 /**
2150  * __next_profile - step to the next profile in a profile tree
2151  * @profile: current profile in tree (NOT NULL)
2152  *
2153  * Perform a depth first traversal on the profile tree in a namespace
2154  *
2155  * Returns: next profile or NULL if done
2156  * Requires: profile->ns.lock to be held
2157  */
2158 static struct aa_profile *__next_profile(struct aa_profile *p)
2159 {
2160 	struct aa_profile *parent;
2161 	struct aa_ns *ns = p->ns;
2162 
2163 	AA_BUG(!mutex_is_locked(&profiles_ns(p)->lock));
2164 
2165 	/* is next profile a child */
2166 	if (!list_empty(&p->base.profiles))
2167 		return list_first_entry(&p->base.profiles, typeof(*p),
2168 					base.list);
2169 
2170 	/* is next profile a sibling, parent sibling, gp, sibling, .. */
2171 	parent = rcu_dereference_protected(p->parent,
2172 					   mutex_is_locked(&p->ns->lock));
2173 	while (parent) {
2174 		p = list_next_entry(p, base.list);
2175 		if (!list_entry_is_head(p, &parent->base.profiles, base.list))
2176 			return p;
2177 		p = parent;
2178 		parent = rcu_dereference_protected(parent->parent,
2179 					    mutex_is_locked(&parent->ns->lock));
2180 	}
2181 
2182 	/* is next another profile in the namespace */
2183 	p = list_next_entry(p, base.list);
2184 	if (!list_entry_is_head(p, &ns->base.profiles, base.list))
2185 		return p;
2186 
2187 	return NULL;
2188 }
2189 
2190 /**
2191  * next_profile - step to the next profile in where ever it may be
2192  * @root: root namespace  (NOT NULL)
2193  * @profile: current profile  (NOT NULL)
2194  *
2195  * Returns: next profile or NULL if there isn't one
2196  */
2197 static struct aa_profile *next_profile(struct aa_ns *root,
2198 				       struct aa_profile *profile)
2199 {
2200 	struct aa_profile *next = __next_profile(profile);
2201 	if (next)
2202 		return next;
2203 
2204 	/* finished all profiles in namespace move to next namespace */
2205 	return __first_profile(root, __next_ns(root, profile->ns));
2206 }
2207 
2208 /**
2209  * p_start - start a depth first traversal of profile tree
2210  * @f: seq_file to fill
2211  * @pos: current position
2212  *
2213  * Returns: first profile under current namespace or NULL if none found
2214  *
2215  * acquires first ns->lock
2216  */
2217 static void *p_start(struct seq_file *f, loff_t *pos)
2218 {
2219 	struct aa_profile *profile = NULL;
2220 	struct aa_ns *root = aa_get_current_ns();
2221 	loff_t l = *pos;
2222 	f->private = root;
2223 
2224 	/* find the first profile */
2225 	mutex_lock_nested(&root->lock, root->level);
2226 	profile = __first_profile(root, root);
2227 
2228 	/* skip to position */
2229 	for (; profile && l > 0; l--)
2230 		profile = next_profile(root, profile);
2231 
2232 	return profile;
2233 }
2234 
2235 /**
2236  * p_next - read the next profile entry
2237  * @f: seq_file to fill
2238  * @p: profile previously returned
2239  * @pos: current position
2240  *
2241  * Returns: next profile after @p or NULL if none
2242  *
2243  * may acquire/release locks in namespace tree as necessary
2244  */
2245 static void *p_next(struct seq_file *f, void *p, loff_t *pos)
2246 {
2247 	struct aa_profile *profile = p;
2248 	struct aa_ns *ns = f->private;
2249 	(*pos)++;
2250 
2251 	return next_profile(ns, profile);
