xref: /linux/rust/pin-init/src/lib.rs (revision d7659acca7a390b5830f0b67f3aa4a5f9929ab79)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! # Overview
9 //!
10 //! To initialize a `struct` with an in-place constructor you will need two things:
11 //! - an in-place constructor,
12 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
13 //!   [`Box<T>`] or any other smart pointer that supports this library).
14 //!
15 //! To get an in-place constructor there are generally three options:
16 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
17 //! - a custom function/macro returning an in-place constructor provided by someone else,
18 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
19 //!
20 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
21 //! the macros/types/functions are generally named like the pinned variants without the `pin`
22 //! prefix.
23 //!
24 //! # Examples
25 //!
26 //! ## Using the [`pin_init!`] macro
27 //!
28 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
29 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
30 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
31 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
32 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
33 //!
34 //! ```rust,ignore
35 //! # #![expect(clippy::disallowed_names)]
36 //! # #![feature(allocator_api)]
37 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
38 //! # use core::pin::Pin;
39 //! use pin_init::*;
40 //!
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: CMutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- CMutex::new(42),
50 //!     b: 24,
51 //! });
52 //! # let _ = Box::pin_init(foo);
53 //! ```
54 //!
55 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
56 //! (or just the stack) to actually initialize a `Foo`:
57 //!
58 //! ```rust,ignore
59 //! # #![expect(clippy::disallowed_names)]
60 //! # #![feature(allocator_api)]
61 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
62 //! # use core::{alloc::AllocError, pin::Pin};
63 //! # use pin_init::*;
64 //! #
65 //! # #[pin_data]
66 //! # struct Foo {
67 //! #     #[pin]
68 //! #     a: CMutex<usize>,
69 //! #     b: u32,
70 //! # }
71 //! #
72 //! # let foo = pin_init!(Foo {
73 //! #     a <- CMutex::new(42),
74 //! #     b: 24,
75 //! # });
76 //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
77 //! ```
78 //!
79 //! For more information see the [`pin_init!`] macro.
80 //!
81 //! ## Using a custom function/macro that returns an initializer
82 //!
83 //! Many types from the kernel supply a function/macro that returns an initializer, because the
84 //! above method only works for types where you can access the fields.
85 //!
86 //! ```rust,ignore
87 //! # #![feature(allocator_api)]
88 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
89 //! # use pin_init::*;
90 //! # use std::sync::Arc;
91 //! # use core::pin::Pin;
92 //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
93 //! ```
94 //!
95 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
96 //!
97 //! ```rust,ignore
98 //! # #![feature(allocator_api)]
99 //! # use pin_init::*;
100 //! # #[path = "../examples/error.rs"] mod error; use error::Error;
101 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
102 //! #[pin_data]
103 //! struct DriverData {
104 //!     #[pin]
105 //!     status: CMutex<i32>,
106 //!     buffer: Box<[u8; 1_000_000]>,
107 //! }
108 //!
109 //! impl DriverData {
110 //!     fn new() -> impl PinInit<Self, Error> {
111 //!         try_pin_init!(Self {
112 //!             status <- CMutex::new(0),
113 //!             buffer: Box::init(pin_init::zeroed())?,
114 //!         }? Error)
115 //!     }
116 //! }
117 //! ```
118 //!
119 //! ## Manual creation of an initializer
120 //!
121 //! Often when working with primitives the previous approaches are not sufficient. That is where
122 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
123 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
124 //! actually does the initialization in the correct way. Here are the things to look out for
125 //! (we are calling the parameter to the closure `slot`):
126 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
127 //!   `slot` now contains a valid bit pattern for the type `T`,
128 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
129 //!   you need to take care to clean up anything if your initialization fails mid-way,
130 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
131 //!   `slot` gets called.
132 //!
133 //! ```rust,ignore
134 //! # #![feature(extern_types)]
135 //! use pin_init::*;
136 //! use core::{
137 //!     ptr::addr_of_mut,
138 //!     marker::PhantomPinned,
139 //!     cell::UnsafeCell,
140 //!     pin::Pin,
141 //!     mem::MaybeUninit,
142 //! };
143 //! mod bindings {
144 //!     extern "C" {
145 //!         pub type foo;
146 //!         pub fn init_foo(ptr: *mut foo);
147 //!         pub fn destroy_foo(ptr: *mut foo);
148 //!         #[must_use = "you must check the error return code"]
149 //!         pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
150 //!     }
151 //! }
152 //!
153 //! /// # Invariants
154 //! ///
155 //! /// `foo` is always initialized
156 //! #[pin_data(PinnedDrop)]
157 //! pub struct RawFoo {
158 //!     #[pin]
159 //!     _p: PhantomPinned,
160 //!     #[pin]
161 //!     foo: UnsafeCell<MaybeUninit<bindings::foo>>,
162 //! }
163 //!
164 //! impl RawFoo {
165 //!     pub fn new(flags: u32) -> impl PinInit<Self, i32> {
166 //!         // SAFETY:
167 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
168 //!         //   enabled `foo`,
169 //!         // - when it returns `Err(e)`, then it has cleaned up before
170 //!         unsafe {
171 //!             pin_init_from_closure(move |slot: *mut Self| {
172 //!                 // `slot` contains uninit memory, avoid creating a reference.
173 //!                 let foo = addr_of_mut!((*slot).foo);
174 //!                 let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
175 //!
