xref: /linux/samples/trace_events/trace-events-sample.h (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * If TRACE_SYSTEM is defined, that will be the directory created
4  * in the ftrace directory under /sys/kernel/tracing/events/<system>
5  *
6  * The define_trace.h below will also look for a file name of
7  * TRACE_SYSTEM.h where TRACE_SYSTEM is what is defined here.
8  * In this case, it would look for sample-trace.h
9  *
10  * If the header name will be different than the system name
11  * (as in this case), then you can override the header name that
12  * define_trace.h will look up by defining TRACE_INCLUDE_FILE
13  *
14  * This file is called trace-events-sample.h but we want the system
15  * to be called "sample-trace". Therefore we must define the name of this
16  * file:
17  *
18  * #define TRACE_INCLUDE_FILE trace-events-sample
19  *
20  * As we do an the bottom of this file.
21  *
22  * Notice that TRACE_SYSTEM should be defined outside of #if
23  * protection, just like TRACE_INCLUDE_FILE.
24  */
25 #undef TRACE_SYSTEM
26 #define TRACE_SYSTEM sample-trace
27 
28 /*
29  * TRACE_SYSTEM is expected to be a C valid variable (alpha-numeric
30  * and underscore), although it may start with numbers. If for some
31  * reason it is not, you need to add the following lines:
32  */
33 #undef TRACE_SYSTEM_VAR
34 #define TRACE_SYSTEM_VAR sample_trace
35 /*
36  * But the above is only needed if TRACE_SYSTEM is not alpha-numeric
37  * and underscored. By default, TRACE_SYSTEM_VAR will be equal to
38  * TRACE_SYSTEM. As TRACE_SYSTEM_VAR must be alpha-numeric, if
39  * TRACE_SYSTEM is not, then TRACE_SYSTEM_VAR must be defined with
40  * only alpha-numeric and underscores.
41  *
42  * The TRACE_SYSTEM_VAR is only used internally and not visible to
43  * user space.
44  */
45 
46 /*
47  * Notice that this file is not protected like a normal header.
48  * We also must allow for rereading of this file. The
49  *
50  *  || defined(TRACE_HEADER_MULTI_READ)
51  *
52  * serves this purpose.
53  */
54 #if !defined(_TRACE_EVENT_SAMPLE_H) || defined(TRACE_HEADER_MULTI_READ)
55 #define _TRACE_EVENT_SAMPLE_H
56 
57 /*
58  * All trace headers should include tracepoint.h, until we finally
59  * make it into a standard header.
60  */
61 #include <linux/tracepoint.h>
62 
63 /*
64  * The TRACE_EVENT macro is broken up into 5 parts.
65  *
66  * name: name of the trace point. This is also how to enable the tracepoint.
67  *   A function called trace_foo_bar() will be created.
68  *
69  * proto: the prototype of the function trace_foo_bar()
70  *   Here it is trace_foo_bar(char *foo, int bar).
71  *
72  * args:  must match the arguments in the prototype.
73  *    Here it is simply "foo, bar".
74  *
75  * struct:  This defines the way the data will be stored in the ring buffer.
76  *          The items declared here become part of a special structure
77  *          called "__entry", which can be used in the fast_assign part of the
78  *          TRACE_EVENT macro.
79  *
80  *      Here are the currently defined types you can use:
81  *
82  *   __field : Is broken up into type and name. Where type can be any
83  *         primitive type (integer, long or pointer).
84  *
85  *        __field(int, foo)
86  *
87  *        __entry->foo = 5;
88  *
89  *   __field_struct : This can be any static complex data type (struct, union
90  *         but not an array). Be careful using complex types, as each
91  *         event is limited in size, and copying large amounts of data
92  *         into the ring buffer can slow things down.
93  *
94  *         __field_struct(struct bar, foo)
95  *
96  *         __entry->bar.x = y;
97 
98  *   __array: There are three fields (type, name, size). The type is the
99  *         type of elements in the array, the name is the name of the array.
100  *         size is the number of items in the array (not the total size).
101  *
102  *         __array( char, foo, 10) is the same as saying: char foo[10];
103  *
104  *         Assigning arrays can be done like any array:
105  *
106  *         __entry->foo[0] = 'a';
107  *
108  *         memcpy(__entry->foo, bar, 10);
109  *
110  *   __dynamic_array: This is similar to array, but can vary its size from
111  *         instance to instance of the tracepoint being called.
112  *         Like __array, this too has three elements (type, name, size);
113  *         type is the type of the element, name is the name of the array.
