1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2
3 //! Parsing interface for parsing a token stream into a syntax tree node.
4 //!
5 //! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
6 //! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
7 //! these parser functions is a lower level mechanism built around the
8 //! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
9 //! tokens in a token stream.
10 //!
11 //! [`Result<T>`]: Result
12 //! [`Cursor`]: crate::buffer::Cursor
13 //!
14 //! # Example
15 //!
16 //! Here is a snippet of parsing code to get a feel for the style of the
17 //! library. We define data structures for a subset of Rust syntax including
18 //! enums (not shown) and structs, then provide implementations of the [`Parse`]
19 //! trait to parse these syntax tree data structures from a token stream.
20 //!
21 //! Once `Parse` impls have been defined, they can be called conveniently from a
22 //! procedural macro through [`parse_macro_input!`] as shown at the bottom of
23 //! the snippet. If the caller provides syntactically invalid input to the
24 //! procedural macro, they will receive a helpful compiler error message
25 //! pointing out the exact token that triggered the failure to parse.
26 //!
27 //! [`parse_macro_input!`]: crate::parse_macro_input!
28 //!
29 //! ```
30 //! # extern crate proc_macro;
31 //! #
32 //! use proc_macro::TokenStream;
33 //! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
34 //! use syn::parse::{Parse, ParseStream};
35 //! use syn::punctuated::Punctuated;
36 //!
37 //! enum Item {
38 //! Struct(ItemStruct),
39 //! Enum(ItemEnum),
40 //! }
41 //!
42 //! struct ItemStruct {
43 //! struct_token: Token![struct],
44 //! ident: Ident,
45 //! brace_token: token::Brace,
46 //! fields: Punctuated<Field, Token![,]>,
47 //! }
48 //! #
49 //! # enum ItemEnum {}
50 //!
51 //! impl Parse for Item {
52 //! fn parse(input: ParseStream) -> Result<Self> {
53 //! let lookahead = input.lookahead1();
54 //! if lookahead.peek(Token![struct]) {
55 //! input.parse().map(Item::Struct)
56 //! } else if lookahead.peek(Token![enum]) {
57 //! input.parse().map(Item::Enum)
58 //! } else {
59 //! Err(lookahead.error())
60 //! }
61 //! }
62 //! }
63 //!
64 //! impl Parse for ItemStruct {
65 //! fn parse(input: ParseStream) -> Result<Self> {
66 //! let content;
67 //! Ok(ItemStruct {
68 //! struct_token: input.parse()?,
69 //! ident: input.parse()?,
70 //! brace_token: braced!(content in input),
71 //! fields: content.parse_terminated(Field::parse_named, Token![,])?,
72 //! })
73 //! }
74 //! }
75 //! #
76 //! # impl Parse for ItemEnum {
77 //! # fn parse(input: ParseStream) -> Result<Self> {
78 //! # unimplemented!()
79 //! # }
80 //! # }
81 //!
82 //! # const IGNORE: &str = stringify! {
83 //! #[proc_macro]
84 //! # };
85 //! pub fn my_macro(tokens: TokenStream) -> TokenStream {
86 //! let input = parse_macro_input!(tokens as Item);
87 //!
88 //! /* ... */
89 //! # TokenStream::new()
90 //! }
91 //! ```
92 //!
93 //! # The `syn::parse*` functions
94 //!
95 //! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
96 //! as an entry point for parsing syntax tree nodes that can be parsed in an
97 //! obvious default way. These functions can return any syntax tree node that
98 //! implements the [`Parse`] trait, which includes most types in Syn.
99 //!
100 //! [`syn::parse`]: crate::parse()
101 //! [`syn::parse2`]: crate::parse2()
102 //! [`syn::parse_str`]: crate::parse_str()
103 //!
104 //! ```
105 //! use syn::Type;
106 //!
107 //! # fn run_parser() -> syn::Result<()> {
108 //! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
109 //! # Ok(())
110 //! # }
111 //! #
112 //! # run_parser().unwrap();
113 //! ```
114 //!
115 //! The [`parse_quote!`] macro also uses this approach.
116 //!
117 //! [`parse_quote!`]: crate::parse_quote!
118 //!
119 //! # The `Parser` trait
120 //!
121 //! Some types can be parsed in several ways depending on context. For example
122 //! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
123 //! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
124 //! may or may not allow trailing punctuation, and parsing it the wrong way
125 //! would either reject valid input or accept invalid input.
126 //!
127 //! [`Attribute`]: crate::Attribute
128 //! [`Punctuated`]: crate::punctuated
129 //!
130 //! The `Parse` trait is not implemented in these cases because there is no good
131 //! behavior to consider the default.
132 //!
133 //! ```compile_fail
134 //! # extern crate proc_macro;
135 //! #
136 //! # use syn::punctuated::Punctuated;
137 //! # use syn::{PathSegment, Result, Token};
138 //! #
139 //! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
140 //! #
141 //! // Can't parse `Punctuated` without knowing whether trailing punctuation
142 //! // should be allowed in this context.
143 //! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
144 //! #
145 //! # Ok(())
146 //! # }
147 //! ```
148 //!
149 //! In these cases the types provide a choice of parser functions rather than a
150 //! single `Parse` implementation, and those parser functions can be invoked
151 //! through the [`Parser`] trait.
152 //!
153 //!
154 //! ```
155 //! # extern crate proc_macro;
156 //! #
157 //! use proc_macro::TokenStream;
158 //! use syn::parse::Parser;
159 //! use syn::punctuated::Punctuated;
160 //! use syn::{Attribute, Expr, PathSegment, Result, Token};
161 //!
162 //! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
163 //! // Parse a nonempty sequence of path segments separated by `::` punctuation
164 //! // with no trailing punctuation.
165 //! let tokens = input.clone();
166 //! let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
167 //! let _path = parser.parse(tokens)?;
168 //!
169 //! // Parse a possibly empty sequence of expressions terminated by commas with
170 //! // an optional trailing punctuation.
171 //! let tokens = input.clone();
172 //! let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
173 //! let _args = parser.parse(tokens)?;
174 //!
175 //! // Parse zero or more outer attributes but not inner attributes.
176 //! let tokens = input.clone();
177 //! let parser = Attribute::parse_outer;
178 //! let _attrs = parser.parse(tokens)?;
179 //!