176 //!                 // Initialize the `foo`
177 //!                 bindings::init_foo(foo);
178 //!
179 //!                 // Try to enable it.
180 //!                 let err = bindings::enable_foo(foo, flags);
181 //!                 if err != 0 {
182 //!                     // Enabling has failed, first clean up the foo and then return the error.
183 //!                     bindings::destroy_foo(foo);
184 //!                     Err(err)
185 //!                 } else {
186 //!                     // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
187 //!                     Ok(())
188 //!                 }
189 //!             })
190 //!         }
191 //!     }
192 //! }
193 //!
194 //! #[pinned_drop]
195 //! impl PinnedDrop for RawFoo {
196 //!     fn drop(self: Pin<&mut Self>) {
197 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
198 //!         unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
199 //!     }
200 //! }
201 //! ```
202 //!
203 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
204 //! [structurally pinned fields]:
205 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
206 //! [stack]: crate::stack_pin_init
207 //! [`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html
208 //! [`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html
209 //! [`impl PinInit<Foo>`]: PinInit
210 //! [`impl PinInit<T, E>`]: PinInit
211 //! [`impl Init<T, E>`]: Init
212 //! [`pin_data`]: ::macros::pin_data
213 //! [`pin_init!`]: crate::pin_init!
214 
215 use core::{
216     cell::UnsafeCell,
217     convert::Infallible,
218     marker::PhantomData,
219     mem::MaybeUninit,
220     num::*,
221     pin::Pin,
222     ptr::{self, NonNull},
223 };
224 
225 #[doc(hidden)]
226 pub mod __internal;
227 #[doc(hidden)]
228 pub mod macros;
229 
230 /// Used to specify the pinning information of the fields of a struct.
231 ///
232 /// This is somewhat similar in purpose as
233 /// [pin-project-lite](https://crates.io/crates/pin-project-lite).
234 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
235 /// field you want to structurally pin.
236 ///
237 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
238 /// then `#[pin]` directs the type of initializer that is required.
239 ///
240 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
241 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
242 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
243 ///
244 /// # Examples
245 ///
246 /// ```ignore
247 /// # #![feature(allocator_api)]
248 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
249 /// use pin_init::pin_data;
250 ///
251 /// enum Command {
252 ///     /* ... */
253 /// }
254 ///
255 /// #[pin_data]
256 /// struct DriverData {
257 ///     #[pin]
258 ///     queue: CMutex<Vec<Command>>,
259 ///     buf: Box<[u8; 1024 * 1024]>,
260 /// }
261 /// ```
262 ///
263 /// ```ignore
264 /// # #![feature(allocator_api)]
265 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
266 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
267 /// use core::pin::Pin;
268 /// use pin_init::{pin_data, pinned_drop, PinnedDrop};
269 ///
270 /// enum Command {
271 ///     /* ... */
272 /// }
273 ///
274 /// #[pin_data(PinnedDrop)]
275 /// struct DriverData {
276 ///     #[pin]
277 ///     queue: CMutex<Vec<Command>>,
278 ///     buf: Box<[u8; 1024 * 1024]>,
279 ///     raw_info: *mut bindings::info,
280 /// }
281 ///
282 /// #[pinned_drop]
283 /// impl PinnedDrop for DriverData {
284 ///     fn drop(self: Pin<&mut Self>) {
285 ///         unsafe { bindings::destroy_info(self.raw_info) };
286 ///     }
287 /// }
288 /// ```
289 ///
290 /// [`pin_init!`]: crate::pin_init
291 pub use ::macros::pin_data;
292 
293 /// Used to implement `PinnedDrop` safely.
294 ///
295 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
296 ///
297 /// # Examples
298 ///
299 /// ```ignore
300 /// # #![feature(allocator_api)]
301 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
302 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
303 /// use core::pin::Pin;
304 /// use pin_init::{pin_data, pinned_drop, PinnedDrop};
305 ///
306 /// enum Command {
307 ///     /* ... */
308 /// }
309 ///
310 /// #[pin_data(PinnedDrop)]
311 /// struct DriverData {
312 ///     #[pin]
313 ///     queue: CMutex<Vec<Command>>,
314 ///     buf: Box<[u8; 1024 * 1024]>,
315 ///     raw_info: *mut bindings::info,
316 /// }
317 ///
318 /// #[pinned_drop]
319 /// impl PinnedDrop for DriverData {
320 ///     fn drop(self: Pin<&mut Self>) {
321 ///         unsafe { bindings::destroy_info(self.raw_info) };
322 ///     }
323 /// }
324 /// ```
325 pub use ::macros::pinned_drop;
326 
327 /// Derives the [`Zeroable`] trait for the given struct.
328 ///
329 /// This can only be used for structs where every field implements the [`Zeroable`] trait.
330 ///
331 /// # Examples
332 ///
333 /// ```ignore
334 /// use pin_init::Zeroable;
335 ///
336 /// #[derive(Zeroable)]
337 /// pub struct DriverData {
338 ///     id: i64,
339 ///     buf_ptr: *mut u8,
340 ///     len: usize,
341 /// }
342 /// ```
343 pub use ::macros::Zeroable;
344 
345 /// Initialize and pin a type directly on the stack.