114  *         The size is different than __array. It is not a static number,
115  *         but the algorithm to figure out the length of the array for the
116  *         specific instance of tracepoint. Again, size is the number of
117  *         items in the array, not the total length in bytes.
118  *
119  *         __dynamic_array( int, foo, bar) is similar to: int foo[bar];
120  *
121  *         Note, unlike arrays, you must use the __get_dynamic_array() macro
122  *         to access the array.
123  *
124  *         memcpy(__get_dynamic_array(foo), bar, 10);
125  *
126  *         Notice, that "__entry" is not needed here.
127  *
128  *   __string: This is a special kind of __dynamic_array. It expects to
129  *         have a null terminated character array passed to it (it allows
130  *         for NULL too, which would be converted into "(null)"). __string
131  *         takes two parameter (name, src), where name is the name of
132  *         the string saved, and src is the string to copy into the
133  *         ring buffer.
134  *
135  *         __string(foo, bar)  is similar to:  strcpy(foo, bar)
136  *
137  *         To assign a string, use the helper macro __assign_str().
138  *
139  *         __assign_str(foo, bar);
140  *
141  *         In most cases, the __assign_str() macro will take the same
142  *         parameters as the __string() macro had to declare the string.
143  *
144  *   __string_len: This is a helper to a __dynamic_array, but it understands
145  *	   that the array has characters in it, and with the combined
146  *         use of __assign_str_len(), it will allocate 'len' + 1 bytes
147  *         in the ring buffer and add a '\0' to the string. This is
148  *         useful if the string being saved has no terminating '\0' byte.
149  *         It requires that the length of the string is known as it acts
150  *         like a memcpy().
151  *
152  *         Declared with:
153  *
154  *         __string_len(foo, bar, len)
155  *
156  *         To assign this string, use the helper macro __assign_str_len().
157  *
158  *         __assign_str_len(foo, bar, len);
159  *
160  *         Then len + 1 is allocated to the ring buffer, and a nul terminating
161  *         byte is added. This is similar to:
162  *
163  *         memcpy(__get_str(foo), bar, len);
164  *         __get_str(foo)[len] = 0;
165  *
166  *        The advantage of using this over __dynamic_array, is that it
167  *        takes care of allocating the extra byte on the ring buffer
168  *        for the '\0' terminating byte, and __get_str(foo) can be used
169  *        in the TP_printk().
170  *
171  *   __bitmask: This is another kind of __dynamic_array, but it expects
172  *         an array of longs, and the number of bits to parse. It takes
173  *         two parameters (name, nr_bits), where name is the name of the
174  *         bitmask to save, and the nr_bits is the number of bits to record.
175  *
176  *         __bitmask(target_cpu, nr_cpumask_bits)
177  *
178  *         To assign a bitmask, use the __assign_bitmask() helper macro.
179  *
180  *         __assign_bitmask(target_cpus, cpumask_bits(bar), nr_cpumask_bits);
181  *
182  *
183  * fast_assign: This is a C like function that is used to store the items
184  *    into the ring buffer. A special variable called "__entry" will be the
185  *    structure that points into the ring buffer and has the same fields as
186  *    described by the struct part of TRACE_EVENT above.
187  *
188  * printk: This is a way to print out the data in pretty print. This is
189  *    useful if the system crashes and you are logging via a serial line,
190  *    the data can be printed to the console using this "printk" method.
191  *    This is also used to print out the data from the trace files.
192  *    Again, the __entry macro is used to access the data from the ring buffer.
193  *
194  *    Note, __dynamic_array, __string, and __bitmask require special helpers
195  *       to access the data.
196  *
197  *      For __dynamic_array(int, foo, bar) use __get_dynamic_array(foo)
198  *            Use __get_dynamic_array_len(foo) to get the length of the array
199  *            saved. Note, __get_dynamic_array_len() returns the total allocated
200  *            length of the dynamic array; __print_array() expects the second
201  *            parameter to be the number of elements. To get that, the array length
202  *            needs to be divided by the element size.
203  *
204  *      For __string(foo, bar) use __get_str(foo)
205  *
206  *      For __bitmask(target_cpus, nr_cpumask_bits) use __get_bitmask(target_cpus)
207  *
208  *
209  * Note, that for both the assign and the printk, __entry is the handler
210  * to the data structure in the ring buffer, and is defined by the
211  * TP_STRUCT__entry.
212  */
213 
214 /*
215  * It is OK to have helper functions in the file, but they need to be protected
216  * from being defined more than once. Remember, this file gets included more
217  * than once.
