1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! Library to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! [Pinning][pinning] is Rust's way of ensuring data does not move. 6 //! 7 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 8 //! overflow. 9 //! 10 //! This library's main use-case is in [Rust-for-Linux]. Although this version can be used 11 //! standalone. 12 //! 13 //! There are cases when you want to in-place initialize a struct. For example when it is very big 14 //! and moving it from the stack is not an option, because it is bigger than the stack itself. 15 //! Another reason would be that you need the address of the object to initialize it. This stands 16 //! in direct conflict with Rust's normal process of first initializing an object and then moving 17 //! it into it's final memory location. For more information, see 18 //! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>. 19 //! 20 //! This library allows you to do in-place initialization safely. 21 //! 22 //! ## Nightly Needed for `alloc` feature 23 //! 24 //! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is 25 //! enabled and thus this feature can only be used with a nightly compiler. When enabling the 26 //! `alloc` feature, the user will be required to activate `allocator_api` as well. 27 //! 28 //! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html 29 //! 30 //! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler. 31 //! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this 32 //! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std 33 //! mode. 34 //! 35 //! ## Nightly needed for `unsafe-pinned` feature 36 //! 37 //! This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type. 38 //! This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735) 39 //! and therefore a nightly compiler. Note that this feature is not enabled by default. 40 //! 41 //! # Overview 42 //! 43 //! To initialize a `struct` with an in-place constructor you will need two things: 44 //! - an in-place constructor, 45 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 46 //! [`Box<T>`] or any other smart pointer that supports this library). 47 //! 48 //! To get an in-place constructor there are generally three options: 49 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 50 //! - a custom function/macro returning an in-place constructor provided by someone else, 51 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 52 //! 53 //! Aside from pinned initialization, this library also supports in-place construction without 54 //! pinning, the macros/types/functions are generally named like the pinned variants without the 55 //! `pin_` prefix. 56 //! 57 //! # Examples 58 //! 59 //! Throughout the examples we will often make use of the `CMutex` type which can be found in 60 //! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from 61 //! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list 62 //! requires it to be pinned to be locked and thus is a prime candidate for using this library. 63 //! 64 //! ## Using the [`pin_init!`] macro 65 //! 66 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 67 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 68 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 69 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 70 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 71 //! 72 //! ```rust 73 //! # #![expect(clippy::disallowed_names)] 74 //! # #![feature(allocator_api)] 75 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 76 //! # use core::pin::Pin; 77 //! use pin_init::{pin_data, pin_init, InPlaceInit}; 78 //! 79 //! #[pin_data] 80 //! struct Foo { 81 //! #[pin] 82 //! a: CMutex<usize>, 83 //! b: u32, 84 //! } 85 //! 86 //! let foo = pin_init!(Foo { 87 //! a <- CMutex::new(42), 88 //! b: 24, 89 //! }); 90 //! # let _ = Box::pin_init(foo); 91 //! ``` 92 //! 93 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 94 //! (or just the stack) to actually initialize a `Foo`: 95 //! 96 //! ```rust 97 //! # #![expect(clippy::disallowed_names)] 98 //! # #![feature(allocator_api)] 99 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 100 //! # use core::{alloc::AllocError, pin::Pin}; 101 //! # use pin_init::*; 102 //! # 103 //! # #[pin_data] 104 //! # struct Foo { 105 //! # #[pin] 106 //! # a: CMutex<usize>, 107 //! # b: u32, 108 //! # } 109 //! # 110 //! # let foo = pin_init!(Foo { 111 //! # a <- CMutex::new(42), 112 //! # b: 24, 113 //! # }); 114 //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo); 115 //! ``` 116 //! 117 //! For more information see the [`pin_init!`] macro. 118 //! 119 //! ## Using a custom function/macro that returns an initializer 120 //! 121 //! Many types that use this library supply a function/macro that returns an initializer, because 122 //! the above method only works for types where you can access the fields. 123 //! 124 //! ```rust 125 //! # #![feature(allocator_api)] 126 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 127 //! # use pin_init::*; 128 //! # use std::sync::Arc; 129 //! # use core::pin::Pin; 130 //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42)); 131 //! ``` 132 //! 133 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 134 //! 135 //! ```rust 136 //! # #![feature(allocator_api)] 137 //! # use pin_init::*; 138 //! # #[path = "../examples/error.rs"] mod error; use error::Error; 139 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 140 //! #[pin_data] 141 //! struct DriverData { 142 //! #[pin] 143 //! status: CMutex<i32>, 144 //! buffer: Box<[u8; 1_000_000]>, 145 //! } 146 //! 147 //! impl DriverData { 148 //! fn new() -> impl PinInit<Self, Error> { 149 //! try_pin_init!(Self { 150 //! status <- CMutex::new(0), 151 //! buffer: Box::init(pin_init::init_zeroed())?, 152 //! }? Error) 153 //! } 154 //! } 155 //! ``` 156 //! 157 //! ## Manual creation of an initializer 158 //! 159 //! Often when working with primitives the previous approaches are not sufficient. That is where 160 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 161 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 162 //! actually does the initialization in the correct way. Here are the things to look out for 163 //! (we are calling the parameter to the closure `slot`): 164 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 165 //! `slot` now contains a valid bit pattern for the type `T`, 166 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 167 //! you need to take care to clean up anything if your initialization fails mid-way, 168 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 169 //! `slot` gets called. 170 //! 171 //! ```rust 172 //! # #![feature(extern_types)] 173 //! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure}; 174 //! use core::{ 175 //! ptr::addr_of_mut, 176 //! marker::PhantomPinned, 177 //! cell::UnsafeCell, 178 //! pin::Pin, 179 //! mem::MaybeUninit, 180 //! }; 181 //! mod bindings { 182 //! #[repr(C)] 183 //! pub struct foo { 184 //! /* fields from C ... */ 185 //! } 186 //! extern "C" { 187 //! pub fn init_foo(ptr: *mut foo); 188 //! pub fn destroy_foo(ptr: *mut foo); 189 //! #[must_use = "you must check the error return code"] 190 //! pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32; 191 //! } 192 //! } 193 //! 