346 ///
347 /// # Examples
348 ///
349 /// ```rust,ignore
350 /// # #![expect(clippy::disallowed_names)]
351 /// # #![feature(allocator_api)]
352 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
353 /// # use pin_init::*;
354 /// # use core::pin::Pin;
355 /// #[pin_data]
356 /// struct Foo {
357 ///     #[pin]
358 ///     a: CMutex<usize>,
359 ///     b: Bar,
360 /// }
361 ///
362 /// #[pin_data]
363 /// struct Bar {
364 ///     x: u32,
365 /// }
366 ///
367 /// stack_pin_init!(let foo = pin_init!(Foo {
368 ///     a <- CMutex::new(42),
369 ///     b: Bar {
370 ///         x: 64,
371 ///     },
372 /// }));
373 /// let foo: Pin<&mut Foo> = foo;
374 /// println!("a: {}", &*foo.a.lock());
375 /// ```
376 ///
377 /// # Syntax
378 ///
379 /// A normal `let` binding with optional type annotation. The expression is expected to implement
380 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
381 /// type, then use [`stack_try_pin_init!`].
382 ///
383 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
384 #[macro_export]
385 macro_rules! stack_pin_init {
386     (let $var:ident $(: $t:ty)? = $val:expr) => {
387         let val = $val;
388         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
389         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
390             Ok(res) => res,
391             Err(x) => {
392                 let x: ::core::convert::Infallible = x;
393                 match x {}
394             }
395         };
396     };
397 }
398 
399 /// Initialize and pin a type directly on the stack.
400 ///
401 /// # Examples
402 ///
403 /// ```rust,ignore
404 /// # #![expect(clippy::disallowed_names)]
405 /// # #![feature(allocator_api)]
406 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
407 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
408 /// # use pin_init::*;
409 /// #[pin_data]
410 /// struct Foo {
411 ///     #[pin]
412 ///     a: CMutex<usize>,
413 ///     b: Box<Bar>,
414 /// }
415 ///
416 /// struct Bar {
417 ///     x: u32,
418 /// }
419 ///
420 /// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo {
421 ///     a <- CMutex::new(42),
422 ///     b: Box::try_new(Bar {
423 ///         x: 64,
424 ///     })?,
425 /// }? Error));
426 /// let foo = foo.unwrap();
427 /// println!("a: {}", &*foo.a.lock());
428 /// ```
429 ///
430 /// ```rust,ignore
431 /// # #![expect(clippy::disallowed_names)]
432 /// # #![feature(allocator_api)]
433 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
434 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
435 /// # use pin_init::*;
436 /// #[pin_data]
437 /// struct Foo {
438 ///     #[pin]
439 ///     a: CMutex<usize>,
440 ///     b: Box<Bar>,
441 /// }
442 ///
443 /// struct Bar {
444 ///     x: u32,
445 /// }
446 ///
447 /// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo {
448 ///     a <- CMutex::new(42),
449 ///     b: Box::try_new(Bar {
450 ///         x: 64,
451 ///     })?,
452 /// }? Error));
453 /// println!("a: {}", &*foo.a.lock());
454 /// # Ok::<_, Error>(())
455 /// ```
456 ///
457 /// # Syntax
458 ///
459 /// A normal `let` binding with optional type annotation. The expression is expected to implement
460 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
461 /// `=` will propagate this error.
462 #[macro_export]
463 macro_rules! stack_try_pin_init {
464     (let $var:ident $(: $t:ty)? = $val:expr) => {
465         let val = $val;
466         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
467         let mut $var = $crate::init::__internal::StackInit::init($var, val);
468     };
469     (let $var:ident $(: $t:ty)? =? $val:expr) => {
470         let val = $val;
471         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
472         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
473     };
474 }
475 
476 /// Construct an in-place, pinned initializer for `struct`s.
477 ///
478 /// This macro defaults the error to [`Infallible`]. If you need a different error, then use
479 /// [`try_pin_init!`].
480 ///
481 /// The syntax is almost identical to that of a normal `struct` initializer:
482 ///
483 /// ```rust,ignore
484 /// # use pin_init::*;
485 /// # use core::pin::Pin;
486 /// #[pin_data]
487 /// struct Foo {
488 ///     a: usize,
489 ///     b: Bar,
490 /// }
491 ///
492 /// #[pin_data]
493 /// struct Bar {
494 ///     x: u32,
495 /// }
496 ///
497 /// # fn demo() -> impl PinInit<Foo> {
498 /// let a = 42;
499 ///
500 /// let initializer = pin_init!(Foo {
501 ///     a,
502 ///     b: Bar {
503 ///         x: 64,
504 ///     },
505 /// });
506 /// # initializer }
507 /// # Box::pin_init(demo()).unwrap();
508 /// ```
509 ///
510 /// Arbitrary Rust expressions can be used to set the value of a variable.
511 ///
512 /// The fields are initialized in the order that they appear in the initializer. So it is possible
513 /// to read already initialized fields using raw pointers.
514 ///
515 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
516 /// initializer.
517 ///
518 /// # Init-functions
519 ///
520 /// When working with this API it is often desired to let others construct your types without
521 /// giving access to all fields. This is where you would normally write a plain function `new`
522 /// that would return a new instance of your type. With this API that is also possible.
523 /// However, there are a few extra things to keep in mind.