2252 }
2253 
2254 /**
2255  * p_stop - stop depth first traversal
2256  * @f: seq_file we are filling
2257  * @p: the last profile writen
2258  *
2259  * Release all locking done by p_start/p_next on namespace tree
2260  */
2261 static void p_stop(struct seq_file *f, void *p)
2262 {
2263 	struct aa_profile *profile = p;
2264 	struct aa_ns *root = f->private, *ns;
2265 
2266 	if (profile) {
2267 		for (ns = profile->ns; ns && ns != root; ns = ns->parent)
2268 			mutex_unlock(&ns->lock);
2269 	}
2270 	mutex_unlock(&root->lock);
2271 	aa_put_ns(root);
2272 }
2273 
2274 /**
2275  * seq_show_profile - show a profile entry
2276  * @f: seq_file to file
2277  * @p: current position (profile)    (NOT NULL)
2278  *
2279  * Returns: error on failure
2280  */
2281 static int seq_show_profile(struct seq_file *f, void *p)
2282 {
2283 	struct aa_profile *profile = (struct aa_profile *)p;
2284 	struct aa_ns *root = f->private;
2285 
2286 	aa_label_seq_xprint(f, root, &profile->label,
2287 			    FLAG_SHOW_MODE | FLAG_VIEW_SUBNS, GFP_KERNEL);
2288 	seq_putc(f, '\n');
2289 
2290 	return 0;
2291 }
2292 
2293 static const struct seq_operations aa_sfs_profiles_op = {
2294 	.start = p_start,
2295 	.next = p_next,
2296 	.stop = p_stop,
2297 	.show = seq_show_profile,
2298 };
2299 
2300 static int profiles_open(struct inode *inode, struct file *file)
2301 {
2302 	if (!policy_view_capable(NULL))
2303 		return -EACCES;
2304 
2305 	return seq_open(file, &aa_sfs_profiles_op);
2306 }
2307 
2308 static int profiles_release(struct inode *inode, struct file *file)
2309 {
2310 	return seq_release(inode, file);
2311 }
2312 
2313 static const struct file_operations aa_sfs_profiles_fops = {
2314 	.open = profiles_open,
2315 	.read = seq_read,
2316 	.llseek = seq_lseek,
2317 	.release = profiles_release,
2318 };
2319 
2320 
2321 /** Base file system setup **/
2322 static struct aa_sfs_entry aa_sfs_entry_file[] = {
2323 	AA_SFS_FILE_STRING("mask",
2324 			   "create read write exec append mmap_exec link lock"),
2325 	{ }
2326 };
2327 
2328 static struct aa_sfs_entry aa_sfs_entry_ptrace[] = {
2329 	AA_SFS_FILE_STRING("mask", "read trace"),
2330 	{ }
2331 };
2332 
2333 static struct aa_sfs_entry aa_sfs_entry_signal[] = {
2334 	AA_SFS_FILE_STRING("mask", AA_SFS_SIG_MASK),
2335 	{ }
2336 };
2337 
2338 static struct aa_sfs_entry aa_sfs_entry_attach[] = {
2339 	AA_SFS_FILE_BOOLEAN("xattr", 1),
2340 	{ }
2341 };
2342 static struct aa_sfs_entry aa_sfs_entry_domain[] = {
2343 	AA_SFS_FILE_BOOLEAN("change_hat",	1),
2344 	AA_SFS_FILE_BOOLEAN("change_hatv",	1),
2345 	AA_SFS_FILE_BOOLEAN("change_onexec",	1),
2346 	AA_SFS_FILE_BOOLEAN("change_profile",	1),
2347 	AA_SFS_FILE_BOOLEAN("stack",		1),
2348 	AA_SFS_FILE_BOOLEAN("fix_binfmt_elf_mmap",	1),
2349 	AA_SFS_FILE_BOOLEAN("post_nnp_subset",	1),
2350 	AA_SFS_FILE_BOOLEAN("computed_longest_left",	1),
2351 	AA_SFS_DIR("attach_conditions",		aa_sfs_entry_attach),
2352 	AA_SFS_FILE_STRING("version", "1.2"),
2353 	{ }
2354 };
2355 
2356 static struct aa_sfs_entry aa_sfs_entry_versions[] = {
2357 	AA_SFS_FILE_BOOLEAN("v5",	1),
2358 	AA_SFS_FILE_BOOLEAN("v6",	1),
2359 	AA_SFS_FILE_BOOLEAN("v7",	1),
2360 	AA_SFS_FILE_BOOLEAN("v8",	1),
2361 	{ }
2362 };
2363 
2364 static struct aa_sfs_entry aa_sfs_entry_policy[] = {