194 //! /// # Invariants 195 //! /// 196 //! /// `foo` is always initialized 197 //! #[pin_data(PinnedDrop)] 198 //! pub struct RawFoo { 199 //! #[pin] 200 //! _p: PhantomPinned, 201 //! #[pin] 202 //! foo: UnsafeCell<MaybeUninit<bindings::foo>>, 203 //! } 204 //! 205 //! impl RawFoo { 206 //! pub fn new(flags: u32) -> impl PinInit<Self, i32> { 207 //! // SAFETY: 208 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 209 //! // enabled `foo`, 210 //! // - when it returns `Err(e)`, then it has cleaned up before 211 //! unsafe { 212 //! pin_init_from_closure(move |slot: *mut Self| { 213 //! // `slot` contains uninit memory, avoid creating a reference. 214 //! let foo = addr_of_mut!((*slot).foo); 215 //! let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>(); 216 //! 217 //! // Initialize the `foo` 218 //! bindings::init_foo(foo); 219 //! 220 //! // Try to enable it. 221 //! let err = bindings::enable_foo(foo, flags); 222 //! if err != 0 { 223 //! // Enabling has failed, first clean up the foo and then return the error. 224 //! bindings::destroy_foo(foo); 225 //! Err(err) 226 //! } else { 227 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 228 //! Ok(()) 229 //! } 230 //! }) 231 //! } 232 //! } 233 //! } 234 //! 235 //! #[pinned_drop] 236 //! impl PinnedDrop for RawFoo { 237 //! fn drop(self: Pin<&mut Self>) { 238 //! // SAFETY: Since `foo` is initialized, destroying is safe. 239 //! unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) }; 240 //! } 241 //! } 242 //! ``` 243 //! 244 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 245 //! the `kernel` crate. The [`sync`] module is a good starting point. 246 //! 247 //! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html 248 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 249 //! [structurally pinned fields]: 250 //! https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning 251 //! [stack]: crate::stack_pin_init 252 #![cfg_attr( 253 kernel, 254 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 255 )] 256 #![cfg_attr( 257 kernel, 258 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 259 )] 260 #![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 261 #![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 262 //! [`impl PinInit<Foo>`]: crate::PinInit 263 //! [`impl PinInit<T, E>`]: crate::PinInit 264 //! [`impl Init<T, E>`]: crate::Init 265 //! [Rust-for-Linux]: https://rust-for-linux.com/ 266 267 #![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))] 268 #![cfg_attr( 269 all( 270 any(feature = "alloc", feature = "std"), 271 not(RUSTC_NEW_UNINIT_IS_STABLE) 272 ), 273 feature(new_uninit) 274 )] 275 #![forbid(missing_docs, unsafe_op_in_unsafe_fn)] 276 #![cfg_attr(not(feature = "std"), no_std)] 277 #![cfg_attr(feature = "alloc", feature(allocator_api))] 278 #![cfg_attr( 279 all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED), 280 feature(unsafe_pinned) 281 )] 282 283 use core::{ 284 cell::UnsafeCell, 285 convert::Infallible, 286 marker::PhantomData, 287 mem::MaybeUninit, 288 num::*, 289 pin::Pin, 290 ptr::{self, NonNull}, 291 }; 292 293 #[doc(hidden)] 294 pub mod __internal; 295 #[doc(hidden)] 296 pub mod macros; 297 298 #[cfg(any(feature = "std", feature = "alloc"))] 299 mod alloc; 300 #[cfg(any(feature = "std", feature = "alloc"))] 301 pub use alloc::InPlaceInit; 302 303 /// Used to specify the pinning information of the fields of a struct. 304 /// 305 /// This is somewhat similar in purpose as 306 /// [pin-project-lite](https://crates.io/crates/pin-project-lite). 307 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each 308 /// field you want to structurally pin. 309 /// 310 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`, 311 /// then `#[pin]` directs the type of initializer that is required. 312 /// 313 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this 314 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with 315 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care. 316 /// 317 /// # Examples 318 /// 319 /// ``` 320 /// # #![feature(allocator_api)] 321 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 322 /// use pin_init::pin_data; 323 /// 324 /// enum Command { 325 /// /* ... */ 326 /// } 327 /// 328 /// #[pin_data] 329 /// struct DriverData { 330 /// #[pin] 331 /// queue: CMutex<Vec<Command>>, 332 /// buf: Box<[u8; 1024 * 1024]>, 333 /// } 334 /// ``` 335 /// 336 /// ``` 337 /// # #![feature(allocator_api)] 338 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 339 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 340 /// use core::pin::Pin; 341 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 342 /// 343 /// enum Command { 344 /// /* ... */ 345 /// } 346 /// 347 /// #[pin_data(PinnedDrop)] 348 /// struct DriverData { 349 /// #[pin] 350 /// queue: CMutex<Vec<Command>>, 351 /// buf: Box<[u8; 1024 * 1024]>, 352 /// raw_info: *mut bindings::info, 353 /// } 354 /// 355 /// #[pinned_drop] 356 /// impl PinnedDrop for DriverData { 357 /// fn drop(self: Pin<&mut Self>) { 358 /// unsafe { bindings::destroy_info(self.raw_info) }; 359 /// } 360 /// } 361 /// ``` 362 pub use ::pin_init_internal::pin_data; 363 364 /// Used to implement `PinnedDrop` safely. 365 /// 366 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`. 367 /// 368 /// # Examples 369 /// 370 /// ``` 371 /// # #![feature(allocator_api)] 372 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 373 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 374 /// use core::pin::Pin; 375 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 376 /// 377 /// enum Command { 378 /// /* ... */ 379 /// } 380 /// 381 /// #[pin_data(PinnedDrop)] 382 /// struct DriverData { 383 /// #[pin] 384 /// queue: CMutex<Vec<Command>>, 385 /// buf: Box<[u8; 1024 * 1024]>, 386 /// raw_info: *mut bindings::info, 387 /// } 388 /// 389 /// #[pinned_drop] 390 /// impl PinnedDrop for DriverData { 391 /// fn drop(self: Pin<&mut Self>) { 392 /// unsafe { bindings::destroy_info(self.raw_info) }; 393 /// } 394 /// } 395 /// ``` 396 pub use ::pin_init_internal::pinned_drop; 397 398 /// Derives the [`Zeroable`] trait for the given `struct` or `union`. 399 /// 400 /// This can only be used for `struct`s/`union`s where every field implements the [`Zeroable`] 401 /// trait. 402 /// 403 /// # Examples 404 /// 405 /// ``` 406 /// use pin_init::Zeroable; 407 /// 408 /// #[derive(Zeroable)] 409 /// pub struct DriverData { 410 /// pub(crate) id: i64, 411 /// buf_ptr: *mut u8, 412 /// len: usize, 413 /// } 414 /// ``` 415 /// 416 /// ``` 417 /// use pin_init::Zeroable; 418 /// 419 /// #[derive(Zeroable)] 420 /// pub union SignCast { 421 /// signed: i64, 422 /// unsigned: u64, 423 /// } 424 /// ``` 425 pub use ::pin_init_internal::Zeroable; 426 427 /// Derives the [`Zeroable`] trait for the given `struct` or `union` if all fields implement 428 /// [`Zeroable`]. 429 /// 430 /// Contrary to the derive macro named [`macro@Zeroable`], this one silently fails when a field 431 /// doesn't implement [`Zeroable`]. 432 /// 433 /// # Examples 434 /// 435 /// ``` 436 /// use pin_init::MaybeZeroable; 437 /// 438 /// // implmements `Zeroable` 439 /// #[derive(MaybeZeroable)] 440 /// pub struct DriverData { 441 /// pub(crate) id: i64, 442 /// buf_ptr: *mut u8, 443 /// len: usize, 444 /// } 445 /// 446 /// // does not implmement `Zeroable` 447 /// #[derive(MaybeZeroable)] 448 /// pub struct DriverData2 { 449 /// pub(crate) id: i64, 450 /// buf_ptr: *mut u8, 451 /// len: usize, 452 /// // this field doesn't implement `Zeroable` 453 /// other_data: &'static i32, 454 /// } 455 /// ``` 456 pub use ::pin_init_internal::MaybeZeroable; 457 458 /// Initialize and pin a type directly on the stack. 