524 ///
525 /// To create an initializer function, simply declare it like this:
526 ///
527 /// ```rust,ignore
528 /// # use pin_init::*;
529 /// # use core::pin::Pin;
530 /// # #[pin_data]
531 /// # struct Foo {
532 /// #     a: usize,
533 /// #     b: Bar,
534 /// # }
535 /// # #[pin_data]
536 /// # struct Bar {
537 /// #     x: u32,
538 /// # }
539 /// impl Foo {
540 ///     fn new() -> impl PinInit<Self> {
541 ///         pin_init!(Self {
542 ///             a: 42,
543 ///             b: Bar {
544 ///                 x: 64,
545 ///             },
546 ///         })
547 ///     }
548 /// }
549 /// ```
550 ///
551 /// Users of `Foo` can now create it like this:
552 ///
553 /// ```rust,ignore
554 /// # #![expect(clippy::disallowed_names)]
555 /// # use pin_init::*;
556 /// # use core::pin::Pin;
557 /// # #[pin_data]
558 /// # struct Foo {
559 /// #     a: usize,
560 /// #     b: Bar,
561 /// # }
562 /// # #[pin_data]
563 /// # struct Bar {
564 /// #     x: u32,
565 /// # }
566 /// # impl Foo {
567 /// #     fn new() -> impl PinInit<Self> {
568 /// #         pin_init!(Self {
569 /// #             a: 42,
570 /// #             b: Bar {
571 /// #                 x: 64,
572 /// #             },
573 /// #         })
574 /// #     }
575 /// # }
576 /// let foo = Box::pin_init(Foo::new());
577 /// ```
578 ///
579 /// They can also easily embed it into their own `struct`s:
580 ///
581 /// ```rust,ignore
582 /// # use pin_init::*;
583 /// # use core::pin::Pin;
584 /// # #[pin_data]
585 /// # struct Foo {
586 /// #     a: usize,
587 /// #     b: Bar,
588 /// # }
589 /// # #[pin_data]
590 /// # struct Bar {
591 /// #     x: u32,
592 /// # }
593 /// # impl Foo {
594 /// #     fn new() -> impl PinInit<Self> {
595 /// #         pin_init!(Self {
596 /// #             a: 42,
597 /// #             b: Bar {
598 /// #                 x: 64,
599 /// #             },
600 /// #         })
601 /// #     }
602 /// # }
603 /// #[pin_data]
604 /// struct FooContainer {
605 ///     #[pin]
606 ///     foo1: Foo,
607 ///     #[pin]
608 ///     foo2: Foo,
609 ///     other: u32,
610 /// }
611 ///
612 /// impl FooContainer {
613 ///     fn new(other: u32) -> impl PinInit<Self> {
614 ///         pin_init!(Self {
615 ///             foo1 <- Foo::new(),
616 ///             foo2 <- Foo::new(),
617 ///             other,
618 ///         })
619 ///     }
620 /// }
621 /// ```
622 ///
623 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
624 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
625 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
626 ///
627 /// # Syntax
628 ///
629 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
630 /// the following modifications is expected:
631 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
632 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
633 ///   pointer named `this` inside of the initializer.
634 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
635 ///   struct, this initializes every field with 0 and then runs all initializers specified in the
636 ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
637 ///
638 /// For instance:
639 ///
640 /// ```rust,ignore
641 /// # use pin_init::*;
642 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
643 /// #[pin_data]
644 /// #[derive(Zeroable)]
645 /// struct Buf {
646 ///     // `ptr` points into `buf`.
647 ///     ptr: *mut u8,
648 ///     buf: [u8; 64],
649 ///     #[pin]
650 ///     pin: PhantomPinned,
651 /// }
652 /// pin_init!(&this in Buf {
653 ///     buf: [0; 64],
654 ///     // SAFETY: TODO.
655 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
656 ///     pin: PhantomPinned,
657 /// });
658 /// pin_init!(Buf {
659 ///     buf: [1; 64],
660 ///     ..Zeroable::zeroed()
661 /// });
662 /// ```
663 ///
664 /// [`try_pin_init!`]: crate::try_pin_init
665 /// [`NonNull<Self>`]: core::ptr::NonNull
666 // For a detailed example of how this macro works, see the module documentation of the hidden
667 // module `__internal` inside of `init/__internal.rs`.
668 #[macro_export]
669 macro_rules! pin_init {
670     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
671         $($fields:tt)*
672     }) => {
673         $crate::_try_pin_init!($(&$this in)? $t $(::<$($generics),*>)? {
674             $($fields)*
675         }? ::core::convert::Infallible)
676     };
677 }
678 
679 /// Construct an in-place, fallible pinned initializer for `struct`s.
680 ///
681 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
682 ///
683 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
684 /// initialization and return the error.
685 ///
686 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
687 /// initialization fails, the memory can be safely deallocated without any further modifications.
688 ///
689 /// The syntax is identical to [`pin_init!`] with the following exception: you must append `? $type`
690 /// after the `struct` initializer to specify the error type you want to use.
691 ///
692 /// # Examples
693 ///
694 /// ```rust,ignore
695 /// # #![feature(allocator_api)]
696 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
697 /// use pin_init::*;
698 /// #[pin_data]
699 /// struct BigBuf {
700 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
701 ///     small: [u8; 1024 * 1024],
702 ///     ptr: *mut u8,
703 /// }
704 ///
705 /// impl BigBuf {
706 ///     fn new() -> impl PinInit<Self, Error> {
707 ///         try_pin_init!(Self {
708 ///             big: Box::init(init::zeroed())?,
709 ///             small: [0; 1024 * 1024],
710 ///             ptr: core::ptr::null_mut(),
711 ///         }? Error)
712 ///     }
713 /// }
714 /// # let _ = Box::pin_init(BigBuf::new());
715 /// ```
716 // For a detailed example of how this macro works, see the module documentation of the hidden
717 // module `__internal` inside of `init/__internal.rs`.