218  */
219 #ifndef __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
220 #define __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
221 static inline int __length_of(const int *list)
222 {
223 	int i;
224 
225 	if (!list)
226 		return 0;
227 
228 	for (i = 0; list[i]; i++)
229 		;
230 	return i;
231 }
232 
233 enum {
234 	TRACE_SAMPLE_FOO = 2,
235 	TRACE_SAMPLE_BAR = 4,
236 	TRACE_SAMPLE_ZOO = 8,
237 };
238 #endif
239 
240 /*
241  * If enums are used in the TP_printk(), their names will be shown in
242  * format files and not their values. This can cause problems with user
243  * space programs that parse the format files to know how to translate
244  * the raw binary trace output into human readable text.
245  *
246  * To help out user space programs, any enum that is used in the TP_printk()
247  * should be defined by TRACE_DEFINE_ENUM() macro. All that is needed to
248  * be done is to add this macro with the enum within it in the trace
249  * header file, and it will be converted in the output.
250  */
251 
252 TRACE_DEFINE_ENUM(TRACE_SAMPLE_FOO);
253 TRACE_DEFINE_ENUM(TRACE_SAMPLE_BAR);
254 TRACE_DEFINE_ENUM(TRACE_SAMPLE_ZOO);
255 
256 TRACE_EVENT(foo_bar,
257 
258 	TP_PROTO(const char *foo, int bar, const int *lst,
259 		 const char *string, const struct cpumask *mask),
260 
261 	TP_ARGS(foo, bar, lst, string, mask),
262 
263 	TP_STRUCT__entry(
264 		__array(	char,	foo,    10		)
265 		__field(	int,	bar			)
266 		__dynamic_array(int,	list,   __length_of(lst))
267 		__string(	str,	string			)
268 		__bitmask(	cpus,	num_possible_cpus()	)
269 	),
270 
271 	TP_fast_assign(
272 		strlcpy(__entry->foo, foo, 10);
273 		__entry->bar	= bar;
274 		memcpy(__get_dynamic_array(list), lst,
275 		       __length_of(lst) * sizeof(int));
276 		__assign_str(str, string);
277 		__assign_bitmask(cpus, cpumask_bits(mask), num_possible_cpus());
278 	),
279 
280 	TP_printk("foo %s %d %s %s %s %s (%s)", __entry->foo, __entry->bar,
281 
282 /*
283  * Notice here the use of some helper functions. This includes:
284  *
285  *  __print_symbolic( variable, { value, "string" }, ... ),
286  *
287  *    The variable is tested against each value of the { } pair. If
288  *    the variable matches one of the values, then it will print the
289  *    string in that pair. If non are matched, it returns a string
290  *    version of the number (if __entry->bar == 7 then "7" is returned).
291  */
292 		  __print_symbolic(__entry->bar,
293 				   { 0, "zero" },
294 				   { TRACE_SAMPLE_FOO, "TWO" },
295 				   { TRACE_SAMPLE_BAR, "FOUR" },
296 				   { TRACE_SAMPLE_ZOO, "EIGHT" },
297 				   { 10, "TEN" }
298 			  ),
299 
300 /*
301  *  __print_flags( variable, "delim", { value, "flag" }, ... ),
302  *
303  *    This is similar to __print_symbolic, except that it tests the bits
304  *    of the value. If ((FLAG & variable) == FLAG) then the string is
305  *    printed. If more than one flag matches, then each one that does is
306  *    also printed with delim in between them.
307  *    If not all bits are accounted for, then the not found bits will be
308  *    added in hex format: 0x506 will show BIT2|BIT4|0x500
309  */
310 		  __print_flags(__entry->bar, "|",
311 				{ 1, "BIT1" },
312 				{ 2, "BIT2" },
313 				{ 4, "BIT3" },
314 				{ 8, "BIT4" }
315 			  ),
316 /*
317  *  __print_array( array, len, element_size )
318  *
319  *    This prints out the array that is defined by __array in a nice format.
320  */
321 		  __print_array(__get_dynamic_array(list),
322 				__get_dynamic_array_len(list) / sizeof(int),
323 				sizeof(int)),
324 		  __get_str(str), __get_bitmask(cpus))
325 );
326 
327 /*
328  * There may be a case where a tracepoint should only be called if
329  * some condition is set. Otherwise the tracepoint should not be called.
330  * But to do something like:
331  *
332  *  if (cond)
333  *     trace_foo();
334  *
335  * Would cause a little overhead when tracing is not enabled, and that
336  * overhead, even if small, is not something we want. As tracepoints
337  * use static branch (aka jump_labels), where no branch is taken to
338  * skip the tracepoint when not enabled, and a jmp is placed to jump
339  * to the tracepoint code when it is enabled, having a if statement
340  * nullifies that optimization. It would be nice to place that
341  * condition within the static branch. This is where TRACE_EVENT_CONDITION
342  * comes in.