180 //! Ok(())
181 //! }
182 //! ```
183
184 #[path = "discouraged.rs"]
185 pub mod discouraged;
186
187 use crate::buffer::{Cursor, TokenBuffer};
188 use crate::error;
189 use crate::lookahead;
190 use crate::punctuated::Punctuated;
191 use crate::token::Token;
192 use proc_macro2::{Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
193 #[cfg(feature = "printing")]
194 use quote::ToTokens;
195 use std::cell::Cell;
196 use std::fmt::{self, Debug, Display};
197 #[cfg(feature = "extra-traits")]
198 use std::hash::{Hash, Hasher};
199 use std::marker::PhantomData;
200 use std::mem;
201 use std::ops::Deref;
202 use std::panic::{RefUnwindSafe, UnwindSafe};
203 use std::rc::Rc;
204 use std::str::FromStr;
205
206 pub use crate::error::{Error, Result};
207 pub use crate::lookahead::{End, Lookahead1, Peek};
208
209 /// Parsing interface implemented by all types that can be parsed in a default
210 /// way from a token stream.
211 ///
212 /// Refer to the [module documentation] for details about implementing and using
213 /// the `Parse` trait.
214 ///
215 /// [module documentation]: self
216 pub trait Parse: Sized {
parse(input: ParseStream) -> Result<Self>217 fn parse(input: ParseStream) -> Result<Self>;
218 }
219
220 /// Input to a Syn parser function.
221 ///
222 /// See the methods of this type under the documentation of [`ParseBuffer`]. For
223 /// an overview of parsing in Syn, refer to the [module documentation].
224 ///
225 /// [module documentation]: self
226 pub type ParseStream<'a> = &'a ParseBuffer<'a>;
227
228 /// Cursor position within a buffered token stream.
229 ///
230 /// This type is more commonly used through the type alias [`ParseStream`] which
231 /// is an alias for `&ParseBuffer`.
232 ///
233 /// `ParseStream` is the input type for all parser functions in Syn. They have
234 /// the signature `fn(ParseStream) -> Result<T>`.
235 ///
236 /// ## Calling a parser function
237 ///
238 /// There is no public way to construct a `ParseBuffer`. Instead, if you are
239 /// looking to invoke a parser function that requires `ParseStream` as input,
240 /// you will need to go through one of the public parsing entry points.
241 ///
242 /// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
243 /// - One of [the `syn::parse*` functions][syn-parse]; or
244 /// - A method of the [`Parser`] trait.
245 ///
246 /// [`parse_macro_input!`]: crate::parse_macro_input!
247 /// [syn-parse]: self#the-synparse-functions
248 pub struct ParseBuffer<'a> {
249 scope: Span,
250 // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
251 // The rest of the code in this module needs to be careful that only a
252 // cursor derived from this `cell` is ever assigned to this `cell`.
253 //
254 // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
255 // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
256 // than 'a, and then assign a Cursor<'short> into the Cell.
257 //
258 // By extension, it would not be safe to expose an API that accepts a
259 // Cursor<'a> and trusts that it lives as long as the cursor currently in
260 // the cell.
261 cell: Cell<Cursor<'static>>,
262 marker: PhantomData<Cursor<'a>>,
263 unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
264 }
265
266 impl<'a> Drop for ParseBuffer<'a> {
drop(&mut self)267 fn drop(&mut self) {
268 if let Some((unexpected_span, delimiter)) = span_of_unexpected_ignoring_nones(self.cursor())
269 {
270 let (inner, old_span) = inner_unexpected(self);
271 if old_span.is_none() {
272 inner.set(Unexpected::Some(unexpected_span, delimiter));
273 }
274 }
275 }
276 }
277
278 impl<'a> Display for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result279 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
280 Display::fmt(&self.cursor().token_stream(), f)
281 }
282 }
283
284 impl<'a> Debug for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result285 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
286 Debug::fmt(&self.cursor().token_stream(), f)
287 }
288 }
289
290 impl<'a> UnwindSafe for ParseBuffer<'a> {}
291 impl<'a> RefUnwindSafe for ParseBuffer<'a> {}
292
293 /// Cursor state associated with speculative parsing.
294 ///
295 /// This type is the input of the closure provided to [`ParseStream::step`].
296 ///
297 /// [`ParseStream::step`]: ParseBuffer::step
298 ///
299 /// # Example
300 ///
301 /// ```
302 /// use proc_macro2::TokenTree;
303 /// use syn::Result;
304 /// use syn::parse::ParseStream;
305 ///
306 /// // This function advances the stream past the next occurrence of `@`. If
307 /// // no `@` is present in the stream, the stream position is unchanged and
308 /// // an error is returned.
309 /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
310 /// input.step(|cursor| {
311 /// let mut rest = *cursor;
312 /// while let Some((tt, next)) = rest.token_tree() {
313 /// match &tt {
314 /// TokenTree::Punct(punct) if punct.as_char() == '@' => {
315 /// return Ok(((), next));
316 /// }
317 /// _ => rest = next,
318 /// }
319 /// }
320 /// Err(cursor.error("no `@` was found after this point"))
321 /// })
322 /// }
323 /// #
324 /// # fn remainder_after_skipping_past_next_at(
325 /// # input: ParseStream,
326 /// # ) -> Result<proc_macro2::TokenStream> {
327 /// # skip_past_next_at(input)?;
328 /// # input.parse()
329 /// # }
330 /// #
331 /// # use syn::parse::Parser;
332 /// # let remainder = remainder_after_skipping_past_next_at
333 /// # .parse_str("a @ b c")
334 /// # .unwrap();
335 /// # assert_eq!(remainder.to_string(), "b c");
336 /// ```
337 pub struct StepCursor<'c, 'a> {
338 scope: Span,
339 // This field is covariant in 'c.
340 cursor: Cursor<'c>,
341 // This field is contravariant in 'c. Together these make StepCursor
342 // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
343 // different lifetime but can upcast into a StepCursor with a shorter
344 // lifetime 'a.
345 //
346 // As long as we only ever construct a StepCursor for which 'c outlives 'a,
347 // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
348 // outlives 'a.