718 #[macro_export]
719 macro_rules! _try_pin_init {
720     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
721         $($fields:tt)*
722     }? $err:ty) => {
723         $crate::__init_internal!(
724             @this($($this)?),
725             @typ($t $(::<$($generics),*>)? ),
726             @fields($($fields)*),
727             @error($err),
728             @data(PinData, use_data),
729             @has_data(HasPinData, __pin_data),
730             @construct_closure(pin_init_from_closure),
731             @munch_fields($($fields)*),
732         )
733     }
734 }
735 
736 /// Construct an in-place initializer for `struct`s.
737 ///
738 /// This macro defaults the error to [`Infallible`]. If you need a different error, then use
739 /// [`try_init!`].
740 ///
741 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
742 /// - `unsafe` code must guarantee either full initialization or return an error and allow
743 ///   deallocation of the memory.
744 /// - the fields are initialized in the order given in the initializer.
745 /// - no references to fields are allowed to be created inside of the initializer.
746 ///
747 /// This initializer is for initializing data in-place that might later be moved. If you want to
748 /// pin-initialize, use [`pin_init!`].
749 ///
750 /// [`try_init!`]: crate::try_init!
751 // For a detailed example of how this macro works, see the module documentation of the hidden
752 // module `__internal` inside of `init/__internal.rs`.
753 #[macro_export]
754 macro_rules! init {
755     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
756         $($fields:tt)*
757     }) => {
758         $crate::_try_init!($(&$this in)? $t $(::<$($generics),*>)? {
759             $($fields)*
760         }? ::core::convert::Infallible)
761     }
762 }
763 
764 /// Construct an in-place fallible initializer for `struct`s.
765 ///
766 /// If the initialization can complete without error (or [`Infallible`]), then use
767 /// [`init!`].
768 ///
769 /// The syntax is identical to [`try_pin_init!`]. You need to specify a custom error
770 /// via `? $type` after the `struct` initializer.
771 /// The safety caveats from [`try_pin_init!`] also apply:
772 /// - `unsafe` code must guarantee either full initialization or return an error and allow
773 ///   deallocation of the memory.
774 /// - the fields are initialized in the order given in the initializer.
775 /// - no references to fields are allowed to be created inside of the initializer.
776 ///
777 /// # Examples
778 ///
779 /// ```rust,ignore
780 /// # #![feature(allocator_api)]
781 /// # use core::alloc::AllocError;
782 /// use pin_init::*;
783 /// struct BigBuf {
784 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
785 ///     small: [u8; 1024 * 1024],
786 /// }
787 ///
788 /// impl BigBuf {
789 ///     fn new() -> impl Init<Self, AllocError> {
790 ///         try_init!(Self {
791 ///             big: Box::init(zeroed())?,
792 ///             small: [0; 1024 * 1024],
793 ///         }? AllocError)
794 ///     }
795 /// }
796 /// ```
797 /// [`try_pin_init!`]: crate::try_pin_init
798 // For a detailed example of how this macro works, see the module documentation of the hidden
799 // module `__internal` inside of `init/__internal.rs`.
800 #[macro_export]
801 macro_rules! _try_init {
802     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
803         $($fields:tt)*
804     }? $err:ty) => {
805         $crate::__init_internal!(
806             @this($($this)?),
807             @typ($t $(::<$($generics),*>)?),
808             @fields($($fields)*),
809             @error($err),
810             @data(InitData, /*no use_data*/),
811             @has_data(HasInitData, __init_data),
812             @construct_closure(init_from_closure),
813             @munch_fields($($fields)*),
814         )
815     }
816 }
817 
818 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
819 /// structurally pinned.
820 ///
821 /// # Example
822 ///
823 /// This will succeed:
824 /// ```ignore
825 /// use pin_init::assert_pinned;
826 /// #[pin_data]
827 /// struct MyStruct {
828 ///     #[pin]
829 ///     some_field: u64,
830 /// }
831 ///
832 /// assert_pinned!(MyStruct, some_field, u64);
833 /// ```
834 ///
835 /// This will fail:
836 /// ```compile_fail,ignore
837 /// use pin_init::assert_pinned;
838 /// #[pin_data]
839 /// struct MyStruct {
840 ///     some_field: u64,
841 /// }
842 ///
843 /// assert_pinned!(MyStruct, some_field, u64);
844 /// ```
845 ///
846 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
847 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
848 /// only be used when the macro is invoked from a function body.
849 /// ```ignore
850 /// use pin_init::assert_pinned;
851 /// #[pin_data]
852 /// struct Foo<T> {
853 ///     #[pin]
854 ///     elem: T,
855 /// }
856 ///
857 /// impl<T> Foo<T> {
858 ///     fn project(self: Pin<&mut Self>) -> Pin<&mut T> {
859 ///         assert_pinned!(Foo<T>, elem, T, inline);
860 ///
861 ///         // SAFETY: The field is structurally pinned.