2365 	AA_SFS_DIR("versions",			aa_sfs_entry_versions),
2366 	AA_SFS_FILE_BOOLEAN("set_load",		1),
2367 	{ }
2368 };
2369 
2370 static struct aa_sfs_entry aa_sfs_entry_mount[] = {
2371 	AA_SFS_FILE_STRING("mask", "mount umount pivot_root"),
2372 	{ }
2373 };
2374 
2375 static struct aa_sfs_entry aa_sfs_entry_ns[] = {
2376 	AA_SFS_FILE_BOOLEAN("profile",		1),
2377 	AA_SFS_FILE_BOOLEAN("pivot_root",	0),
2378 	{ }
2379 };
2380 
2381 static struct aa_sfs_entry aa_sfs_entry_query_label[] = {
2382 	AA_SFS_FILE_STRING("perms", "allow deny audit quiet"),
2383 	AA_SFS_FILE_BOOLEAN("data",		1),
2384 	AA_SFS_FILE_BOOLEAN("multi_transaction",	1),
2385 	{ }
2386 };
2387 
2388 static struct aa_sfs_entry aa_sfs_entry_query[] = {
2389 	AA_SFS_DIR("label",			aa_sfs_entry_query_label),
2390 	{ }
2391 };
2392 static struct aa_sfs_entry aa_sfs_entry_features[] = {
2393 	AA_SFS_DIR("policy",			aa_sfs_entry_policy),
2394 	AA_SFS_DIR("domain",			aa_sfs_entry_domain),
2395 	AA_SFS_DIR("file",			aa_sfs_entry_file),
2396 	AA_SFS_DIR("network_v8",		aa_sfs_entry_network),
2397 	AA_SFS_DIR("mount",			aa_sfs_entry_mount),
2398 	AA_SFS_DIR("namespaces",		aa_sfs_entry_ns),
2399 	AA_SFS_FILE_U64("capability",		VFS_CAP_FLAGS_MASK),
2400 	AA_SFS_DIR("rlimit",			aa_sfs_entry_rlimit),
2401 	AA_SFS_DIR("caps",			aa_sfs_entry_caps),
2402 	AA_SFS_DIR("ptrace",			aa_sfs_entry_ptrace),
2403 	AA_SFS_DIR("signal",			aa_sfs_entry_signal),
2404 	AA_SFS_DIR("query",			aa_sfs_entry_query),
2405 	{ }
2406 };
2407 
2408 static struct aa_sfs_entry aa_sfs_entry_apparmor[] = {
2409 	AA_SFS_FILE_FOPS(".access", 0666, &aa_sfs_access),
2410 	AA_SFS_FILE_FOPS(".stacked", 0444, &seq_ns_stacked_fops),
2411 	AA_SFS_FILE_FOPS(".ns_stacked", 0444, &seq_ns_nsstacked_fops),
2412 	AA_SFS_FILE_FOPS(".ns_level", 0444, &seq_ns_level_fops),
2413 	AA_SFS_FILE_FOPS(".ns_name", 0444, &seq_ns_name_fops),
2414 	AA_SFS_FILE_FOPS("profiles", 0444, &aa_sfs_profiles_fops),
2415 	AA_SFS_DIR("features", aa_sfs_entry_features),
2416 	{ }
2417 };
2418 
2419 static struct aa_sfs_entry aa_sfs_entry =
2420 	AA_SFS_DIR("apparmor", aa_sfs_entry_apparmor);
2421 
2422 /**
2423  * entry_create_file - create a file entry in the apparmor securityfs
2424  * @fs_file: aa_sfs_entry to build an entry for (NOT NULL)
2425  * @parent: the parent dentry in the securityfs
2426  *
2427  * Use entry_remove_file to remove entries created with this fn.
2428  */
2429 static int __init entry_create_file(struct aa_sfs_entry *fs_file,
2430 				    struct dentry *parent)
2431 {
2432 	int error = 0;
2433 
2434 	fs_file->dentry = securityfs_create_file(fs_file->name,
2435 						 S_IFREG | fs_file->mode,
2436 						 parent, fs_file,
2437 						 fs_file->file_ops);
2438 	if (IS_ERR(fs_file->dentry)) {
2439 		error = PTR_ERR(fs_file->dentry);
2440 		fs_file->dentry = NULL;
2441 	}
2442 	return error;
2443 }
2444 
2445 static void __init entry_remove_dir(struct aa_sfs_entry *fs_dir);
2446 /**
2447  * entry_create_dir - recursively create a directory entry in the securityfs
2448  * @fs_dir: aa_sfs_entry (and all child entries) to build (NOT NULL)
2449  * @parent: the parent dentry in the securityfs
2450  *
2451  * Use entry_remove_dir to remove entries created with this fn.