459 /// 460 /// # Examples 461 /// 462 /// ```rust 463 /// # #![expect(clippy::disallowed_names)] 464 /// # #![feature(allocator_api)] 465 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 466 /// # use pin_init::*; 467 /// # use core::pin::Pin; 468 /// #[pin_data] 469 /// struct Foo { 470 /// #[pin] 471 /// a: CMutex<usize>, 472 /// b: Bar, 473 /// } 474 /// 475 /// #[pin_data] 476 /// struct Bar { 477 /// x: u32, 478 /// } 479 /// 480 /// stack_pin_init!(let foo = pin_init!(Foo { 481 /// a <- CMutex::new(42), 482 /// b: Bar { 483 /// x: 64, 484 /// }, 485 /// })); 486 /// let foo: Pin<&mut Foo> = foo; 487 /// println!("a: {}", &*foo.a.lock()); 488 /// ``` 489 /// 490 /// # Syntax 491 /// 492 /// A normal `let` binding with optional type annotation. The expression is expected to implement 493 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 494 /// type, then use [`stack_try_pin_init!`]. 495 #[macro_export] 496 macro_rules! stack_pin_init { 497 (let $var:ident $(: $t:ty)? = $val:expr) => { 498 let val = $val; 499 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 500 let mut $var = match $crate::__internal::StackInit::init($var, val) { 501 Ok(res) => res, 502 Err(x) => { 503 let x: ::core::convert::Infallible = x; 504 match x {} 505 } 506 }; 507 }; 508 } 509 510 /// Initialize and pin a type directly on the stack. 511 /// 512 /// # Examples 513 /// 514 /// ```rust 515 /// # #![expect(clippy::disallowed_names)] 516 /// # #![feature(allocator_api)] 517 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 518 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 519 /// # use pin_init::*; 520 /// #[pin_data] 521 /// struct Foo { 522 /// #[pin] 523 /// a: CMutex<usize>, 524 /// b: Box<Bar>, 525 /// } 526 /// 527 /// struct Bar { 528 /// x: u32, 529 /// } 530 /// 531 /// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo { 532 /// a <- CMutex::new(42), 533 /// b: Box::try_new(Bar { 534 /// x: 64, 535 /// })?, 536 /// }? Error)); 537 /// let foo = foo.unwrap(); 538 /// println!("a: {}", &*foo.a.lock()); 539 /// ``` 540 /// 541 /// ```rust 542 /// # #![expect(clippy::disallowed_names)] 543 /// # #![feature(allocator_api)] 544 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 545 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 546 /// # use pin_init::*; 547 /// #[pin_data] 548 /// struct Foo { 549 /// #[pin] 550 /// a: CMutex<usize>, 551 /// b: Box<Bar>, 552 /// } 553 /// 554 /// struct Bar { 555 /// x: u32, 556 /// } 557 /// 558 /// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo { 559 /// a <- CMutex::new(42), 560 /// b: Box::try_new(Bar { 561 /// x: 64, 562 /// })?, 563 /// }? Error)); 564 /// println!("a: {}", &*foo.a.lock()); 565 /// # Ok::<_, Error>(()) 566 /// ``` 567 /// 568 /// # Syntax 569 /// 570 /// A normal `let` binding with optional type annotation. The expression is expected to implement 571 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 572 /// `=` will propagate this error. 573 #[macro_export] 574 macro_rules! stack_try_pin_init { 575 (let $var:ident $(: $t:ty)? = $val:expr) => { 576 let val = $val; 577 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 578 let mut $var = $crate::__internal::StackInit::init($var, val); 579 }; 580 (let $var:ident $(: $t:ty)? =? $val:expr) => { 581 let val = $val; 582 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 583 let mut $var = $crate::__internal::StackInit::init($var, val)?; 584 }; 585 } 586 587 /// Construct an in-place, pinned initializer for `struct`s. 588 /// 589 /// This macro defaults the error to [`Infallible`]. If you need a different error, then use 590 /// [`try_pin_init!`]. 591 /// 592 /// The syntax is almost identical to that of a normal `struct` initializer: 593 /// 594 /// ```rust 595 /// # use pin_init::*; 596 /// # use core::pin::Pin; 597 /// #[pin_data] 598 /// struct Foo { 599 /// a: usize, 600 /// b: Bar, 601 /// } 602 /// 603 /// #[pin_data] 604 /// struct Bar { 605 /// x: u32, 606 /// } 607 /// 608 /// # fn demo() -> impl PinInit<Foo> { 609 /// let a = 42; 610 /// 611 /// let initializer = pin_init!(Foo { 612 /// a, 613 /// b: Bar { 614 /// x: 64, 615 /// }, 616 /// }); 617 /// # initializer } 618 /// # Box::pin_init(demo()).unwrap(); 619 /// ``` 620 /// 621 /// Arbitrary Rust expressions can be used to set the value of a variable. 622 /// 623 /// The fields are initialized in the order that they appear in the initializer. So it is possible 624 /// to read already initialized fields using raw pointers. 625 /// 626 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 627 /// initializer. 628 /// 629 /// # Init-functions 630 /// 631 /// When working with this library it is often desired to let others construct your types without 632 /// giving access to all fields. This is where you would normally write a plain function `new` that 633 /// would return a new instance of your type. With this library that is also possible. However, 634 /// there are a few extra things to keep in mind. 635 /// 636 /// To create an initializer function, simply declare it like this: 637 /// 638 /// ```rust 639 /// # use pin_init::*; 640 /// # use core::pin::Pin; 641 /// # #[pin_data] 642 /// # struct Foo { 643 /// # a: usize, 644 /// # b: Bar, 645 /// # } 646 /// # #[pin_data] 647 /// # struct Bar { 648 /// # x: u32, 649 /// # } 650 /// impl Foo { 651 /// fn new() -> impl PinInit<Self> { 652 /// pin_init!(Self { 653 /// a: 42, 654 /// b: Bar { 655 /// x: 64, 656 /// }, 657 /// }) 658 /// } 659 /// } 660 /// ``` 661 /// 662 /// Users of `Foo` can now create it like this: 663 /// 664 /// ```rust 665 /// # #![expect(clippy::disallowed_names)] 666 /// # use pin_init::*; 667 /// # use core::pin::Pin; 668 /// # #[pin_data] 669 /// # struct Foo { 670 /// # a: usize, 671 /// # b: Bar, 672 /// # } 673 /// # #[pin_data] 674 /// # struct Bar { 675 /// # x: u32, 676 /// # } 677 /// # impl Foo { 678 /// # fn new() -> impl PinInit<Self> { 679 /// # pin_init!(Self { 680 /// # a: 42, 681 /// # b: Bar { 682 /// # x: 64, 683 /// # }, 684 /// # }) 685 /// # } 686 /// # } 687 /// let foo = Box::pin_init(Foo::new()); 688 /// ``` 689 /// 690 /// They can also easily embed it into their own `struct`s: 691 /// 692 /// ```rust 693 /// # use pin_init::*; 694 /// # use core::pin::Pin; 695 /// # #[pin_data] 696 /// # struct Foo { 697 /// # a: usize, 698 /// # b: Bar, 699 /// # } 700 /// # #[pin_data] 701 /// # struct Bar { 702 /// # x: u32, 703 /// # } 704 /// # impl Foo { 705 /// # fn new() -> impl PinInit<Self> { 706 /// # pin_init!(Self { 707 /// # a: 42, 708 /// # b: Bar { 709 /// # x: 64, 710 /// # }, 711 /// # }) 712 /// # } 713 /// # } 714 /// #[pin_data] 715 /// struct FooContainer { 716 /// #[pin] 717 /// foo1: Foo, 718 /// #[pin] 719 /// foo2: Foo, 720 /// other: u32, 721 /// } 722 /// 723 /// impl FooContainer { 724 /// fn new(other: u32) -> impl PinInit<Self> { 725 /// pin_init!