862 ///         unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
863 ///     }
864 /// }
865 /// ```
866 #[macro_export]
867 macro_rules! assert_pinned {
868     ($ty:ty, $field:ident, $field_ty:ty, inline) => {
869         let _ = move |ptr: *mut $field_ty| {
870             // SAFETY: This code is unreachable.
871             let data = unsafe { <$ty as $crate::init::__internal::HasPinData>::__pin_data() };
872             let init = $crate::init::__internal::AlwaysFail::<$field_ty>::new();
873             // SAFETY: This code is unreachable.
874             unsafe { data.$field(ptr, init) }.ok();
875         };
876     };
877 
878     ($ty:ty, $field:ident, $field_ty:ty) => {
879         const _: () = {
880             $crate::assert_pinned!($ty, $field, $field_ty, inline);
881         };
882     };
883 }
884 
885 /// A pin-initializer for the type `T`.
886 ///
887 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
888 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]).
889 ///
890 /// Also see the [module description](self).
891 ///
892 /// # Safety
893 ///
894 /// When implementing this trait you will need to take great care. Also there are probably very few
895 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
896 ///
897 /// The [`PinInit::__pinned_init`] function:
898 /// - returns `Ok(())` if it initialized every field of `slot`,
899 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
900 ///     - `slot` can be deallocated without UB occurring,
901 ///     - `slot` does not need to be dropped,
902 ///     - `slot` is not partially initialized.
903 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
904 ///
905 /// [`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html
906 /// [`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html
907 #[must_use = "An initializer must be used in order to create its value."]
908 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
909     /// Initializes `slot`.
910     ///
911     /// # Safety
912     ///
913     /// - `slot` is a valid pointer to uninitialized memory.
914     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
915     ///   deallocate.
916     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
917     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
918 
919     /// First initializes the value using `self` then calls the function `f` with the initialized
920     /// value.
921     ///
922     /// If `f` returns an error the value is dropped and the initializer will forward the error.
923     ///
924     /// # Examples
925     ///
926     /// ```rust,ignore
927     /// # #![feature(allocator_api)]
928     /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
929     /// # use pin_init::*;
930     /// let mtx_init = CMutex::new(42);
931     /// // Make the initializer print the value.
932     /// let mtx_init = mtx_init.pin_chain(|mtx| {
933     ///     println!("{:?}", mtx.get_data_mut());
934     ///     Ok(())
935     /// });
936     /// ```
937     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
938     where
939         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
940     {
941         ChainPinInit(self, f, PhantomData)
942     }
943 }
944 
945 /// An initializer returned by [`PinInit::pin_chain`].
946 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
947 
948 // SAFETY: The `__pinned_init` function is implemented such that it
949 // - returns `Ok(())` on successful initialization,
950 // - returns `Err(err)` on error and in this case `slot` will be dropped.
951 // - considers `slot` pinned.
952 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
953 where
954     I: PinInit<T, E>,
955     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
956 {
957     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
958         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
959         unsafe { self.0.__pinned_init(slot)? };
960         // SAFETY: The above call initialized `slot` and we still have unique access.
961         let val = unsafe { &mut *slot };
962         // SAFETY: `slot` is considered pinned.
963         let val = unsafe { Pin::new_unchecked(val) };
964         // SAFETY: `slot` was initialized above.
965         (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
966     }
967 }
968 
969 /// An initializer for `T`.
970 ///
971 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
972 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because
973 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
974 ///
975 /// Also see the [module description](self).
976 ///
977 /// # Safety
978 ///
979 /// When implementing this trait you will need to take great care. Also there are probably very few
980 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
981 ///
982 /// The [`Init::__init`] function:
983 /// - returns `Ok(())` if it initialized every field of `slot`,
984 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
985 ///     - `slot` can be deallocated without UB occurring,
986 ///     - `slot` does not need to be dropped,
987 ///     - `slot` is not partially initialized.
988 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
989 ///
990 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
991 /// code as `__init`.
992 ///
993 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
994 /// move the pointee after initialization.
995 ///
996 /// [`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html
997 /// [`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html
998 #[must_use = "An initializer must be used in order to create its value."]
999 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
1000     /// Initializes `slot`.
1001     ///
1002     /// # Safety
1003     ///
1004     /// - `slot` is a valid pointer to uninitialized memory.
1005     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1006     ///   deallocate.
1007     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1008 
1009     /// First initializes the value using `self` then calls the function `f` with the initialized
1010     /// value.
1011     ///
1012     /// If `f` returns an error the value is dropped and the initializer will forward the error.
1013     ///
1014     /// # Examples
1015     ///
1016     /// ```rust,ignore
1017     /// # #![expect(clippy::disallowed_names)]
1018     /// use pin_init::{init_from_closure, zeroed};
1019     /// struct Foo {
1020     ///     buf: [u8; 1_000_000],
1021     /// }
1022     ///
1023     /// impl Foo {
1024     ///     fn setup(&mut self) {
1025     ///         pr_info!("Setting up foo");
1026     ///     }
1027     /// }
1028     ///
1029     /// let foo = init!(Foo {
1030     ///     buf <- zeroed()
1031     /// }).chain(|foo| {
1032     ///     foo.setup();
1033     ///     Ok(())
1034     /// });
1035     /// ```
1036     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
1037     where
1038         F: FnOnce(&mut T) -> Result<(), E>,
1039     {
1040         ChainInit(self, f, PhantomData)
1041     }
1042 }
1043 
1044 /// An initializer returned by [`Init::chain`].