349 marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
350 }
351
352 impl<'c, 'a> Deref for StepCursor<'c, 'a> {
353 type Target = Cursor<'c>;
354
deref(&self) -> &Self::Target355 fn deref(&self) -> &Self::Target {
356 &self.cursor
357 }
358 }
359
360 impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
361
362 impl<'c, 'a> Clone for StepCursor<'c, 'a> {
clone(&self) -> Self363 fn clone(&self) -> Self {
364 *self
365 }
366 }
367
368 impl<'c, 'a> StepCursor<'c, 'a> {
369 /// Triggers an error at the current position of the parse stream.
370 ///
371 /// The `ParseStream::step` invocation will return this same error without
372 /// advancing the stream state.
error<T: Display>(self, message: T) -> Error373 pub fn error<T: Display>(self, message: T) -> Error {
374 error::new_at(self.scope, self.cursor, message)
375 }
376 }
377
advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a>378 pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
379 // Refer to the comments within the StepCursor definition. We use the
380 // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
381 // Cursor is covariant in its lifetime parameter so we can cast a
382 // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
383 let _ = proof;
384 unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
385 }
386
new_parse_buffer( scope: Span, cursor: Cursor, unexpected: Rc<Cell<Unexpected>>, ) -> ParseBuffer387 pub(crate) fn new_parse_buffer(
388 scope: Span,
389 cursor: Cursor,
390 unexpected: Rc<Cell<Unexpected>>,
391 ) -> ParseBuffer {
392 ParseBuffer {
393 scope,
394 // See comment on `cell` in the struct definition.
395 cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
396 marker: PhantomData,
397 unexpected: Cell::new(Some(unexpected)),
398 }
399 }
400
401 pub(crate) enum Unexpected {
402 None,
403 Some(Span, Delimiter),
404 Chain(Rc<Cell<Unexpected>>),
405 }
406
407 impl Default for Unexpected {
default() -> Self408 fn default() -> Self {
409 Unexpected::None
410 }
411 }
412
413 impl Clone for Unexpected {
clone(&self) -> Self414 fn clone(&self) -> Self {
415 match self {
416 Unexpected::None => Unexpected::None,
417 Unexpected::Some(span, delimiter) => Unexpected::Some(*span, *delimiter),
418 Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
419 }
420 }
421 }
422
423 // We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
424 // swapping in a None is cheap.
cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T425 fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
426 let prev = cell.take();
427 let ret = prev.clone();
428 cell.set(prev);
429 ret
430 }
431
inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<(Span, Delimiter)>)432 fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<(Span, Delimiter)>) {
433 let mut unexpected = get_unexpected(buffer);
434 loop {
435 match cell_clone(&unexpected) {
436 Unexpected::None => return (unexpected, None),
437 Unexpected::Some(span, delimiter) => return (unexpected, Some((span, delimiter))),
438 Unexpected::Chain(next) => unexpected = next,
439 }
440 }
441 }
442
get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>>443 pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
444 cell_clone(&buffer.unexpected).unwrap()
445 }
446
span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<(Span, Delimiter)>447 fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<(Span, Delimiter)> {
448 if cursor.eof() {
449 return None;
450 }
451 while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
452 if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
453 return Some(unexpected);
454 }
455 cursor = rest;
456 }
457 if cursor.eof() {
458 None
459 } else {
460 Some((cursor.span(), cursor.scope_delimiter()))
461 }
462 }
463
464 impl<'a> ParseBuffer<'a> {
465 /// Parses a syntax tree node of type `T`, advancing the position of our
466 /// parse stream past it.
parse<T: Parse>(&self) -> Result<T>467 pub fn parse<T: Parse>(&self) -> Result<T> {
468 T::parse(self)
469 }
470
471 /// Calls the given parser function to parse a syntax tree node of type `T`
472 /// from this stream.
473 ///
474 /// # Example
475 ///
476 /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
477 /// zero or more outer attributes.
478 ///
479 /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
480 ///
481 /// ```
482 /// use syn::{Attribute, Ident, Result, Token};
483 /// use syn::parse::{Parse, ParseStream};
484 ///
485 /// // Parses a unit struct with attributes.
486 /// //
487 /// // #[path = "s.tmpl"]
488 /// // struct S;
489 /// struct UnitStruct {
490 /// attrs: Vec<Attribute>,
491 /// struct_token: Token![struct],
492 /// name: Ident,
493 /// semi_token: Token![;],
494 /// }
495 ///
496 /// impl Parse for UnitStruct {
497 /// fn parse(input: ParseStream) -> Result<Self> {
498 /// Ok(UnitStruct {
499 /// attrs: input.call(Attribute::parse_outer)?,
500 /// struct_token: input.parse()?,
501 /// name: input.parse()?,
502 /// semi_token: input.parse()?,
503 /// })
504 /// }
505 /// }
506 /// ```
call<T>(&'a self, function: fn(ParseStream<'a>) -> Result<T>) -> Result<T>507 pub fn call<T>(&'a self, function: fn(ParseStream<'a>) -> Result<T>) -> Result<T> {
508 function(self)
509 }
510
511 /// Looks at the next token in the parse stream to determine whether it
512 /// matches the requested type of token.
513 ///
514 /// Does not advance the position of the parse stream.
515 ///
516 /// # Syntax
517 ///
518 /// Note that this method does not use turbofish syntax. Pass the peek type
519 /// inside of parentheses.
520 ///
521 /// - `input.peek(Token![struct])`
522 /// - `input.peek(Token![==])`
523 /// - `input.peek(syn::Ident)` *(does not accept keywords)*
524 /// - `input.peek(syn::Ident::peek_any)`
525 /// - `input.peek(Lifetime)`
526 /// - `input.peek(token::Brace)`
527 ///
528 /// # Example
529 ///
530 /// In this example we finish parsing the list of supertraits when the next
531 /// token in the input is either `where` or an opening curly brace.
532 ///
533 /// ```
534 /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
535 /// use syn::parse::{Parse, ParseStream};
536 /// use syn::punctuated::Punctuated;
537 ///
538 /// // Parses a trait definition containing no associated items.