(Self { 726 /// foo1 <- Foo::new(), 727 /// foo2 <- Foo::new(), 728 /// other, 729 /// }) 730 /// } 731 /// } 732 /// ``` 733 /// 734 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 735 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 736 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 737 /// 738 /// # Syntax 739 /// 740 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 741 /// the following modifications is expected: 742 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 743 /// - You can use `_: { /* run any user-code here */ },` anywhere where you can place fields in 744 /// order to run arbitrary code. 745 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 746 /// pointer named `this` inside of the initializer. 747 /// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the 748 /// struct, this initializes every field with 0 and then runs all initializers specified in the 749 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 750 /// 751 /// For instance: 752 /// 753 /// ```rust 754 /// # use pin_init::*; 755 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 756 /// #[pin_data] 757 /// #[derive(Zeroable)] 758 /// struct Buf { 759 /// // `ptr` points into `buf`. 760 /// ptr: *mut u8, 761 /// buf: [u8; 64], 762 /// #[pin] 763 /// pin: PhantomPinned, 764 /// } 765 /// 766 /// let init = pin_init!(&this in Buf { 767 /// buf: [0; 64], 768 /// // SAFETY: TODO. 769 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 770 /// pin: PhantomPinned, 771 /// }); 772 /// let init = pin_init!(Buf { 773 /// buf: [1; 64], 774 /// ..Zeroable::init_zeroed() 775 /// }); 776 /// ``` 777 /// 778 /// [`NonNull<Self>`]: core::ptr::NonNull 779 // For a detailed example of how this macro works, see the module documentation of the hidden 780 // module `macros` inside of `macros.rs`. 781 #[macro_export] 782 macro_rules! pin_init { 783 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 784 $($fields:tt)* 785 }) => { 786 $crate::try_pin_init!($(&$this in)? $t $(::<$($generics),*>)? { 787 $($fields)* 788 }? ::core::convert::Infallible) 789 }; 790 } 791 792 /// Construct an in-place, fallible pinned initializer for `struct`s. 793 /// 794 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 795 /// 796 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 797 /// initialization and return the error. 798 /// 799 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 800 /// initialization fails, the memory can be safely deallocated without any further modifications. 801 /// 802 /// The syntax is identical to [`pin_init!`] with the following exception: you must append `? $type` 803 /// after the `struct` initializer to specify the error type you want to use. 804 /// 805 /// # Examples 806 /// 807 /// ```rust 808 /// # #![feature(allocator_api)] 809 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 810 /// use pin_init::{pin_data, try_pin_init, PinInit, InPlaceInit, init_zeroed}; 811 /// 812 /// #[pin_data] 813 /// struct BigBuf { 814 /// big: Box<[u8; 1024 * 1024 * 1024]>, 815 /// small: [u8; 1024 * 1024], 816 /// ptr: *mut u8, 817 /// } 818 /// 819 /// impl BigBuf { 820 /// fn new() -> impl PinInit<Self, Error> { 821 /// try_pin_init!(Self { 822 /// big: Box::init(init_zeroed())?, 823 /// small: [0; 1024 * 1024], 824 /// ptr: core::ptr::null_mut(), 825 /// }? Error) 826 /// } 827 /// } 828 /// # let _ = Box::pin_init(BigBuf::new()); 829 /// ``` 830 // For a detailed example of how this macro works, see the module documentation of the hidden 831 // module `macros` inside of `macros.rs`. 832 #[macro_export] 833 macro_rules! try_pin_init { 834 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 835 $($fields:tt)* 836 }? $err:ty) => { 837 $crate::__init_internal!( 838 @this($($this)?), 839 @typ($t $(::<$($generics),*>)? ), 840 @fields($($fields)*), 841 @error($err), 842 @data(PinData, use_data), 843 @has_data(HasPinData, __pin_data), 844 @construct_closure(pin_init_from_closure), 845 @munch_fields($($fields)*), 846 ) 847 } 848 } 849 850 /// Construct an in-place initializer for `struct`s. 851 /// 852 /// This macro defaults the error to [`Infallible`]. If you need a different error, then use 853 /// [`try_init!`]. 854 /// 855 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 856 /// - `unsafe` code must guarantee either full initialization or return an error and allow 857 /// deallocation of the memory. 858 /// - the fields are initialized in the order given in the initializer. 859 /// - no references to fields are allowed to be created inside of the initializer. 860 /// 861 /// This initializer is for initializing data in-place that might later be moved. If you want to 862 /// pin-initialize, use [`pin_init!`]. 863 /// 864 /// # Examples 865 /// 866 /// ```rust 867 /// # #![feature(allocator_api)] 868 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 869 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 870 /// # use pin_init::InPlaceInit; 871 /// use pin_init::{init, Init, init_zeroed}; 872 /// 873 /// struct BigBuf { 874 /// small: [u8; 1024 * 1024], 875 /// } 876 /// 877 /// impl BigBuf { 878 /// fn new() -> impl Init<Self> { 879 /// init!(Self { 880 /// small <- init_zeroed(), 881 /// }) 882 /// } 883 /// } 884 /// # let _ = Box::init(BigBuf::new()); 885 /// ``` 886 // For a detailed example of how this macro works, see the module documentation of the hidden 887 // module `macros` inside of `macros.rs`. 888 #[macro_export] 889 macro_rules! init { 890 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 891 $($fields:tt)* 892 }) => { 893 $crate::try_init!($(&$this in)? $t $(::<$($generics),*>)? { 894 $($fields)* 895 }? ::core::convert::Infallible) 896 } 897 } 898 899 /// Construct an in-place fallible initializer for `struct`s. 900 /// 901 /// If the initialization can complete without error (or [`Infallible`]), then use 902 /// [`init!`]. 903 /// 904 /// The syntax is identical to [`try_pin_init!`]. You need to specify a custom error 905 /// via `? $type` after the `struct` initializer. 906 /// The safety caveats from [`try_pin_init!`] also apply: 907 /// - `unsafe` code must guarantee either full initialization or return an error and allow 908 /// deallocation of the memory. 909 /// - the fields are initialized in the order given in the initializer. 910 /// - no references to fields are allowed to be created inside of the initializer. 911 /// 912 /// # Examples 913 /// 914 /// ```rust 915 /// # #![feature(allocator_api)] 916 /// # use core::alloc::AllocError; 917 /// # use pin_init::InPlaceInit; 918 /// use pin_init::{try_init, Init, init_zeroed}; 919 /// 920 /// struct BigBuf { 921 /// big: Box<[u8; 1024 * 1024 * 1024]>, 922 /// small: [u8; 1024 * 1024], 923 /// } 924 /// 925 /// impl BigBuf { 926 /// fn new() -> impl Init<Self, AllocError> { 927 /// try_init!(Self { 928 /// big: Box::init(init_zeroed())?, 929 /// small: [0; 1024 * 1024], 930 /// }? AllocError) 931 /// } 932 /// } 933 /// # let _ = Box::init(BigBuf::new()); 934 /// ``` 935 // For a detailed example of how this macro works, see the module documentation of the hidden 936 // module `macros` inside of `macros.rs`. 937 #[macro_export] 938 macro_rules! try_init { 939 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 940 $($fields:tt)* 941 }? $err:ty) => { 942 $crate::__init_internal!( 943 @this($($this)?), 944 @typ($t $(::<$($generics),*>)?), 945 @fields($($fields)*), 946 @error($err), 947 @data(InitData, /*no use_data*/), 948 @has_data(HasInitData, __init_data), 949 @construct_closure(init_from_closure), 950 @munch_fields($($fields)*), 951 ) 952 } 953 } 954 955 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is 956 /// structurally pinned. 