343  *
344  * TRACE_EVENT_CONDITION() is just like TRACE_EVENT, except it adds another
345  * parameter just after args. Where TRACE_EVENT has:
346  *
347  * TRACE_EVENT(name, proto, args, struct, assign, printk)
348  *
349  * the CONDITION version has:
350  *
351  * TRACE_EVENT_CONDITION(name, proto, args, cond, struct, assign, printk)
352  *
353  * Everything is the same as TRACE_EVENT except for the new cond. Think
354  * of the cond variable as:
355  *
356  *   if (cond)
357  *      trace_foo_bar_with_cond();
358  *
359  * Except that the logic for the if branch is placed after the static branch.
360  * That is, the if statement that processes the condition will not be
361  * executed unless that traecpoint is enabled. Otherwise it still remains
362  * a nop.
363  */
364 TRACE_EVENT_CONDITION(foo_bar_with_cond,
365 
366 	TP_PROTO(const char *foo, int bar),
367 
368 	TP_ARGS(foo, bar),
369 
370 	TP_CONDITION(!(bar % 10)),
371 
372 	TP_STRUCT__entry(
373 		__string(	foo,    foo		)
374 		__field(	int,	bar			)
375 	),
376 
377 	TP_fast_assign(
378 		__assign_str(foo, foo);
379 		__entry->bar	= bar;
380 	),
381 
382 	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
383 );
384 
385 int foo_bar_reg(void);
386 void foo_bar_unreg(void);
387 
388 /*
389  * Now in the case that some function needs to be called when the
390  * tracepoint is enabled and/or when it is disabled, the
391  * TRACE_EVENT_FN() serves this purpose. This is just like TRACE_EVENT()
392  * but adds two more parameters at the end:
393  *
394  * TRACE_EVENT_FN( name, proto, args, struct, assign, printk, reg, unreg)
395  *
396  * reg and unreg are functions with the prototype of:
397  *
398  *    void reg(void)
399  *
400  * The reg function gets called before the tracepoint is enabled, and
401  * the unreg function gets called after the tracepoint is disabled.
402  *
403  * Note, reg and unreg are allowed to be NULL. If you only need to
404  * call a function before enabling, or after disabling, just set one
405  * function and pass in NULL for the other parameter.
406  */
407 TRACE_EVENT_FN(foo_bar_with_fn,
408 
409 	TP_PROTO(const char *foo, int bar),
410 
411 	TP_ARGS(foo, bar),
412 
413 	TP_STRUCT__entry(
414 		__string(	foo,    foo		)
415 		__field(	int,	bar		)
416 	),
417 
418 	TP_fast_assign(
419 		__assign_str(foo, foo);
420 		__entry->bar	= bar;
421 	),
422 
423 	TP_printk("foo %s %d", __get_str(foo), __entry->bar),
424 
425 	foo_bar_reg, foo_bar_unreg
426 );
427 
428 /*
429  * Each TRACE_EVENT macro creates several helper functions to produce
430  * the code to add the tracepoint, create the files in the trace
431  * directory, hook it to perf, assign the values and to print out
432  * the raw data from the ring buffer. To prevent too much bloat,
433  * if there are more than one tracepoint that uses the same format
434  * for the proto, args, struct, assign and printk, and only the name
435  * is different, it is highly recommended to use the DECLARE_EVENT_CLASS
436  *
437  * DECLARE_EVENT_CLASS() macro creates most of the functions for the
438  * tracepoint. Then DEFINE_EVENT() is use to hook a tracepoint to those
439  * functions. This DEFINE_EVENT() is an instance of the class and can
440  * be enabled and disabled separately from other events (either TRACE_EVENT
441  * or other DEFINE_EVENT()s).
442  *
443  * Note, TRACE_EVENT() itself is simply defined as:
444  *
445  * #define TRACE_EVENT(name, proto, args, tstruct, assign, printk)  \
446  *  DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, printk); \
447  *  DEFINE_EVENT(name, name, proto, args)
448  *
449  * The DEFINE_EVENT() also can be declared with conditions and reg functions:
450  *
451  * DEFINE_EVENT_CONDITION(template, name, proto, args, cond);
452  * DEFINE_EVENT_FN(template, name, proto, args, reg, unreg);
453  */
454 DECLARE_EVENT_CLASS(foo_template,
455 
456 	TP_PROTO(const char *foo, int bar),
457 
458 	TP_ARGS(foo, bar),
459 
460 	TP_STRUCT__entry(
461 		__string(	foo,    foo		)
462 		__field(	int,	bar		)
463 	),
464 
465 	TP_fast_assign(
466 		__assign_str(foo, foo);
467 		__entry->bar	= bar;
468 	),
469 
470 	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
471 );
472 
473 /*
474  * Here's a better way for the previous samples (except, the first
475  * example had more fields and could not be used here).