1045 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
1046 
1047 // SAFETY: The `__init` function is implemented such that it
1048 // - returns `Ok(())` on successful initialization,
1049 // - returns `Err(err)` on error and in this case `slot` will be dropped.
1050 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
1051 where
1052     I: Init<T, E>,
1053     F: FnOnce(&mut T) -> Result<(), E>,
1054 {
1055     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1056         // SAFETY: All requirements fulfilled since this function is `__init`.
1057         unsafe { self.0.__pinned_init(slot)? };
1058         // SAFETY: The above call initialized `slot` and we still have unique access.
1059         (self.1)(unsafe { &mut *slot }).inspect_err(|_|
1060             // SAFETY: `slot` was initialized above.
1061             unsafe { core::ptr::drop_in_place(slot) })
1062     }
1063 }
1064 
1065 // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1066 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1067 where
1068     I: Init<T, E>,
1069     F: FnOnce(&mut T) -> Result<(), E>,
1070 {
1071     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1072         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1073         unsafe { self.__init(slot) }
1074     }
1075 }
1076 
1077 /// Creates a new [`PinInit<T, E>`] from the given closure.
1078 ///
1079 /// # Safety
1080 ///
1081 /// The closure:
1082 /// - returns `Ok(())` if it initialized every field of `slot`,
1083 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1084 ///     - `slot` can be deallocated without UB occurring,
1085 ///     - `slot` does not need to be dropped,
1086 ///     - `slot` is not partially initialized.
1087 /// - may assume that the `slot` does not move if `T: !Unpin`,
1088 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1089 #[inline]
1090 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1091     f: impl FnOnce(*mut T) -> Result<(), E>,
1092 ) -> impl PinInit<T, E> {
1093     __internal::InitClosure(f, PhantomData)
1094 }
1095 
1096 /// Creates a new [`Init<T, E>`] from the given closure.
1097 ///
1098 /// # Safety
1099 ///
1100 /// The closure:
1101 /// - returns `Ok(())` if it initialized every field of `slot`,
1102 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1103 ///     - `slot` can be deallocated without UB occurring,
1104 ///     - `slot` does not need to be dropped,
1105 ///     - `slot` is not partially initialized.
1106 /// - the `slot` may move after initialization.
1107 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1108 #[inline]
1109 pub const unsafe fn init_from_closure<T: ?Sized, E>(
1110     f: impl FnOnce(*mut T) -> Result<(), E>,
1111 ) -> impl Init<T, E> {
1112     __internal::InitClosure(f, PhantomData)
1113 }
1114 
1115 /// An initializer that leaves the memory uninitialized.
1116 ///
1117 /// The initializer is a no-op. The `slot` memory is not changed.
1118 #[inline]
1119 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1120     // SAFETY: The memory is allowed to be uninitialized.
1121     unsafe { init_from_closure(|_| Ok(())) }
1122 }
1123 
1124 /// Initializes an array by initializing each element via the provided initializer.
1125 ///
1126 /// # Examples
1127 ///
1128 /// ```rust,ignore
1129 /// # use pin_init::*;
1130 /// use pin_init::init_array_from_fn;
1131 /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap();
1132 /// assert_eq!(array.len(), 1_000);
1133 /// ```
1134 pub fn init_array_from_fn<I, const N: usize, T, E>(
1135     mut make_init: impl FnMut(usize) -> I,
1136 ) -> impl Init<[T; N], E>
1137 where
1138     I: Init<T, E>,
1139 {
1140     let init = move |slot: *mut [T; N]| {
1141         let slot = slot.cast::<T>();
1142         for i in 0..N {
1143             let init = make_init(i);
1144             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1145             let ptr = unsafe { slot.add(i) };
1146             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1147             // requirements.
1148             if let Err(e) = unsafe { init.__init(ptr) } {
1149                 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1150                 // `Err` below, `slot` will be considered uninitialized memory.
1151                 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1152                 return Err(e);
1153             }
1154         }
1155         Ok(())
1156     };
1157     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1158     // any initialized elements and returns `Err`.
1159     unsafe { init_from_closure(init) }
1160 }
1161 
1162 /// Initializes an array by initializing each element via the provided initializer.
1163 ///
1164 /// # Examples
1165 ///
1166 /// ```rust,ignore
1167 /// # #![feature(allocator_api)]
1168 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1169 /// # use pin_init::*;
1170 /// # use core::pin::Pin;
1171 /// use pin_init::pin_init_array_from_fn;
1172 /// use std::sync::Arc;
1173 /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> =
1174 ///     Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap();
1175 /// assert_eq!(array.len(), 1_000);
1176 /// ```
1177 pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1178     mut make_init: impl FnMut(usize) -> I,
1179 ) -> impl PinInit<[T; N], E>
1180 where
1181     I: PinInit<T, E>,
1182 {
1183     let init = move |slot: *mut [T; N]| {
1184         let slot = slot.cast::<T>();
1185         for i in 0..N {
1186             let init = make_init(i);
1187             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1188             let ptr = unsafe { slot.add(i) };
1189             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1190             // requirements.
1191             if let Err(e) = unsafe { init.__pinned_init(ptr) } {
1192                 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1193                 // `Err` below, `slot` will be considered uninitialized memory.
1194                 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1195                 return Err(e);
1196             }
1197         }
1198         Ok(())
1199     };
1200     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1201     // any initialized elements and returns `Err`.