957 /// 958 /// # Examples 959 /// 960 /// This will succeed: 961 /// ``` 962 /// use pin_init::{pin_data, assert_pinned}; 963 /// 964 /// #[pin_data] 965 /// struct MyStruct { 966 /// #[pin] 967 /// some_field: u64, 968 /// } 969 /// 970 /// assert_pinned!(MyStruct, some_field, u64); 971 /// ``` 972 /// 973 /// This will fail: 974 /// ```compile_fail 975 /// use pin_init::{pin_data, assert_pinned}; 976 /// 977 /// #[pin_data] 978 /// struct MyStruct { 979 /// some_field: u64, 980 /// } 981 /// 982 /// assert_pinned!(MyStruct, some_field, u64); 983 /// ``` 984 /// 985 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To 986 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can 987 /// only be used when the macro is invoked from a function body. 988 /// ``` 989 /// # use core::pin::Pin; 990 /// use pin_init::{pin_data, assert_pinned}; 991 /// 992 /// #[pin_data] 993 /// struct Foo<T> { 994 /// #[pin] 995 /// elem: T, 996 /// } 997 /// 998 /// impl<T> Foo<T> { 999 /// fn project_this(self: Pin<&mut Self>) -> Pin<&mut T> { 1000 /// assert_pinned!(Foo<T>, elem, T, inline); 1001 /// 1002 /// // SAFETY: The field is structurally pinned. 1003 /// unsafe { self.map_unchecked_mut(|me| &mut me.elem) } 1004 /// } 1005 /// } 1006 /// ``` 1007 #[macro_export] 1008 macro_rules! assert_pinned { 1009 ($ty:ty, $field:ident, $field_ty:ty, inline) => { 1010 let _ = move |ptr: *mut $field_ty| { 1011 // SAFETY: This code is unreachable. 1012 let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() }; 1013 let init = $crate::__internal::AlwaysFail::<$field_ty>::new(); 1014 // SAFETY: This code is unreachable. 1015 unsafe { data.$field(ptr, init) }.ok(); 1016 }; 1017 }; 1018 1019 ($ty:ty, $field:ident, $field_ty:ty) => { 1020 const _: () = { 1021 $crate::assert_pinned!($ty, $field, $field_ty, inline); 1022 }; 1023 }; 1024 } 1025 1026 /// A pin-initializer for the type `T`. 1027 /// 1028 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 1029 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). 1030 /// 1031 /// Also see the [module description](self). 1032 /// 1033 /// # Safety 1034 /// 1035 /// When implementing this trait you will need to take great care. Also there are probably very few 1036 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 1037 /// 1038 /// The [`PinInit::__pinned_init`] function: 1039 /// - returns `Ok(())` if it initialized every field of `slot`, 1040 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1041 /// - `slot` can be deallocated without UB occurring, 1042 /// - `slot` does not need to be dropped, 1043 /// - `slot` is not partially initialized. 1044 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1045 /// 1046 #[cfg_attr( 1047 kernel, 1048 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 1049 )] 1050 #[cfg_attr( 1051 kernel, 1052 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 1053 )] 1054 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 1055 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 1056 #[must_use = "An initializer must be used in order to create its value."] 1057 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 1058 /// Initializes `slot`. 1059 /// 1060 /// # Safety 1061 /// 1062 /// - `slot` is a valid pointer to uninitialized memory. 1063 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 1064 /// deallocate. 1065 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 1066 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 1067 1068 /// First initializes the value using `self` then calls the function `f` with the initialized 1069 /// value. 1070 /// 1071 /// If `f` returns an error the value is dropped and the initializer will forward the error. 1072 /// 1073 /// # Examples 1074 /// 1075 /// ```rust 1076 /// # #![feature(allocator_api)] 1077 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1078 /// # use pin_init::*; 1079 /// let mtx_init = CMutex::new(42); 1080 /// // Make the initializer print the value. 1081 /// let mtx_init = mtx_init.pin_chain(|mtx| { 1082 /// println!("{:?}", mtx.get_data_mut()); 1083 /// Ok(()) 1084 /// }); 1085 /// ``` 1086 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 1087 where 1088 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 1089 { 1090 ChainPinInit(self, f, PhantomData) 1091 } 1092 } 1093 1094 /// An initializer returned by [`PinInit::pin_chain`]. 1095 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1096 1097 // SAFETY: The `__pinned_init` function is implemented such that it 1098 // - returns `Ok(())` on successful initialization, 1099 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1100 // - considers `slot` pinned. 1101 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 1102 where 1103 I: PinInit<T, E>, 1104 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 1105 { 1106 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1107 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 1108 unsafe { self.0.__pinned_init(slot)? }; 1109 // SAFETY: The above call initialized `slot` and we still have unique access. 1110 let val = unsafe { &mut *slot }; 1111 // SAFETY: `slot` is considered pinned. 1112 let val = unsafe { Pin::new_unchecked(val) }; 1113 // SAFETY: `slot` was initialized above. 1114 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) }) 1115 } 1116 } 1117 1118 /// An initializer for `T`. 1119 /// 1120 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 1121 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because 1122 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 1123 /// 1124 /// Also see the [module description](self). 1125 /// 1126 /// # Safety 1127 /// 1128 /// When implementing this trait you will need to take great care. Also there are probably very few 1129 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 1130 /// 1131 /// The [`Init::__init`] function: 1132 /// - returns `Ok(())` if it initialized every field of `slot`, 1133 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1134 /// - `slot` can be deallocated without UB occurring, 1135 /// - `slot` does not need to be dropped, 1136 /// - `slot` is not partially initialized. 1137 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1138 /// 1139 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 1140 /// code as `__init`. 1141 /// 1142 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 1143 /// move the pointee after initialization. 1144 /// 1145 #[cfg_attr( 1146 kernel, 1147 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 1148 )] 1149 #[cfg_attr( 1150 kernel, 1151 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 1152 )] 1153 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 1154 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 1155 #[must_use = "An initializer must be used in order to create its value."] 1156 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 1157 /// Initializes `slot`. 1158 /// 1159 /// # Safety 1160 /// 1161 /// - `slot` is a valid pointer to uninitialized memory. 1162 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 1163 /// deallocate. 1164 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 1165 1166 /// First initializes the value using `self` then calls the function `f` with the initialized 1167 /// value. 1168 /// 1169 /// If `f` returns an error the value is dropped and the initializer will forward the error. 