539 /// //
540 /// // trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
541 /// struct MarkerTrait {
542 /// trait_token: Token![trait],
543 /// ident: Ident,
544 /// generics: Generics,
545 /// colon_token: Option<Token![:]>,
546 /// supertraits: Punctuated<TypeParamBound, Token![+]>,
547 /// brace_token: token::Brace,
548 /// }
549 ///
550 /// impl Parse for MarkerTrait {
551 /// fn parse(input: ParseStream) -> Result<Self> {
552 /// let trait_token: Token![trait] = input.parse()?;
553 /// let ident: Ident = input.parse()?;
554 /// let mut generics: Generics = input.parse()?;
555 /// let colon_token: Option<Token![:]> = input.parse()?;
556 ///
557 /// let mut supertraits = Punctuated::new();
558 /// if colon_token.is_some() {
559 /// loop {
560 /// supertraits.push_value(input.parse()?);
561 /// if input.peek(Token![where]) || input.peek(token::Brace) {
562 /// break;
563 /// }
564 /// supertraits.push_punct(input.parse()?);
565 /// }
566 /// }
567 ///
568 /// generics.where_clause = input.parse()?;
569 /// let content;
570 /// let empty_brace_token = braced!(content in input);
571 ///
572 /// Ok(MarkerTrait {
573 /// trait_token,
574 /// ident,
575 /// generics,
576 /// colon_token,
577 /// supertraits,
578 /// brace_token: empty_brace_token,
579 /// })
580 /// }
581 /// }
582 /// ```
peek<T: Peek>(&self, token: T) -> bool583 pub fn peek<T: Peek>(&self, token: T) -> bool {
584 let _ = token;
585 T::Token::peek(self.cursor())
586 }
587
588 /// Looks at the second-next token in the parse stream.
589 ///
590 /// This is commonly useful as a way to implement contextual keywords.
591 ///
592 /// # Example
593 ///
594 /// This example needs to use `peek2` because the symbol `union` is not a
595 /// keyword in Rust. We can't use just `peek` and decide to parse a union if
596 /// the very next token is `union`, because someone is free to write a `mod
597 /// union` and a macro invocation that looks like `union::some_macro! { ...
598 /// }`. In other words `union` is a contextual keyword.
599 ///
600 /// ```
601 /// use syn::{Ident, ItemUnion, Macro, Result, Token};
602 /// use syn::parse::{Parse, ParseStream};
603 ///
604 /// // Parses either a union or a macro invocation.
605 /// enum UnionOrMacro {
606 /// // union MaybeUninit<T> { uninit: (), value: T }
607 /// Union(ItemUnion),
608 /// // lazy_static! { ... }
609 /// Macro(Macro),
610 /// }
611 ///
612 /// impl Parse for UnionOrMacro {
613 /// fn parse(input: ParseStream) -> Result<Self> {
614 /// if input.peek(Token![union]) && input.peek2(Ident) {
615 /// input.parse().map(UnionOrMacro::Union)
616 /// } else {
617 /// input.parse().map(UnionOrMacro::Macro)
618 /// }
619 /// }
620 /// }
621 /// ```
peek2<T: Peek>(&self, token: T) -> bool622 pub fn peek2<T: Peek>(&self, token: T) -> bool {
623 fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
624 buffer.cursor().skip().map_or(false, peek)
625 }
626
627 let _ = token;
628 peek2(self, T::Token::peek)
629 }
630
631 /// Looks at the third-next token in the parse stream.
peek3<T: Peek>(&self, token: T) -> bool632 pub fn peek3<T: Peek>(&self, token: T) -> bool {
633 fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
634 buffer
635 .cursor()
636 .skip()
637 .and_then(Cursor::skip)
638 .map_or(false, peek)
639 }
640
641 let _ = token;
642 peek3(self, T::Token::peek)
643 }
644
645 /// Parses zero or more occurrences of `T` separated by punctuation of type
646 /// `P`, with optional trailing punctuation.
647 ///
648 /// Parsing continues until the end of this parse stream. The entire content
649 /// of this parse stream must consist of `T` and `P`.
650 ///
651 /// # Example
652 ///
653 /// ```
654 /// # use quote::quote;
655 /// #
656 /// use syn::{parenthesized, token, Ident, Result, Token, Type};
657 /// use syn::parse::{Parse, ParseStream};
658 /// use syn::punctuated::Punctuated;
659 ///
660 /// // Parse a simplified tuple struct syntax like:
661 /// //
662 /// // struct S(A, B);
663 /// struct TupleStruct {
664 /// struct_token: Token![struct],
665 /// ident: Ident,
666 /// paren_token: token::Paren,
667 /// fields: Punctuated<Type, Token![,]>,
668 /// semi_token: Token![;],
669 /// }
670 ///
671 /// impl Parse for TupleStruct {
672 /// fn parse(input: ParseStream) -> Result<Self> {
673 /// let content;
674 /// Ok(TupleStruct {
675 /// struct_token: input.parse()?,
676 /// ident: input.parse()?,
677 /// paren_token: parenthesized!(content in input),
678 /// fields: content.parse_terminated(Type::parse, Token![,])?,
679 /// semi_token: input.parse()?,
680 /// })
681 /// }
682 /// }
683 /// #
684 /// # let input = quote! {
685 /// # struct S(A, B);
686 /// # };
687 /// # syn::parse2::<TupleStruct>(input).unwrap();
688 /// ```
689 ///
690 /// # See also
691 ///
692 /// If your separator is anything more complicated than an invocation of the
693 /// `Token!` macro, this method won't be applicable and you can instead
694 /// directly use `Punctuated`'s parser functions: [`parse_terminated`],
695 /// [`parse_separated_nonempty`] etc.
696 ///
697 /// [`parse_terminated`]: Punctuated::parse_terminated
698 /// [`parse_separated_nonempty`]: Punctuated::parse_separated_nonempty
699 ///
700 /// ```
701 /// use syn::{custom_keyword, Expr, Result, Token};
702 /// use syn::parse::{Parse, ParseStream};
703 /// use syn::punctuated::Punctuated;
704 ///
705 /// mod kw {
706 /// syn::custom_keyword!(fin);
707 /// }
708 ///
709 /// struct Fin(kw::fin, Token![;]);
710 ///
711 /// impl Parse for Fin {
712 /// fn parse(input: ParseStream) -> Result<Self> {
713 /// Ok(Self(input.parse()?, input.parse()?))