1202     unsafe { pin_init_from_closure(init) }
1203 }
1204 
1205 // SAFETY: Every type can be initialized by-value.
1206 unsafe impl<T, E> Init<T, E> for T {
1207     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1208         // SAFETY: TODO.
1209         unsafe { slot.write(self) };
1210         Ok(())
1211     }
1212 }
1213 
1214 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1215 unsafe impl<T, E> PinInit<T, E> for T {
1216     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1217         // SAFETY: TODO.
1218         unsafe { self.__init(slot) }
1219     }
1220 }
1221 
1222 /// Smart pointer containing uninitialized memory and that can write a value.
1223 pub trait InPlaceWrite<T> {
1224     /// The type `Self` turns into when the contents are initialized.
1225     type Initialized;
1226 
1227     /// Use the given initializer to write a value into `self`.
1228     ///
1229     /// Does not drop the current value and considers it as uninitialized memory.
1230     fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1231 
1232     /// Use the given pin-initializer to write a value into `self`.
1233     ///
1234     /// Does not drop the current value and considers it as uninitialized memory.
1235     fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1236 }
1237 
1238 /// Trait facilitating pinned destruction.
1239 ///
1240 /// Use [`pinned_drop`] to implement this trait safely:
1241 ///
1242 /// ```rust,ignore
1243 /// # #![feature(allocator_api)]
1244 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1245 /// # use pin_init::*;
1246 /// use core::pin::Pin;
1247 /// #[pin_data(PinnedDrop)]
1248 /// struct Foo {
1249 ///     #[pin]
1250 ///     mtx: CMutex<usize>,
1251 /// }
1252 ///
1253 /// #[pinned_drop]
1254 /// impl PinnedDrop for Foo {
1255 ///     fn drop(self: Pin<&mut Self>) {
1256 ///         println!("Foo is being dropped!");
1257 ///     }
1258 /// }
1259 /// ```
1260 ///
1261 /// # Safety
1262 ///
1263 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1264 ///
1265 /// [`pinned_drop`]: crate::macros::pinned_drop
1266 pub unsafe trait PinnedDrop: __internal::HasPinData {
1267     /// Executes the pinned destructor of this type.
1268     ///
1269     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1270     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1271     /// and thus prevents this function from being called where it should not.
1272     ///
1273     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1274     /// automatically.
1275     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1276 }
1277 
1278 /// Marker trait for types that can be initialized by writing just zeroes.
1279 ///
1280 /// # Safety
1281 ///
1282 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1283 /// this is not UB:
1284 ///
1285 /// ```rust,ignore
1286 /// let val: Self = unsafe { core::mem::zeroed() };
1287 /// ```
1288 pub unsafe trait Zeroable {}
1289 
1290 /// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write
1291 /// `None` to that location.
1292 ///
1293 /// # Safety
1294 ///
1295 /// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound.
1296 pub unsafe trait ZeroableOption {}
1297 
1298 // SAFETY: by the safety requirement of `ZeroableOption`, this is valid.
1299 unsafe impl<T: ZeroableOption> Zeroable for Option<T> {}
1300 
1301 /// Create a new zeroed T.
1302 ///
1303 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1304 #[inline]
1305 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1306     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1307     // and because we write all zeroes, the memory is initialized.
1308     unsafe {
1309         init_from_closure(|slot: *mut T| {
1310             slot.write_bytes(0, 1);
1311             Ok(())
1312         })
1313     }
1314 }
1315 
1316 macro_rules! impl_zeroable {
1317     ($($({$($generics:tt)*})? $t:ty, )*) => {
1318         // SAFETY: Safety comments written in the macro invocation.
1319         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1320     };
1321 }
1322 
1323 impl_zeroable! {
1324     // SAFETY: All primitives that are allowed to be zero.
1325     bool,
1326     char,
1327     u8, u16, u32, u64, u128, usize,
1328     i8, i16, i32, i64, i128, isize,
1329     f32, f64,
1330 
1331     // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1332     // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1333     // uninhabited/empty types, consult The Rustonomicon:
1334     // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1335     // also has information on undefined behavior:
1336     // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1337     //
1338     // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1339     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1340 
1341     // SAFETY: Type is allowed to take any value, including all zeros.
1342     {<T>} MaybeUninit<T>,
1343 
1344     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1345     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1346 
1347     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1348     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1349     Option<NonZeroU128>, Option<NonZeroUsize>,
1350     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1351     Option<NonZeroI128>, Option<NonZeroIsize>,
1352 
1353     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1354     //
1355     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1356     {<T: ?Sized>} Option<NonNull<T>>,
1357 
1358     // SAFETY: `null` pointer is valid.
1359     //
1360     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1361     // null.
1362     //
1363     // When `Pointee` gets stabilized, we could use
1364     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1365     {<T>} *mut T, {<T>} *const T,
1366 
1367     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1368     // zero.
1369     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1370 
1371     // SAFETY: `T` is `Zeroable`.
1372     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1373 }
1374 
1375 macro_rules! impl_tuple_zeroable {
1376     ($(,)?) => {};
1377     ($first:ident, $($t:ident),* $(,)?) => {
1378         // SAFETY: All elements are zeroable and padding can be zero.
1379         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1380         impl_tuple_zeroable!($($t),* ,);
1381     }
1382 }
1383 
1384 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1385