1170 /// 1171 /// # Examples 1172 /// 1173 /// ```rust 1174 /// # #![expect(clippy::disallowed_names)] 1175 /// use pin_init::{init, init_zeroed, Init}; 1176 /// 1177 /// struct Foo { 1178 /// buf: [u8; 1_000_000], 1179 /// } 1180 /// 1181 /// impl Foo { 1182 /// fn setup(&mut self) { 1183 /// println!("Setting up foo"); 1184 /// } 1185 /// } 1186 /// 1187 /// let foo = init!(Foo { 1188 /// buf <- init_zeroed() 1189 /// }).chain(|foo| { 1190 /// foo.setup(); 1191 /// Ok(()) 1192 /// }); 1193 /// ``` 1194 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 1195 where 1196 F: FnOnce(&mut T) -> Result<(), E>, 1197 { 1198 ChainInit(self, f, PhantomData) 1199 } 1200 } 1201 1202 /// An initializer returned by [`Init::chain`]. 1203 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1204 1205 // SAFETY: The `__init` function is implemented such that it 1206 // - returns `Ok(())` on successful initialization, 1207 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1208 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 1209 where 1210 I: Init<T, E>, 1211 F: FnOnce(&mut T) -> Result<(), E>, 1212 { 1213 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1214 // SAFETY: All requirements fulfilled since this function is `__init`. 1215 unsafe { self.0.__pinned_init(slot)? }; 1216 // SAFETY: The above call initialized `slot` and we still have unique access. 1217 (self.1)(unsafe { &mut *slot }).inspect_err(|_| 1218 // SAFETY: `slot` was initialized above. 1219 unsafe { core::ptr::drop_in_place(slot) }) 1220 } 1221 } 1222 1223 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 1224 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 1225 where 1226 I: Init<T, E>, 1227 F: FnOnce(&mut T) -> Result<(), E>, 1228 { 1229 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1230 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 1231 unsafe { self.__init(slot) } 1232 } 1233 } 1234 1235 /// Creates a new [`PinInit<T, E>`] from the given closure. 1236 /// 1237 /// # Safety 1238 /// 1239 /// The closure: 1240 /// - returns `Ok(())` if it initialized every field of `slot`, 1241 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1242 /// - `slot` can be deallocated without UB occurring, 1243 /// - `slot` does not need to be dropped, 1244 /// - `slot` is not partially initialized. 1245 /// - may assume that the `slot` does not move if `T: !Unpin`, 1246 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1247 #[inline] 1248 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 1249 f: impl FnOnce(*mut T) -> Result<(), E>, 1250 ) -> impl PinInit<T, E> { 1251 __internal::InitClosure(f, PhantomData) 1252 } 1253 1254 /// Creates a new [`Init<T, E>`] from the given closure. 1255 /// 1256 /// # Safety 1257 /// 1258 /// The closure: 1259 /// - returns `Ok(())` if it initialized every field of `slot`, 1260 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1261 /// - `slot` can be deallocated without UB occurring, 1262 /// - `slot` does not need to be dropped, 1263 /// - `slot` is not partially initialized. 1264 /// - the `slot` may move after initialization. 1265 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1266 #[inline] 1267 pub const unsafe fn init_from_closure<T: ?Sized, E>( 1268 f: impl FnOnce(*mut T) -> Result<(), E>, 1269 ) -> impl Init<T, E> { 1270 __internal::InitClosure(f, PhantomData) 1271 } 1272 1273 /// Changes the to be initialized type. 1274 /// 1275 /// # Safety 1276 /// 1277 /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a 1278 /// pointer must result in a valid `U`. 1279 #[expect(clippy::let_and_return)] 1280 pub const unsafe fn cast_pin_init<T, U, E>(init: impl PinInit<T, E>) -> impl PinInit<U, E> { 1281 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety 1282 // requirements. 1283 let res = unsafe { pin_init_from_closure(|ptr: *mut U| init.__pinned_init(ptr.cast::<T>())) }; 1284 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a 1285 // cycle when computing the type returned by this function) 1286 res 1287 } 1288 1289 /// Changes the to be initialized type. 1290 /// 1291 /// # Safety 1292 /// 1293 /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a 1294 /// pointer must result in a valid `U`. 1295 #[expect(clippy::let_and_return)] 1296 pub const unsafe fn cast_init<T, U, E>(init: impl Init<T, E>) -> impl Init<U, E> { 1297 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety 1298 // requirements. 1299 let res = unsafe { init_from_closure(|ptr: *mut U| init.__init(ptr.cast::<T>())) }; 1300 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a 1301 // cycle when computing the type returned by this function) 1302 res 1303 } 1304 1305 /// An initializer that leaves the memory uninitialized. 1306 /// 1307 /// The initializer is a no-op. The `slot` memory is not changed. 1308 #[inline] 1309 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1310 // SAFETY: The memory is allowed to be uninitialized. 1311 unsafe { init_from_closure(|_| Ok(())) } 1312 } 1313 1314 /// Initializes an array by initializing each element via the provided initializer. 1315 /// 1316 /// # Examples 1317 /// 1318 /// ```rust 1319 /// # use pin_init::*; 1320 /// use pin_init::init_array_from_fn; 1321 /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap(); 1322 /// assert_eq!(array.len(), 1_000); 1323 /// ``` 1324 pub fn init_array_from_fn<I, const N: usize, T, E>( 1325 mut make_init: impl FnMut(usize) -> I, 1326 ) -> impl Init<[T; N], E> 1327 where 1328 I: Init<T, E>, 1329 { 1330 let init = move |slot: *mut [T; N]| { 1331 let slot = slot.cast::<T>(); 1332 for i in 0..N { 1333 let init = make_init(i); 1334 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1335 let ptr = unsafe { slot.add(i) }; 1336 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1337 // requirements. 1338 if let Err(e) = unsafe { init.__init(ptr) } { 1339 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1340 // `Err` below, `slot` will be considered uninitialized memory. 1341 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1342 return Err(e); 1343 } 1344 } 1345 Ok(()) 1346 }; 1347 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1348 // any initialized elements and returns `Err`. 1349 unsafe { init_from_closure(init) } 1350 } 1351 1352 /// Initializes an array by initializing each element via the provided initializer. 1353 /// 1354 /// # Examples 1355 /// 1356 /// ```rust 1357 /// # #![feature(allocator_api)] 1358 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1359 /// # use pin_init::*; 1360 /// # use core::pin::Pin; 1361 /// use pin_init::pin_init_array_from_fn; 1362 /// use std::sync::Arc; 1363 /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> = 1364 /// Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap(); 1365 /// assert_eq!(array.len(), 1_000); 1366 /// ``` 1367 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1368 mut make_init: impl FnMut(usize) -> I, 1369 ) -> impl PinInit<[T; N], E> 1370 where 1371 I: PinInit<T, E>, 1372 { 1373 let init = move |slot: *mut [T; N]| { 1374 let slot = slot.cast::<T>(); 1375 for i in 0..N { 1376 let init = make_init(i); 1377 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1378 let ptr = unsafe { slot.add(i) }; 1379 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1380 // requirements. 1381 if let Err(e) = unsafe { init.__pinned_init(ptr) } { 1382 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1383 // `Err` below, `slot` will be considered uninitialized memory. 