2452  */
2453 static int __init entry_create_dir(struct aa_sfs_entry *fs_dir,
2454 				   struct dentry *parent)
2455 {
2456 	struct aa_sfs_entry *fs_file;
2457 	struct dentry *dir;
2458 	int error;
2459 
2460 	dir = securityfs_create_dir(fs_dir->name, parent);
2461 	if (IS_ERR(dir))
2462 		return PTR_ERR(dir);
2463 	fs_dir->dentry = dir;
2464 
2465 	for (fs_file = fs_dir->v.files; fs_file && fs_file->name; ++fs_file) {
2466 		if (fs_file->v_type == AA_SFS_TYPE_DIR)
2467 			error = entry_create_dir(fs_file, fs_dir->dentry);
2468 		else
2469 			error = entry_create_file(fs_file, fs_dir->dentry);
2470 		if (error)
2471 			goto failed;
2472 	}
2473 
2474 	return 0;
2475 
2476 failed:
2477 	entry_remove_dir(fs_dir);
2478 
2479 	return error;
2480 }
2481 
2482 /**
2483  * entry_remove_file - drop a single file entry in the apparmor securityfs
2484  * @fs_file: aa_sfs_entry to detach from the securityfs (NOT NULL)
2485  */
2486 static void __init entry_remove_file(struct aa_sfs_entry *fs_file)
2487 {
2488 	if (!fs_file->dentry)
2489 		return;
2490 
2491 	securityfs_remove(fs_file->dentry);
2492 	fs_file->dentry = NULL;
2493 }
2494 
2495 /**
2496  * entry_remove_dir - recursively drop a directory entry from the securityfs
2497  * @fs_dir: aa_sfs_entry (and all child entries) to detach (NOT NULL)
2498  */
2499 static void __init entry_remove_dir(struct aa_sfs_entry *fs_dir)
2500 {
2501 	struct aa_sfs_entry *fs_file;
2502 
2503 	for (fs_file = fs_dir->v.files; fs_file && fs_file->name; ++fs_file) {
2504 		if (fs_file->v_type == AA_SFS_TYPE_DIR)
2505 			entry_remove_dir(fs_file);
2506 		else
2507 			entry_remove_file(fs_file);
2508 	}
2509 
2510 	entry_remove_file(fs_dir);
2511 }
2512 
2513 /**
2514  * aa_destroy_aafs - cleanup and free aafs
2515  *
2516  * releases dentries allocated by aa_create_aafs
2517  */
2518 void __init aa_destroy_aafs(void)
2519 {
2520 	entry_remove_dir(&aa_sfs_entry);
2521 }
2522 
2523 
2524 #define NULL_FILE_NAME ".null"
2525 struct path aa_null;
2526 
2527 static int aa_mk_null_file(struct dentry *parent)
2528 {
2529 	struct vfsmount *mount = NULL;
2530 	struct dentry *dentry;
2531 	struct inode *inode;
2532 	int count = 0;
2533 	int error = simple_pin_fs(parent->d_sb->s_type, &mount, &count);
2534 
2535 	if (error)
2536 		return error;
2537 
2538 	inode_lock(d_inode(parent));
2539 	dentry = lookup_one_len(NULL_FILE_NAME, parent, strlen(NULL_FILE_NAME));
2540 	if (IS_ERR(dentry)) {
2541 		error = PTR_ERR(dentry);
2542 		goto out;
2543 	}
2544 	inode = new_inode(parent->d_inode->i_sb);
2545 	if (!inode) {
2546 		error = -ENOMEM;
2547 		goto out1;
2548 	}
2549 
2550 	inode->i_ino = get_next_ino();
2551 	inode->i_mode = S_IFCHR | S_IRUGO | S_IWUGO;
2552 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2553 	init_special_inode(inode, S_IFCHR | S_IRUGO | S_IWUGO,
2554 			   MKDEV(MEM_MAJOR, 3));
2555 	d_instantiate(dentry, inode);
2556 	aa_null.dentry = dget(dentry);
2557 	aa_null.mnt = mntget(mount);
2558 
2559 	error = 0;
2560 
2561 out1:
2562 	dput(dentry);
2563 out:
2564 	inode_unlock(d_inode(parent));
2565 	simple_release_fs(&mount, &count);
2566 	return error;
2567 }
2568 
2569 
2570 
2571 static const char *policy_get_link(struct dentry *dentry,
2572 				   struct inode *inode,
2573 				   struct delayed_call *done)
2574 {
2575 	struct aa_ns *ns;
2576 	struct path path;
2577 	int error;
2578 
2579 	if (!dentry)
2580 		return ERR_PTR(-ECHILD);
2581 