714 /// }
715 /// }
716 ///
717 /// struct Thing {
718 /// steps: Punctuated<Expr, Fin>,
719 /// }
720 ///
721 /// impl Parse for Thing {
722 /// fn parse(input: ParseStream) -> Result<Self> {
723 /// # if true {
724 /// Ok(Thing {
725 /// steps: Punctuated::parse_terminated(input)?,
726 /// })
727 /// # } else {
728 /// // or equivalently, this means the same thing:
729 /// # Ok(Thing {
730 /// steps: input.call(Punctuated::parse_terminated)?,
731 /// # })
732 /// # }
733 /// }
734 /// }
735 /// ```
parse_terminated<T, P>( &'a self, parser: fn(ParseStream<'a>) -> Result<T>, separator: P, ) -> Result<Punctuated<T, P::Token>> where P: Peek, P::Token: Parse,736 pub fn parse_terminated<T, P>(
737 &'a self,
738 parser: fn(ParseStream<'a>) -> Result<T>,
739 separator: P,
740 ) -> Result<Punctuated<T, P::Token>>
741 where
742 P: Peek,
743 P::Token: Parse,
744 {
745 let _ = separator;
746 Punctuated::parse_terminated_with(self, parser)
747 }
748
749 /// Returns whether there are no more tokens remaining to be parsed from
750 /// this stream.
751 ///
752 /// This method returns true upon reaching the end of the content within a
753 /// set of delimiters, as well as at the end of the tokens provided to the
754 /// outermost parsing entry point.
755 ///
756 /// This is equivalent to
757 /// <code>.<a href="#method.peek">peek</a>(<a href="struct.End.html">syn::parse::End</a>)</code>.
758 /// Use `.peek2(End)` or `.peek3(End)` to look for the end of a parse stream
759 /// further ahead than the current position.
760 ///
761 /// # Example
762 ///
763 /// ```
764 /// use syn::{braced, token, Ident, Item, Result, Token};
765 /// use syn::parse::{Parse, ParseStream};
766 ///
767 /// // Parses a Rust `mod m { ... }` containing zero or more items.
768 /// struct Mod {
769 /// mod_token: Token![mod],
770 /// name: Ident,
771 /// brace_token: token::Brace,
772 /// items: Vec<Item>,
773 /// }
774 ///
775 /// impl Parse for Mod {
776 /// fn parse(input: ParseStream) -> Result<Self> {
777 /// let content;
778 /// Ok(Mod {
779 /// mod_token: input.parse()?,
780 /// name: input.parse()?,
781 /// brace_token: braced!(content in input),
782 /// items: {
783 /// let mut items = Vec::new();
784 /// while !content.is_empty() {
785 /// items.push(content.parse()?);
786 /// }
787 /// items
788 /// },
789 /// })
790 /// }
791 /// }
792 /// ```
is_empty(&self) -> bool793 pub fn is_empty(&self) -> bool {
794 self.cursor().eof()
795 }
796
797 /// Constructs a helper for peeking at the next token in this stream and
798 /// building an error message if it is not one of a set of expected tokens.
799 ///
800 /// # Example
801 ///
802 /// ```
803 /// use syn::{ConstParam, Ident, Lifetime, LifetimeParam, Result, Token, TypeParam};
804 /// use syn::parse::{Parse, ParseStream};
805 ///
806 /// // A generic parameter, a single one of the comma-separated elements inside
807 /// // angle brackets in:
808 /// //
809 /// // fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
810 /// //
811 /// // On invalid input, lookahead gives us a reasonable error message.
812 /// //
813 /// // error: expected one of: identifier, lifetime, `const`
814 /// // |
815 /// // 5 | fn f<!Sized>() {}
816 /// // | ^
817 /// enum GenericParam {
818 /// Type(TypeParam),
819 /// Lifetime(LifetimeParam),
820 /// Const(ConstParam),
821 /// }
822 ///
823 /// impl Parse for GenericParam {
824 /// fn parse(input: ParseStream) -> Result<Self> {
825 /// let lookahead = input.lookahead1();
826 /// if lookahead.peek(Ident) {
827 /// input.parse().map(GenericParam::Type)
828 /// } else if lookahead.peek(Lifetime) {
829 /// input.parse().map(GenericParam::Lifetime)
830 /// } else if lookahead.peek(Token![const]) {
831 /// input.parse().map(GenericParam::Const)
832 /// } else {
833 /// Err(lookahead.error())
834 /// }
835 /// }
836 /// }
837 /// ```
lookahead1(&self) -> Lookahead1<'a>838 pub fn lookahead1(&self) -> Lookahead1<'a> {
839 lookahead::new(self.scope, self.cursor())
840 }
841
842 /// Forks a parse stream so that parsing tokens out of either the original
843 /// or the fork does not advance the position of the other.
844 ///
845 /// # Performance
846 ///
847 /// Forking a parse stream is a cheap fixed amount of work and does not
848 /// involve copying token buffers. Where you might hit performance problems
849 /// is if your macro ends up parsing a large amount of content more than
850 /// once.
851 ///
852 /// ```
853 /// # use syn::{Expr, Result};
854 /// # use syn::parse::ParseStream;
855 /// #
856 /// # fn bad(input: ParseStream) -> Result<Expr> {
857 /// // Do not do this.
858 /// if input.fork().parse::<Expr>().is_ok() {
859 /// return input.parse::<Expr>();
860 /// }
861 /// # unimplemented!()
862 /// # }
863 /// ```
864 ///
865 /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
866 /// parse stream. Only use a fork when the amount of work performed against
867 /// the fork is small and bounded.
868 ///
869 /// When complex speculative parsing against the forked stream is
870 /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
871 /// original stream once the fork's parse is determined to have been
872 /// successful.
873 ///
874 /// For a lower level way to perform speculative parsing at the token level,
875 /// consider using [`ParseStream::step`] instead.
876 ///
877 /// [`parse::discouraged::Speculative`]: discouraged::Speculative
878 /// [`ParseStream::step`]: ParseBuffer::step
879 ///
880 /// # Example
881 ///
882 /// The parse implementation shown here parses possibly restricted `pub`
883 /// visibilities.
884 ///
885 /// - `pub`
886 /// - `pub(crate)`
887 /// - `pub(self)`
888 /// - `pub(super)`
889 /// - `pub(in some::path)`
890 ///
891 /// To handle the case of visibilities inside of tuple structs, the parser
892 /// needs to distinguish parentheses that specify visibility restrictions
893 /// from parentheses that form part of a tuple type.
894 ///
895 /// ```
896 /// # struct A;
897 /// # struct B;
898 /// # struct C;
899 /// #
900 /// struct S(pub(crate) A, pub (B, C));
901 /// ```
902 ///
903 /// In this example input the first tuple struct element of `S` has
904 /// `pub(crate)` visibility while the second tuple struct element has `pub`
905 /// visibility; the parentheses around `(B, C)` are part of the type rather
906 /// than part of a visibility restriction.