1384 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1385 return Err(e); 1386 } 1387 } 1388 Ok(()) 1389 }; 1390 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1391 // any initialized elements and returns `Err`. 1392 unsafe { pin_init_from_closure(init) } 1393 } 1394 1395 /// Construct an initializer in a closure and run it. 1396 /// 1397 /// Returns an initializer that first runs the closure and then the initializer returned by it. 1398 /// 1399 /// See also [`init_scope`]. 1400 /// 1401 /// # Examples 1402 /// 1403 /// ``` 1404 /// # use pin_init::*; 1405 /// # #[pin_data] 1406 /// # struct Foo { a: u64, b: isize } 1407 /// # struct Bar { a: u32, b: isize } 1408 /// # fn lookup_bar() -> Result<Bar, Error> { todo!() } 1409 /// # struct Error; 1410 /// fn init_foo() -> impl PinInit<Foo, Error> { 1411 /// pin_init_scope(|| { 1412 /// let bar = lookup_bar()?; 1413 /// Ok(try_pin_init!(Foo { a: bar.a.into(), b: bar.b }? Error)) 1414 /// }) 1415 /// } 1416 /// ``` 1417 /// 1418 /// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the 1419 /// initializer itself will fail with that error. If it returned `Ok`, then it will run the 1420 /// initializer returned by the [`try_pin_init!`] invocation. 1421 pub fn pin_init_scope<T, E, F, I>(make_init: F) -> impl PinInit<T, E> 1422 where 1423 F: FnOnce() -> Result<I, E>, 1424 I: PinInit<T, E>, 1425 { 1426 // SAFETY: 1427 // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized, 1428 // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__pinned_init`. 1429 // - The safety requirements of `init.__pinned_init` are fulfilled, since it's being called 1430 // from an initializer. 1431 unsafe { 1432 pin_init_from_closure(move |slot: *mut T| -> Result<(), E> { 1433 let init = make_init()?; 1434 init.__pinned_init(slot) 1435 }) 1436 } 1437 } 1438 1439 /// Construct an initializer in a closure and run it. 1440 /// 1441 /// Returns an initializer that first runs the closure and then the initializer returned by it. 1442 /// 1443 /// See also [`pin_init_scope`]. 1444 /// 1445 /// # Examples 1446 /// 1447 /// ``` 1448 /// # use pin_init::*; 1449 /// # struct Foo { a: u64, b: isize } 1450 /// # struct Bar { a: u32, b: isize } 1451 /// # fn lookup_bar() -> Result<Bar, Error> { todo!() } 1452 /// # struct Error; 1453 /// fn init_foo() -> impl Init<Foo, Error> { 1454 /// init_scope(|| { 1455 /// let bar = lookup_bar()?; 1456 /// Ok(try_init!(Foo { a: bar.a.into(), b: bar.b }? Error)) 1457 /// }) 1458 /// } 1459 /// ``` 1460 /// 1461 /// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the 1462 /// initializer itself will fail with that error. If it returned `Ok`, then it will run the 1463 /// initializer returned by the [`try_init!`] invocation. 1464 pub fn init_scope<T, E, F, I>(make_init: F) -> impl Init<T, E> 1465 where 1466 F: FnOnce() -> Result<I, E>, 1467 I: Init<T, E>, 1468 { 1469 // SAFETY: 1470 // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized, 1471 // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__init`. 1472 // - The safety requirements of `init.__init` are fulfilled, since it's being called from an 1473 // initializer. 1474 unsafe { 1475 init_from_closure(move |slot: *mut T| -> Result<(), E> { 1476 let init = make_init()?; 1477 init.__init(slot) 1478 }) 1479 } 1480 } 1481 1482 // SAFETY: the `__init` function always returns `Ok(())` and initializes every field of `slot`. 1483 unsafe impl<T> Init<T> for T { 1484 unsafe fn __init(self, slot: *mut T) -> Result<(), Infallible> { 1485 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1486 unsafe { slot.write(self) }; 1487 Ok(()) 1488 } 1489 } 1490 1491 // SAFETY: the `__pinned_init` function always returns `Ok(())` and initializes every field of 1492 // `slot`. Additionally, all pinning invariants of `T` are upheld. 1493 unsafe impl<T> PinInit<T> for T { 1494 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), Infallible> { 1495 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1496 unsafe { slot.write(self) }; 1497 Ok(()) 1498 } 1499 } 1500 1501 // SAFETY: when the `__init` function returns with 1502 // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld. 1503 // - `Err(err)`, slot was not written to. 1504 unsafe impl<T, E> Init<T, E> for Result<T, E> { 1505 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1506 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1507 unsafe { slot.write(self?) }; 1508 Ok(()) 1509 } 1510 } 1511 1512 // SAFETY: when the `__pinned_init` function returns with 1513 // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld. 1514 // - `Err(err)`, slot was not written to. 1515 unsafe impl<T, E> PinInit<T, E> for Result<T, E> { 1516 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1517 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1518 unsafe { slot.write(self?) }; 1519 Ok(()) 1520 } 1521 } 1522 1523 /// Smart pointer containing uninitialized memory and that can write a value. 1524 pub trait InPlaceWrite<T> { 1525 /// The type `Self` turns into when the contents are initialized. 1526 type Initialized; 1527 1528 /// Use the given initializer to write a value into `self`. 1529 /// 1530 /// Does not drop the current value and considers it as uninitialized memory. 1531 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>; 1532 1533 /// Use the given pin-initializer to write a value into `self`. 1534 /// 1535 /// Does not drop the current value and considers it as uninitialized memory. 1536 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>; 1537 } 1538 1539 /// Trait facilitating pinned destruction. 1540 /// 1541 /// Use [`pinned_drop`] to implement this trait safely: 1542 /// 1543 /// ```rust 1544 /// # #![feature(allocator_api)] 1545 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1546 /// # use pin_init::*; 1547 /// use core::pin::Pin; 1548 /// #[pin_data(PinnedDrop)] 1549 /// struct Foo { 1550 /// #[pin] 1551 /// mtx: CMutex<usize>, 1552 /// } 1553 /// 1554 /// #[pinned_drop] 1555 /// impl PinnedDrop for Foo { 1556 /// fn drop(self: Pin<&mut Self>) { 1557 /// println!("Foo is being dropped!"); 1558 /// } 1559 /// } 1560 /// ``` 1561 /// 1562 /// # Safety 1563 /// 1564 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1565 pub unsafe trait PinnedDrop: __internal::HasPinData { 1566 /// Executes the pinned destructor of this type. 1567 /// 1568 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1569 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1570 /// and thus prevents this function from being called where it should not. 1571 /// 1572 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1573 /// automatically. 1574 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1575 } 1576 1577 /// Marker trait for types that can be initialized by writing just zeroes. 1578 /// 1579 /// # Safety 1580 /// 1581 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1582 /// this is not UB: 1583 /// 1584 /// ```rust,ignore 1585 /// let val: Self = unsafe { core::mem::zeroed() }; 1586 /// ``` 1587 pub unsafe trait Zeroable { 1588 /// Create a new zeroed `Self`. 1589 /// 1590 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1591 #[inline] 1592 fn init_zeroed() -> impl Init<Self> 1593 where 1594 Self: Sized, 1595 { 1596 init_zeroed() 1597 } 1598 1599 /// Create a `Self` consisting of all zeroes. 1600 /// 1601 /// Whenever a type implements [`Zeroable`], this function should be preferred over 1602 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`. 