2582 	ns = aa_get_current_ns();
2583 	path.mnt = mntget(aafs_mnt);
2584 	path.dentry = dget(ns_dir(ns));
2585 	error = nd_jump_link(&path);
2586 	aa_put_ns(ns);
2587 
2588 	return ERR_PTR(error);
2589 }
2590 
2591 static int policy_readlink(struct dentry *dentry, char __user *buffer,
2592 			   int buflen)
2593 {
2594 	char name[32];
2595 	int res;
2596 
2597 	res = snprintf(name, sizeof(name), "%s:[%lu]", AAFS_NAME,
2598 		       d_inode(dentry)->i_ino);
2599 	if (res > 0 && res < sizeof(name))
2600 		res = readlink_copy(buffer, buflen, name);
2601 	else
2602 		res = -ENOENT;
2603 
2604 	return res;
2605 }
2606 
2607 static const struct inode_operations policy_link_iops = {
2608 	.readlink	= policy_readlink,
2609 	.get_link	= policy_get_link,
2610 };
2611 
2612 
2613 /**
2614  * aa_create_aafs - create the apparmor security filesystem
2615  *
2616  * dentries created here are released by aa_destroy_aafs
2617  *
2618  * Returns: error on failure
2619  */
2620 static int __init aa_create_aafs(void)
2621 {
2622 	struct dentry *dent;
2623 	int error;
2624 
2625 	if (!apparmor_initialized)
2626 		return 0;
2627 
2628 	if (aa_sfs_entry.dentry) {
2629 		AA_ERROR("%s: AppArmor securityfs already exists\n", __func__);
2630 		return -EEXIST;
2631 	}
2632 
2633 	/* setup apparmorfs used to virtualize policy/ */
2634 	aafs_mnt = kern_mount(&aafs_ops);
2635 	if (IS_ERR(aafs_mnt))
2636 		panic("can't set apparmorfs up\n");
2637 	aafs_mnt->mnt_sb->s_flags &= ~SB_NOUSER;
2638 
2639 	/* Populate fs tree. */
2640 	error = entry_create_dir(&aa_sfs_entry, NULL);
2641 	if (error)
2642 		goto error;
2643 
2644 	dent = securityfs_create_file(".load", 0666, aa_sfs_entry.dentry,
2645 				      NULL, &aa_fs_profile_load);
2646 	if (IS_ERR(dent))
2647 		goto dent_error;
2648 	ns_subload(root_ns) = dent;
2649 
2650 	dent = securityfs_create_file(".replace", 0666, aa_sfs_entry.dentry,
2651 				      NULL, &aa_fs_profile_replace);
2652 	if (IS_ERR(dent))
2653 		goto dent_error;
2654 	ns_subreplace(root_ns) = dent;
2655 
2656 	dent = securityfs_create_file(".remove", 0666, aa_sfs_entry.dentry,
2657 				      NULL, &aa_fs_profile_remove);
2658 	if (IS_ERR(dent))
2659 		goto dent_error;
2660 	ns_subremove(root_ns) = dent;
2661 
2662 	dent = securityfs_create_file("revision", 0444, aa_sfs_entry.dentry,
2663 				      NULL, &aa_fs_ns_revision_fops);
2664 	if (IS_ERR(dent))
2665 		goto dent_error;
2666 	ns_subrevision(root_ns) = dent;
2667 
2668 	/* policy tree referenced by magic policy symlink */
2669 	mutex_lock_nested(&root_ns->lock, root_ns->level);
2670 	error = __aafs_ns_mkdir(root_ns, aafs_mnt->mnt_root, ".policy",
2671 				aafs_mnt->mnt_root);
2672 	mutex_unlock(&root_ns->lock);
2673 	if (error)
2674 		goto error;
2675 
2676 	/* magic symlink similar to nsfs redirects based on task policy */
2677 	dent = securityfs_create_symlink("policy", aa_sfs_entry.dentry,
2678 					 NULL, &policy_link_iops);
2679 	if (IS_ERR(dent))
2680 		goto dent_error;
2681 
2682 	error = aa_mk_null_file(aa_sfs_entry.dentry);
2683 	if (error)
2684 		goto error;
2685 
2686 	/* TODO: add default profile to apparmorfs */
2687 
2688 	/* Report that AppArmor fs is enabled */
2689 	aa_info_message("AppArmor Filesystem Enabled");
2690 	return 0;
2691 
2692 dent_error:
2693 	error = PTR_ERR(dent);
2694 error:
2695 	aa_destroy_aafs();
2696 	AA_ERROR("Error creating AppArmor securityfs\n");
2697 	return error;
2698 }
2699 
2700 fs_initcall(aa_create_aafs);
2701