907 ///
908 /// The parser uses a forked parse stream to check the first token inside of
909 /// parentheses after the `pub` keyword. This is a small bounded amount of
910 /// work performed against the forked parse stream.
911 ///
912 /// ```
913 /// use syn::{parenthesized, token, Ident, Path, Result, Token};
914 /// use syn::ext::IdentExt;
915 /// use syn::parse::{Parse, ParseStream};
916 ///
917 /// struct PubVisibility {
918 /// pub_token: Token![pub],
919 /// restricted: Option<Restricted>,
920 /// }
921 ///
922 /// struct Restricted {
923 /// paren_token: token::Paren,
924 /// in_token: Option<Token![in]>,
925 /// path: Path,
926 /// }
927 ///
928 /// impl Parse for PubVisibility {
929 /// fn parse(input: ParseStream) -> Result<Self> {
930 /// let pub_token: Token![pub] = input.parse()?;
931 ///
932 /// if input.peek(token::Paren) {
933 /// let ahead = input.fork();
934 /// let mut content;
935 /// parenthesized!(content in ahead);
936 ///
937 /// if content.peek(Token![crate])
938 /// || content.peek(Token![self])
939 /// || content.peek(Token![super])
940 /// {
941 /// return Ok(PubVisibility {
942 /// pub_token,
943 /// restricted: Some(Restricted {
944 /// paren_token: parenthesized!(content in input),
945 /// in_token: None,
946 /// path: Path::from(content.call(Ident::parse_any)?),
947 /// }),
948 /// });
949 /// } else if content.peek(Token![in]) {
950 /// return Ok(PubVisibility {
951 /// pub_token,
952 /// restricted: Some(Restricted {
953 /// paren_token: parenthesized!(content in input),
954 /// in_token: Some(content.parse()?),
955 /// path: content.call(Path::parse_mod_style)?,
956 /// }),
957 /// });
958 /// }
959 /// }
960 ///
961 /// Ok(PubVisibility {
962 /// pub_token,
963 /// restricted: None,
964 /// })
965 /// }
966 /// }
967 /// ```
fork(&self) -> Self968 pub fn fork(&self) -> Self {
969 ParseBuffer {
970 scope: self.scope,
971 cell: self.cell.clone(),
972 marker: PhantomData,
973 // Not the parent's unexpected. Nothing cares whether the clone
974 // parses all the way unless we `advance_to`.
975 unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
976 }
977 }
978
979 /// Triggers an error at the current position of the parse stream.
980 ///
981 /// # Example
982 ///
983 /// ```
984 /// use syn::{Expr, Result, Token};
985 /// use syn::parse::{Parse, ParseStream};
986 ///
987 /// // Some kind of loop: `while` or `for` or `loop`.
988 /// struct Loop {
989 /// expr: Expr,
990 /// }
991 ///
992 /// impl Parse for Loop {
993 /// fn parse(input: ParseStream) -> Result<Self> {
994 /// if input.peek(Token![while])
995 /// || input.peek(Token![for])
996 /// || input.peek(Token![loop])
997 /// {
998 /// Ok(Loop {
999 /// expr: input.parse()?,
1000 /// })
1001 /// } else {
1002 /// Err(input.error("expected some kind of loop"))
1003 /// }
1004 /// }
1005 /// }
1006 /// ```
error<T: Display>(&self, message: T) -> Error1007 pub fn error<T: Display>(&self, message: T) -> Error {
1008 error::new_at(self.scope, self.cursor(), message)
1009 }
1010
1011 /// Speculatively parses tokens from this parse stream, advancing the
1012 /// position of this stream only if parsing succeeds.
1013 ///
1014 /// This is a powerful low-level API used for defining the `Parse` impls of
1015 /// the basic built-in token types. It is not something that will be used
1016 /// widely outside of the Syn codebase.
1017 ///
1018 /// # Example
1019 ///
1020 /// ```
1021 /// use proc_macro2::TokenTree;
1022 /// use syn::Result;
1023 /// use syn::parse::ParseStream;
1024 ///
1025 /// // This function advances the stream past the next occurrence of `@`. If
1026 /// // no `@` is present in the stream, the stream position is unchanged and
1027 /// // an error is returned.
1028 /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
1029 /// input.step(|cursor| {
1030 /// let mut rest = *cursor;
1031 /// while let Some((tt, next)) = rest.token_tree() {
1032 /// match &tt {
1033 /// TokenTree::Punct(punct) if punct.as_char() == '@' => {
1034 /// return Ok(((), next));
1035 /// }
1036 /// _ => rest = next,
1037 /// }
1038 /// }
1039 /// Err(cursor.error("no `@` was found after this point"))
1040 /// })
1041 /// }
1042 /// #
1043 /// # fn remainder_after_skipping_past_next_at(
1044 /// # input: ParseStream,
1045 /// # ) -> Result<proc_macro2::TokenStream> {
1046 /// # skip_past_next_at(input)?;
1047 /// # input.parse()
1048 /// # }
1049 /// #
1050 /// # use syn::parse::Parser;
1051 /// # let remainder = remainder_after_skipping_past_next_at
1052 /// # .parse_str("a @ b c")
1053 /// # .unwrap();
1054 /// # assert_eq!(remainder.to_string(), "b c");
1055 /// ```
step<F, R>(&self, function: F) -> Result<R> where F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,1056 pub fn step<F, R>(&self, function: F) -> Result<R>
1057 where
1058 F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
1059 {
1060 // Since the user's function is required to work for any 'c, we know
1061 // that the Cursor<'c> they return is either derived from the input
1062 // StepCursor<'c, 'a> or from a Cursor<'static>.
1063 //
1064 // It would not be legal to write this function without the invariant
1065 // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
1066 // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
1067 // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
1068 // `step` on their ParseBuffer<'short> with a closure that returns
1069 // Cursor<'short>, and we would wrongly write that Cursor<'short> into
1070 // the Cell intended to hold Cursor<'a>.
1071 //
1072 // In some cases it may be necessary for R to contain a Cursor<'a>.
1073 // Within Syn we solve this using `advance_step_cursor` which uses the
1074 // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
1075 // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
1076 // safe to expose that API as a method on StepCursor.