476  */
477 DEFINE_EVENT(foo_template, foo_with_template_simple,
478 	TP_PROTO(const char *foo, int bar),
479 	TP_ARGS(foo, bar));
480 
481 DEFINE_EVENT_CONDITION(foo_template, foo_with_template_cond,
482 	TP_PROTO(const char *foo, int bar),
483 	TP_ARGS(foo, bar),
484 	TP_CONDITION(!(bar % 8)));
485 
486 
487 DEFINE_EVENT_FN(foo_template, foo_with_template_fn,
488 	TP_PROTO(const char *foo, int bar),
489 	TP_ARGS(foo, bar),
490 	foo_bar_reg, foo_bar_unreg);
491 
492 /*
493  * Anytime two events share basically the same values and have
494  * the same output, use the DECLARE_EVENT_CLASS() and DEFINE_EVENT()
495  * when ever possible.
496  */
497 
498 /*
499  * If the event is similar to the DECLARE_EVENT_CLASS, but you need
500  * to have a different output, then use DEFINE_EVENT_PRINT() which
501  * lets you override the TP_printk() of the class.
502  */
503 
504 DEFINE_EVENT_PRINT(foo_template, foo_with_template_print,
505 	TP_PROTO(const char *foo, int bar),
506 	TP_ARGS(foo, bar),
507 	TP_printk("bar %s %d", __get_str(foo), __entry->bar));
508 
509 /*
510  * There are yet another __rel_loc dynamic data attribute. If you
511  * use __rel_dynamic_array() and __rel_string() etc. macros, you
512  * can use this attribute. There is no difference from the viewpoint
513  * of functionality with/without 'rel' but the encoding is a bit
514  * different. This is expected to be used with user-space event,
515  * there is no reason that the kernel event use this, but only for
516  * testing.
517  */
518 
519 TRACE_EVENT(foo_rel_loc,
520 
521 	TP_PROTO(const char *foo, int bar, unsigned long *mask),
522 
523 	TP_ARGS(foo, bar, mask),
524 
525 	TP_STRUCT__entry(
526 		__rel_string(	foo,	foo	)
527 		__field(	int,	bar	)
528 		__rel_bitmask(	bitmask,
529 			BITS_PER_BYTE * sizeof(unsigned long)	)
530 	),
531 
532 	TP_fast_assign(
533 		__assign_rel_str(foo, foo);
534 		__entry->bar = bar;
535 		__assign_rel_bitmask(bitmask, mask,
536 			BITS_PER_BYTE * sizeof(unsigned long));
537 	),
538 
539 	TP_printk("foo_rel_loc %s, %d, %s", __get_rel_str(foo), __entry->bar,
540 		  __get_rel_bitmask(bitmask))
541 );
542 #endif
543 
544 /***** NOTICE! The #if protection ends here. *****/
545 
546 
547 /*
548  * There are several ways I could have done this. If I left out the
549  * TRACE_INCLUDE_PATH, then it would default to the kernel source
550  * include/trace/events directory.
551  *
552  * I could specify a path from the define_trace.h file back to this
553  * file.
554  *
555  * #define TRACE_INCLUDE_PATH ../../samples/trace_events
556  *
557  * But the safest and easiest way to simply make it use the directory
558  * that the file is in is to add in the Makefile:
559  *
560  * CFLAGS_trace-events-sample.o := -I$(src)
561  *
562  * This will make sure the current path is part of the include
563  * structure for our file so that define_trace.h can find it.
564  *
565  * I could have made only the top level directory the include:
566  *
567  * CFLAGS_trace-events-sample.o := -I$(PWD)
568  *
569  * And then let the path to this directory be the TRACE_INCLUDE_PATH:
570  *
571  * #define TRACE_INCLUDE_PATH samples/trace_events
572  *
573  * But then if something defines "samples" or "trace_events" as a macro
574  * then we could risk that being converted too, and give us an unexpected
575  * result.
576  */
577 #undef TRACE_INCLUDE_PATH
578 #undef TRACE_INCLUDE_FILE
579 #define TRACE_INCLUDE_PATH .
580 /*
581  * TRACE_INCLUDE_FILE is not needed if the filename and TRACE_SYSTEM are equal
582  */
583 #define TRACE_INCLUDE_FILE trace-events-sample
584 #include <trace/define_trace.h>
585