1603 /// 1604 /// # Examples 1605 /// 1606 /// ``` 1607 /// use pin_init::{Zeroable, zeroed}; 1608 /// 1609 /// #[derive(Zeroable)] 1610 /// struct Point { 1611 /// x: u32, 1612 /// y: u32, 1613 /// } 1614 /// 1615 /// let point: Point = zeroed(); 1616 /// assert_eq!(point.x, 0); 1617 /// assert_eq!(point.y, 0); 1618 /// ``` 1619 fn zeroed() -> Self 1620 where 1621 Self: Sized, 1622 { 1623 zeroed() 1624 } 1625 } 1626 1627 /// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write 1628 /// `None` to that location. 1629 /// 1630 /// # Safety 1631 /// 1632 /// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound. 1633 pub unsafe trait ZeroableOption {} 1634 1635 // SAFETY: by the safety requirement of `ZeroableOption`, this is valid. 1636 unsafe impl<T: ZeroableOption> Zeroable for Option<T> {} 1637 1638 // SAFETY: `Option<&T>` is part of the option layout optimization guarantee: 1639 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1640 unsafe impl<T> ZeroableOption for &T {} 1641 // SAFETY: `Option<&mut T>` is part of the option layout optimization guarantee: 1642 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1643 unsafe impl<T> ZeroableOption for &mut T {} 1644 // SAFETY: `Option<NonNull<T>>` is part of the option layout optimization guarantee: 1645 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1646 unsafe impl<T> ZeroableOption for NonNull<T> {} 1647 1648 /// Create an initializer for a zeroed `T`. 1649 /// 1650 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1651 #[inline] 1652 pub fn init_zeroed<T: Zeroable>() -> impl Init<T> { 1653 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1654 // and because we write all zeroes, the memory is initialized. 1655 unsafe { 1656 init_from_closure(|slot: *mut T| { 1657 slot.write_bytes(0, 1); 1658 Ok(()) 1659 }) 1660 } 1661 } 1662 1663 /// Create a `T` consisting of all zeroes. 1664 /// 1665 /// Whenever a type implements [`Zeroable`], this function should be preferred over 1666 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`. 1667 /// 1668 /// # Examples 1669 /// 1670 /// ``` 1671 /// use pin_init::{Zeroable, zeroed}; 1672 /// 1673 /// #[derive(Zeroable)] 1674 /// struct Point { 1675 /// x: u32, 1676 /// y: u32, 1677 /// } 1678 /// 1679 /// let point: Point = zeroed(); 1680 /// assert_eq!(point.x, 0); 1681 /// assert_eq!(point.y, 0); 1682 /// ``` 1683 pub const fn zeroed<T: Zeroable>() -> T { 1684 // SAFETY:By the type invariants of `Zeroable`, all zeroes is a valid bit pattern for `T`. 1685 unsafe { core::mem::zeroed() } 1686 } 1687 1688 macro_rules! impl_zeroable { 1689 ($($({$($generics:tt)*})? $t:ty, )*) => { 1690 // SAFETY: Safety comments written in the macro invocation. 1691 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1692 }; 1693 } 1694 1695 impl_zeroable! { 1696 // SAFETY: All primitives that are allowed to be zero. 1697 bool, 1698 char, 1699 u8, u16, u32, u64, u128, usize, 1700 i8, i16, i32, i64, i128, isize, 1701 f32, f64, 1702 1703 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1704 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1705 // uninhabited/empty types, consult The Rustonomicon: 1706 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1707 // also has information on undefined behavior: 1708 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1709 // 1710 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1711 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1712 1713 // SAFETY: Type is allowed to take any value, including all zeros. 1714 {<T>} MaybeUninit<T>, 1715 1716 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1717 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1718 1719 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: 1720 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>). 1721 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1722 Option<NonZeroU128>, Option<NonZeroUsize>, 1723 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1724 Option<NonZeroI128>, Option<NonZeroIsize>, 1725 1726 // SAFETY: `null` pointer is valid. 1727 // 1728 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1729 // null. 1730 // 1731 // When `Pointee` gets stabilized, we could use 1732 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1733 {<T>} *mut T, {<T>} *const T, 1734 1735 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1736 // zero. 1737 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1738 1739 // SAFETY: `T` is `Zeroable`. 1740 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1741 } 1742 1743 macro_rules! impl_tuple_zeroable { 1744 ($(,)?) => {}; 1745 ($first:ident, $($t:ident),* $(,)?) => { 1746 // SAFETY: All elements are zeroable and padding can be zero. 1747 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1748 impl_tuple_zeroable!($($t),* ,); 1749 } 1750 } 1751 1752 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1753 1754 macro_rules! impl_fn_zeroable_option { 1755 ([$($abi:literal),* $(,)?] $args:tt) => { 1756 $(impl_fn_zeroable_option!({extern $abi} $args);)* 1757 $(impl_fn_zeroable_option!({unsafe extern $abi} $args);)* 1758 }; 1759 ({$($prefix:tt)*} {$(,)?}) => {}; 1760 ({$($prefix:tt)*} {$ret:ident, $($rest:ident),* $(,)?}) => { 1761 // SAFETY: function pointers are part of the option layout optimization: 1762 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1763 unsafe impl<$ret, $($rest),*> ZeroableOption for $($prefix)* fn($($rest),*) -> $ret {} 1764 impl_fn_zeroable_option!({$($prefix)*} {$($rest),*,}); 1765 }; 1766 } 1767 1768 impl_fn_zeroable_option!(["Rust", "C"] { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U }); 1769 1770 /// This trait allows creating an instance of `Self` which contains exactly one 1771 /// [structurally pinned value](https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning). 1772 /// 1773 /// This is useful when using wrapper `struct`s like [`UnsafeCell`] or with new-type `struct`s. 1774 /// 1775 /// # Examples 1776 /// 1777 /// ``` 1778 /// # use core::cell::UnsafeCell; 1779 /// # use pin_init::{pin_data, pin_init, Wrapper}; 1780 /// 1781 /// #[pin_data] 1782 /// struct Foo {} 1783 /// 1784 /// #[pin_data] 1785 /// struct Bar { 1786 /// #[pin] 1787 /// content: UnsafeCell<Foo> 1788 /// }; 1789 /// 1790 /// let foo_initializer = pin_init!(Foo{}); 1791 /// let initializer = pin_init!(Bar { 1792 /// content <- UnsafeCell::pin_init(foo_initializer) 1793 /// }); 1794 /// ``` 1795 pub trait Wrapper<T> { 1796 /// Creates an pin-initializer for a [`Self`] containing `T` from the `value_init` initializer. 1797 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E>; 1798 } 1799 1800 impl<T> Wrapper<T> for UnsafeCell<T> { 1801 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1802 // SAFETY: `UnsafeCell<T>` has a compatible layout to `T`. 1803 unsafe { cast_pin_init(value_init) } 1804 } 1805 } 1806 1807 impl<T> Wrapper<T> for MaybeUninit<T> { 1808 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1809 // SAFETY: `MaybeUninit<T>` has a compatible layout to `T`. 1810 unsafe { cast_pin_init(value_init) } 1811 } 1812 } 1813 1814 #[cfg(all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED))] 1815 impl<T> Wrapper<T> for core::pin::UnsafePinned<T> { 1816 fn pin_init<E>(init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1817 // SAFETY: `UnsafePinned<T>` has a compatible layout to `T`. 1818 unsafe { cast_pin_init(init) } 1819 } 1820 } 1821