1077 let (node, rest) = function(StepCursor {
1078 scope: self.scope,
1079 cursor: self.cell.get(),
1080 marker: PhantomData,
1081 })?;
1082 self.cell.set(rest);
1083 Ok(node)
1084 }
1085
1086 /// Returns the `Span` of the next token in the parse stream, or
1087 /// `Span::call_site()` if this parse stream has completely exhausted its
1088 /// input `TokenStream`.
span(&self) -> Span1089 pub fn span(&self) -> Span {
1090 let cursor = self.cursor();
1091 if cursor.eof() {
1092 self.scope
1093 } else {
1094 crate::buffer::open_span_of_group(cursor)
1095 }
1096 }
1097
1098 /// Provides low-level access to the token representation underlying this
1099 /// parse stream.
1100 ///
1101 /// Cursors are immutable so no operations you perform against the cursor
1102 /// will affect the state of this parse stream.
1103 ///
1104 /// # Example
1105 ///
1106 /// ```
1107 /// use proc_macro2::TokenStream;
1108 /// use syn::buffer::Cursor;
1109 /// use syn::parse::{ParseStream, Result};
1110 ///
1111 /// // Run a parser that returns T, but get its output as TokenStream instead of T.
1112 /// // This works without T needing to implement ToTokens.
1113 /// fn recognize_token_stream<T>(
1114 /// recognizer: fn(ParseStream) -> Result<T>,
1115 /// ) -> impl Fn(ParseStream) -> Result<TokenStream> {
1116 /// move |input| {
1117 /// let begin = input.cursor();
1118 /// recognizer(input)?;
1119 /// let end = input.cursor();
1120 /// Ok(tokens_between(begin, end))
1121 /// }
1122 /// }
1123 ///
1124 /// // Collect tokens between two cursors as a TokenStream.
1125 /// fn tokens_between(begin: Cursor, end: Cursor) -> TokenStream {
1126 /// assert!(begin <= end);
1127 ///
1128 /// let mut cursor = begin;
1129 /// let mut tokens = TokenStream::new();
1130 /// while cursor < end {
1131 /// let (token, next) = cursor.token_tree().unwrap();
1132 /// tokens.extend(std::iter::once(token));
1133 /// cursor = next;
1134 /// }
1135 /// tokens
1136 /// }
1137 ///
1138 /// fn main() {
1139 /// use quote::quote;
1140 /// use syn::parse::{Parse, Parser};
1141 /// use syn::Token;
1142 ///
1143 /// // Parse syn::Type as a TokenStream, surrounded by angle brackets.
1144 /// fn example(input: ParseStream) -> Result<TokenStream> {
1145 /// let _langle: Token![<] = input.parse()?;
1146 /// let ty = recognize_token_stream(syn::Type::parse)(input)?;
1147 /// let _rangle: Token![>] = input.parse()?;
1148 /// Ok(ty)
1149 /// }
1150 ///
1151 /// let tokens = quote! { <fn() -> u8> };
1152 /// println!("{}", example.parse2(tokens).unwrap());
1153 /// }
1154 /// ```
cursor(&self) -> Cursor<'a>1155 pub fn cursor(&self) -> Cursor<'a> {
1156 self.cell.get()
1157 }
1158
check_unexpected(&self) -> Result<()>1159 fn check_unexpected(&self) -> Result<()> {
1160 match inner_unexpected(self).1 {
1161 Some((span, delimiter)) => Err(err_unexpected_token(span, delimiter)),
1162 None => Ok(()),
1163 }
1164 }
1165 }
1166
1167 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1168 impl<T: Parse> Parse for Box<T> {
parse(input: ParseStream) -> Result<Self>1169 fn parse(input: ParseStream) -> Result<Self> {
1170 input.parse().map(Box::new)
1171 }
1172 }
1173
1174 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1175 impl<T: Parse + Token> Parse for Option<T> {
parse(input: ParseStream) -> Result<Self>1176 fn parse(input: ParseStream) -> Result<Self> {
1177 if T::peek(input.cursor()) {
1178 Ok(Some(input.parse()?))
1179 } else {
1180 Ok(None)
1181 }
1182 }
1183 }
1184
1185 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1186 impl Parse for TokenStream {
parse(input: ParseStream) -> Result<Self>1187 fn parse(input: ParseStream) -> Result<Self> {
1188 input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1189 }
1190 }
1191
1192 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1193 impl Parse for TokenTree {
parse(input: ParseStream) -> Result<Self>1194 fn parse(input: ParseStream) -> Result<Self> {
1195 input.step(|cursor| match cursor.token_tree() {
1196 Some((tt, rest)) => Ok((tt, rest)),
1197 None => Err(cursor.error("expected token tree")),
1198 })
1199 }
1200 }
1201
1202 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1203 impl Parse for Group {
parse(input: ParseStream) -> Result<Self>1204 fn parse(input: ParseStream) -> Result<Self> {
1205 input.step(|cursor| {
1206 if let Some((group, rest)) = cursor.any_group_token() {
1207 if group.delimiter() != Delimiter::None {
1208 return Ok((group, rest));
1209 }
1210 }
1211 Err(cursor.error("expected group token"))
1212 })
1213 }
1214 }
1215
1216 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1217 impl Parse for Punct {
parse(input: ParseStream) -> Result<Self>1218 fn parse(input: ParseStream) -> Result<Self> {
1219 input.step(|cursor| match cursor.punct() {
1220 Some((punct, rest)) => Ok((punct, rest)),
1221 None => Err(cursor.error("expected punctuation token")),
1222 })
1223 }
1224 }
1225
1226 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1227 impl Parse for Literal {
parse(input: ParseStream) -> Result<Self>1228 fn parse(input: ParseStream) -> Result<Self> {
1229 input.step(|cursor| match cursor.literal() {
1230 Some((literal, rest)) => Ok((literal, rest)),
1231 None => Err(cursor.error("expected literal token")),
1232 })
1233 }
1234 }
1235
1236 /// Parser that can parse Rust tokens into a particular syntax tree node.
1237 ///
1238 /// Refer to the [module documentation] for details about parsing in Syn.
1239 ///
1240 /// [module documentation]: self
1241 pub trait Parser: Sized {
1242 type Output;
1243
1244 /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1245 ///
1246 /// This function enforces that the input is fully parsed. If there are any
1247 /// unparsed tokens at the end of the stream, an error is returned.
parse2(self, tokens: TokenStream) -> Result<Self::Output>1248 fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1249
1250 /// Parse tokens of source code into the chosen syntax tree node.
1251 ///
1252 /// This function enforces that the input is fully parsed. If there are any
1253 /// unparsed tokens at the end of the stream, an error is returned.
1254 #[cfg(feature = "proc-macro")]
1255 #[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output>1256 fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1257 self.parse2(proc_macro2::TokenStream::from(tokens))
1258 }
1259
1260 /// Parse a string of Rust code into the chosen syntax tree node.
1261 ///
1262 /// This function enforces that the input is fully parsed. If there are any
1263 /// unparsed tokens at the end of the string, an error is returned.
1264 ///
1265 /// # Hygiene
1266 ///
1267 /// Every span in the resulting syntax tree will be set to resolve at the
1268 /// macro call site.
parse_str(self, s: &str) -> Result<Self::Output>1269 fn parse_str(self, s: &str) -> Result<Self::Output> {
1270 self.parse2(proc_macro2::TokenStream::from_str(s)?)
1271 }
1272
1273 // Not public API.
1274 #[doc(hidden)]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1275 fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1276 let _ = scope;
1277 self.parse2(tokens)
1278 }
1279 }
1280
tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer1281 fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1282 let scope = Span::call_site();
1283 let cursor = tokens.begin();
1284 let unexpected = Rc::new(Cell::new(Unexpected::None));
1285 new_parse_buffer(scope, cursor, unexpected)
1286 }
1287
1288 impl<F, T> Parser for F
1289 where
1290 F: FnOnce(ParseStream) -> Result<T>,
1291 {
1292 type Output = T;
1293
parse2(self, tokens: TokenStream) -> Result<T>1294 fn parse2(self, tokens: TokenStream) -> Result<T> {
1295 let buf = TokenBuffer::new2(tokens);
1296 let state = tokens_to_parse_buffer(&buf);
1297 let node = self(&state)?;
1298 state.check_unexpected()?;
1299 if let Some((unexpected_span, delimiter)) =
1300 span_of_unexpected_ignoring_nones(state.cursor())
1301 {
1302 Err(err_unexpected_token(unexpected_span, delimiter))
1303 } else {
1304 Ok(node)
1305 }
1306 }
1307
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1308 fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1309 let buf = TokenBuffer::new2(tokens);
1310 let cursor = buf.begin();
1311 let unexpected = Rc::new(Cell::new(Unexpected::None));
1312 let state = new_parse_buffer(scope, cursor, unexpected);
1313 let node = self(&state)?;
1314 state.check_unexpected()?;
1315 if let Some((unexpected_span, delimiter)) =
1316 span_of_unexpected_ignoring_nones(state.cursor())
1317 {
1318 Err(err_unexpected_token(unexpected_span, delimiter))
1319 } else {
1320 Ok(node)
1321 }
1322 }
1323 }
1324
parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output>1325 pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1326 f.__parse_scoped(scope, tokens)
1327 }
1328
err_unexpected_token(span: Span, delimiter: Delimiter) -> Error1329 fn err_unexpected_token(span: Span, delimiter: Delimiter) -> Error {
1330 let msg = match delimiter {
1331 Delimiter::Parenthesis => "unexpected token, expected `)`",
1332 Delimiter::Brace => "unexpected token, expected `}`",
1333 Delimiter::Bracket => "unexpected token, expected `]`",
1334 Delimiter::None => "unexpected token",
1335 };
1336 Error::new(span, msg)
1337 }
1338
1339 /// An empty syntax tree node that consumes no tokens when parsed.
1340 ///
1341 /// This is useful for attribute macros that want to ensure they are not
1342 /// provided any attribute args.
1343 ///
1344 /// ```
1345 /// # extern crate proc_macro;
1346 /// #
1347 /// use proc_macro::TokenStream;
1348 /// use syn::parse_macro_input;
1349 /// use syn::parse::Nothing;
1350 ///
1351 /// # const IGNORE: &str = stringify! {
1352 /// #[proc_macro_attribute]
1353 /// # };
1354 /// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1355 /// parse_macro_input!(args as Nothing);
1356 ///
1357 /// /* ... */
1358 /// # TokenStream::new()
1359 /// }
1360 /// ```
1361 ///
1362 /// ```text
1363 /// error: unexpected token
1364 /// --> src/main.rs:3:19
1365 /// |
1366 /// 3 | #[my_attr(asdf)]
1367 /// | ^^^^
1368 /// ```
1369 pub struct Nothing;
1370
1371 impl Parse for Nothing {
parse(_input: ParseStream) -> Result<Self>1372 fn parse(_input: ParseStream) -> Result<Self> {
1373 Ok(Nothing)
1374 }
1375 }
1376
1377 #[cfg(feature = "printing")]
1378 #[cfg_attr(docsrs, doc(cfg(feature = "printing")))]
1379 impl ToTokens for Nothing {
to_tokens(&self, tokens: &mut TokenStream)1380 fn to_tokens(&self, tokens: &mut TokenStream) {
1381 let _ = tokens;
1382 }
1383 }
1384
1385 #[cfg(feature = "clone-impls")]
1386 #[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
1387 impl Clone for Nothing {
clone(&self) -> Self1388 fn clone(&self) -> Self {
1389 *self
1390 }
1391 }
1392
1393 #[cfg(feature = "clone-impls")]
1394 #[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
1395 impl Copy for Nothing {}
1396
1397 #[cfg(feature = "extra-traits")]
1398 #[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1399 impl Debug for Nothing {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1400 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1401 f.write_str("Nothing")
1402 }
1403 }
1404
1405 #[cfg(feature = "extra-traits")]
1406 #[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1407 impl Eq for Nothing {}
1408
1409 #[cfg(feature = "extra-traits")]
1410 #[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1411 impl PartialEq for Nothing {
eq(&self, _other: &Self) -> bool1412 fn eq(&self, _other: &Self) -> bool {
1413 true
1414 }
1415 }
1416
1417 #[cfg(feature = "extra-traits")]
1418 #[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1419 impl Hash for Nothing {
hash<H: Hasher>(&self, _state: &mut H)1420 fn hash<H: Hasher>(&self, _state: &mut H) {}
1421 }
1422